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We revisit the dyon-antidyon liquid model for the Yang-Mills confining vacuum discussed by Diakonov
and Petrov, by retaining the effects of the classical interactions mediated by the streamline between the
dyons and antidyons. In the SU(2) case the model describes a 4-component strongly interacting Coulomb
liquid in the center symmetric phase. We show that in the linearized screening approximation, the
streamline interactions yield Debye-Huckel-type corrections to the bulk parameters, such as the pressure
and densities, but do not alter significantly the large-distance behavior of the correlation functions in
leading order. The static scalar and charged structure factors are consistent with a plasma of a dyon-
antidyon liquid with a Coulomb parameter ΓDD̄ ≈ 1 in the dyon-antidyon channel. Heavy quarks are still
linearly confined and the large spatial Wilson loops still exhibit area laws in leading order. The t0 Hooft loop
is shown to be one modulo Coulomb corrections.
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I. INTRODUCTION

At asymptotically high temperature T, QCD-like theo-
ries are in a weakly coupled state known as the quark-gluon
plasma (QGP). In this state, semiclassical solitons—
instantons and their constituents, monopoles, etc.—have
large action S ¼ Oð1=αsÞ ≫ 1. Their semiclassical treat-
ment is parametrically reliable in such a limit, yet their
density is exponentially small ∼e−S and their effects
are small.
However, as the temperature decreases the semiclassical

action S decreases. Since the soliton density grows as a
power of 1=T, their contribution to the QCD partition
increases. At some critical density fixed by Tc, confinement
sets in, and the near-zero expectation value of the Polyakov
line hLi ≈ 0 switches off the quark component of the QGP,
as well as the (nondiagonal) gluons. Below the critical
temperature Tc, the solitons dominate the field ensemble.
The major questions at the transition point are the

following: (i) Are these objects still made of strong enough
fields, allowing for a semiclassical analysis? (ii) Are their
interactions weak enough to preserve their individual
identity? (iii) Are the semiclassical interactions in the
thermal ensemble amenable to known methods of many-
body theory? As we will argue below, the first two
questions will be answered in the affirmative, and the
third, also, provided the ensemble is dense enough.
The instanton liquid model developed in the 1980s is an

example of such a semiclassical treatment. In the vacuum
at T ¼ 0, the action per typical SU(3) instanton was found
to be large with S ∼ 12, and the interinstanton and anti-
instanton interactions were found to be tractable. The

nonperturbative vacuum topological fluctuations are related
to the explicit violation of the axial U(1) and the formation
of fermionic zero modes. The collectivization of the
fermionic zero modes leads to the spontaneous breaking
of flavor chiral symmetry [1] (and references therein). More
recently, instanton-induced effects were found to be
important for hadronic spin physics [2].
However, around the critical temperature T ∼ Tc, instan-

tons should know about the nonvanishing of the Polyakov
line expectation value, also referred to as a nontrivial
holonomy. Instantons with nontrivial holonomies were
found by Lee-Li-Kraan–van Baal (LLKvB) in [3] The
key discovery was the realization that nonzero holonomies
split instantons into Nc constituents, the selfdual instanton-
dyons. Since these objects have nonzero (Euclidean)
electric and magnetic charges and source Abelian (diago-
nal) massless gluons, the corresponding ensemble is an
“instanton-dyon plasma.”
Diakonov and Petrov [4] emphasized that, unlike the

(topologically protected) instantons, the dyons interact
directly with the holonomy field. They further suggested
that since such dyon (antidyon) fields become significant at
low temperature, they may be at the origin of a vanishing of
the mean Polyakov line, or confinement. This mechanism
is similar to the Berezinsky-Kosterlitz-Thouless-like tran-
sition of instantons into fractional “instanton quarks”
suggested earlier by Zhitnitsky and others [6], inspired
by the fractionalization of the topological charge in two-
dimensional CPN models [7], although it is substantially
different in detail. It is also different from the random
dyon-antidyon ensemble suggested earlier by Simonov
and others [8]. It is not yet clear how this Euclidean
mechanism relates to the the quantum condensation of
magnetic monopoles suggested initially by t0 Hooft [9]
and Mandelstam [10], and subsequently supported in the
supersymmetric model discussed by Seiberg and Witten
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[11]. In many ways, it is similar to the three-dimensional
monopole plasma discussed by Polyakov [12].
Unsal and Yaffe [13], using a double-trace deformation

of Yang-Mills at large N on S1 × R3, argued that it prevents
the spontaneous breaking of center symmetry. A similar
trace deformation was used in the context of two-
dimensional (confining) QED with unequal charges on
S1 × R [14] to analyze the nature of center symmetry and
its spontaneous breaking. This construction was extended
to QCD with adjoint fermions by Unsal [15], and by Unsal
and others [16] to a class of deformed supersymmetric
theories with soft supersymmetry breaking. While the
setting includes a compactification on a small circle, with
weak coupling and an exponentially small density of
dyons, the minimum at the confining holonomy value is
induced by the repulsive interaction in the dyon-antidyon
pairs (called bions by the authors). The supersymmetry is
needed to calculate the contribution of the dyon-antidyon
pairs, and, even more importantly, for the cancellation
of the perturbative Gross-Pisarski-Yaffe-Weiss (GPYW)
holonomy potential [17].
Shuryak and Sulejmanpasic [18] have argued that

induced by the “repulsive cores” in dyon-antidyon channel
also generate confinement, explaining it in a simple model.
The first numerical study of the classical interaction of the
dyons with antidyons has been recently carried in [22]. The
streamline configurations were found by a gradient flow
method, and their action assessed. This classical interaction
will be included—for the first time—in our paper.
Another major nonpertubarive phenomenon in QCD-like

theories is spontaneous chiral symmetry breaking. Shuryak
and Sulejmanpasic [19] have analyzed a number of
phenomena induced by the fermionic zero modes of the
instanton-dyons such as the formation of clusters
(molecules or bions) at high temperature and their collec-
tivization, generating spontaneous breaking of chiral sym-
metry at low temperature. Faccioli and Shuryak [20] have
started numerical simulations of the dyon ensemble with
light fermions to understand the nature of the fermionic
collectivization. We will provide an analytical analysis of
these effects in the second paper of this series.
Before we get into the details of the various approx-

imations to our analysis, let us try to provide some
qualitative answers to the three generic questions formu-
lated above: (i) At T ∼ Tc, we will consider the action per
dyon (antidyon) to be still large or S ∼ 4 whatever Nc;
(ii) The dyon interactions will be of the order of
ΔSint ∼ 1 ≪ S. The quantum (one-loop) interactions are
several times smaller and naively can be considered small.
However they are quite nontrivial and the repulsion they
provide would be our key finding. (iii) In general, the dyon
plasma is strongly coupled and it is hard to treat it
analytically. However we will argue below that in some
window of temperatures (below Tc) one can still use the
Debye-Huckel plasma theory.

A major contribution to the understanding of the one-
loop dyon interaction has been made by Diakonov and
others [4,5]. They have found that at T > Tc their inter-
action with the surrounding QGP leads to a linear
(confining) potential between the dyons, proportional to
the perturbative Debye mass. Since in this work we will
only consider the opposite case T < Tc, this will not be
included in what follows. Key to the one-loop effect is
the explicit quantum weight of the KvBLL instantons in
terms of the collective coordinates of the constitutive
dyons at all separations. The self-dual sector is charac-
terized by a moduli space with a hyper-Kahler metric. Its
volume element is given by the determinant of Coulomb-
like matrix. We will refer to it as Diakonov determinant.
In his first attempts to treat the dyonic plasma, Diakonov

kept only the one loop determinant, the volume of the
moduli space, ignoring the QGP screening effects and—as
we will discuss in detail—the even larger classical dyon-
antidyon interaction. Furthermore, he assumed that the
attractive and repulsive terms induced by the determinant
cancel out on average. We disagree on this conclusion as
we detail below. Indeed, Bruckmann and others in [21]
tried to generate configurations of randomly placed dyons
using the determinantal measure, and observed that for
the physically relevant dyonic densities, the determinantal
measure develops negative eigenvalues. This makes no
sense if the measure is to account for the volume of the
dyonic moduli space. We will show that this issue may
become resolved in a strongly correlated ensemble.
It is well known that the separate treatment of self dual

and anti-selfdual sectors is only justified in the context of
supersymmetry where self-duality is dual to holomorphy.
In QCD-like theories, the interaction between self dual and
anti-selfdual sectors is strong and not factorizable. It is
described semiclassically by a “streamline” with a classical
inter-particle potential of order 1=αs, which is larger than
the 1-loop quantum induced potential of order α0s.
Furthermore, configurations with too strongly overlapping
objects with small action, are not subject to the semi-
classical treatment. To account for that one usually relies
on the use of a “repulsive core” as in the instanton liquid
model for instance.
As we will discuss in detail, classical dyon-antidyon

interaction [22] is about an order of magnitude stronger
than the one-loop Coulomb effects. It generically leads
to the dyon plasma in the strongly coupled regime, with
e−VDD̄ ≫ 1. We will however focus on the very dense
regime of such plasma, in which screening is strong enough
that statistical mechanics of the ensemble can be treated by
a variant of the Debye-Huckel mean field plasma theory. In
such case the screening length is short enough to fence the
system from strong coupling correlations and molecular-
type instabilities induced by the streamline. The more
dilute systems such as those appearing at T > Tc, will not
be discussed in this work, as they need more powerful
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many-body methods, such as e.g. strongly coupled
Coulomb plasmas many-body physics re-summations
[23,24] (and references therein). As we will show, in this
case the free energy has a minimum at the “confining”
holonomy value v ¼ πT.
In this paper we will detail the strongly coupled nature of

the dyonic plasma. Our original results consist of (i) intro-
ducing the strong correlations between dyons and antidyons
as described by the streamline [22], (ii) showing that the
determinant interactions induced by the moduli space for
dyons or antidyons are mostly repulsive causing the moduli
volume to vanish for randomly distributed dyons, (iii) show-
ing that suitably organized dyons, in order to account for
screening correlations, yield finite moduli volumes;
(iv) deriving an explicit three-dimensional effective action
that accounts exactly for the screening of dyons and anti-
dyons on the moduli space with strong inter-dyon-antidyon
streamline interactions, (v) showing explicitly that the
strongly coupled dyonic plasma is center symmetric and
thus confining, (vi) deriving the Debye-Huckel corrections
induced by the dyons and antidyons to the leading pressure
for the dyonic plasma and using it to asses the critical
temperature for the SU(2) plasma, (vi) providing the explicit
results for the gluon topological susceptibility and com-
pressibility near the critical temperature in the center sym-
metric phase, (vii) deriving the scalar and charged structure
factors of the dyonic plasma showing explicit screening of
both electric and magnetic charges at large distances with
explicit predictions for the electric andmagnetic masses, and
(viii) showing that the strongly coupled dyonic plasma
supports both electric and magnetic confinement.
This paper is organized as follows: In Sec. II we review

the key elements of the dyon and antidyon measure derived
in [4,5] using the KvBLL instanton. The dyon-antidyon
measure is then composed of the product of two measures
with streamline interactions between the dyons and
antidyons. We briefly detail the exact rewriting of the
three-dimensional grand-partition function in terms of a
three-dimensional effective theory in the SU(2) case. We
also show that the ground state of this effective theory is
center symmetric. In Secs. III and VI we show that in the
linearized screening approximation, the dyon-antidyon
liquid still screens both electric and magnetic charges,
generates a linearly rising potential between heavy charges,
and confines the large spatial Wilson loops. The t0 Hooft
loop in the dyon-antidyon ensemble is shown to be 1
moduloOðαsÞ self-energy corrections which are perimeter-
like in Sec. VII. Our conclusions are in Sec. VIII.

II. INTERACTING DYON-ANTIDYON
ENSEMBLE

A. The setting

The first step is the introduction of the nonzero expect-
ation value of the fourth component of the gauge field,

which is gauge invariant since at finite temperature it enters
the holonomy integral over the time period, known also as
the Polyakov line. Working in a gauge in which hA4i
belongs to the diagonal and traceless subalgebra of Nc − 1
elements, one observes the standard Higgsing via the
adjoint field. All gluons except the diagonal ones become
massive. We will work with the simplest case of two color
gauge theory Nc ¼ 2, in which there is only one diagonal
matrix and the VEV of the gauge field (holonomy) is
normalized as follows,

hA3
4i ¼ v

τ3

2
¼ 2πTν

τ3

2
; ð1Þ

where τ3=2 is the only diagonal color generator of SU(2).
At high T it is trivial with ν → 0, and at low T < Tc it takes
the confining value ν ¼ 1=2. With this definition, the only
dimensional quantity in the classical approximation is the
temperature T, while the quantum effects add to the
running coupling and itsΛ parameter. Since we are working
near and below Tc, we follow the lattice practice and use the
latter as our main unit.
In the semiclassical approximation, the Yang-Mills

partition function is assumed to be dominated by an
interacting ensemble of dyons (antidyons) [4,5]. For large
separations or a very dilute ensemble, the semiclassical
interactions are mostly Coulombic and are encoded in the
collective or moduli space of the ensemble. For multidyons
a plausible moduli space was argued starting from the
KvBLL caloron [3] that has a number of pertinent sym-
metries, including permutation symmetry, overall charge
neutrality, and clustering to KvBLL at high temperature.
Since the underlying calorons are self-dual, the induced
metric on the moduli space was shown to be hyper-Kahler.
The SU(2) KvBLL instanton (anti-instanton) is com-

posed of a pair of dyons labeled by L;M (antidyons by
L̄; M̄) in the notations of [4] which we will follow. Unsal
and collaborators use another name for them: L ¼ KK and
M ¼ BPS, rooted in historical development. BPS stands for
Bogomolny-Prasad-Sommerfeld original monopole solu-
tion and KK stands for Kalutsa-Klein or “time-twisted”
solution. Their actions are SL¼2πvm=αs and SM¼2πvl=αs.
TheM dyons carry ðþ;þÞ and L carries ð−;−Þ (Euclidean
electric-magnetic) charges according to the massless diago-
nal gluons.
Let us remark on the terminology and the nature of the

electric charges and fields we use: those are real in the
Euclidean spacetime setting, and for the solitons used
they are, up to possibly a sign, the same as the magnetic
ones at any point. Both the electric and magnetic charges
of the instanton-dyons are observable by standard
Gaussian closed surface fluxes. If one tried to return to
Minkowski spacetime, however, these electric fields would
become imaginary, while the magnetic ones would
remain real.
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One may also recall that the M dyon is indeed nothing
but the original BPS monopole solution of the Georgi-
Glashow model, with the adjoint Higgs scalar substituted
by the component of the gauge field ϕ → A4. After this
substitution, however, gradients ∇ϕ → ∇A4 and are called
the electric field; the solution is self-dual. No longer a
solution in the Georgi-Glashow model, it now belongs to
pure gauge theory at nonzero holonomy.
Unsal and collaborators call these objects instanton-

monopoles, arguing that the electric charges or fields are
unlike magnetic ones since they are “not real.” We do not
see how this distinction can possibly be relevant since the
notion of a nonzero holonomy itself, the idea of instantons
or instanton-dyons as the saddle points of the path integrals
and many more parts of the setting used, does not exist
outside of the Euclidean finite-T formulation. Anyway, it is
just the names, since all expressions used are the same.
For clarity, let us also comment that these Euclidean

objects are not, by any means, the particle-monopoles, the
excitations of the theory, which must exist in Minkowski
spacetime. Those are not even known for pure gauge theory.
The statistical measure for a correlated ensemble of

dyons and antidyons is

dμDD̄½K�≡ e−VDD̄ðx−yÞ
YN
m¼1

YKm

i¼1

fd3xmi

Km!
detðGmi½x�Þ

×
YN
n¼1

YK̄n

j¼1

fd3ynj
K̄n!

detðGnj½y�Þ: ð2Þ

The streamline interactions induced by the potential VDD̄
correlate the two otherwise statistically independent dyon
and antidyon sectors. (Note that by the potential we mean
the extra action and not the energy; thus, no extra 1=T).
Asymptotically,

VDD̄ðx − yÞ →
X
mn;ij

CD=2
αsT

QmiQ̄nj

jxmi − ynjj
ð3Þ

is a Coulomb-like classical interaction between dyons
and antidyons. Here xmi and ynj are the three-dimensional
coordinates of the i dyon of the m kind and the j antidyon
of the n kind. At shorter separations the streamline stops at
a certain distance aDD̄, and we will refer to it as the “core
size.” While the interaction is more complex than just the
electric Coulomb, it is proportional to the electric charges
Q; Q̄. In general, those are the (Cartan) roots of SUðNcÞ
supplemented by the affine root. They satisfy

QmiQ̄nj ≡ −ð2δmn − δm;nþ1 − δm;n−1Þ: ð4Þ

The dimensionality of G½x� is ðK1 þ � � � þ KNÞ2 and
similarly for G½y�. Their explicit form can be found in
[4,5]. In the SU(2) case there is only one electric charge.

The semiclassical 3-density of all dyon species nD ≡
nL þ nM þ nL̄ þ nM̄ is

nD ¼ dN
d3x

¼ CT3e−
π
αs

α2s
; ð5Þ

where C is a constant to be determined below [see (56)].
Equation (5) can be rewritten using the asymptotic freedom
formula for SU(2) pure gauge theory with 2π=αsðTÞ ¼
ð22=3Þ lnðT=ΛÞ in terms of the scale parameter Λ. (Strictly
speaking, 22=3 should be 8 since we are ignoring the
effects of nonzero modes). The dimensionless density

nD
T3

∼
�
Λ
T

�
11=3

ð6Þ

is small at high T but increases as T decreases. With the
exception of Sec. III G, where we will estimate the critical
deconfinement temperature by including perturbative
Oðα0sÞÞ effects in the dimensionless pressure, we will
always assume the temperature to be small enough, so
that the dyon effects are the dominant ones. The dyon
fugacity f is

f ≈
nD
8π

ð7Þ

to order Oðn3=2D Þ in the dyon density (see below). The
absolute value of the parameter Λ appearing in the semi-
classical formulas can be related to standard parameters like
ΛMS, but this has no practical value since the accuracy with
which they are known is too low to give an accurate value
of the dyonic density. In practice it is obtained from the fit
to the lattice instanton data performed in [19] in the range
0.5 < T=Tc < 3. The caloron action—the sum of SL and
SM—is then written as

SLþMðTÞ≡ 2π

αsðTÞ
≡ 22

3
ln

�
T

0.36Tc

�
: ð8Þ

We will use this fit as a basis for our running coupling.
In particular, the action of the SU(2) caloron at Tc
SLþMðTcÞ ≈ 7.47 translates to the value of the coupling
αsðTcÞ ¼ 0.84. Since in this paper we only work in the
confining regime of the holonomy with all dyon actions
identical, the action per dyon is about 3.75.
The repulsive linear interaction between unlike dyons

(antidyons) found in [5] acts as a linearly confining force
in the center asymmetric phase, favoring the molecular
or KvBLL configuration at T > Tc. This interaction
stems from QGP thermal quanta scattering on the dyons.
However, we will be interested in this paper in the center
symmetric phase at T < Tc, in which there is no QGP, and
we do not include this interaction.
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Since the classical VDD̄ ∼ 1=αs, it dominates the quan-
tum determinants, which include Coulomb interaction of
order α0s. On this point we differ from the argument
presented in [4] regarding the reorganization of (3) in an
extended quantum determinant. At large relative separa-
tions between all particles, the measure (3) is exact. It is
also exact when each bunch of dyons or antidyons
coalesces into a KvBLL instanton or anti-instanton at all
separations.
The above notwithstanding, the grand-partition function

associated with the measure (3),

ZDD̄½T�≡
X
½K�

Z
dμDD̄½K�; ð9Þ

describes a highly correlated ensemble of dyon-antidyons
which is no longer integrable in the presence of the
streamline. The case VDD̄¼0 amounts to ZDD̄→ZDZD̄,
where each factor can be exactly rewritten in terms of a
three-dimensional effective theory. We now analyze (9) for
the SU(2) case, following and correcting the arguments
in [4],

ZDD̄½T�≡
X
½K�

YKL

iL¼1

YKM

iM¼1

YKL̄

iL̄¼1

YKM̄

iM̄¼1

Z
fd3xLiL
KL!

fd3xMiM

KM!

×
fd3yL̄iL̄
KL̄!

fd3yM̄iM̄

KM̄!
detðG½x�Þ detðG½y�Þ

× e−VDD̄ðx−yÞ; ð10Þ

with G½x� a ðKL þ KMÞ2 matrix and G½y� a ðKL̄ þ KM̄Þ2
matrix whose explicit forms are given in [4,5].

B. Classical dyon-antidyon interactions

The explicit form of the Coulomb asymptotic in (10) for
the SU(2) case is

VDD̄ðx−yÞ

→−
CD

αsT

�
1

jxM−yM̄j
þ 1

jxL−yL̄j
−

1

jxM−yL̄j
−

1

jxL−yM̄j
�
:

ð11Þ

The strength of the Coulomb interaction in (11) is CD=αs
and is of order 1=αs. It follows from the asymptotics of the
streamline configuration. In Fig. 1 we show the attractive
potential for the SU(2) streamline configuration in theMM̄
channel [22]. The solid curve is a numerical fit to the data
given by

VDD̄ðrÞ≡ sDD̄VðrÞ ¼ sDD̄
Av
g2

ðr · v − BÞ2
ðr · vÞ3 þ C

; ð12Þ

with sMM̄ ¼ −1 in units of the critical temperature Tc and g
set to 1 and A ¼ 30.9, B ¼ 0.9072, C ¼ 15.795. The
dashed line corresponds to the Coulomb asymptotics,

VMM̄ðrÞ ≈ −
CD

αsr
; ð13Þ

with CD ¼ A=4π ¼ 2.46. We recall that in the uncombed
DD̄ potential, the asymptotic Coulomb interaction corre-
sponds to CD ¼ 2. The attraction in the streamline is
stronger asymptotically owing to the relative combing
between the dyons. Figure 1 shows that the DD̄ core is
about aDD̄ ≈ 1=T. The second observation is that one
should not use the Coulomb asymptotic (the lower dashed
curve) but the actual potential which correctly takes care of
the dyons as extended charged objects rather than point
charges.
Below the core value of aDD̄, the streamline configura-

tion annihilates into perturbative gluons making the para-
metrization (12) arbitrary. Throughout, we will parametrize
the core by a constant, replacing (12) by

VDD̄ðrÞ≡ sDD̄ðVðrÞθðr − aDD̄Þ þ VðaDD̄ÞθðaDD̄ − rÞÞ
ð14Þ

with sMM̄ ¼ sLL̄ ¼ −1 (attractive) and sLM̄ ¼ sLM̄ ¼ þ1
(repulsive).
The ensemble (10) can be viewed as a 4-component

dense and strongly coupled liquid. The quantity in the
exponent, known as the classical plasma parameter,

ΓDD̄ ¼ VðaDD̄Þ ≈
CD=αsaDD̄

3Tc
≈ 1; ð15Þ

is not small. Its exponent eΓDD̄ can even be large. This
implies that the “dyonic plasma” we want to study belongs
to a class of strongly coupled plasmas, with non-negligible

FIG. 1 (color online). Black solid line is the SU(2) DD̄
(dimensionless) potential versus the distance r (in units of
1=T). Upper (blue) dashed line is the parametrization proposed
in Ref. [22], the lower (red) (dashed) line is the Coulomb
asymptotics.
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correlations between the particles. So a priori, this problem
should be studied by methods more powerful than the usual
mean field approximations, such as the Debye-Huckel
theory. However, we will show below that when the dyonic
densities are sufficiently large (and that implies the overall
T of the ensemble to be sufficiently low), the screening
mass gets large enough to put the effective—screened—
interaction inside the domain in which the analytic Debye-
Huckel theory becomes justified.
Furthermore, as we will detail below, the treatment of the

repulsive core is in fact a rather sensitive issue. We chose
the “most smooth” version of the potential, shown by the
solid curve in Fig. 1. Its Fourier transform provides a
smooth form factor in momentum space. We note that the
actual streamline was only found for distances r > aDD̄ ≈
1.2 (about 4=v in the dyon units). The upper (blue)
dashed curve is an example of an arbitrary parametrization
discussed in [22], extending it to smaller values of r.
If one uses it, or even cut off the small r < aDD̄ region
completely—the approach known as hard core or excluded
volume—the Fourier transform of the potential develops
large oscillations. In this case the instability of the Debye-
Huckel theory becomes stronger and its applicability
domain shrinks.
The use of (12) in the repulsive channels ML̄ and LM̄

approximates a smaller repulsion than Coulomb at shorter
distances. A numerical investigation of these channels
would be welcome. Note that both the measure in (10)
and the asymptotic (11) do not include the quantum
corrections around the streamline configuration. Both of
which should add more repulsion to the interaction between
D and D̄. A leading quantum correction to the asymptotic
(11) follows by analogy from the Coulomb corrections
emerging from theDD and D̄ D̄ determinantal interactions.
In our case they are repulsive and amount to the shift

CD → CD −
2αs
π

þOðα2sÞ ð16Þ

in the Coulomb constant. The relevance of this correction
will be briefly discussed below.

C. Qualitative effect of the one-loop moduli space

The volume element of the moduli space of self-dual
SU(2) dyons is given by

ffiffiffiffiffiffiffiffi
gHK

p ≡ detG with gHK its
associated Hyper-Kahler metric [4]. As we already men-
tioned in the Introduction, the one-loop determinant in the
measure (2) must be positive definite for all configurations.
Furthermore, the positivity of all eigenvalues is required,
since they have the meaning of the volume element in the
corresponding subspace. As noted in [21], this is not the
case for ensembles with randomly placed dyons. These
ensembles get denser, and the positivity condition is only
fulfilled for a very small fraction of the configurations.

In fact, one of the main issues of the dyonic ensembles is
the nontrivial character of the one-loop interaction induced
by the Diakonov determinant. Before we show how this
carries to our case through various fermionization and
bosonization and diagrammatic re-summations, it is
instructive to provide a qualitative understanding of the
issues using simple explicit examples.
Although it is well known, for completeness let us start

with the simplest case of two dyons in the SU(2) theory
with symmetric holonomy ν ¼ ν̄ ¼ 1=2. Omitting the
overall factors, Diakonov 2 × 2 matrix G reads

G2×2½x� ∼
 
1� 1

vx12
∓ 1

vx12

∓ 1
vx12

1� 1
vx12

!
ð17Þ

with x12 ≡ j~xð1Þ − ~xð2Þj the distance between the dyons in
units of 1=v ¼ 1=πT. The upper signs are for different
(ML) dyons, and the lower for similar ðMM;LLÞ pairs.
The metric-induced potential is, thus, Vðx12Þ≡− ln detG¼
−lnð1�2=ðvx12ÞÞ≈∓2=ðvx12Þ is Coulomb-like at large
distances. (At short distances the induced potential is
proportional to lnð1=rÞ and not 1=r. There is no divergence
in the partition function.)
Let us now consider an ensemble of several (N ¼ 8)

dyons with NM ¼ NL ¼ 4 and set them randomly in a cube
of size a. We then evaluate all interdyon distances and
calculate detG½x� (which is now an 8 × 8 matrix) as a
function of the Coulomb parameter ϵ ¼ 1=ðπaTÞ. For each
sampling, the determinant is a polynomial of ϵ of degree N.
The results of ten random samplings are displayed in Fig. 2
by the dashed lines. For small ϵ the determinant deviates
from 1 in a nonuniform way. Some configurations are
Coulomb attractive with detG > 1, while some others are

FIG. 2. detG as a function of ϵ ¼ 1=ðπaTÞ. The dashed lines
are for eight dyons randomly placed in a cube of size a≡ 1. The
solid line is for correlated dyons in a saltlike or fcc configuration
also in a unit cube.
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repulsive with detG < 1 for small ϵ. To first order, they
average to zero for a large number of charges as there are
equal number of positive and negative ones. At next order,
the attraction is to win, thanks to the general theorem of
second-order perturbation theory. However, we observe
that already for ϵ ¼ 1=ðπaTÞ ∼ 0.2 the repulsive trend is
dominant and detG < 0 for some samplings. This means
that the moduli space of these configurations vanishes at
the corresponding density. This sets an upper limit on the
density of random ensembles of dyons,

n < nmax ¼ 8ð0.2πTÞ3 ∼ 1.98T3: ð18Þ

The lesson: Diakonov determinantal interaction for
randomly placed dyons is strongly repulsive, reducing
dramatically the moduli space all the way to zero size
for small ϵ. It amounts to a strong effective core of
order α0s.
However, this is not the end of the story. Let us look

at the opposite case of a well-ordered arrangement of
dyons in the unit box. For that and for illustrative
purposes only, we prearrange the eight dyons of the
previous ensemble in a saltlike or fcc configuration on
the unit cube, and assess the corresponding detG. The
result is shown in Fig. 2 by the solid line. While the
qualitative trend is the same—attraction at some interval
of densities, changing to repulsion and then reaching
zero at some density—the value of the maximal density
to be reached is changed by a large factor of about
53 ¼ 125. Here is lesson number two: the moduli space
can be made much larger for the same interparticle
Coulomb strength ϵ if the correlations between charges
are correctly taken into account.
The overall lesson we get from those examples is the

following: Diakonov’s original suggestion that attraction
and repulsion would always cancel can be overcome. Our
analysis shows that ultimately the repulsion wins at some
density where the volume of the moduli space goes to zero.
However, correctly implemented correlations between
charges to maximize screening locally can increase this
critical density by about 2 orders of magnitude. Clearly, the
present setup acts as a good toy model for confinement in
the parameter range stated.

D. Fermionization and fosonization

Following [4] each determinant in (10) can be fermion-
ized using four pairs of ghost fields χ†L;M; χL;M for the dyons
and four pairs of ghost fields χ†L̄;M̄; χL̄;M̄ for the antidyons.
The ensuing Coulomb factors from the determinants are
then bosonized using four boson fields vL;M; wL;M for the
dyons and similarly for the antidyons. The result is a
doubling of the three-dimensional free actions obtained
in [4]

S1F½χ;v;w�

¼−
T
4π

Z
d3xðj∇χLj2þj∇χMj2þ∇vL ·∇wLþ∇vM ·∇wMÞ

þðj∇χL̄j2þj∇χM̄j2þ∇vL̄ ·∇wL̄þ∇vM̄ ·∇wM̄Þ: ð19Þ

For the interaction part VDD̄, we note that the pair Coulomb
interaction in (11) between the dyons and antidyons can
also be bosonized using the standard trick [12] in terms of σ
and b fields. Here σ and b are the un-Higgsed long range
U(1) parts of the original magnetic field Fij and electric
potential A4 (modulo the holonomy), respectively. As a
result, each dyon species acquire additional fugacity factors
such that

M∶e−b−iσ L∶ebþiσ M̄∶e−bþiσ L̄∶eb−iσ. ð20Þ

These assignments are consistent with those suggested in
[16,18] using different arguments. As a result there is an
additional contribution to the free part (19)

S2F½σ;b�

¼T
Z

d3xd3yðbðxÞV−1ðx−yÞbðyÞþσðxÞV−1ðx−yÞσðyÞÞ

ð21Þ

with VðrÞ defined in (12). The interaction part is now

SI½v;w; b; σ; χ�

¼ −
Z

d3xe−bþiσfð4πvm þ jχM − χLj2 þ vM − vLÞewM−wL

þ eþb−iσfð4πvl þ jχL − χMj2 þ vL − vMÞewL−wM

þ e−b−iσfð4πvm̄ þ jχM̄ − χL̄j2 þ vM̄ − vL̄ÞewM̄−wL̄

þ eþbþiσfð4πvl̄ þ jχL̄ − χM̄j2 þ vL̄ − vM̄ÞewL̄−wM̄ . ð22Þ

In terms of (19)–(22) the dyon-antidyon partition function
(9) can be exactly re-written as an interacting effective field
theory in three dimensions,

ZDD̄½T�≡
Z

D½χ�D½v�D½w�D½σ�D½b�e−S1F−S2F−SI . ð23Þ

In the absence of the screening fields σ; b (23) reduces to
the three-dimensional effective field theory discussed in [4]
which was found to be integrable. In the presence of σ; b
the integrability is lost as the dyon-antidyon screening
upsets the hyper-Kahler nature of the moduli space. Wewill
investigate them by linearizing the screening effects in the
symmetric state.
Since the effective action in (23) is linear in the vM;L;M̄;L̄,

the latters are auxiliary fields that integrate into delta-
function constraints. However and for convenience, it is
best to shift away the b; σ fields from (22) through
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wM − bþ iσ → wM

wM̄ − b − iσ → wM̄; ð24Þ

which carries unit Jacobian and no anomalies, and recover
them in the pertinent arguments of the delta function
constraints as

−
T
4π

∇2wM þ fewM−wL − fewL−wM ¼ T
4π

∇2ðb − iσÞ

−
T
4π

∇2wL þ fewL−wM − fewM−wL ¼ 0 ð25Þ

and similarly for the antidyons. In [4] it was observed that
the classical solutions to (25) can be used to integrate the
w0s in (23) to one loop. The resulting bosonic determinant
was shown to cancel against the fermionic determinant after
also integrating over the χ0s in (23). This holds for our case
as well. However, the presence of σ; b makes the additional
parts of (23) still very involved in three dimensions.
After inserting the constraints in the three-dimensional

effective action in (23), the ground state corresponds to
constant fields because of translational invariance. Thus,
the potential per unit 3-volume V3 following from (22) after
the shifts (24) is

−V=V3 ¼ 4πfðvmewM−wL þ vlewL−wMÞ
þ 4πfðvm̄ewM̄−wL̄ þ vl̄e

wL̄−wM̄Þ. ð26Þ

Note that if we did not perform the shift (24) then both the
potential (26) and the constraints (25) depend on b and σ
making the extrema search for V more involved. Of course
the results should be the same. For fixed holonomies vm;l,
the constant w0s are real by (25) as all right hand sides
vanish, and the extrema of (26) occur for

ewM−wL ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
vl=vm

p
ewM̄−wL̄ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
vl̄=vm̄

p
ð27Þ

(27) is only consistent with (25) if and only if vl ¼ vm ¼
1=2 and vl̄ ¼ vm̄ ¼ −1=2. That is for confining holonomies
or a center symmetric ground state. However and because
of the constraint (25) there is no effective potential for the
holonomies in the interacting dyon-antidyon liquid. Indeed,
by enforcing (25) before variation we have V=V3 ¼ −nD,
whatever the v0s. On this point we differ from the argu-
ments and corresponding results made in [4] where the
constraints (25) were not enforced before the variational
derivation of the holonomy potential. Note that the alter-
native argument in [4] in favor of the holonomy potential
fixes the number of dyon species Ki to be equal a priori,
while (10) fixes it only on the average.

III. LINEARIZED SCREENING APPROXIMATION
IN CENTER SYMMETRIC STATE

For the center symmetric ground state of the three-
dimensional effective theory, we may assess the correction
to the potential V to one-loop in the b; σ fields. This is
achieved by linearizing the constraints (25) around the
ground state solutions. Specifically

�
−

T
4π

∇2 þ 2f

�
wM − 2fwL ≈

T
4π

∇2ðb − iσÞ�
−

T
4π

∇2 þ 2f

�
wL − 2fwM ≈ 0 ð28Þ

and similarly for the antidyons. The one-loop correction to
V follows by inserting (28) in (23). The ensuing quadratic
contributions before integrations are

S1L ¼ V − 4πf
Z

d3p
ð2πÞ3

ð T
4π p

2Þ2
ð T
4π p

2 þ 4fÞ2 ðbðpÞ
2 − σðpÞ2Þ.

ð29Þ

The coefficient of the b field appears tachyonic but is
momentum dependent and vanishes at zero momentum.

A. Pressure

Carrying the Gaussian integration in b; σ in (29) yields to
one-loop

lnZ1L=V3 ¼ −V −
1

2

Z
d3p
ð2πÞ3 ln

����1 − V2ðpÞ
16

p8M4

ðp2 þM2Þ4
����

ð30Þ

with VðpÞ the Fourier transform of (12)

VðpÞ ¼ 4π

p2

Z
∞

0

dr sin rVDD̄ðr=pÞ ð31Þ

and the screening mass M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nD=T

p
with jQ2j ¼ 2 for

SU(2). In Fig. 3 we show the form factor (31) in dots line in
units of Tc. A simple parametrization is shown in solid line
of the form

VðpÞ ≈ 4α
e−paDD̄

p2
cosðpaDD̄Þ ð32Þ

with α ¼ πCD=αs and a core aDD̄ ≈ 1=Tc. Inserting (32)
into (30) and setting ~p ¼ p=M yield

lnZ1L=V3 ¼ −V −
M3

2

Z
d3 ~p
ð2πÞ3 ln

����1 − ~α2ð ~pÞ ~p4

ð ~p2 þ 1Þ4
����

ð33Þ
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with

~αð ~pÞ≡ αe−MaDD̄ ~p cosðMaDD̄ ~pÞ. ð34Þ

The dominant contribution to the integral in (30) comes
from the region ~p ≈ 1 for which (34) can be approximated
by ~αð1Þ≡ ~α. As a result (30) can be done approximately by
fixing ~α and we have the classical contribution to the
pressure

Pcl

T
≡ lnZ1L=V3 ≈ nD þ κð ~αÞ M

3

12π
ð35Þ

with

κð ~αÞ ¼ 2þ 5
2
~αþ 1

2
~α2ffiffiffiffiffiffiffiffiffiffiffi

1þ ~α
4

q þ 2 − 5
2
~αþ 1

2
~α2ffiffiffiffiffiffiffiffiffiffi

1 − ~α
4

q − 4 ð36Þ

(36) is seen to vanish for ~α ¼ 0 or in the absence of DD̄
interactions. Near Tc the screening mass isM ≈ σE=Tc (see
below), thus

~α≡ ðπCD=αsÞe−MaDD̄ cosðMaDD̄Þ ≈ −0.52. ð37Þ

For j ~αj < 4 the 1-loop contribution to the pressure from
the charged DD̄ dyons is real with no dimer or molecular
instability. The large core produced by the form factor (34)
is considerably screened by the large dyon density as
captured by the large dielectric constant 1=κð−0.52Þ ≈
5.26 in (35).
The correction in (35) to the free contribution is a Debye-

Huckel correction [23] (and references therein). A simple
but physical way to understand it is to note that a screened
Coulomb charge carries a lower constant energy

e−Mjxj

4πjxj ≈
1

4πjxj −
M
4π

þ � � � ð38Þ

The Debye-Huckel as a mean-field estimate for the pressure
follows

PDH

T
≈
nDM
4πT

¼ M3

8π
→

M3

12π
; ð39Þ

where nD ¼ M2T=2 is the density of charged particles (see
below). The standard Debye-Huckel limiting result for a
multi-component ionic plasma in three spatial dimensions
is shown on the right-most side of (39).
The correction in (35) is considerably reduced by the

large screening through the effective dielectric constant
played by 1=κð ~αÞ ≈ 32=ð15~α2Þ for ~α ≪ 1. In particular
1=κð−0.52Þ ≈ 5.26 ≫ 1 as noted earlier. It can be recast in
the form

Pcl

T4
¼ ~nD þ κð ~αÞ

3π
ffiffiffi
2

p ~n
3
2

D ð40Þ

with ~nD ¼ nD=T3. Using MaDD̄ ≈ σE=T2
c ≈ 1=ð0.71Þ2 for

SU(2) we have ~nD ≈ 1, so that Pcl=T4 ≈ ð1þ 0.01ÞÞ. The
screening corrections are small of the order of 1% thanks to
the large dyonic densities.
The limitations of the Debye-Huckel approximation are

readily seen from (30). In Fig. 4a we plot the argument of
the logarithm in the last term of (30). The different curves
from top to bottom follow from MaDD̄ ¼ 1.5, 1, 0.7, 0.56,
respectively. The smaller the Debye mass M the stronger
the dip. For MaDD̄ < 0.56, the argument of the logarithm
becomes negative resulting into an iπ contribution to the
pressure and thus an instability. This is a clear indication of
a well-known phenomenon: the Debye-Huckel approxima-
tion is, in general, inapplicable for strongly coupled
plasmas, and the interaction mediated by the streamline
is strong. Only a large enough density of dyons, producing
sufficiently strong screening, allows for the use of the
Debye-Huckel theory. In Fig. 4(b) we show how the total
integrated contribution to the free energy changes as a
function of the dimensionless Debye mass MaDD̄:

ðMaDD̄Þ3
Z

∞

0

dpp2 ln

����1 − V2ðpMÞ
16

p8

ðp2 þ 1Þ4
����: ð41Þ

The main lesson is that beyond the critical value of the
screening, this contribution rapidly becomes very small.
This is consistent with the analytical estimate above. This
justifies the use of the Debye-Huckel mean-field analysis,
in general, and the use of the semiclassical expansion in
particular.

B. Beyond the Debye-Huckel theory

The unraveling of the Debye-Huckel approximation may
be due to corrections to an interacting Coulomb system,
such as (i) core corrections and (ii) dimer, tetramer, and so
on many-body interactions. The large core corrections were

FIG. 3 (color online). The dots show the form factor, the ratio
VðpÞ · ðp2=4πÞ of the Fourier transform of (12) to that of a pure
Coulomb law versus p=T. The thin line is its parametrization.
See text.
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already identified and discussed above and yield a sub-
stantial reduction in the Debye-Huckel contribution near
the critical value of MaDD̄ ∼ 0.56.
Bound state corrections in the form of electrically

charged LL̄ or MM̄ dimers, or electrically neutral
LL̄MM̄ tetramers commonly referred to as instanton-
anti-instanton molecules, can bind through the streamline
interaction (11) and (12). The combinations LM̄ and ML̄
are repulsive. The binding energy in a dimer is
ϵDD̄ ≈ ðCD=3Þ=ðαsaDD̄Þ ¼ T. The dimer enhancement is
expected to be of order eϵDD̄=T ≈ eðCD=3Þ=αs ≈ 2.72 for
T≈Tc using the reduced effective Coulomb coupling. As
we noted earlier, this enhancement becomes substantially
larger at high temperature as αs decreases with the onset
of dimerization set at about αs;crit ¼ πðCD=3Þ=4 ≈ 0.67.
At this coupling which occurs above Tc, the Coulomb
dimer enhancement factor is eCD=3αs;crit ≈ 3.57.
In sum, the dyons and antidyons form a Coulomb liquid

with strong short-range correlations induced by both the
finite cores and bindings. The liquid supports center
symmetry and confines. The deconfinement transition
is characterized by clustering into charged dimers and
possibly uncharged and topologically neutral tetramers,

forming mixtures with the restoration of center symmetry.
Coulomb mixtures present rich phase diagrams [26].

C. Dyonic densities

Equation (30) can be readily used to assess the dyon
densities KM and KL (and similarly for KM̄ and KL̄) in the
center symmetric vacuum with screening dyons-antidyons.
For that we need to change f →

ffiffiffiffiffiffiffiffiffiffiffi
fMfL

p
and take deriv-

atives of (30) with respect to ln fM;L separately and then
set them equal by bulk charge neutrality. The result per
species is

K ¼ 1

4
nD þ κð ~αÞ M

3

32π
ð42Þ

for all dyon and antidyon species.
Each dyon (antidyon) is characterized by an SU(2) core

of size ρ ≈ 1=ð2πTνÞ ≈ 0.33 fm in the center symmetric
phase with ν ¼ 1=2 at T ¼ 1=fm. The Debye length λD ¼
1=M ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=2nD

p
≈ 0.70 fm is about twice the core size.

The classical Coulomb ratio for the DD; D̄ D̄ pairs with a
core of 2ρ is about

ΓDD;D̄ D̄ ≡ 1

2πð2ρÞT ≈
ν

2
¼ 1

4
; ð43Þ

which is small. Recall from (15) that ΓDD̄ ≈ 1. The
Coulomb DD; D̄ D̄ interactions are quantum and of order
α0s with strength 1=π as can be seen by expanding the
exponential form of the determinantal interaction in (17).
The dyon-antidyon ensemble is close to a strongly
coupled 4-component Coulomb liquid. Since the measure
for the unlike dyons is exact, it is valid even in the dense
configuration. It is only asymptotically exact for like
dyons. For the dyons and antidyons, the streamline is
numerically exact at all separations outside its core.
However, its corresponding quantum determinant was
not calculated. Only a qualitative correction was argued
in (24).

D. Gluon condensates and susceptibilities

The topological charge fluctuates locally in this dyon-
antidyon model. The topological susceptibility at one loop
follows from (30) through the substitution f → f cosðθ=2Þ
both in V and also M → M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðθ=2Þp

. At finite vacuum
angle θ and in leading order, we have

hF ~Fiθ≡−
T
V3

∂ lnZ1L

∂θ
¼ sinðθ=2Þ

�
1

2
nDTþ κð ~αÞM

3T
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðθ=2Þ

p �
. ð44Þ

Thus, we have the topological susceptibility

FIG. 4 (color online). (a) The argument of the logarithm in the
last term of (30) versus the dimensionless momentum p, for
different values of the dimensionless Debye mass MaDD̄ ¼ 1.5,
1, 0.7, 0.56, top to bottom. As the screening mass decreases to its
critical value, the lower (green) curve touches zero. The smaller
values ofM lead to a negative argument of the logarithm, thus an
instability. (b) A semilogarithmic plot of the integral entering in
(30) as defined in (41) as a function of MaDD̄. The decrease is
steady from its maximum at the critical value of the screening
mass or MaDD̄ ¼ 0.56.
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χT ≡ V3

T
hðF ~FÞ2i0 ≈

�
1

2

�
2

ðnDTÞ ð45Þ

in leading order. Since the dyons carry half the topological
charge, Eq. (45) shows that the topological fluctuations are
Poissonian to order Oðn3=2D Þ. The behavior of χT=T4 versus
T=Tc is shown in Fig. 5 with nD defined in (56) below.
The gluon condensate to one loop in the screening

approximation follows from

1

16π2
hF2i0 ≡ −

T
4πV3

∂ lnZ1L

∂1=αs
≈ −

T
4π

�
2

αs
− π

��
nD þ κð ~αÞM3

8π

�
; ð46Þ

which is non-Poissonian because of the scale anomaly. The
compressibility of the ground state is

σχ ≡ V3

T

��
F2

16π2

�
2
�

c

≈
T

16π2

�
2

�
nD þ κM3

8π

�
þ
�
2

αs
− π

�
2
�
nD þ 3κM3

16π

��
ð47Þ

for the connected correlator.
We can use (35) and (46) to extract the electric hE2i0 and

magnetic hB2i0 condensates in the dyonic ensemble. For
that we note that the energy per volume in Euclidean space
follows from (35) through

1

8π
hB2 − E2i0 ¼ T2

∂
∂T

Pcl

T
: ð48Þ

The results are

hB2i0
4πT

¼
�
þ3 −

�
1þ 2α0s

α2s

��
1

αs
−
π

2

���
nD þ κM3

8π

�
hE2i0
4πT

¼
�
−3 −

�
1 −

2α0s
α2s

��
1

αs
−
π

2

���
nD þ κM3

8π

�
;

ð49Þ

with α0s ¼ ∂αs=∂ lnT. In Fig. 6 we show the behavior of
the chromoelectric condensate hE2i (solid-black), the
chromomagnetic condensate hB2i (dashed-blue), and the
(Euclidean) energy density hB2 − E2i (dot-dashed-brown)
in units of T versus T=Tc in the center symmetric phase.
We used the dyon density fixed in (56) below. The
chromomagnetic condensate is about constant in the range
of 0.6 < T=Tc < 1 while the chromoelectric condensate
decreases monotonously. The condensates are about equal
and opposite near Tc, a point supported by the lattice
extracted condensates in [25]. We note that the lattice
analysis in [25] involves a specific subtraction of the black-
body contribution which we do not have in our semi-
classical analysis.

E. Electric and magnetic screening masses

The center symmetric phase of the dyon-antidyon liquid
screens the long-range U(1) gauge fields left un-Higgsed by
the holonomy A4ð∞Þ=2πT ¼ νT3=2. The electric and
magnetic correlations in these Abelian U(1) charges can
be obtained by introducing the U(1) Abelian sources ηm;e

for the magnetic and electric charge densities,

ρm;eðxÞ ¼
X
i

Qm;e;iδ
3ðx − xiÞ; ð50Þ

with jQm;ej ¼ 1, and shifting the U(1) fields σ → σ þ ηm
and b → bþ ηe in the three-dimensional effective action.
To one loop, the generating functional for the charge
density correlators is

FIG. 5 (color online). Topological susceptibility in units of T
versus T=Tc.

FIG. 6 (color online). The electric hE2i (solid-black), magnetic
hB2i (dashed-blue), and (Euclidean) energy density hB2 − E2i
(dot-dashed-brown) in units of T versus T=Tc. See text.
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Z1L½ηm; ηe� ¼
Z

D½σ�D½b�e−S2F ½σ;b�−S1L½σþηm;bþηe�; ð51Þ

which is Gaussian in the sources and, therefore, readily
integrated out. Thus,

lnZ1L½ηm; ηe� ¼ −
Z

d3p
ð2πÞ3

X
i¼e;m

ηiðpÞGiðpÞηið−pÞ; ð52Þ

with the electric and magnetic density correlators following
by variation,

Gm;eðpÞ≡ 1

V3

hjρm;eðpÞj2i

≈
1

4

TM2p4

ðp2 þM2Þ2 � ~αM2p2
; ð53Þ

with the upper sign for magnetic and the lower sign for
electric. In x space, (53) can be inverted by Fourier
transforms. The result for the electric correlator in spatial
coordinates is

−
TM4

16πjxje
−
ffiffiffiffiffiffi
1− ~α

4

p
Mjxj

×

"
cos

� ffiffiffi
~α

p

2
Mjxj

�
ð ~α−2Þþ sin

� ffiffiffi
~α

p

2
Mjxj

�
1−2~αþ ~α2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~αð1− ~α

4
Þ

q
#
:

ð54Þ

The magnetic correlator follows by analytical continuation
through the substitution ~α → − ~α in (54). The electric
screening masses MM;E follow from the large-distance
asymptotics. Using our estimate of ~α ≈ −0.52 < 0 from
the Debye-Huckel analysis above, we have

ME

M
≈

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j ~αj

4

r
−

ffiffiffiffiffiffij ~αjp
2

!
≈ 0.70

MM

M
≈

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

j ~αj
4

r !
≈ 0.93; ð55Þ

with M2 ¼ 2nD=T. Also the arguments below show that
M ¼ σE=T. Combining these two results allows us to fix C
in (5) above. Indeed, at Tc the SU(2) lattice results give
Tc=

ffiffiffiffiffi
σE

p ≈ 0.71. So Eq. (5) now reads

nD
T3

≈ 2
α2sðTcÞ
α2sðTÞ

e
π

αsðTcÞ−
π

αsðTÞ; ð56Þ

which gives ME ≈ 1.4 and MM ≈ 1.8Tc, both of which are
remarkably close to the reported SU(2) lattice results in the
vicinity of the critical temperature [27]. In Fig. 7 we display
the results (55) for ME;M=T in the range ð0.5–1ÞTc versus

T=Tc. The points at T > Tc are shown for comparison. We
note that the electric mass drops down at Tc. In the region
we study MM > ME, while above Tc, in a more familiar
QGP region, MM < ME. This switching of the magnitude
of the two screening masses is better documented in lattice
works with the SUð3Þ gauge group. It has a simple
explanation in our case. Since at T > Tc the dyon density
drops, it follows that M decreases as well. As a result, the
form factor in Fig. 3 is probed at smaller momentum p ≈M
(larger distances) making ~αðp ≈ MÞ in (34) switch from
negative (T < TC) to positive (T > TC). From (53) it
follows that the expressions for ME;M in (55) are now
switched with MM lighter than ME. A simple estimate of
the critical temperature at the crossing follows from the
vanishing of (37) or MaDD̄ ¼ π=2. This translates to a
critical dyon density nCD ≈ π2T3

c=8 which is consistent with
our estimate of Tc below (see (71)).
Finally, we note that the value of αsðTcÞ ≈ 0.84 extracted

from the cooled caloron data in [19] is also consistent
with the reported value from bulk thermodynamics in [28].
In the dyon-antidyon Coulomb liquid the correlators are
modified at intermediate distances as we now detail in
terms of the static structure factors.

F. Static structure factors

The charged structure factor between a pair of magnetic
or electric charges is (53) which can be rewritten as

GM;EðpÞ≡
�

1

Nm;e

����X
Nm;e

j¼1

Qm;e;jeik·xj
����
2�

: ð57Þ

Thus,

GM;EðpÞ ¼
Gm;eðpÞ
nD=2

≡ ~p4

ð ~p2 þ 1Þ2 � ~α ~p2
; ð58Þ

with ~p ¼ p=M. We note that the prefactor in (58) involves
two static electric or magnetic exchanges with an identical
screening mass M. The charged structure factors vanish as

FIG. 7 (color online). The electric ME=T (dashed line) and
magnetic MM=T (solid line) screening masses in (55) versus
T=Tc. The points are SU(2) lattice data from [27] shown for
comparison, (blue) circles are ME=T, (red) squares are MM=T.

YIZHUANG LIU, EDWARD SHURYAK, AND ISMAIL ZAHED PHYSICAL REVIEW D 92, 085006 (2015)

085006-12



GM;EðpÞ ≈ ~p4. For large momenta or ~p ≫ 1 both structure
factors asymptote one from below as shown in Fig. 8.
The magnetic hole is slightly smaller than the electric
one around the same pairs. The absence of oscillations in
the structure factor is a consequence of our linearized
approximation.
To characterize further the 4-component plasma of dyons

and antidyons, we define the scalar static pair correlation
function,

GSðxÞ ¼
�
1

N

XN
i≠j

δ3ðxþ xi − xjÞ
�
; ð59Þ

normalized to the total number of particles N.
Equation (59) defines the probability to find two particles
a distance jxj apart. Its Fourier transform,

GSðpÞ ¼
�
1

N

����XN
j¼1

eip·xj
����
2�

; ð60Þ

is the scalar structure factor.
Equation (60) can be evaluated by switching

f → f þ δfðxiÞ in (10) and then linearizing the resulting
effective action around the mean density. Specifically, we
can rewrite the linearized constraint (28) formally as

ðwM − wLÞ ¼
1

Δ0 þ 4δf

�
T∇2

4π

�
ðb − iσÞ; ð61Þ

with Δ0 ¼ −T∇2=4π þ 4f and use perturbation theory to
expand the denominator in (61) to orderOðδf3Þ. The result
can be formally written as

ðwM − wLÞðpÞ ¼
Z

d3k
ð2πÞ3 Gðp; kÞðb − iσÞðkÞ: ð62Þ

Inserting (62) into the potential (26) yields a quadratic
action in b and σ. Integrating over the latter yields the one-
loop determinant or the effective action for δ≡ δf=f.
Specifically,

detð1þ S½δ�Þ ¼ eTr lnð1þS½δ�Þ ≈ eTrS½δ�; ð63Þ

with the quadratic effective action for the scalar fluctuations
as

TrS½δ� ¼ −
Z

d3p
ð2πÞ3 δðpÞG

−1ðpÞδð−pÞ; ð64Þ

with to order Oð ~α3Þ

G−1ðpÞ ≈ nD þ 4~α2M8

Z
d3k
ð2πÞ3

×

�
k4

ðk2 þM2Þ4
1

ððkþ pÞ2 þM2Þ2

þ 2k2

ðk2 þM2Þ3
1

ððkþ pÞ2 þM2Þ2
	
: ð65Þ

The nD contribution in (65) follows from the expansion of
the leading contribution V using arguments similar to those
used for the derivation of the dyonic densities above.
The scalar structure factor follows from (65) through the

normalization

GSðpÞ≡ nD
V3

hjδðpÞj2i ¼ nDGðpÞ: ð66Þ

We note that the small momentum fluctuations in δf couple
to the soundlike modes. Specifically,

GSðpÞ ≈
p2

c2sp2
ð67Þ

is dominated by a massless pole at zero momentum
with

c2s ≈ 1þ8~α2
�
M
T

�Z
d3k
ð2πÞ3

�
k4

ðk2þ1Þ6þ
2k2

ðk2þ1Þ5
	
: ð68Þ

Alternatively, from the pressure (35) we expect

c2s ≡ ∂Pcl

T∂nD ≈ 1þ κð ~αÞ
4π

�
M
T

�
; ð69Þ

with κð ~αÞ ≈ 15~α2=32 in leading order and in total agree-
ment with (68). Also, at large momentum, Eq. (66)
asymptotes GSð∞Þ ¼ 1. The slight superluminal character
of (68) reflects on the fact that dyons are, in essence,
Euclidean configurations with no physical particle
realization.

G. Estimate of the critical Tc

The total thermodynamical pressure of the dyon-
antidyon liquid consists of the classical and nonperturbative
contribution (40) plus the perturbative holonomy potential
known as the Gross-Pisarski-Yaffe-Weiss (GPYW) poten-
tial [17], plus the purely perturbative black-body

FIG. 8 (color online). The electric and magnetic structure
factors (53) as a function of p=M.

CONFINING DYON-ANTIDYON COULOMB LIQUID MODEL. I. PHYSICAL REVIEW D 92, 085006 (2015)

085006-13



contribution (ignoring the higher-order OðαsÞ quantum
corrections). Specifically, (Nc ¼ 2):

Ptot

T4
≈ ~nD þ κð ~αÞ

3π
ffiffiffi
2

p ~n
3
2

D −
π2

45

�
N2

c −
1

N2
c

�
þ π2

45
ðN2

c − 1Þ:

ð70Þ

The Debye-Huckel contribution is of order N3
c, while

the leading classical contribution is of order N2
c. So the

screening and large Nc are not commutative. For the SU(2)
case of interest, the transition temperature Tc from the
disordered phase (ν ¼ 1=2) to the ordered phase (ν ¼ 0)
occurs when the first three contributions in (70) cancel out.
Thus,

~nD þ κð ~αÞ
3π

ffiffiffi
2

p ~n
3
2

D ≈
π2

12
: ð71Þ

For κð−0.52Þ ≈ 0.19, the critical density is nCD ≈
π2T3

c=12 ≈ 0.88. Since the SU(2) electric string tension
is σE ¼ TM ¼ ffiffiffiffiffiffiffiffiffiffiffi

2nDT
p

(see below), it follows that
Tc=

ffiffiffi
σ

p ¼ 6
1
4=

ffiffiffi
π

p
≈ 0.88 which is somehow larger than

the SU(2) lattice result Tc=
ffiffiffiffiffi
σE

p ¼ 0.71 [29].

IV. POLYAKOV LINES

To probe the confining nature of the dyon-antidyon
liquid in the three-dimensional effective theory, we will
compute explicitly the expectation of a heavy quark
through the traced Polyakov line and the correlator of a
heavy quark-antiquark pair through the correlator of the
traced Polyakov line and its conjugate at fixed spatial
separation. The insertion of these charges in the dyon-
antidyon liquid modifies the ground state through solitonic
solutions around these sources.
In this section we present a new derivation of the

pertinent solitonic equations for the SU(2) case that makes
explicit use of the presence of the long-range U(1) b and σ
fields. In the linearized screening approximation, we show
that the solitonic equations for the heavy source probes are
in agreement with those established in [4] using different
arguments.

A. hLi
In the SU(2) case the Polyakov line consists of inserting

a heavy quark whose free energy consists of its Coulomb
interactions with all the Coulomb charged dyons and
antidyons. Specifically, the traced Polyakov line before
averaging is

Lðx1Þ ¼ e
2πiμMþ i

2T

P
i



1

jx1−xMi jþ
1

jx1−xM̄i j
− 1
jx1−xLi j−

1
jx1−xL̄i j

�

þ e
2πiμLþ i

2T

P
i



1

jx1−xLi jþ
1

jx1−xL̄i j
− 1
jx1−xMi j−

1
jx1−xM̄i j

�
; ð72Þ

with μL − μM ¼ vm. When averaging using the ensemble
(2), it is clear that each of the contributors to the string of
factors in (72) will match its analogue from the measure
and reexponentiate. For instance, the first contribution in
(72) reexponentiates through the substitution

e−b�iσ → e−b�iσe
i

2Tjx1−xj: ð73Þ

The extra Coulomb factors can be redefined away by
shifting

b → bþ i
2Tjx1 − xj ; ð74Þ

thereby changing the constraint equation (25) to

−
T
4π

∇2wM þ fðewM−wL − ewL−wMÞ

¼ T
4π

∇2ðb − iσÞ þ i
2
δ3ðx − x1Þ

−
T
4π

∇2wL þ fðewL−wM − ewM−wLÞ ¼ 0; ð75Þ

and similarly for the second contribution in (72) with
L ↔ M. The effect of the first contribution in the Polyakov
line (72) is to add a source term to the constraint equation
for wM. It is in agreement with [4] after setting b ¼ σ ¼ 0.
Equation (75) is a Poisson-Boltzmann-type equation. It is
also referred to as an elliptic and periodic Toda lattice
[4,30]. The solution is a local Debye-like cloud around the
inserted heavy quark,

ðwM − wLÞðxÞ ≈
2πi
T

Z
d3p
ð2πÞ3

eip·ðx−x1Þ

p2 þM2
: ð76Þ

This causes almost no change in the vacuum holonomies
vm;l. Thus, after the shift

hLðx1Þi ≈ ei2πμM þ ei2πμL ¼ 0: ð77Þ

B. hLL†i
The preceding analysis can also be applied to the

correlator of two heavy quarks through LL† which consists
now of four contributions before averaging

Lðx1ÞL†ðx2Þ ¼
X

m;n¼M;L

e2πiðμm−μnÞe i
2TðFmðx1Þ−Fnðx2ÞÞ; ð78Þ

with the pertinent Coulomb free energies Fmðx1;2Þ follow-
ing from (72). When averaged over the measure (3), each
of the factors in (78) can be matched with its analogue
in the measure. The preceding observations show that the
Coulomb factors in the probing correlator can be paired
with
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e−b�iσ → e−b�iσe
i

2Tjx−x1 j−
i

2Tjx−x2 j: ð79Þ

A rerun of the preceding arguments shows that the
constraint equations now acquire two source contributions,
one for each of the heavy quarks inserted:

−
T
4π

∇2wM þ fðewM−wL − ewL−wMÞ

¼ T
4π

∇2ðb − iσÞ þ i
2
½δ3ðx − x1Þ − δ3ðx − x2Þ�

−
T
4π

∇2wL þ fðewL−wM − ewM−wLÞ ¼ 0: ð80Þ

Since ∇21=jx − x2j ¼ −4πδ3ðx − x2Þ, we can symmetrize
(80) by shifting δ3ðx − x2Þ from the first to the second
equation through

wM;L → wM;L þ i=T
2jx − x2j

; ð81Þ

with unit Jacobian. The symmetrized (80)–(81) equations
are in agreement with those established in [4] for the SU(2)
case after setting b ¼ σ ¼ 0. In this case the solution is
peaked around the heavy quark sources:

ðwM − wLÞðxÞ ≈
2πi
T

Z
d3p
ð2πÞ3

eip·ðx−x1Þ − eip·ðx−x2Þ

p2 þM2
: ð82Þ

Inserting this back in the expectation value of the correlator
(78) yields asymptotically

hLðx1ÞL†ðx2Þi ≈ e−Mjx1−x2j ð83Þ

in the three-dimensional effective theory in agreement with
the result in [4]. In four dimensions, (83) translates to
confinement of the electric charges with the electric string
tension σE ¼ MT. The additional Coulomb screening
in (3) does not affect the asymptotics of the linearly rising
heavy quark potential to leading order. The dyon-antidyon
Coulomb liquid still electrically confines in the center
symmetric phase.

V. SINGLE-WINDING WILSON LOOP

To study the large spatial Wilson loops, we use the same
observations made above in the presence of the U(1) fields
σ and b. As an observable, the traced spatial Wilson loop of
area S supported by the spatial contour ∂S ¼ C reads

TrWðCÞ ¼ ei
R
S
Bþ·dS þ ei

R
S
B−·dS ð84Þ

and sources the static magnetic field

B�μ ¼ �
X
i

Qi
ðx − xiÞμ
jx − xij3

: ð85Þ

When averaged using (3), the spatial Wilson loop (84)
modifies the additional U(1) fugacity factors in the dyon
sector. Their contribution follows again by shifting
b ∓ iσ → b ∓ iðσ − η�Þ in the constraint equations with

η�ðxÞ ¼ �
Z
S
dSy ·

x − y
2jx − yj : ð86Þ

As a result, Eqs. (25) in the presence of (84) are now
modified to read

−
T
4π

∇2wM þ fðewM−wL − ewL−wMÞ ¼ iT
4π

∇2ηþðxÞ

−
T
4π

∇2wL þ fðewL−wM − ewM−wMÞ ¼ 0 ð87Þ

for the first contribution and similarly for the second
contribution in (84) with ηþ → η−. After choosing the
spatial Wilson loop to lay in the x-y plane through
∇2η� ¼ �4πδ0ðzÞ, the results (87) are in agreement with
those derived in [4] for the SU(2) case but without the long
range U(1) σ and b fields in the leading-order approxima-
tion. Thus hTrWðCÞi ≈ e−σMS is saturated by the pinned
soliton, with the magnetic string tension σM ¼ σE ¼ MT.
This result is expected from the equality of the electric and
magnetic masses in (55).
A simple understanding of this result is as follows: while

a heavy quark sources an electric field, a large spatial
Wilson loop sources a magnetic field by Ampere’s law
which is classically composed of all the magnetic poles
fluxing S as is explicit in (85). The typical contribution
to (84) for a planar surface in the x-y plane is then

hei
R
S
B·dSi ≈ e−

S
2

R
S
hBzðx;yÞBzð0;0ÞidS ð88Þ

by keeping only the first cumulant in the average and using
translational invariance for large S. In this limit, S acts as a
uniformly charged magnetic sheet classically made of
magnetic dyons, so that

hBzðx; yÞBzð0; 0Þi ≈
��

QM

S

�
2
�

≈
hQMi
S2

; ð89Þ

where the variance in the magnetic charge is assumed
Poissonian. The magnetic charge density per unit 4-volume
is ðTMÞ2=2. The typical magnetic charge per unit area is
then about its square root or hQMi=S ≈ TM. Thus,

hei
R
S
B·dSi ≈ e−

1
2
MTS; ð90Þ
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which is the expected behavior up to a factor of order one in
the string tension.

VI. DOUBLE-WINDING WILSON LOOP

Recently it was pointed out in [31] that a coplanar and
double winding Wilson loop in the SU(2) pure gauge
theory version of the model discussed by Diakonov and
Petrov [4] shows an exponential falloff with the sum of the
areas. In contrast, lattice SU(2) simulations appear to show
an exponential falloff with the difference of the areas. The
main observation in [31] is that the solitonic configuration
contributing to the single-winding spatial Wilson loop,
as for instance from our linearized version with b ¼ σ ¼ 0
in (87), factors out in the double-winding and coplanar
Wilson loop.
For two identical loops with C1 ¼ C2 ¼ C, we have the

formal SU(2) identities [32] (and references therein):

ðTrWðCÞÞ2 ¼ TrSðWðCÞÞ þ TrAðWðCÞÞ
TrðWðCÞ2Þ ¼ TrSðWðCÞÞ − TrAðWðCÞÞ: ð91Þ

The simple trace Tr is carried over the fundamental
representation of N-ality k ¼ 1 as in (84), and TrS;A are
carried over the symmetric and antisymmetric of N-ality
k ¼ 2 (modulo 2) representations of SU(2), respectively.
The identities (92) are commensurate with the Young-
Tableau decomposition. In the dyonic plasma considered
here, the k-string tensions σk in the linearized plasma
approximation are identical to those derived in [4] with
σk=σ1 ¼ sin kπ=2 for SU(2) with σ1 ¼ σE. For k ¼ 2 we
have σ2 ¼ 0 and the second identity in (92) implies for
large loops

hTrðWðCÞ2Þi ¼ hTrSðWðCÞÞi − 1: ð92Þ

We have set all self-energies to zero for simplicity as they
depend on the subtraction procedure. Equation (92) is
consistent with the doubly tracedWilson loop as dominated
by the k ¼ 2 modulo 2 colorless di-quark-like ðqqÞ or
baryonlike configuration in SU(2). In the dyonic plasma,
the double Wilson loop with C1 ¼ C2 is a bound colorless
state with zero size that is strongly correlated within the
dyons cores and therefore is consistent with the arguments
presented in [31].
For largely separated loops C1;2 of arbitrary sizes but still

lying in the spatial directions, clearly

hTrðWðC1ÞWðC2ÞÞi ≈ e−σEðA1þA2Þ ð93Þ

for ðA1 þ A2Þ < A12, where A1;2 are the planar areas
supported by C1;2 separately, and A12 is the minimal area
with boundariesC1 andC2. The main issue is what happens
for the same doubly wound SU(2) spatial Wilson loops
when A12 < ðA1 þ A2Þ? Here we note that LL̄ and MM̄

dimers carrying ð−2; 0Þ and ðþ2; 0Þ (electric, magnetic)
charge assignments could cluster around the probe qq
(baryon) and q̄ q̄ (antibaryon) configurations, respectively,
to form neutral molecular bound states with masses that
scale with A12 instead of ðA1 þ A2Þ. They are commensu-
rate with the massive off-diagonal and charged gluons
Higgsed by the holonomy and dropped in the dyon liquid
analysis. These configurations were not retained in [4].

VII. T0 HOOFT LOOPS

In an important study of the nature of confinement in
gauge theories, t0 Hooft [33] has introduced the concept of a
disorder operator or t0 Hooft loop to quantify confinement
in the Hilbert space of gauge configurations. The t0 Hooft
loop is a canonical operator much like the Wilson loop. In a
Lorentz-invariant confining vacuum, t0 Hooft has argued
that the temporal Wilson loop and the t0 Hooft loop cannot
exhibit an area law simultaneously. The temporal Wilson
loop obeys an area law, while the t0 Hooft loop obeys a
perimeter law.
Physically, the Wilson loop corresponds to a color

charge in the fundamental representation running around
a closed loop and measuring the the chromomagnetic flux
across the loop. The t0 Hooft loop corresponds to a dual
charge in the center of the gauge group running around a
closed loop and measuring the chromoelectric flux
across the loop. The t0 Hooft loop is the dual of the
Wilson loop.
In the temperature range 0.5Tc < T < Tc, confinement

is still at work and we expect the temporal Wilson and
t0 Hooft loops to exhibit behaviors similar to those in the
vacuum state. In Sec. V we have explicitly checked that the
closed spatial Wilson loop obeys an area law. The temporal
Wilson loop is not amenable to our dimensionally reduced
and Euclideanized effective field theory.
The t0 Hooft loop VðCÞ enforces a gauge transformation

ΩC which is singular on a closed curve C. If a curve C0
winds nCC0 times around C then

V†ðCÞWðC0ÞVðCÞ ¼ ei
2π
Nc
nCC0WðC0Þ: ð94Þ

VðCÞ amounts to a multivalued gauge transformation on
the loop C,

ΩCðθ ¼ 2πÞ ¼ ei
2π
Nc
nCC0ΩCðθ ¼ 0Þ; ð95Þ

with θ an affine parameter along C. A simple choice is

ΩCðxÞ ¼ ei
2π
Nc
QφCðxÞ; ð96Þ

where φCðxÞ is a multivalued scalar potential for the
magnetic field ~BC generated by a loop of current ~jC
running along C, and Q ¼ ð1; 1;…;−Nc þ 1Þ, a Cartan
generator of SUðNcÞ. An alternative construction using
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a discontinuous solid angle was discussed in [37,38].
The effects of (96) on an Abelianized Wilson loop is

Ω†
C



ei
R
C0 ds·A

�
ΩC ¼ ei

R
C0 ds·ðA−

2π
Nc
QBCÞ; ð97Þ

with ~BC ¼ − ~∇φC. Note that since φC is multivalued, we

have ~∇ × ~BC ¼ 4π~jC. If we normalize the loop current ~jC
such thatZ

C0
ds · BC ¼ 4π

Z
AðC0Þ

dS · jC ¼ −nCC0 ; ð98Þ

then (97) reduces to

Ω†
Cðei

R
C0 ds·AÞΩC ¼ ei

2π
Nc
nCC0ei

R
C0 ds·A: ð99Þ

In the space of gauge configurations, the gauge trans-
formation ΩC is enforced through

VðCÞ ¼ ei
2π
gNc

R
d3xTrðEiDiðQφCÞÞ: ð100Þ

For SU(2) we have

VðCÞ ¼ ei
2π
g

R
d3x ~E3·~BC → e−

2π
g

R
d3x ~E3·~BC; ð101Þ

where the latter substitution E → iE follows in Euclidean
space. With this in mind, the expectation value of the
t0 Hooft loop in the dyonic ensemble involves a string of
sources to be inserted in (10). In leading order,

VðCÞ →
YNþN̄

i¼1

e
2π
g

R
d3xBC·∇ QEi

jx−xi j

¼
YNþN̄

i¼1

e−
2π
g

R
d3x∇·BC

QEi
jx−xi j ¼ 1: ð102Þ

Thus hVðCÞi ¼ 1 modulo OðαsÞ Coulomb-like self-energy
corrections which are, in general, perimeterlike.
Finally, the Polyakov line as a Wilson loop around the

periodic temporal direction has a dual Polyakov loop with a
dual magnetic charge in the center. In the confined phase,
the temporal component of the gauge field A4 asymptotes
fixed electric-type holonomies, while its dual ~A4 asymp-
totes zero dual magnetic-type holomies thanks to parity.
A rerun of the arguments in Sec. IVA shows that while
hLðxÞi ¼ 0 in (77) as expected in a Euclidean and con-
fining thermal state, its dual does not vanish, i.e.,

h ~LðxÞ≡ Trðei 4π
gNc

R
β

0
Q ~AQ

4
ðxÞdτÞi ¼ 1 ð103Þ

again moduloOðαsÞ Coulomb corrections. This behavior is
consistent with the one reported on the lattice for Nc ¼ 2,
3 [34].

VIII. CONCLUSIONS

The central theme in this paper is nonperturbative gauge
theory for temperatures in the range ð0.5–1ÞTc modeled by
a dense plasma of instanton-dyons. The new element in
our discussion is the introduction of the leading classical
Oð1=αsÞ interactions between the dyons and antidyons
as recently obtained in [22] using the classical “streamline”
set of configurations for MM̄; LL̄ pairs. We have assumed
that the ML̄; LM̄ channels are repulsive and opposite in
sign to the streamline interaction. While completing this
work, this assumption has now been confirmed numerically
[35]. Another important element of our analysis is the one-
loop measure of the dyon and antidyon moduli space, in the
form proposed by Diakonov and Petrov [4]. It leads to a
small moduli space volume and, thus, repulsive interaction
at higher density, which however can be made much less
repulsive by introducing correlations between the charges.
On general grounds, an ensemble of instanton-dyons

is a strongly coupled plasma, with significant correlations
between the particles. Therefore, the statistical mechanics
of a generic instanton-dyon ensemble is very nontrivial and
remains unsolved. However—and this is the main argument
of the paper—when the plasma is dense enough for
temperatures below Tc, it generates a large screening mass
M which screens the interaction. A standard weak coupling
plasma theory, in a form similar to the Debye-Huckel
theory, is then applicable. The dimensionless 3-density of
each dyon species nD=4 in the regime considered is in the
range of nD=4 ≈ T3=4, in agreement with the qualitative
arguments in [19].
Using it, we get a number of results concerning the

details of the nonperturbative gauge fields, in the temper-
ature range ð0.5–1ÞTc. First, in the presence of strong
screening the minimum of the free energy is still at the
confining (center symmetric) value of ν ¼ 1=2, with a
vanishing Polyakov line hLi ≈ cosð2πνÞ ¼ 0. Second, a
resummation of the the linearized screening effects
yields Debye-Huckel-type corrections to the pressure and
dyonic densities. We have also analyzed the topological
susceptibility, the gluonic compressibility, and the electric
and magnetic gluonic condensates in this linearized
approximation.
We have calculated also the electric and magnetic

screening masses, generated by the dyon ensemble. We
have found that the latter are larger than the former in the
confined phase. This is qualitatively consistent with the
existing lattice data, which however are much better
measured for the SU(3) gauge theory rather than the
SU(2) one we have studied here. Finally, we have calcu-
lated the structure factors in the electric and magnetic sector
in the linearized screening approximation as well. For an
estimate of the transition temperature from ν ¼ 1=2 (con-
finement) to ν ¼ 0 (deconfinement), we have switched
the perturbative (GPYW) holonomy potential [17] in
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Sec. III G. For SU(2) the transition is observed to take place
at Tc=

ffiffiffiffiffi
σE

p ≈ 0.88.
In the dyonic plasma the large spatial Wilson loops

exhibit area law, while the spatial t0 Hooft loops are
found to be 1 modulo OðαsÞ Coulomb-like self-energy
corrections. These dual behaviors were argued in [33] for
confining gauge theories at zero temperature. We found
them to hold in the confining dyon ensemble in the
regime 0.5 < T < Tc.
Needless to say, all these predictions can and should

be confronted with the lattice data in the corresponding
temperature range.
Finally, let us speculate about the dyon ensemble beyond

the validity domain of the Debye-Huckel approximation.
First of all, strongly coupled Coulomb plasmas are tractable
by certain analytic and/or numerical (molecular dynamics)
methods, see Refs [23,24] for similar development.
Another option is to use brute force numerical simulations
of the dyon ensemble [36]. Qualitatively, sufficiently
strongly coupled plasmas develop either (i) correlations
between particles, resembling a liquid with crystal-like
correlations (“molten salt”) or (ii) particular neutral
clusters, the simplest of which can be the LM instantons
themselves or LML̄ M̄ “instanton molecules.” Recent

(unquenched) lattice simulations indicate that the instan-
tons and anti-instantons recombine into topologically
neutral molecules across the transition temperature
[39,40]. At much higher temperature, the perturbative
gluons dwarf all classical gauge configurations forcing
the holonomy to zero.
One obvious extension of this work should be into the

large number of colors Nc. Strong correlations can appear,
since ΓDD̄ ≈ 1=αs ≈ Nc ≫ 1. A similar mechanism, lead-
ing to crystallization, appears to take place in dense
holographic matter where the baryons as instantons in
the holographic direction split into a pair of dyons and
rearrange in salt crystals [41].
Another obvious extension of this work is to include

fermions, which we turn to in the second paper of the
series [42].
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