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We discuss an extension of the dyon-antidyon liquid model that includes light quarks in the dense center
symmetric phase. In this work, like in our previous one, we use the simplest color SU(2) group. We start
with a single fermion flavor Nf ¼ 1 and explicitly map the model onto a three-dimensional quantum
effective theory with a fermion that is only UVð1Þ symmetric. We use it to show, in the mean-field
approximation, that in the dense center, the symmetric regime leads to the nonzero chiral condensate. We
estimate its value and the σ; η meson masses. We then extend our analysis to an arbitrary number of quark
flavors Nf > 1 and colors Nc > 2 and show that in the dense plasma phase the spontaneous chiral
symmetry breaking disappears when Nf=Nc ≥ 2. A reorganization of the ensemble into a gas of dyon-
antidyon molecules restores chiral symmetry but may still preserve center symmetry in the linearized
approximation.
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I. INTRODUCTION

This work is a continuation of our earlier study [1] of the
gauge topology in the confining phase of a theory with the
simplest gauge group SUð2Þ. We suggested that if an
“instanton-dyon-antidyon” plasma is dense enough to gen-
erate strong screening, it is amenable to standard mean-field
methods. Using this idea, we showed that in such a dense
regime, the ensemble is indeed confining (center-symmetric).
An extensive introduction to the subject can be found in

[1], so here we only mention a few basic points. The
treatment of the gauge topology near and below Tc is based
on the discovery of KvBLL instantons threaded by finite
holonomies [2] and their splitting into the so-called
instanton-dyons (antidyons), also known as instanton-
monopoles or instanton-quarks. Diakonov and Petrov [3]
suggested that the backreaction of the dyons on the
holonomy potential at low temperature may be at the
origin of the disorder-order transition of the Polyakov line.
Avery simple model of a deconfinement transition has been
proposed by Shuryak and Sulejmanpasic [4] through the
use of dyon-antidyon “repulsive cores.”
The dyon-antidyon liquid model proposed by Diakonov

and Petrov [3] was based on (parts of) the one-loop
determinant providing the metric of the moduli spaces in
BPS-protected sectors, purely self-dual or anti-self-dual. The
dyon-antidyon interaction is not BPS protected and appears
at the leading—classical—level, related with the so-called
streamline configurations, the solutions of the “gradient
flow” equation. These solutions have been recently derived
by Larsen and Shuryak [5]. Their inclusion in our work [1]
reveals a very strong coupling of the dyons to the antidyons,

which can, however, be effectively reduced by screening,
provided the dyon ensemble is dense enough.
Before turning to the main subject of this work, which is

focused on the effects of light quarks on the gauge topology
and chiral symmetry, we will briefly mention some impor-
tant studies for the development of our work. The original
discovery of the KvBLL instantons [2] with nontrivial
holonomies is the key starting point for assessing the role
of center symmetry on the gauge topological structures.
The second important development is the assessment of
the quantum weight around the KvBLL instantons in terms
of the coordinates of the instanton-dyons developed by
Diakonov and collaborators [3,6].
The dissociation of instantons into fractional constituents

is similar to the Berezinsky-Kosterlitz-Thouless (BKT)
transition in two-dimensional CPN models [7], as has been
advocated by Zhitnitsky and collaborators [8], although
substantially different in the details.
A center-symmetric (confining) phase can be compatible

with an exponentially dilute regime that is controlled
semiclassically, as shown by Unsal and Yaffe [9] using a
double-trace deformation of the Yang-Mills action at large
N on S1 × R3. A similar trace deformation was used
originally in the context of two-dimensional (confining)
QEDwith unequal charges on S1 × R [10] to analyze center
symmetry and its spontaneous breaking. This construction
was extended to QCD with adjoint fermions by Unsal [11]
and by Unsal and others [12] to a class of deformed
supersymmetric theories with soft supersymmetry break-
ing. While the setting includes a compactification on a
small circle, with weak coupling and an exponentially
small density of dyons, the minimum at the confining
holonomy value is induced by the repulsive interaction
in the dyon-antidyon pairs (called bions by the authors).
A key role of supersymmetry is the cancellation of the
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perturbative Gross-Pisarski-Yaffe-Weiss (GPYW) holon-
omy potential [13]. While this allows us to study deconfine-
ment transition in the very dilute regime, the major subject
to be studied in this work—spontaneous chiral symmetry
breaking—would still be absent, as its development would
require an ensemble which is sufficiently dense.
Let us now turn to the effects of light fermions. Key to

these effects are topological index theorems, which relate
the topological charge of the solitons to the existence
and the number of its fermionic zero modes. When the
ensemble of topological solitons is dense enough, the
fermionic zero modes can collectivize and produce
the so-called zero mode zone (ZMZ) which breaks sponta-
neously chiral symmetry. For the ensemble of instantons,
this phenomenon has been studied in great detail in the
1980s and 1990s (for a review see [14]). Thanks to topology,
the fermionic zero modes are remarkably stable against any
smooth deformations of these objects, resisting a tremendous
amount of perturbative noise. As has been derived in the
“instanton liquid model” context and many times observed
in lattice numerical simulations, the ZMZ states with Dirac
eigenvalues in the range jλj ≤ 20 MeV are crucial for the
generation of the hadronic masses and properties, while
being only a tiny subset of all fermionic states (typically of
the order of 10−4 in current lattice simulations).
The instanton-dyons carry fractional 1=Nc topological

charge, while the number of the zero modes must be
integers. Therefore, only some instanton-dyons may have
zero modes. For physical fermions, antiperiodic on the
Matsubara circle, those are L dyons (also known as KK
ones). For any Nc, there is only one such dyon. Shuryak
and Sulejmanpasic [15] have studied the zero modes, and
the simplest effect of the fermions—binding L̄L dyon pairs
into “molecules”—similar to instanton–anti-instanton mol-
ecules [16]. In the deformed supersymmetric setting, such
molecules (called “bions” by the authors) are mostly
formed due to periodic adjoint gluinos, although the effects
of fundamental quarks were also addressed in [17].
Further investigations by Shuryak et al. [15,18] have

shown that light fermions cause chiral symmetry breaking
in ensembles composed of interacting dyons and antidyons,
provided those are dense enough. (In the deformed super-
symmetric setting, the density is exponentially small by
construction, so no chiral symmetry breaking is possible.)
In this work we follow up on our study in [1], by

introducing light quarks in the dense center symmetric
phase of the dyon-antidyon Coulomb plasma. The word
“dense” is key here, as it justifies the use of a mean-field
analysis in characterizing the spontaneous breaking of
chiral symmetry and the formation of a chiral condensate.
As our interest is now in the light quark dynamics, we will
only enforce the strong Coulomb corrections at the con-
straint level. One of the chief achievements of this work is
to demonstrate how the induced chiral effective Lagrangian
knows about confinement.

In Sec. II we detail the color SU(2) version of the model
for one quark flavor Nf ¼ 1. By using a series of
fermionization and bosonization techniques, we show
how the three-dimensional effective action for the liquid
can be constructed to accommodate for the light quarks. In
Sec. III we show that the ground state solution supports
both center symmetry and chiral condensation. In Sec. IV
we detail the flavor spectrum in terms of the sigma meson,
the eta0 meson which is shown to be anomalous. In Sec. V
we explore the effects of molecular pairing of dyons and
antidyons induced by the light quarks near the transition
temperature and their effect on the formation of the chiral
condensate and center symmetry. In Sec. VI we briefly
extend the model to include many colors and flavors
and show that in the dyon-antidyon liquid with light
quarks, the restoration of chiral symmetry occurs simulta-
neously with the loss of center symmetry for x¼Nf=Nc≥2.
An estimate of the transition temperature from the center
symmetric to nonsymmetric phase is made. Our conclu-
sions are in Sec. VII.

II. EFFECTIVE ACTION WITH FERMIONS

A. General setting

Since this is the second paper of the series, our notations
are consistent with the first one [1] which should be
consulted for details. Let us just remind the key points.
In the semiclassical approximation, the Yang-Mills parti-
tion function is assumed to be dominated by an interacting
ensemble of instanton-dyons (antidyons). For interparticle
distances that are large compared to their sizes—or a very
dilute ensemble—both the classical interactions and the
one-loop effects are Coulomb-like. At distances of the
order of the particle sizes, the one-loop effects are encoded
in the geometry of the moduli space of the ensemble. For
multidyons a plausible moduli space was argued starting
from the KvBLL caloron [2] that has a number of pertinent
symmetries, among which are permutation symmetry,
overall charge neutrality, and clustering to KvBLL.
Since the underlying calorons are self-dual, the induced
metric on the moduli space was shown to be hyper-Kahler.
Specifically, and for a fixed holonomy A4ð∞Þ=2ω0 ¼

ντ3=2withω0 ¼ πT and τ3=2 being the only diagonal color
algebra generator, the SU(2) KvBLL instanton (anti-
instanton) is composed of a pair of dyons labeled by L,
M (antidyons by L̄; M̄) in the notations of [3]. Generically
there are Nc − 1 M dyons and only one twisted L dyon
type. For the SU(2) gauge group used for most of our
discussion, M carries (electric-magnetic) charges ðþ;þÞ
and L carries ð−;−Þ with fractional topological charges
vm ¼ ν and vl ¼ 1 − ν, respectively. Their corresponding
actions are SL ¼ 2πvm=αs and SM ¼ 2πvl=αs. The M
dyons are also referred to as BPST dyons, while the L
dyons are also called Kaluza-Klein dyons.
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With the above in mind, the SU(2) grand-partition function is written as

Z1½T�≡
X

½K�

YKL

iL¼1

YKM

iM¼1

YKL̄

iL̄¼1

YKM̄

iM̄¼1

Z
fLd3xLiL
KL!

fMd3xMiM

KM!

fLd3yL̄iL̄
KL̄!

fMd3yM̄iM̄

KM̄!

× detðG½x�Þ detðG½y�Þj det ~Tðx; yÞje−VDD̄ðx−yÞ: ð1Þ

Here xmi and ynj are the three-dimensional coordinates of the i dyon of the M kind and the j antidyon of the n kind. Here
G½x� is a ðKL þ KMÞ2 matrix and G½y� a ðKL̄ þ KM̄Þ2 matrix whose explicit forms are given in [3,6]. VDD̄ is the streamline
interaction between D ¼ L;M dyons and D̄ ¼ L̄; M̄ antidyons as numerically discussed in [5]. For the SU(2) case its
Coulomb asymptotic is [1]

VDD̄ðx − yÞ → −
CD

αsT

�
1

jxM − yM̄j
þ 1

jxL − yL̄j
−

1

jxM − yL̄j
−

1

jxL − yM̄j
�
: ð2Þ

The strength of the classical Coulomb interaction in (2) is
CD=αs ¼ 2.46=αs. At intermediate distances VDD̄ is char-
acterized by a core aDD̄ ≈ 1=T. The key new element in the
partition function (1) in comparison to our previous work
[1] is the introduction of the fermionic determinant
det ~Tðx; yÞ that we will discuss further below.
The fugacities fi are related to the overall dyon density.

They contain the temperature-dependent running coupling
constant αsðTÞ. Like [1] and earlier works, it was extracted
from the temperature dependence of the fir to the mea-
surements of the caloron plus anticaloron densities at finite
temperateure in unquenched lattice simulations. We define
“bare dyon density” as

nD
T3

¼ C
e−

π
αsðTÞ

αsðTÞ2
; ð3Þ

with C a constant whose value depends on the regulariza-
tion scheme of the divergent determinant, and ultimately
on the specific definition of ΛQCD. For definiteness,
we will use

π

αsðTÞ
¼ 10

3
ln

�
T

0.36Tc

�
; ð4Þ

where 10=3 ¼ 11Nc=6 − Nf=3 for Nc ¼ 2 and Nf ¼ 1.
The constant inside the logarithm has been fitted to lattice
measurements of the instanton density for Nc ¼ 2 and
Nf ¼ 0. (In principle, it should be modified along with Tc,
as the theory changes, e.g. Nf ¼ 0 to Nf ¼ 1. Since we do
not have such lattice data, we will modify only what we
can, the beta function coefficient in front.)
We conclude this section by addressing some limitations

of the approximations we use. While the model described
by (1) can be used at any density, stability of the mean-field
approximation requires that the dyonic plasma should be
dense enough to produce sufficiently large screening
masses (see details in [1]). In practice, this limits its

application to the confined phase with T < Tc. The model
starts to get inapplicable at high density when the dyons are
close to the maximal packing density. Another limitation is
that at small enough T the action per dyon 8π2=g2ðTÞNc
becomes small, thereby invalidating the use of the semi-
classical approximation. Our estimates in [1] show that the
model can still be used with reasonable accuracy in the
range 0.5Tc < T < Tc. Subsequent use of the mean-field
analysis for the fermionic effects is aimed at the same
temperature interval.

B. Quark effects

Let us start with a generic introduction. For quarks in the
fundamental color representation, the squared Dirac equa-
tion in an external chromomagnetic B and chromoelectric
E field takes the generic form [19] in the chiral spinor basis,

ð−∇2 þ 4S · ðB∓EÞÞφ� ¼ 0; ð5Þ

with i∇ ¼ i∂ þ A and Sa the SU(2) spin generators. The
signs in (5) are locked with chirality of the quarks. In the
absence of spin, there are no zero modes as −∇2 is a
semipositive operator. With spin, zero modes may occur
when the spin contribution is negative in (5) and it balances
the first one. For a self-dual object, B ¼ E and only the
negative chirality quark can produce a zero mode state
through the “magnetic moment term,”

ð−∇2 þ 4σ · BÞφ−
D ¼ 0: ð6Þ

In the dyon the last term is σ ·B ≈ σ · r̂=ρ2 at the core size
ρ ≈ 1=νω0. The first term in (6) is the kinetic energy,
bounded by the uncertainty principle and of order 1=ρ2.
These two terms can indeed balance each other.
The explicit fermionic zero modes of the KvBLL

instanton were discussed in [20]. It was noted that for
large holonomies, when dyons are spatially separate, the
zero mode is localized on one of the constituent dyons.
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The zero modes of the individual SU(2) dyons were made
explicit in [15]. We discuss their specific expressions in
Appendix A.
The fermions can, in general, be integrated out, produc-

ing the fermionic determinant in the partition function. Its
part, known in the literature as the “zero mode zone”
(ZMZ), is the part of such determinants restricted to the
subspace of fermionic states associated with such zero
modes. The details of its usage can be found in Refs. [14].
This determinant can be viewed as a sum of closed

fermionic loops with “hopping amplitudes” between dyons
and antidyons. Those form the “hopping matrix” ~T,

~Tðx; yÞ≡
�

0 Tij

−Tji 0

�
; ð7Þ

with dimensionality ðKL þ KL̄Þ2. Each of the entries in Tij

is a “hopping amplitude” for a fermion between the ith L
dyon and the jth L̄ antidyon, defined via the zero mode φD
of the dyon and the zero mode φD̄ (of opposite chirality) of
the antidyon.
Note that the diagonal elements of the hopping matrix

are zero, by chirality, and the nondiagonal ones decrease
with distance and are vanishing in an asymptotically dilute
gas. So such an ensemble has a vanishing determinant and
cannot exist. Depending on the dyon density and locations,
the determinant can either be dominated by small (binary)

loops or very long loops connecting a macroscopically
large number of dyons. The first phase is called “molecular”
and is dominated by dyon-antidyon clusters, reminiscent of
the molecules in the instanton ensemble [16]. The second
phase containing very long loops is called “collective” and
leads to a nonzero quark condensate.
The hopping amplitude is the matrix element of the Dirac

operator, in the background field of the dyon and antidyon.
Assuming that Aμ ≈ Adyon

μ þ Aantidyon
μ and using the Dirac

equation for each zero mode, one can get rid of all gauge
fields and rewrite it as a matrix element with a simple
derivative only,

Tij ≡ Tðxi − yjÞ ¼
Z

d4zφ†
D̄ðz − xiÞiðγ · ∂ÞφDðz − yjÞ:

ð8Þ
C. Bosonic fields

Following [1,3] the moduli determinants in (1) can be
fermionized using four pairs of ghost fields χ†L;M; χL;M for
the dyons and four pairs of ghost fields χ†L̄;M̄; χL̄;M̄ for the
antidyons. The ensuing Coulomb factors from the deter-
minants are then bosonized using four boson fields
vL;M; wL;M for the dyons and similarly for the antidyons.
The result is a doubling of the three-dimensional free
actions obtained in [3]

S1F½χ; v; w� ¼ −
T
4π

Z
d3xðj∇χLj2 þ j∇χMj2 þ∇vL ·∇wL þ∇vM · ∇wMÞ

þ ðj∇χL̄j2 þ j∇χM̄j2 þ∇vL̄ ·∇wL̄ þ∇vM̄ ·∇wM̄Þ: ð9Þ

For the interaction part VDD̄, we note that the pair Coulomb interaction in (1) between the dyons and antidyons can also be
bosonized using standard tricks [21,22] in terms of σ and b fields. We note that σ and b are the un-Higgsed long range U(1)
parts of the original magnetic field Fij and electric potential A4 (modulo the holonomy), respectively. As a result each dyon
species acquire additional fugacity factors such that

M∶ e−b−iσ L∶ ebþiσ M̄∶ e−bþiσ L̄∶ eb−iσ: ð10Þ

Note that these assignments are consistent with those suggested in [4,12] using different arguments. As a result there is an
additional contribution to the free part (9)

S2F½σ; b� ¼
T
8

Z
d3xð∇b · ∇bþ∇σ ·∇σÞ; ð11Þ

and the interaction part is now

SI½v; w; b; σ; χ� ¼ −
Z

d3xe−bþiσfMð4πvm þ jχM − χLj2 þ vM − vLÞewM−wL

þ eþb−iσfLð4πvl þ jχL − χMj2 þ vL − vMÞewL−wM

þ e−b−iσfM̄ð4πvm̄ þ jχM̄ − χL̄j2 þ vM̄ − vL̄ÞewM̄−wL̄

þ eþbþiσfL̄ð4πvl̄ þ jχL̄ − χM̄j2 þ vL̄ − vM̄ÞewL̄−wM̄ ð12Þ
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without the fermions. We now show the minimal mod-
ifications to (12) when the fermionic determinantal inter-
action is present.

D. Fermionic fields

The determinant for the hopping fermionic zero mode can
be fermionized using standard methods. For that, each entry
Tðx − yÞ in (1) can be viewed as a cross two-body dyon-
antidyon hopping matrix with a two-body inverse TG ¼ 1.
To fermionize the determinant, we define the additional
Grassmanians χ ¼ ðχi1; χj2ÞT with i; j ¼ 1;…; KL;L̄ and

j det ~Tj ¼
Z

D½χ�eχ† ~Tχ : ð13Þ

We can rearrange the exponent in (13) by defining a
Grassmanian source JðxÞ ¼ ðJ1ðxÞ; J2ðxÞÞT with

J1ðxÞ ¼
XKL

i¼1

χi1δ
3ðx − xLiÞ

J2ðxÞ ¼
XKL̄

j¼1

χj2δ
3ðx − yL̄jÞ ð14Þ

and by introducing two additional fermionic fields
ψðxÞ ¼ ðψ1ðxÞ;ψ2ðxÞÞT . Thus,

eχ
† ~Tχ ¼

R
D½ψ � expð− R

ψ† ~Gψ þ R
J†ψ þ R

ψ†JÞ
R
dD½ψ � expð− R

ψ† ~GψÞ ð15Þ

with ~G a 2 × 2 chiral block matrix,

~G ¼
�

0 Gðx; yÞ
−Gðx; yÞ 0

�
; ð16Þ

with entries TG ¼ 1. The Grassmanian source contributions
in (15) generate a string of independent exponents for the L
dyons and L̄ antidyons:

YKL

i¼1

eχ
i
1
†ψ1ðxLiÞþψ†

1
ðxLiÞχi1

×
YKL̄

j¼1

eχ
j
2
†ψ2ðyL̄jÞþψ†

2
ðyL̄jÞχj2 : ð17Þ

The Grassmanian integration over the χi in each factor in
(17) is now readily done to yield

Y

i

½−ψ†
1ψ1ðxLiÞ�

Y

j

½−ψ†
2ψ2ðyL̄jÞ� ð18Þ

for the L dyons and L̄ antidyons. The net effect of the
additional fermionic determinant in (1) is to shift the L-dyon
and L̄-antidyon fugacities in (12) through

fL → −fLψ
†
1ψ1 ≡ −fLψ†γþψ

fL̄ → −fL̄ψ
†
2ψ2 ≡ −fL̄ψ†γ−ψ ; ð19Þ

where we have now identified the chiralities through
γ� ¼ ð1� γ5Þ=2. The fugacities fM;M̄ are left unchanged
since they do not develop zero modes.

E. Resolving the constraints

In terms of (9)–(12) and the substitution (19), the dyon-
antidyon partition function (1) for Nf ¼ 1 can be exactly
rewritten as an interacting effective field theory in three
dimensions,

Z1½T�≡
Z

D½ψ �D½χ�D½v�D½w�D½σ�D½b�

× e−S1F−S2F−SI−Sψ ; ð20Þ

with the additional Nf ¼ 1 chiral fermionic contribution

Sψ ¼ ψ† ~Gψ . In the presence of the fermionic fields ψ and
the screening fields σ; b, the three-dimensional effective
field theory (20) is not integrable. Simple approximation
schemes will be developed to address this effective action.
Note that the effective action in (20) is linear in the

vM;L;M̄;L̄. These are auxiliary fields that integrate into delta-
function constraints. However, and for convenience, it is
best to shift away the b; σ fields from (12) through

wM − bþ iσ → wM

wM̄ − b − iσ → wM̄; ð21Þ

which carries a unit Jacobian and no anomalies, and recover
them in the pertinent arguments of the delta function
constraints as

−
T
4π

∇2wM þ fMewM−wL

− fLψ†γþψewL−wM ¼ T
4π

∇2ðb − iσÞ

−
T
4π

∇2wL − fMewM−wL

þ fLψ†γþψewL−wM ¼ 0; ð22Þ

and similarly for the antidyons. To proceed further, the
formal classical solutions to the constraint equations or
wM;L½σ; b� should be inserted back into the three-
dimensional effective action. As in [3] we observe that
the classical solutions to (22) can be used to integrate the
w0s in (20) to one loop. The resulting bosonic determinant
cancels against the fermionic determinant after also inte-
grating over the χ0s in (20). The result is
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Z1½T� ¼
Z

D½ψ �D½σ�D½b�e−S; ð23Þ

with the three-dimensional effective action

S ¼ SF½σ; b� þ
Z

d3xψ† ~Gψ

− 4πfMvm

Z
d3xðewM−wL þ ewM̄−wL̄Þ

þ 4πfLvl

Z
d3xψ†γþψewL−wM

þ 4πfL̄vl

Z
d3xψ†γ−ψewL̄−wM̄ : ð24Þ

Here SF is S2F in (11) plus additional contributions
resulting from the wM;Lðσ; bÞ solutions to the constraint
equations (22) after their insertion back. This procedure for
the linearized approximation of the constraint was dis-
cussed in [1] for the case without fermions.

III. SU(2) QCD WITH ONE QUARK FLAVOR

To analyze the ground state and the fermionic fluctua-
tions we bosonize the fermions in (23) by introducing two
delta functions and reexponentiating them,

Z1½T� ¼
Z

D½ψ �D½σ�D½b�D½Σ�D½Σ5�D½λ�D½λ5�

× e−Sþ
R

d3xiλðψ†ψþΣÞþ
R

d3xiλ5ðψ†iγ5ψþΣ5Þ: ð25Þ

The ground state is parity even so that fL;M ¼ fL̄;M̄ and
Σ5 ¼ 0. By translational invariance, the SU(2) ground state
corresponds to constant σ; b;Σ. The classical solutions to
the constraint equations (22) are also constant,

ðewM−wLÞ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLΣ=2fM

p
; ð26Þ

and similarly for the antidyons.

A. Effective potential

The effective potential V for constant fields follows from
(25) by enforcing the delta-function constraint (25) and
parity,

−V=V3 ¼ þiλΣþ 4πfMvmðewM−wL þ ewM̄−wL̄Þ
þ 2πfLvlΣðewL−wM þ ewL̄−wM̄Þ; ð27Þ

with V3 the 3-volume. For fixed holonomies vm;l, the
constant w0 s are real by (22) as all right-hand sides vanish,
and the extrema of (27) occur for

ewM−wL ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣfLvl=2fMvm

p

ewM̄−wL̄ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣfLvl̄=2fMvm̄

p
; ð28Þ

and Eqs. (28) are consistent with (26) only if vl ¼ vm ¼ 1=2
and vl̄ ¼ vm̄ ¼ −1=2, that is, for confining holonomies or a
center symmetric ground state. Thus,

−V=V3 ¼ iλΣþ 8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLfMΣ=2

p
: ð29Þ

We note that for Σ ¼ 0 there are no solutions to the extrema
equations. The holonomies are no longer constrained to the
center symmetric state. Since Σ ¼ 0 means a zero chiral
condensate (see below), we conclude that in this model of
the dyon-antidyon liquid with light quarks, chiral sym-
metry restoration and the loss of center symmetry occur
simultaneously.
For the vacuum solution, the auxiliary field λ is also a

constant. The fermionic fields in (25) can be integrated out.
The result is a new contribution to the potential (29):

−V=V3 → þiλΣþ 8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLfMΣ=2

p

þ
Z

d3p
ð2πÞ3 ln ð1 − λ2T2ðpÞÞ: ð30Þ

The saddle point of (30) in Σ is the solution to

iλþ αffiffiffi
Σ

p ¼ 0 → λ ¼ αffiffiffi
Σ

p ð31Þ

after the substitution λ → iλ with α ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLfM=2

p
.

Inserting (31) into the effective potential (30) yields

−V=V3 ¼
α2

λ
þ
Z

d3p
ð2πÞ3 ln ð1þ λ2T2ðpÞÞ: ð32Þ

The saddle point for λ is

α2

2λ
¼

Z
d3p
ð2πÞ3

λ2T2ðpÞ
1þ λ2T2ðpÞ≡ V0: ð33Þ

It is readily checked that (33) enforces the true minimum
condition dðV=V3Þ ¼ 0. From (A3) we note that λTðpÞ ≈
λω4

0=p
6 falls rapidly with momentum for p > pmax with

p3
max ≡ ω2

0

ffiffiffi
λ

p
. A simple solution to (33) follows from the

condition λTð0Þ ≫ 1, i.e.,

V0 ≈ p3
max ≡ ω2

0

ffiffiffi
λ

p
: ð34Þ

The precise value of V0 is not important as it will be traded
for the dyon density below. Note that for the opposite case
of λTð0Þ ≪ 1 we have V0 ≈ λ2=ω0. This is the dilute
dyonic density limit which is not our case. The dyon
ensemble in the center symmetric phase is dense [1]. In
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terms of (34) all equations can be solved analytically.
However, we have checked that their accuracy is limited.
All the analysis to follow will be carried out exactly without
these estimates.

B. Gap equation

The free energy depends on two parameters, the mean
values of λ and Σ fields, which should be chosen at the
minimum of it. The equations following from vanishing
first derivatives are known in literature as the “gap
equations.” It is useful, to recast it in terms of the integral
V0 defined above. In particular, we have

Σ ¼ 4V2
0

α2
¼ 2V0

λ
; ð35Þ

while the effective potential (32) is

−V=V3 ¼ 2V0 þ
Z

d3p
ð2πÞ3 ln

�
1þM2ðpÞ

p2

�
: ð36Þ

We have introduced the momentum-dependent constituent
quark mass MðpÞ as

MðpÞ ¼ λpTðpÞ ¼ α2

2V0

pTðpÞ; ð37Þ

which is seen to vanish linearly at p=ω0 ≪ 1 and as 1=p2

for p=ω0 ≫ 1. In Fig. 1 we show the behavior of the
dimensionless mass ratio TMðpÞ=λ as a function of p=T.
Equations (7) through (33) obey the gap equation for the λ
parameter,

Z
d3p
ð2πÞ3

M2ðpÞ
p2 þM2ðpÞ ¼

nD
4
; ð38Þ

relating the integral we called V0 to the dyonic density nD.
So given nD, the solution to the gap equation (39) fixes λ
and, thus, the quark constituent mass MðpÞ and, therefore,
through the delta-function constraint in (25), the value of Σ.

In our approach the nD is not an external input, but
should itself be calculated from the derivatives of the free
energy; e.g., the M-dyon density is

nM ¼ 1

2

∂ð−V=V3Þ
∂ ln fM ¼

Z
d3p
ð2πÞ3

M2ðpÞ
p2 þM2ðpÞ ¼ V0: ð39Þ

Since nD ¼ nM þ nL þ nM̄ þ nL̄ ¼ 4nM as all partial
dyonic densities are equal in the confined phase, we have
V0 ¼ nD=4.

C. Chiral condensate

The nonvanishing of Σ signals the nonvanishing of the
chiral condensate hq̄qi and, therefore, the spontaneous
breaking of chiral symmetry. Standard demonstration of
that is done via introduction of a nonzero but small light
quark mass m, which changes (18) to

Y

i

½−ψ†
1ψ1ðxLiÞ þm�

Y

j

½−ψ†
2ψ2ðyL̄jÞ þm�: ð40Þ

A rerun of the bosonization scheme with (40) shows that
only one contribution in (29) is now shifted,

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLfMΣ=2

p
→ 8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLfMðΣ=2þmÞ

p
; ð41Þ

changing the saddle point solutions (31) to

λ ¼ αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σþ 2m

p ð42Þ

and (33) to

α2

2λ
−mλ ¼

Z
d3p
ð2πÞ3

λ2T2ðpÞ
1þ λ2T2ðpÞ : ð43Þ

The effective potential is now

−V=V3 ¼
α2

λ
þ 2mλþ

Z
d3p
ð2πÞ3 ln ð1þ λ2T2ðpÞÞ: ð44Þ

Inserting (44) in the general definition of the chiral
condensate in the saddle point approximation,

hq̄qi
T

¼ ∂ðV=V3Þ
∂m ; ð45Þ

and using the gap equation, we obtain

hq̄qi
T

¼ −2λ: ð46Þ

We have used that α is independent of m and that the
contribution multiplying ∂λ=∂m is zero thanks to the gap
equation. In the chiral limit, λ is fixed by the solution of the
gap-equation (38) for the constituent quark mass and the

FIG. 1 (color online). The momentum-dependent quark con-
stituent mass TMðpÞ=λ versus p=T.
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dyon density nD. It is therefore an implicit function of nD,
i.e. λ≡ λ½nD�.
The use of (3) into (38) leads to only numerical results

for λ and thus MðpÞ. In Fig. 2 we show the behavior of the
absolute value of the quark condensate jhq̄qij=T3 versus the
dyon density nD=T3. Note that jhq̄qij=T3 decreases with
decreasing dyon density. In this range, a best fit gives

jhq̄qij
T3

≈ 1.25

�
nD
T3

�
1.63

: ð47Þ

For analytical estimates, we note that we can always select
a temperature in the range 0.5 < T0 < Tc for which the
chiral condensate is jq̄qj=T3

0 ¼ 1 at that temperature. From
(46) we have λ0 ¼ T2

0=2 in the chiral limit. Inserting this
value for MðpÞ in (38) shows that the corresponding dyon
density at T ¼ T0 is n0=T3

0 ¼ 0.80.

D. Screened Polyakov lines

As we noted earlier in (28), the spontaneous breaking of
chiral symmetry with a finite value of Σ=2 still preserves
center symmetry with vl ¼ vm ¼ 1=2. However, strict con-
finement is lost because of screening. Heavy fundamental
color charges are now screened by the light constituent
quarks through the formation of tightly bound heavy-light
and colorless mesons. The bound mesons are blind to the Z2

center and, thus, to the holonomies, now with

hLðxÞi ≈ e−βðΣ=2þmþOðαsÞÞ: ð48Þ

TheOðαsÞ contribution in (48) is UV sensitive and requires a
specific subtraction. Using (46) together with (35) and (38)
where Nc ¼ 2, we can recast (48) in the chiral limit into the
generic relation

nD ≈ Nchq̄qi lnðhLðxÞiÞð1þOðαsÞÞ ð49Þ

for the dyonic density in the range 0.5 < T < Tc.
Equation (49) provides for an independent estimate of the

dyon density in unquenched QCD. Finally, we note that for a
large separation, the correlation of two Polyakov lines
clusters,

hL†ðxÞLð0Þi ≈ jhLð0Þij2 ≈ e−βðΣþ2mþOðαsÞÞ; ð50Þ

with a vanishing of the electric string tension due to light
quark screening.

IV. MESONIC SPECTRUM

The stability of the vacuum solution with Nf ¼ 1 can be
tested by fluctuating in the fermionic channel which
consists of both a scalar σ meson and a pseudoscalar η0
meson. Both are massive—the former through the sponta-
neous breaking of chiral symmetry with finite Σ, while the
latter through the UAð1Þ anomaly with a finite topological
susceptibility. The mesonic spectrum for general Nf is
detailed in Appendix C.

A. Sigma meson

A simple way to probe the scalar spectrum is to note that
in the spontaneously broken state, the fermion kinetic
contribution in (22) is now

�
0 Gðx; yÞ

−Gðx; yÞ 0

�
→

�
iλ1xy Gðx; yÞ

−Gðx; yÞ iλ1xy

�
; ð51Þ

with 1xy ¼ δ3ðx − yÞ. The scalar meson in the long wave-
length limit can be identified with the fluctuations in the
chiral condensate through iλ in (51) or

iλ → iλ0 þ iδλ≡ iλ0

�
1þ σs

fs

�
ð52Þ

with λ0 ¼ −hq̄qi=2T in the chiral limit. Fluctuations in λ
also induce fluctuations in Σ. Thus, consistency requires

Σ → Σ0 þ δΣ: ð53Þ

Inserting (52) into (51) and (53) into the delta-constraint
(25) allows for a derivation of the effective action for the
fluctuating parts δΣ; δλ. The linear contributions are zero by
the saddle point equations. So the net contributions are
quadratic and higher. In leading quadratic order δΣ; δλmix,

S2½δλ; δΣ� ¼ −
1

2

Z
d3p
ð2πÞ3 ð−2iÞδΣðpÞδλð−pÞ

−
1

2

Z
d3p
ð2πÞ3

nD
4Σ2

0

δΣðpÞδΣð−pÞ

−
1

2

Z
d3p
ð2πÞ3 δλðpÞG

−1
s ðpÞδλð−pÞ ð54Þ

with

FIG. 2 (color online). The absolute value of the (dimensionless)
quark condensate jhq̄qij=T3 versus the (dimensionless) dyon
density nD=T3.
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G−1
s ðpÞ ¼

Z
d3q
ð2πÞ3

2ð−λ20 þGðq2ÞGðpþ qÞ2Þ
ðG2ðq2Þ þ λ20ÞðG2ðqþ pÞ2Þ þ λ20Þ

:

ð55Þ

To undo the mixing in (55), we solve for δΣ to leading
order,

−2iδλ −
nD
2Σ2

0

δΣ ¼ 0; ð56Þ

and insert it back into (55) to give finally the quadratic
action for the scalar meson,

S2½σs� ¼ þ 1

2f2s

Z
d3p
ð2πÞ3 σsðpÞΔþðpÞσsð−pÞ; ð57Þ

with

ΔþðpÞ ¼ λ20G
−1
s ðpÞ þ nD: ð58Þ

The kernel in (58) can be further reduced using the gap
equation for nD. Thus,

ΔþðpÞ ¼
nD
2

þ
Z

d3q
ð2πÞ3

ðMþq− þM−qþÞ2
ðM2þ þ q2þÞðM2

− þ q2−Þ
ð59Þ

Here,M� ¼ Mðq�Þ and p� ¼ q� p=2, whereMðqÞ is the
running constituent mass in (37). For Nf ¼ 1 we have
mixing between the scalar as a q̄q quark state and the scalar
glueball. The nD=2 contribution in (59) is just the mixing
contribution, while the second contribution is clearly the q̄q
quark bubble contribution. A similar mixing in the scalar
sector was observed in the instanton liquid model of the
QCD vacuum [22].
A comparison of the small momentum expansion of (57)

after subtraction of the nD=2 glue mix yields the canonical
scalar action in x space,

S2½σs�≡þ 1

2T

Z
d3xðj∇σsj2 þm2

sσs
2Þ ð60Þ

with

m2
sf2s ¼ T

Z
d3q
ð2πÞ3

4q2M2ðqÞ
ðq2 þM2ðqÞÞ2 : ð61Þ

In Fig. 3 we show the behavior of m2
sf2s=T4 from (61) as a

function of the scaled dyon density nD=T3. Increasing
density amounts to lower temperature, with a transition
density expected around 1.

B. Eta0 meson

To generate the effective quadratic action for the η0
meson, we need to fluctuate asymmetrically around the
chiral condensate in (51):

iλ → iλ� ≡ iλ0

�
1� iηffiffiffi

2
p

fη

�
: ð62Þ

A rerun of the preceding arguments for the scalar meson
yields

S2½η� ¼ −
1

2f2η

Z
ηðpÞΔ−ðpÞηð−pÞ ð63Þ

with

Δ−ðpÞ ¼
α2

λ20
−
Z

d3q
ð2πÞ3

MþM−ðMþM− þ qþq−Þ
ðq2þ þM2þÞðq2− þM2

−Þ
ð64Þ

for arbitrary current massm. Using the gap equation for nD
for nonzero m, we may further reduce (64) into

Δ−ðpÞ ¼ 2mλþ nD
4

þ 1

2

Z
d3q
ð2πÞ3

ðqþM− − q−MþÞ2
ðq2þ þM2þÞðq2− þM2

−Þ
:

ð65Þ

Since TΔ−ð0Þ≡ f2ηm2
η, it follows that

f2ηm2
η ¼ −mhq̄qi þ χT ð66Þ

with χT ¼ TnD=4. The first contribution in (70) is the Gell-
Mann-Oakes-Renner contribution to the η0 mass as a
would-be Goldstone boson, while the second contribution
is a Witten-Veneziano-like contribution. It suggests an
unquenched topological susceptibility of χT ¼ TnD=4 as
opposed to the quenched topological susceptibility [1]. In
the chiral limit with m ¼ 0,

f2ηm2
η ≈ χT ≡ TnD

4
: ð67Þ

Since the topological susceptibility for dyons χT ≈OðN0
cÞ

and f2η ≈OðNcÞ, the η0 mass is seen to vanish at large Nc.
In Fig. 4 we display the ratio of the squared scalar to
pseudoscalar mass as a function of the scaled dyon density
nD=T3 assuming fs ≈ fη by chiral symmetry. The ratio

FIG. 3 (color online). m2
sf2s=T4 versus the dyon density nD=T3.
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decreases with increasing dyon density or lower temper-
ature. This ratio may be compared to the value in the QCD
vacuum, i.e. T ¼ 0; Nc ¼ 3; Nf ¼ 2þ 1, which is about
1=2. Going in the opposite direction, to smaller densities,
note that the expected phase transition density is around 1.
A simple but approximate understanding of (66) follows

by noting that (25) is Uð1ÞV symmetric but upsets Uð1ÞA
symmetry through the fermionic contributions. Under
Uð1ÞA with ψ → eiγ5θ=2ψ , the fermionic contributions in
(27) change:

þ2πfLeiθvlψ†γþψewL−wM þ 2πfL̄e
−iθvlψ†γ−ψewL̄−wM̄ :

ð68Þ

This amounts to shifting fL;L̄ → fL;L̄e
�iθ in the parity

symmetric effective potential (30). An estimate of mass of
the η0 follows by identifying θ=2 → η=fη=

ffiffiffi
2

p
with a

constant η0 field. So the η0 mass is related to the topological
susceptibility χT. Specifically, the pertinent contribution
from the effective potential (30) is now

−V=V3 → 4πðfLfMðΣ=2þmÞÞ1=2 cos ð
ffiffiffi
2

p
η=fηÞ; ð69Þ

where we have retained the small quark massm. Expanding
(69) yields the quadratic contribution,

−
T
2

�
m2αffiffiffi
Σ

p
f2η

þ 2α
ffiffiffi
Σ

p

f2η

�
η2: ð70Þ

Recall that α ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fMfL=2

p
. From (46) we have

2α=Σ ¼ −hq̄qi, and from (35) we have α
ffiffiffi
Σ

p ¼ 2V0 ¼
nD=2. The squared η0 mass follows as in (66) but with an
incorrect 4χT contribution.

V. DYON PAIRING THROUGH FERMION
EXCHANGES

Above the temperature of the chiral phase transition,
T > Tχ , there is no quark condensate, and dyons and

antidyons pair into neutral “dyon-antidyon molecules”
bound through fermion exchanges [15], a situation some-
what reminiscent of the BKT transition [7,8].
This can be seen by noting that the chiral matrix ~T in (7)

is banded with a band range set by the inverse temperature,

Tij ≈ tfe−
1
2
ω0jxi−yjj → tfδij: ð71Þ

With increasing temperature, the range of ~T is reduced to
the nearest neighbor. As a result, the hopping is stalled with

j det ~Tj → jtfjKLþKL̄δKLKL̄
:

The light quark spectrum is now gapped at λ� ¼ �jtfj with
a vanishing chiral condensate hq̄qi ¼ 0. An estimate of the
hopping parameter follows from

tf ≡
Z

d3p
ð2πÞ3 TðpÞ ≈ 0.8ω0; ð72Þ

using (8)–(A1) and Parseval equality.
A simple but crude estimate of the transition density at

which the pairing into molecules overtakes the chirally
broken phase is when the molecular gap becomes larger
than Σ, thus restoring chiral symmetry. Σ characterizes the
size of the delocalized zero mode zone. Using (72) this
occurs for jtfj ≈ 2.51T ≈ Σ. Since Σ=T ¼ nD=jhq̄qij, this
means a transition when jhq̄qij=nD ≈ 1=2.5. From the
numerical fit (47), this estimate yields to a chiral restoration
for a dilute dyon ensemble with

nD
T3

<
nχ
T3

≈ 0.16: ð73Þ

Near the transition temperature, a substantial amount of
dyons can already be paired, resulting in a weakening of the
chiral condensate.
In terms of (71), the partition function (1) is highly

correlated. The result after summing over pairs is

Zmol½T� ¼
Z

D½b�D½σ�D½χ�D½w�e−S0−SM

× jtfj
ffiffiffiffiffiffiffiffiffiffiffiffi
FLFL̄

p
I2ðjtfj

ffiffiffiffiffiffiffiffiffiffiffiffi
FLFL̄

p Þ; ð74Þ

with S0 defined in (9)–(11) and SM defined in (12) for only
M and M̄. The argument of the modified Bessel function I2
is composed of

FIG. 4 (color online). The mass ratio squared, for scalar to
pseudo-scalar mesons m2

s=m2
η , versus the (dimensionless) dyon

density nD=T3, assuming fs ≈ fη (see text).
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FL ¼
Z

d3xeþb−iσþwL−wM

× fLð4πvl þ jχL − χMj2 þ vL − vMÞ

FL̄ ¼
Z

d3xeþbþiσþwL̄−wM̄

× fL̄ð4πvl̄ þ jχL̄ − χM̄j2 þ vL̄ − vM̄Þ: ð75Þ

The molecular partition function in (74) is highly non-
linear in the auxiliary fields. For large jtfj, we may use the
asymptotic form of I2ðzÞ ≈ ez=

ffiffiffiffiffiffiffiffi
2πz

p
in (75) and linearize

the argument of the modified Bessel function:

ffiffiffiffiffiffiffiffiffiffiffiffi
FLFL̄

p
≈
FL þ FL̄ffiffiffi

2
p

�
1 −

F2
L þ F2

L̄

2ðFL þ FL̄Þ2
�
: ð76Þ

As a first step to be justified below, we may drop the
nonlinear contributions in (76) and the preexponent in (74)
to have

Zmol½T� ≈
Z

D½b�D½σ�D½χ�D½w�e−S0−SMþð ~FLþ ~FL̄Þ=
ffiffi
2

p
ð77Þ

after rescaling fL;L̄ → fL;L̄jtfj=
ffiffiffi
2

p
in ~F. Equation (77) is

now analogous to the SU(2) Yang-Mills partition function
[1,3] with the new rescaled fugacities. A rerun of the
arguments in this case shows that the ground state is still
center symmetric. However, the ground state is chirally
symmetric. It is worth noting that this state is parity even,
so the neglected nonlinear corrections in (76) amount to
ð1 − 1=4Þ which is about a 25% reduction in the pertinent
pressure contribution which is then

Pmol ¼
lnZmol

V3=T
≈ 8πT

�
fMfLjtfjffiffiffi

2
p

�
1=2

: ð78Þ

VI. HIGHER NUMBER OF COLORS
AND FLAVORS

The extension of the current analysis to many Nc colors
and Nf massless flavors is straightforward in principle. For
finite Nc, the KvBLL instanton splits into Nc constituent
dyon with 1=Nc topological charge and fugacity fl with
1 ≤ l ≤ Nc. The L-dyon zero mode which is antiperiodic is
now carried by the l ¼ Nc constituent dyon. The net effect
is a change in the fermionic contribution in (25) through
G → G ⊗ 1f and a change in the parity even effective
potential (27) as

−V=V3 →þ iλNfΣþ 4πfiviðewiþ1−wi þ ewīþ1−wīÞ

þ 4πfNc
vNc

1

Nf!
detNf

ðψ†
l γþψgÞewNc−wNcþ1

þ 4πfN̄c
vN̄c

1

Nf!
detNf

ðψ†
l γ−ψgÞewN̄c−wN̄cþ1 ;

ð79Þ

where the implicit i summation is over i ¼ 1;…; Nc − 1.
The potential V has manifest SUðNfÞV × SUðNfÞA ×
Uð1ÞV flavor symmetry. As a result, the parity even
effective potential (30) after pertinent bosonization and
Fierzing yields

−V=V3 →þ iλNfΣþ 2αðNcÞΣx

þ Nf

Z
d3p
ð2πÞ3 ln ð1 − λ2T2ðpÞÞ; ð80Þ

with x ¼ Nf=Nc and αðNcÞ ¼ 4πfðNcÞ=2x. The mean
fugacity is

fðNcÞ ¼ ðf1…fNc
Þ1=Nc : ð81Þ

We note that its scaling with Nc follows from the scaling of
each fugacity by semiclassics, i.e., fi ≈ 1=α2s . Thus,

fðNcÞ ≈ N2Nc=Nc
c ≈ N2

c; ð82Þ

so that αðNcÞ ≈ N2
c.

A. Gap equation and chiral condensate

For general x ¼ Nf=Nc, the saddle point equation in Σ
of (80) gives

Σ ¼
�

~λ

2xαðNcÞ
� 1

x−1

ð83Þ

after the shift−iλ → λ and ~λ ¼ Nfλ. Inserting (83) into (80)
yields

−V=V3 ¼ −2αðNcÞðx − 1Þ
�

~λ

2xαðNcÞ
� x

x−1

þ xNc

Z
d3p
ð2πÞ3 ln

�
1þ

~λ2

N2
f

T2ðpÞ
�
; ð84Þ

The case x ¼ 1 is special. The effective potential in (80) is
linear in Σ with no a priori saddle point along Σ. We have
checked that taking the saddle point in ~λ first and then the
saddle point in Σ after the substitution results in the same
gap equation to follow. Also, it can be checked explicitly
that the same results follow by taking the limit x → 1.
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The effective potential (84) has different shapes depend-
ing on the ratio of the number of flavors to the number of
colors x. Let us explain that in detail for four cases:

(i) If x < 1, the first term in (84) has a positive
coefficient and a negative power, so it is decreasing
at small ~λ. At large value of ~λ, the second term is
growing as ln ~λ. Thus, a minimum in between must
exist. This minimum is the physical solution we
are after.

(ii) If 1 < x < 2, the coefficient of the first term is
negative but its power is now positive. So, again,
there is a decrease at small ~λ and, thus, a minimum.

(iii) If x > 2, the leading behavior at small ~λ is now
dominated by the second term which goes as ~λ2 with
a positive coefficient. One may check that the
potential is monotonously increasing for any ~λ with
no extremum. There is no gap equation, which
means chiral symmetry cannot be broken in the
mean-field approximation.

(iv) If x ¼ 2, there are two different contributions of
opposite sign to order ~λ2 at small ~λ. An extremum
forms only if the following condition is met:

Z
d3p
ð2πÞ3 T

2ðpÞ < Nc

4αðNcÞ
¼ O

�
1

Nc

�
: ð85Þ

Using the exact form (A3) and the solution to the
gap equation at T ¼ T0, we have

Z
d3p
ð2πÞ3 T

2ðpÞ ¼ 10.37
T0

; ð86Þ

which shows that (85) is, in general, upset, and this
case does not possess a minimum.

With this in mind and for x < 2, the extremum of (84) in
~λ yields the gaplike equation

�
~λ

2xαðNcÞ
� x

x−1

¼ NcVNf−1

αðNcÞ
; ð87Þ

with the new identification

VNf−1 ≡
Z

d3p
ð2πÞ3

~λ2

N2
f
T2ðpÞ

1þ ~λ2

N2
f
T2ðpÞ

: ð88Þ

The dyonic density is now identified with

nD ¼ 2Nc
1

2

∂ð−V=V3Þ
∂ ln fM ¼ 2NcVNf−1: ð89Þ

In terms of (88)–(89) the running constituent mass
MðpÞ ¼ ð~λ=NfÞpTðpÞ obeys the gap equation

Z
d3p
ð2πÞ3

M2ðpÞ
p2 þM2ðpÞ ¼

nD
2Nc

: ð90Þ

From (87) it follows that VNf−1 ≈ Nc and, therefore,

nD ≈ N2
c. The dyonic description we have reached is

consistent with large Nc counting. Since nD ≈ N2
c ≫ 1,

crystallization in the form of dyonic salt is expected at large
Nc [23].
For x < 2, the center symmetric vacuum also breaks

spontaneously chiral symmetry, with a vacuum condensate
given by

hq̄qi
T

¼ −2~λ0; ð91Þ

where ~λ0 is the value of ~λ in the chiral limit. Since
~λ0 ≈ NfNc, the chiral condensate in (91) is of order
NfNc as expected.
To summarize, chiral restoration as well as the loss of

center symmetry occur simultaneously for xχ ≥ 2 as per our
result in (29). This value of x ¼ Nf=Nc is close to the
critical value of xχ ¼ 5=3 originally suggested in the
instanton liquid model in the first reference in [14]. First
simulations of the dyon ensemble with Nc ¼ 2 [18] also
indicate that the border line seems to be Nf ¼ 4, in
agreement with xχ ≈ 2.
Current lattice data are summarized, e.g., in Fig. 5 of [24]

for Nc ¼ 3. Indeed, they seem to indicate a change in the
value of the chiral transition temperature (in units of the
vacuum string tension) Tχ=

ffiffiffi
σ

p
at x ¼ 2 or Nf ¼ 6, but

instead of vanishing, this ratio remains flat up to Nf ¼ 8.
For such a large Nf the number of quark lines 2Nf

connected to an L dyon is large. Maybe the correlations
between them are too strong for the mean-field approxi-
mation to remain valid.
The chiral transition we have discussed in this section

should not be confused with another phase transition in
theories with a large number of flavors, namely, the
conformal (fixed infrared coupling) phase. The reported
lattice [25] and holographic (Veneziano limit) [26] results
put this conformal transition at a much larger number of
flavors xconformal ≈ 4, or Nf ¼ 12 for Nc ¼ 3.

B. Thermodynamics of dyonic phase with x ≤ 1

In the presence of light quarks, the total thermodynam-
ical pressure of the dyon-antidyon liquid consists of the
classical and nonperturbative contributions in (80) at the
extremum, plus its perturbative correction for finite and
symmetric holonomies v ¼ 1=Nc [13], plus the purely
perturbative black-body contribution (ignoring the higher-
order OðαsÞ quantum corrections). Identifying the classical
pressure with −V=βV3 with β ¼ 1=T, we have
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Ptot − Pper

NcT4
¼þ ð1 − xÞ ~nD

þ x
T3

Z
d3p
ð2πÞ3 ln

�
1þM2ðpÞ

p2

�
ð92Þ

with ~nD ¼ nD=ðNcT3Þ. The assessment of the logarithmic
integral follows by numerical integration using the explicit
form of MðpÞ and the solution to the gap equation. The
result is linear in the reduced dyon density for small and
asymptotic densities,

1

T3

Z
d3p
ð2πÞ3 ln

�
1þM2ðpÞ

p2

�
≈ κð ~nDÞ ~nD; ð93Þ

with κð ~nD ≪ 1Þ ≈ 1 and κð ~nD ≫ 1Þ ≈ 2. A simple inter-
polation to the overall numerical results is

κð ~nDÞ ≈
1þ 2 ~nD

10

1þ ~nD
10

: ð94Þ

Since ~nD ≈OðNcÞ, large density corresponds to large Nc
with κ ≈ 2, modulo crystallization. In Fig. 5 we display (93)
as a function of the reduced dyon density ~nD at intermediate
densities. The linearity of the logarithm in ~nD both at small
and asymptotic dyon densities follows from the scaling of
V0 ¼ nD=2Nc with λ as discussed in (34).
In terms of (93) the classical pressure contribution in (92)

simplifies to

Ptot − Pper

NcT4
≈ ð1 − xð1 − κÞÞ ~nD; ð95Þ

with 1 ≤ κ ≤ 2. In the quenched limit or x ¼ 0, it reduces to
the dyonic result obtained for the pure Yang-Mills analysis
in [1], ignoring the Debye-Huckel corrections. The fer-
mion-induced interactions in the center symmetric phase
increase the pressure away from the free limit for
0 < x ≤ 1. Remarkably, for small densities ð1 − κÞ ≈ 0
and Eq. (95) with fermions is close to a free ensemble
of dyons. For large densities or large Nc, ð1 − κÞ ≈ −1 and

Eq. (95) with fermions is more repulsive than the free dyon
ensemble.
The perturbative contribution is given by

Pper

T4
≈ −

π2

45

�
N2

c −
1

N2
c

�
þ π2

45
ðN2

c − 1Þ

−
7π2x
180

�
N2

c −
1

N2
c

�
þ 7π2x

180
N2

c: ð96Þ

The first contribution is the free gluon contribution in the
symmetric phase with v ¼ 1=Nc. The second contribution
is the free black-body gluon contribution, which is can-
celled by the second contribution in leading order in 1=Nc
in the symmetric phase [3]. The third contribution is the
free quark contribution in the symmetric phase with
v ¼ 1=Nc. The fourth and last contribution is the black-
body quark contribution, which we note is cancelled by the
third contribution in leading order in 1=Nc. This general-
izes the observation in [3] to QCD.
An estimate of the transition temperature Tc from the

symmetric phase with v ¼ 1=Nc to the asymmetric phase
with v ¼ 0 follows when all the non-black-body contribu-
tions in the total pressure Ptot cancel out. This occurs when
the rescaled dyon density nD ¼ nD=ðN2

cT3Þ solves

nDc ≈
π2

45

�
1 −

1

N4
c

�
1þ 7x

4

1þ xðκðnDcÞ − 1Þ ð97Þ

with again 1 ≤ κðnDcÞ ≤ 1.

C. Thermodynamics of molecular phase

For completeness we note that near the chiral transition
most of the LL̄ dyons start to pair into molecules, for which
case the total pressure is more appropriately described by

Ptot;mol − Pper

T4
≈
2 ~Λ4

α2s

�j~tfjNf

ffiffiffi
2

p
�1

2

; ð98Þ

with j~tfj ¼ jtfj=Λ. Here, the scale parameter ~Λ ¼ Λ=T is
identified with the vacuum dyon density nD → 2Λ4=α2sT as
in [3]. We note that for Nf → 0, (98) is off by 2−

1
4 in the

ground state pressure from the Yang-Mills limit in [3]. This
can be traced back to our linearized approximation in (76).
The critical temperature is now

Tc ≈
2Λffiffiffiffiffi
~αs

p
�j~tfjNf

ffiffiffi
2

p
�1

8 1

h
1
4ðxÞ ; ð99Þ

with ~αs ¼ Ncαs, and

hðxÞ ¼ π2

45

�
1þ 7x

4

��
1 −

1

N4
c

�
: ð100ÞFIG. 5 (color online). The fermionic loop ln½F�=T3 versus the

reduced dyon density ~nD=T3. See text.
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Equation (99) characterizes the transition from a center
symmetric but chirally symmetric phase to a center
asymmetric and chirally symmetric phase. Which transition
is likely to occur first can be estimated by comparing the
total liquid pressure in (92) to the total molecular pressure
in (98). This is best addressed using mixtures.

VII. CONCLUSIONS

We have extended the mean-field treatment of the SU(2)
dyon-antidyon liquid in [1], to account for light quarks.
Anti-periodic fundamental quarks develop zero modes for
the L; L̄ dyons only. In the dense phase under consideration
with T < Tc, these zero modes are collectivized into a zero
mode zone of quasizero modes which dominates the low-
eigenvalue part of the Dirac spectrum. This phenomenon is
analogous to the one used in the instanton liquid model
[14], although the zero modes themselves and most of the
results are different. The important interplay between
center symmetry and the spontaneous breaking of chiral
symmetry which is absent in [14] is now clarified. In
particular, we have explicitly shown how the chiral effec-
tive Lagrangian for light quarks knows about confinement.
In the infrared, the fermionic determinant is entirely

saturated by these quasizero modes [15], modifying the
dyon-antidyon measure initially suggested in [3,6] to
include light quarks. For the Nf ¼ 1 case of one massless
quark, we have shown that the fermionic determinant
modifies the L; L̄ dyonic fugacities through chiral fer-
mionic bilinears that upset the UAð1Þ symmetry. By a series
of bosonic and fermionic techniques, we have explicitly
mapped the interacting dyon-antidyon Coulomb liquid with
light quarks on a three-dimensional effective theory with
fermions. The translationally and parity-invariant ground
state was shown to follow from pertinent gap equations.
The ground state breaks spontaneously chiral symmetry by
developing a fermion condensate. For Nf ¼ 1 it does not
produce a Goldstone mode because of the UAð1Þ anomaly.
We have derived explicit expressions and estimates for
masses of the σ and η mesons.
We have shown how the model generalizes to an

arbitrary number of flavors and colors. In the whole
temperature interval in which our approach is applicable,
the ensemble is center symmetric (confining) and breaks
spontaneously chiral symmetry provided x ¼ Nf=Nc <
xχ ≈ 2. The loss of center symmetry and chiral symmetry
restoration in this model seems to occur simultaneously
for x ≥ 2. We have noted that in the case of a very large Nf

the fermion-induced interactions maybe too strong to trust
the mean-field approximation we used. This point needs to
be pursued numerically on the lattice.
This conclusion can be compared to the critical value of

xχ ≈ 5=3 of the numerical simulation of the instanton liquid
model [14] (first reference). The first simulation of the dyon
ensemble with fermions, for Nc ¼ 2 [18], found the border

line case is Nf ¼ 4, also in agreement with xχ ≈ 2. So
whether the transition is an artifact of the mean-field
approximation or not remains to be studied.
The chiral transition should not be confused with the

transition to conformal—fixed infrared coupling—phase,
for which current lattice and holographic results put this
transition at a much larger number of flavors xconformal ≈ 4,
or Nf ¼ 12 for Nc ¼ 3.
Near and above the chiral transition, the fermionic

correlations are strong enough to pair L dyons with L̄
antidyons into molecules. The dilute regime involved has
been explored numerically in [15]. In this paper we only
produced some estimates of the transition parameters.
In our approach the confining and chirally broken phases

have been treated via the mean-field approximation only, so
the resulting gap equation has either a finite or zero Σ, with
a finite jump. In the future one can probably include the LL̄
correlations in the ensemble. The result would be a
depletion of the chiral condensate with perhaps a more
continuous cross-over transition as currently observed in
QCD-like theories with several flavors of massive quarks.
In the extreme case where all L dyons and L̄ antidyons

pair to molecules, we have shown that the linearized
molecular partition function supports a phase with center
symmetry but restored chiral symmetry. It would be
interesting in the future to see if such a phase may exist
at some Nc; Nf. At this moment, lattice data on that issue
are also not clear (see e.g. [25]).
An estimate of the pressure in the center symmetric

phase shows that both the free gluon and fermion loop
nearly cancel out in leading order in Nc. We have used it to
estimate the transition density from a center symmetric
phase to a phase with broken center symmetry. A similar
estimate of the transition density was made in [1] in the
absence of fermions.
The current model can be expanded and improved in a

number of ways. The current analysis has been done for the
sector with zero θ. As indicated earlier, the L zero modes
were selected over theM zero modes, creating a topological
unbalance and a lack of manifest θ periodicity in the
induced effective action. This can be generalized to an
arbitrary θ angle through an extended formalism.
Also, we have not included here some Coulomb cor-

rections discussed in [1], to keep the analysis simpler and to
illustrate the interdependence of the center symmetry and
the chiral symmetry breaking in this model. These correc-
tions are Debye-like and still within the semiclassical
analysis.
Some improvement of the moduli space metric may be

considered in the future. We recall that the moduli space
metric used in (1) while exact for LM dyons at all
separations, is only exact asymptotically for LL;MM
dyons. While the former attract, the latter repel. In the
center symmetric or confining phase, we expect the like
dyons to stay away from each other while the unlike dyons
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mingle and screen. In the dyon-antidyon channels, the
treatment is so far classical only, with one-loop effects
absent. We hope to report on some of these issues, as well
as on a full analysis of the meson spectrum for the dyon-
antidyon liquid with Nf > 1 next.
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APPENDIX A: FERMIONIC ZERO MODES
AND HOPPING AMPLITUDES

The fermionic zero modes for the L dyon in the
hedgehog gauge are defined as ðφHÞAα ¼ ηAβ ϵβα with indices
A for color and α for spinors. Their explicit form in terms of
η ¼ ηþ þ η− is [15]

ηAα ¼
ω

3
2

0

2
ffiffiffiffiffiffi
8π

p th ~x
2ffiffiffiffiffiffiffiffiffi

~xsh~x
p

× ðð1 − σ · r̂ÞAαeþiω0x4 þ ð1þ σ · r̂ÞAαe−iω0x4Þ ðA1Þ

with ~x ¼ ω0r. For the L̄ dyons we have � → ∓. Since
Trðφ†

1φ2Þ ¼ Trðη†1η2Þ, we may substitute (A1) into (8).
We recall that the “hedgehog” gauge sets the Higgs VEV

at large distances to be in the radial direction r̂. In this
gauge the expressions for the dyon solutions take the
simplest and nonsingular form. Unfortunately, for configu-
rations with more than one dyon, one can no longer use this
gauge since the “radial direction” cannot be defined.
Therefore, it is mandatory to “comb” the dyons into another
gauge, in which the direction of the Higgs VEV at large
distances is some (arbitrary) constant vector. Such gauges
are known as “string” gauges, because the combing
produces singularities, the famed Dirac strings.
The “hopping amplitudes” Tij are defined via the Dirac

operator, which is by itself gauge invariant, and indepen-
dent of the particular choice of the gauge. However the
“combing rotations” for each dyon depend on the angular
coordinates associated with the location of its center, where
the Dirac string ends. They are not a global gauge choice,
and so they produce some relative phase factors, or finite
Dirac strings.
Ignoring first the singular combing factor, we readily get

the Fourier transform of the hopping matrix. The result is

TðpÞ ¼ ω0

2
ðjA1ðpÞj2 þ jA0

0ðpÞj2Þ; ðA2Þ

with

AnðpÞ ¼
ffiffiffiffiffiffi
2π

p

ω
nþ1

2

0

Z
∞

0

dxxnþ1
2
sinð ~pxÞ

~px

th x
2ffiffiffiffiffiffiffi

shx
p ; ðA3Þ

with ~p ¼ p=ω0. The two integrals in (A3) for n ¼ 0; 1 are
carried numerically. All results in the text are derived
using (A3).
Now we return to the relative combing factors and show

that, in spite of its complicated and singular form, the
amendments due to them are small. For that we transform
the L zero modes in hedgehog (H) gauge (A1) to the
string (S) gauge through a unitary transformation
φS ¼ Uðθ;ϕÞφH. Specifically,

φS;L ¼
�− sin θ

2
e−iϕ þ cos θ

2

− cos θ
2

− sin θ
2
eþiϕ

��
e−iω0x4fðrÞ
eþiω0x4fðrÞ

�
;

ðA4Þ

and similarly for the L̄ dyon,

φS;L̄ ¼
� − cos θ

2
− sin θ

2
eþiϕ

− sin θ
2
e−iϕ þ cos θ

2

��
e−iω0x4fðrÞ
eþiω0x4fðrÞ

�
;

ðA5Þ

with

fðrÞ ¼ ω
3
2

0

2
ffiffiffiffiffiffi
8π

p th ~x
2ffiffiffiffiffiffiffiffiffi

~xsh~x
p : ðA6Þ

The hopping matrix element (8) follows by inserting (A4)–
(A5). The integral over the three-dimensional observation
point z involves the unitary transformations U†ðθx−z;ϕx−zÞ
and Uðθy−z;ϕy−zÞ where the spherical angles θx−z and θy−z
relative to the Z axis are displayed in Fig. 6, along with the
fixed spherical angle θ≡ θx−y.
In general, the hopping matrix element depends non-

trivially on the relative angles relative to the Z axis.

FIG. 6. The grey spheres indicate two dyons centered at x and
y, where z is the observation point. The angles used in the
evaluation of the hopping matrix in string gauge are explained.
See text.
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The following consideration, however, simplify the situa-
tion. Since the zero modes decay exponentially, the
dominant contribution to the integral in (8) stems from
those z with the smallest jx − zj þ jy − zj, and those are on
the line segment connecting x to y. On that segment θx−z ¼
π − θ; θy−z ¼ θ and ϕx−z ¼ π, ϕy−z ¼ 0. Most importantly,
it can be viewed as only a function of θ which is a constant
in the integral. With this in mind, (8) in string gauge reads

Tðx − yÞ ≈þ2ω0

Z
d3zfðjx − zjÞfðjy − zjÞ

− 2

�
1þ cos2θ − cos θ

2

�

×
Z

d3zfjx − zj f
0jy − zj þ fjy − zj

jy − zj : ðA7Þ

In a large ensemble, we have, on average, hcos θi ¼ 0 and
hcos2θi ¼ 1

2
. Thus,

Tðx − yÞ ≈ 2ω0

Z
d3zfðjx − zjÞfðjy − zjÞ

−
5

2

Z
d3zfjx − zj jy − zjf0jy − zj þ fjy − zj

jy − zj
ðA8Þ

or in Fourier space,

TðpÞ ≈ ω0

2

�
jA1ðpÞj2 −

5

4
A1ðpÞA2ðpÞ

�
ðA9Þ

with

A1ðpÞ ¼
ffiffiffiffiffiffi
2π

p

~pω
3
2

0

Z
∞

0

dxx sinð ~pxÞ th x
2ffiffiffiffiffiffiffiffiffi

xshx
p

A2ðpÞ ¼
ffiffiffiffiffiffi
2π

p

~pω
3
2

0

Z
∞

0

dxx sinð ~pxÞ 1
x
d
dx

xth x
2ffiffiffiffiffiffiffiffiffi

xshx
p ; ðA10Þ

which is to be compared to (A2). The dominant contribu-
tions in (A2) and (A9) are due to jA1j2 which is common to
both. In Fig. 7 we compare the hopping in the hedgehog
gauge (A2) (H) to that in the string gauge (A9) (S) versus ~p.
As expected, the differences are small.

APPENDIX B: ALTERNATIVE
FERMIONIZATION

An alternative but equivalent fermionization of the
determinant in (13) can be achieved through the use of
physical fermionic fields as in [22]. The result is

Sf ¼ −i
Z

d4xψ†γ · ∂ψ

− i
Z

d3xð4πfLvLewL−wMθþ þ 4πfL̄vle
wL̄−wM̄θ−Þ;

ðB1Þ

with

θ�ðzÞ ¼
Z

d3xψ†ðxÞS−10 ϕ�ðx − zÞ

×
Z

d3yϕ�ðy − zÞS−10 ψðyÞ: ðB2Þ

Here S0 ¼ 1=ðiγ · ∂Þ. We have checked that (B1) yields the
same partition function after integration as the one we have
presented. This can be verified by expanding Tr lnð1þ � � �Þ
for the fermionic determinant in each case and carrying the
Grassman integration. The advantage in the use of (B1) is
in the construction of correlators using operators with the
physical fermionic fields.

APPENDIX C: MESON SPECTRUM
FOR ARBITRARY Nf

The mesonic spectrum for arbitrary values of Nf can be
analyzed using the same reasoning as Nf ¼ 1. For that we
need to modify the Lagrange multipliers through the
substitution

λðψ†γ�ψ þ ΣÞ →
X

fg

λ�gfðψ†
fγ�ψg þ Σ�

fgÞ: ðC1Þ

The multipliers λ� are UðNfÞ × UðNfÞ valued,

λ� ¼ λ0e�iπps=2ð1þ πsÞe�iπps=2; ðC2Þ

with πs;ps ¼ πas;psTa and TrðTaTbÞ ¼ δab for the SUðNfÞ
generators. A rerun of our preceding arguments yield the
quadratic actions for SUðNfÞ × SUðNfÞ pseudoscalar and
scalar mesonic actions,

FIG. 7. Hopping matrix TðpÞ versus ~p in hedgehog gauge (A2)
(H) and string gauge (A9) (S).
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Sðπps;aÞ ¼
1

2f2π

Z
d3p
ð2πÞ3 πps;aðpÞΔ−ðpÞπps;aðpÞ

Sðπs;aÞ ¼
1

2f2π

Z
d3p
ð2πÞ3 πs;aðpÞΔþðpÞπs;aðpÞ; ðC3Þ

with

Δ∓ðpÞ ¼ 2mλþ
Z

d3q
ð2πÞ3

ðk1M2∓k2M1Þ
ðk21 þM2

1Þðk22 þM2
2Þ
: ðC4Þ

For the singlets scalar and pseudoscalar σ ¼ πs;0 and
η ¼ πps;0, respectively, we have

NfΔσðpÞ ¼
�
nD
Nc

þ 2mλ

�
x

1 − x
þ ΔþðpÞ

NfΔηðpÞ ¼
�
nD
Nc

þ 2mλ

�
x

1 − x
þ Δ−ðpÞ: ðC5Þ
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