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Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy
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In this paper three-dimensional higher spin theories in the Chern-Simons formulation with gauge algebra
sl(N, R) are investigated which have Lifshitz symmetry with scaling exponent z. We show that an explicit
map exists for all z and N relating the Lifshitz Chern-Simons theory to the (n, m) element of the Korteweg—
de Vries hierarchy. Furthermore we show that the map and hence the conserved charges are independent
of z. We derive these result from the Drinfeld-Sokolov formalism of integrable systems.
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I. INTRODUCTION

Higher spin theories in d spacetime dimensions were
constructed over the last 20 years by Vasiliev [1,2], Bekaert
et al. [3] and Didenko et al. [4]. These theories provide
new ways to explore the AdS/CFT correspondence [5,6].
The present paper only deals with higher spin theory in
three dimensions in the Chern-Simons (CS) formulation
[7-10]. Gaberdiel and Gopakumar [11,12] proposed a
duality linking dimensional higher spin theories in three-
dimensional anti—de Sitter space to two-dimensional Wy
minimal model CFTs.

In the last couple of years solutions of three-dimensional
higher spin gravity which are not asymptotically AdS have
been investigated in the literature [13—17]. In particular
asymptotically Lobachevsky, Schrodinger, warped AdS
and Lifshitz spacetimes have been found. Field theories
which exhibit with Lifshitz scaling, i.e. anisotropic scaling
symmetries of space and time dimensions, are important
condensed matter theories near quantum critical points (see
e.g. [18]).

The goal of the present paper is to generalize the results
[19] where a map of the Lifshitz Chern-Simons theories
with gauge group sl(N,R) and scaling exponent z to the
integrable Korteweg—de Vries (KdV) hierarchy was dis-
covered for particular values of N, z, namely N =3,z =2
aswell as N =4,z = 3.

The structure and the main results of the paper are as
follows: In Sec. Il we review some of the background material
and results from [19] for the convenience of the reader.

In Sec. III, a detailed analysis of the case of scaling
exponent 7 =2 for generic N is presented. In addition
solutions for scaling exponent z > 2 and values N up to
N = 8 are found. These results give very strong evidence
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for the conjecture of [19], that there always exists a map
which relates the sl(N,R) z Lifshitz theory to the m =
z,n = N member of the KdV hierarchy.

Furthermore the case-by-case study reveals also an unex-
pected universality: First, the form of the map from the
Chern-Simons variables to the KdV variables is independent
of z and second, the form of the conserved charges which is
determined for z = 2 are conserved for all z (and N).

In Sec. IV, we use the formalism of matrix valued
pseudodifferential operators constructed by Drinfeld and
Sokolov [20] in their seminal paper to prove the relation of
the CS Lifshitz and KdV and the universality of the map
and the conserved charges for all values of z and N.

We discuss some directions for future research in Sec. V.

In Appendix A we present our conventions for the gauge
algebras. In Appendix B details of some of the proof
statements in the paper of Drinfeld and Sokolov [20] are
reviewed to make our paper self-contained. Some of the
results used in Sec. III are presented in Appendix C where
we report the z-independent map between the CS and KdV
variables, as well as the explicit KdV and CS equations of
motion for various pairs N, z.

II. REVIEW OF HIGHER SPIN LIFSHITZ
THEORIES

In this section we will review the CS formulation of
higher spin gravity in three dimensions based on the
sI(N,R) or hs(4) gauge algebra. More details can be
found, for example, in [12,21]. In addition, we review
some the results obtained in previous papers of some of the
authors on the formulation of theories with Lifshitz scaling
in higher spin gravity theories [17] and the relation of these
theories to the KdV hierarchy [19].

A. Chern-Simons formulation of higher spin gravity

The action for the Chern-Simons formulation of higher
spin gravity is given by two copies of Chern-Simons at
level k and —k respectively

© 2015 American Physical Society
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§ = Scs[A] — Scs(A] (2.1)
where the Chern-Simons action is given by the following
expression

k 2
SCS[A]—E/tr<A/\dA+§A/\A/\A>. (2.2)

The equations of motion following from the Chern-Simons
action are the flatness conditions on the connections A, A,

F=dA+AANA=0, F=dA+AAA=0. (23)
The gauge connections can be related to generalizations

of the vielbein and the spin connection, which take values
in the gauge algebra

(2.4)

The metric and the higher spin fields can be obtained from
the vielbein. For example for the s1(3, R) case one gets [10]

1
9w = 5 tr(e,e,), (2.5)

1
3 Dup = gtr(e(ﬂe,,e,,)).

Generalizations of these expressions for sl(N,R) were
obtained in [22,23]. In the following we will only need the
expression for the metric which is given by (2.5). An
important ingredient to construct spacetimes with a given
asymptotic behavior and their symmetry is the radial gauge.
We denote a radial coordinate p, where the holographic
boundary will be located at p — 0. The coordinates 7 and x
have the topology of R x S!' or R x R. The dependence of
the connections A, A on the radial coordinate p is given by a
gauge transformation on p-independent connections a, 4,

A, =b"la,b+b"'0,b, A, =ba,b™" + b9, (b7"),
(2.6)

where b = exp(pL) and L is given by a Cartan generator
of an sl(2,R) subalgebra of sl(N,R). For hs(1) one
chooses the generator V3 instead. The nonzero compo-
nents a,,a, (and a,,a,) obey the p-independent flatness
condition

(2.7)

It is easy to see that connections satisfying (2.7) also
satisfy (2.3).

B. Lifshitz scaling in field theories

Scaling symmetries are ubiquitous in two-dimensional
quantum field theories and generated by the transformation
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(2.8)

t — A%t, X — Ax.
The case z = 1 corresponds to isotropic scaling and leads to
conformally invariant theories. For z # 1 the scaling is
anisotropic and called Lifshitz scaling with exponent z.
While such an anisotropic scaling breaks Lorentz sym-
metry it nevertheless appears in some condensed matter
systems (see e.g. [18]). The algebra of Lifshitz symmetries
is generated by the generator of dilations D together with
the generator of time translations H and spatial translations
P. Together they satisfy the following algebra

[P.H] =0,
[D, H] = zH,
D, P] = P. (2.9)

The stress-energy tensor for field theories in 1 + 1 dimen-
sions with Lifshitz scaling is not necessarily symmetric and
contains four components: the energy density &, the energy
flux £*, the momentum density P, and the stress energy IT}.
They satisfy the following conservation equations [24]

0,£+ 0, =0, 0P, + 011} = 0. (2.10)
For theories with the Lifshitz scaling exponent z there
exists a modified trace condition

€411 =0. (2.11)

C. Lifshitz spacetimes in higher spin gravity

A holographic realization of the Lifshitz scaling sym-
metry in three dimensions can be constructed using the
following metric

ds* = dp?> — e¥Pdt> + e*dx’. (2.12)
A shift of the radial coordinate p — p 4+ In4 induces a
Lifshitz scaling transformation on the spacetime coordi-
nates ¢, x with scaling exponent z (2.8). Such a metric is in
general not a solution of pure Einstein gravity with a
negative cosmological constant and additional matter
has to be added to support the solution (see e.g. [18]). In
higher spin gravity Lifshitz metrics can be obtained from
connections.

apie = Vilde + Vidx,  aye = Viilde+ V2, dx.

(2.13)

Our conventions for the generators V3§, are presented in
Appendix A. It is straightforward to verify that the con-
nections (2.13) are flat using the fact that [V, V2] = 0.

Since z in general is an integer these constructions
produce Lifshitz theories with an integer scaling exponent.
Note that the barred connection in (2.13) can be related to
the unbarred sector by a conjugation operation A = A°,
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where the conjugation is acting on the gauge algebra
generator by (V$,)¢ = (=1)s*"+1ys _ Though in general
A and A may be unrelated, A€ solves the flatness condition
in the barred sector if A solves it in the unbarred sector so
we always take A to be A€ as in [19]. By this choice we can
get the Lifshitz metric from (2.5).

D. Asymptotic Lifshitz connections

In holographic theories one considers spacetimes which
are not exactly AdS, but approach AdS asymptotically. This
enlarges the space of possible solutions including for
example black holes. For Lifshitz spacetimes a similar
notion exists. In the Chern-Simons formulation we call a
connection asymptotically Lifshitz if the leading term of
the connection is the Lifshitz connection which can be
obtained from (2.13). In [19] we presented a general
procedure to construct time-dependent asymptotically
Lifshitz connections. The starting point is to choose a
“lowest weight gauge” for the connection a, [25],

ax — V% + Zaivi[+1’ (214)

i=2
where the @;’s depend on x,t. An ansatz for the time
component of the connection for a asymptotically Lifshitz
connection with exponent z is given by

a; = (*ax>z|traceless + Aat' (215)

The definition of removing the trace component by |;,cefess
is presented in Appendix A 2.

In [19] it was shown that the flatness conditions (2.7)
together with Ag; can be solved recursively. While
the general procedure was developed for hs(1), explicit
expressions for two cases, namely sl(3,R),z =2 and
sl(4,R), z = 3 were given in that paper. In these specific
examples it was found that there is some gauge freedom left
in the Aa,. By appropriately fixing a, we obtained the
equation of motion for «;’s which can be mapped to KdV
hierarchy. Another useful property of the CS construction is
the fact that one can assign scaling dimensions to the fields
a;. The scaling behavior is determined by demanding that
under Lifshitz scaling of the coordinates x — Ax,t — A%f,
the connection A is invariant. A field of scaling dimension /
will be rescaled by a factor =%, It was shown in [19], that
one can assign the following scaling dimensions to the
basic fields and operators

@, =n. [0]=1. [9]=z (2.16)

E. Integrability and map to KdV hierarchy

Here we briefly describe the formulation of the KdV
hierarchy using pseudodifferential operators. Elements of
KdV hierarchy are labeled by two integers n and m. A
differential operator L can be defined

PHYSICAL REVIEW D 92, 085005 (2015)

L=0"+u0"24 - +u, 0+u,. (2.17)
Here 0 = % and u; = u;(x,1). The formalism of pseudo-
differential operators (PDOs) introduces negative powers
07 of differentiation while preserving the standard rules of
differentiation such as the Leibniz rule (see [26,27] for
reviews). This formalism makes it possible to define
fractional powers of L, in particular L'/”,

1
L'V =9+ —u,07" + 0(972). (2.18)
n
For another integer m one defines
P, = (L""), (2.19)

where the subscript (), denotes the non-negative part
of the pseudodifferential operator, which has terms with
0,k > 0. An integrable system is constructed due to the
fact that P,L form a Lax pair; i.e. the evolution
equation

9 [P,,. L]

5 (2.20)

gives a system of partial differential equations for
u;(x,7) which is integrable. In [19] it was found that
for the concrete example sl(3,R),z =2 and sl(4,R), z =
3 it was possible for a specific gauge choice for a,
(called KdV gauge) to map the flatness conditions
for the asymptotically Lifshitz connection to the evo-
lution equation (2.20) of an element of KdV hierarchy.
Furthermore, it was conjectured that this holds in
general with the identification of Chern-Simons param-
eters N,z with the KdV parameters m,n given by

n=N. (2.21)

m ==z,

III. EXPLICIT CHERN-SIMONS
TO KDV MAPS

In this section, we illustrate the specific form of the
CS-KdV map in various explicit examples.

A.z=2

A particularly simple case is when the exponent z takes
its minimal nontrivial value z =2. We can write the
equations of motion for the CS fields a; and for the
KdV fields u; in closed form for generic N. For the «;
fields, we have'

'The derivation of Eq. (3.1) is completely similar (and even
simpler) to the case z = 3 that is treated in full details in Sec. 5.2
of [19]. Notice also that the second term on the right-hand side of
Eq. (3.1) is understood to be zero for n = 2.
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n(n*> — N?) 1
T (n—1)(2n —

/11
a

3) n—1

Fn 2n+1

n—1
2(2n —m o
3.1
+%2(Vl—m)+1 n—m-+1%m- ( )
For the u; fields of the KdV (2,N) hierarchy,
we have

i—1
;=i 4 2u}, | — =,

w3~

Assuming an ansatz for the map consistent with the scaling

2 (i
N MM2

(3.2)

j=2
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can be solved recursively term by term. The explicit
expression of the map for the first seven fields turns out
to be

1, = N(N?> — 1)%, (3.3)

u3—N(Nz—1)(N—2)(%a3(—N—2)+%), (3.4)
1
uy = N(N> —1)(N —2)(N = 3) <@(—N —2)d,
3;Oa2(5N+7) SN+ 2)(N +3)+ ZO>

Eq. (2. 16),” the matching between the two sets of equations (3.3)
|
us = N(N*—1)(N —2)(N —3)(N — 4) <ia2(5N + 7y + L (N 4 2)(N +3)d,
360 280
_A'_L( N—Z)a'/—a2a3(N+2)(7N+13>_La (N—|—2)(N+3><N—|—4)-|— (3)> (3 6)
210 3 1260 630~ 180 '
g = N(N? — 1)(N — 2)(N — 3)(N — 4)(N — 5) (“%(35]\]2 :531615 N+93) oV 2)(71];6203 34N+ 44)
(N +2)(IN +13)a, (TN +10)(4)?  a3(N +2)(TN +13)d, (N +2)(N + 3)(N + 4)ds
B 2520 2016 - 2520 B 1260
a(2IN +29)d4 (N +2)(N +3)a] aya(N +2)(N+3)(3N +7)
5040 1008 2520
a6(N +2)(N+3)(N+4)(N+5)  a;P(-N-2) N a2<4>) (3.7)
2772 1008 1008 ) '
5 (a§(35N2 + 112N + 93)d,
u; = N(N* = 1)(N —2)(N = 3)(N —4)(N — 5)(N —6)
30240
a3(N +2)(TN? + 34N + 44)dy  aza3(N + 2)(35N? + 144N + 157)
12600 B 75600
azay(N +2)(N + 3)(11N? + 65N + 106) (7N + 10)dhay  ap(N +2)(N +3)(3N + 7)d
B 46200 3360 5040
ay(N+2)(N+3)3N+7)ay (N+2)(2IN +40)dsay (N +2)(N+3)(N+4)(N+5)a
5040 B 15120 5544
(N +2)(6N + 1) a3(N 4 2)(2IN +38)a4 (N + 2)(N + 3)(N + 4)a”
B 7560 B 25200 B 4620
asay(N +2)(N +3)(N +4)(11N +31)  a,Pa, (14N + 19)
B 41580 15120
e (N+2)(N+3)(N+ 4N +5)(N+6)  aP(N+2)(N+3) asW(-N-2) N a2<5>> (3:8)
12012 5040 6048 6720) '

In other words, each field u,, is written as a general linear combination of monomials in the various a’s and their spatial derivatives

with the correct dimension n. Taking into account [0,] =1 and [«

considered at each n.

] = m, it is clear that only a finite number of terms must be
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As expected, these equations truncate for positive integer N
and define a differential map between the first N CS and
KdV fields.

B. Generic z > 2 and universality of the map

To analyze cases with z > 2, we begin by briefly recalling
the algorithmic construction of CS solutions with asymp-
totic Lifshitz scaling presented in [19]. The main ingredients
are the Eqgs. (2.14), (2.15) for the two components of the
connection. As discussed in Sec. II D, it is convenient to
assign the scaling dimension [@,] = n to the fields and
[V3,] = m to the generators. This implies that all terms in
(2.14) have the same dimension one. Let ®(a) be the set of
monomials built with the o functions and their J, deriva-
tives. Then we can write the following explicit ansatz for a,,

41 k
Oil = <?— k)a% —E(Z/z/,

1
- k>a2a3 —Eag’,

41 3
043—<?—k>a2a4+10( )2+

9 3 1
O, = —gazalz —gait —2—005'2",

O} = kd, 07 =

PHYSICAL REVIEW D 92, 085005 (2015)

(*a |tracele§§ + Z Z On

n=2 m=—n+1

a)ve, (3.9)
where Op,(a) is a linear combination of elements of ®(a)
with homogeneous dimension z — m. The upper bound on m
is due to the fact that the minimal dimension is two obtained
for O~ a,. Solving the flatness condition amounts to
solving algebraic equations for the coefficients in the O
combinations in (3.9). This system has a triangular structure
and can be fully reduced to a finite-dimensional one for
4 = N when hs(1) reduces to sl(N,R).”

For our purposes, it is important to revisit the case 7 =
3, N = 4 that has already been discussed in [19]. Solving
the ansatz (3.9), we obtain the following nonzero poly-

nomials O,
41
(54

where k is an undetermined coefficient. The associated equations of motion are

('Xz = —3ka2a2 — Ealz” + ?(XA,

9 34 1
ay = -3 (k +§>(13(1/2 — <k + 5 )(1203 —Eag”,

. 14 7 24 13
ay = —<k _?>aﬁla2 — 2<2k —§>a4a’2 +?a/2a% + = 30 N Qy — 12(13(13

These can be compared with the equations of motion quoted in [19]

. 123 4 ¢ 54
2= (?_3C> @~ (10 2) %+ 5 %

—(30 = 3c)azdy — (15 — )y — = oy,
. 27
ay=—(—-—
! 5 5

2
where ¢ is a gauge parameter analogous to k. If we set

k=—

24 1
c> dyay — (30 — 4c)aydy + — a3 + — 30

(93_1 = 2dj,
23 1
60052(12—!— a”—l—ma’z”’,
1
o4, :Za’z’, Of = —dj, (3.10)
;o i o L i 311
6022 T 0% T0® (3.11)
1
ay ay — 120305 + 60a2a2+10 ay 20 (R (3.12)
—e (3.13)

then Eqgs. (3.11) and (3.12) match. They must be compared with the KdV equations for the (4,3) case, i.e.

*In the example discussed in this section, as well as in the data collected in Appendix C, we worked at fixed N (and z). We found it
computationally efficient to deal directly with the N x N matrix representation of the flatness condition, without projecting onto the
generators V). We solved the linear equations giving the time derivatives @, and replaced in the other entries that become linear
combinations of elements of ®(a). These elements are all linearly independent and this gives a set of linear constraints for the

coefficients in O, ().
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ity = —Zuzu’z + 3u —%ug' +£ 5,
iy = —%uwé —%uzug + 3uly — 2uf’ —I—%ugl),
. , 3, 3 3
Uy = —Zu3u3 +Zu2u4 +§u3u2 —Zu2u3
+%u2u’2” + uy —%ué‘” —|—%u§5). (3.14)

We can try to relate the CS and KdV equations of motion by
postulating a generic CS-KdV map consistent with the
scaling dimensions. In this case, it reads

Uy =& 1y,
Uy = &3 105 + &30,

Uy = E4105 + Eqr0y + E4305 + Eggay. (3.15)

Comparing the CS and KdV sides, we get a set of algebraic
equations for k and the & coefficients which have the
following two nontrivial solutions (=0 is clearly a
solution):

&1=10, &,=424, &,=10, &,=9,

7
54.4 - 39 k= 10 .
The value of k implies ¢ = 15/2 as in [19]; see (3.13).
However, the solution quoted in that reference is the one with
the plus sign in (3.16). Taking instead the minus sign, we
recover precisely the KdV map for N = 4 and z = 2 as one
can easily see just taking Egs. (3.3)—(3.8) for N = 4. This
|

$40=136, &3 =+12, (3.16)
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simple remark suggests that the CS-KdV map is actually
universal, i.e. independent on the Lifshitz exponent z. We
have systematically explored the map for various z and
N =4,5,6,7, 8. The explicit results for the CS-KdV maps
and the equations of motion are collected in Appendix C.
One can check that in all cases there is always one solution to
the algebraic constraints such that the CS-KdV map is the
same as for z = 2.

C. Conserved charges

A further check of universality of the CS-KdV map is
provided by the conserved charges. In particular, we expect
that the charges determined for z = 2 are conserved for all z
(and N). The explicit form of the conserved charges for
z = 2 can be determined by using the closed form of the
equations of motion. Guided by the results of [19], we look
for densities p, of the form

pn = a, + other fields of dimension n, (3.17)
such that, using (3.1), we get
0,p, = 0,(local field of dimension n+1).  (3.18)

At each n, we find by direct inspection, a unique solution
up to total derivatives of previously determined densities
Pm<n- The first expressions are trivial

(3.19)

P2 = g, p3 = as.

The next charges have an explicit N dependence and read

Tay?

P4 = Ay — m,
- day,
pPs = 05— NZ_9
11(2N? — 11)(a})? 11a,’(13N2 — 61) aya 11as2(3N? — 20)
P60 T A NT—16) (N> —9)(N2—4) ' 36(N2—16)(N2—9)(N2—4) 2(N2—16) 10(N2—16)(N>—9)’
14330 572a5a,° 104asa, 13a3a4(17N? —173)

P10 SN Z25) (NP = 16) T 25(N2—25)(N? —16)  15(N? —25)  25(N* —41N? 1 400)’
R 13a4(17N? — 227)dl} 3oy, (161N — 2441)

60(N? —36)(N? — 25)(N? — 16)

2506, 13(5N* —93N? + 388)(at})?

60(N? —36)(N* — 25)(N? — 16)

143a,%(38N* — 605N? + 1887

143(3N* = 50N? +167)(a})?

3(N2—36) 30(N>—36)(N*—25)(N2—16)(N>—9) 720(N*—36)(N*—25)(N2—16)(N* —9)(N* —4)

143a,*(281N* — 4210N? + 12569)

~ 720(N* —36)(N? —25)(N2 —16)(N2 —9)(N*—4) 2160(N2 —36)(N2 —25)(N* — 16)(N> —9)(N? — 4)

13032, (97TN* — 1989N? + 9692)

3a,2(271N* — T315N? + 54684)

daza5(41N? — 596)

30(N2—36)(N2—25)(N2—16)(N>—9) 140(N2—36)(N2—25)(N>—16) 15(N*—61N2+900)"

(3.20)

*The extra map results from the symmetry of the CS equations of motion under the discrete transformation a; — (—ia.
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These have been derived using the z =2 equations of
motion. However, since the conserved charges on the KdV
side are by definition z independent, we expect that these
expressions are valid for any z as well. Indeed, we checked
that the above densities define conserved charges for all the
examples we explored, using the a; equations of motion
collected in Appendix C.

IV. INTEGRABILITY OF LIFSHITZ
CHERN-SIMONS THEORY BY DRINFELD-
SOKOLOV FORMALISM

In the preceding sections we have shown that Lifshitz
Chern-Simons theory is an integrable system by appropri-
ately choosing a,. Though this fact can be verified by
constructing the explicit map between the Lifshitz Chern-
Simons theory and the KdV hierarchy, an elegant theoretic
approach is desired. Such a formalism of integrable systems
in terms of matrix valued PDOs was developed in the
seminal paper by Drinfeld and Sokolov [20] on which the
present section is based.

To begin with, we rewrite the flatness condition in a Lax
form

d
_Dx + [at’ Dx] =0,

- (4.1)

where the covariant derivative D, = 0, + a, is regarded as
a Lie algebra valued differential operator (and hence it can
be regarded as a PDO without any negative powers 97/).
For the gauge algebra sl(N,R), we can use the matrix
representation and the flatness condition becomes a Lax
equation of a matrix valued PDO. One of our main results is
that both the Lifshitz Chern-Simons theory for sI(N, R) and
the KdV hierarchy can be deduced from the Drinfeld-
Sokolov formalism and are related by making two different
gauge choices for the PDOs. Consequently, almost all the
questions previously studied about integrability of our
Lifshitz Chern-Simons theory for the gauge algebra
sI(N, R), including the map from Lifshitz Chern-Simons
theory to KdV, the infinite tower of conserved quantities
and the choice of a, to make Lifshitz Chern-Simons theory
integrable, are given clear answers.
The Drinfeld-Sokolov formalism starts by defining the
PDO valued in sl(N,R),
L=0,+q(xt)+A, (4.2)
where ¢ is a lower triangular matrix [or nonpositive weight
element, if we use the terminology in hs(4) and view
sI(N,R) as a truncation of it] and
A =V2+ Je. (4.3)
The parameter 4 was introduced by Drinfeld and Sokolov
and should not be confused with the deformation parameter

PHYSICAL REVIEW D 92, 085005 (2015)

in the gauge algebra hs(4). In fact the construction in the
present section is limited to sI(N, R) and it is an interesting
open question how to generalize the present construction
to hs(4).

Here e; ; denotes the matrix with a single one in the ith
row and jth column, and zeros elsewhere. In the matrix
representation we use V3 = Nle;; |, and e = ey is
proportional to V", +1- The Lax equation is defined as

d
—L=[P.L)

- (4.4)

where P is some differential polynomial in g that has to be
carefully chosen. The left-hand side of the Lax equation is
independent on A and lower triangular, so we want the
commutator on the right-hand side to be also independent
on A and lower triangular. Suppose M = > m;A' is a
matrix that commutes with L where m;’s are matrix valued
coefficients (i.e. matrices multiplied by powers in 1), then
we can set P =M, the part of M with non-negative
powers in A. From [M,L]=0 it follows [M | ,L]=—[M _,L].
Since the left-hand side only contains non-negative powers
in A but the right-hand side only contains nonpositive
powers in A, they should be both independent on A and
—[M_,L] = [m_,, €] is necessarily lower triangular. Now
we have [P, L] = [M,, L] = [my, 0, + V2 + q]. We iden-
tify V2 + g as a,, so we have L = D, + le. We further-
more identify —m, = —Zero(P) as a,, where symbolically
Zero means to take the A° part. Then the Lax equation is
reduced to our flatness condition in Lifshitz Chern-Simons
theory. It should be noted that the parameter 4 is used in
setting up the PDOs, the actual equations of motion and the
conserved charges are all independent on A.

An important restriction we want to impose on the Lax
equation is that it must preserve gauge equivalence.
Furthermore it will be shown that the Lifshitz Chern-
Simons theory and the KdV hierarchy are just reductions
of Drinfeld-Sokolov formalism by special gauge choices.
The crucial notion, a gauge transformation, is defined for a
PDO as

L' =S7'LS, (4.5)
where § is a A-independent lower triangular matrix with
the ones in the diagonal, or in the higher spin algebra
language, S is V| plus negative weight terms. Define
L'=0,+d,+2de=0,+V?+q + e, then this PDO
gauge transformation induces a transformation of a, (or q)

a,=85"'a,S+519,8S,

g =5'"Vis—Vvi+ 5198, (4.6)
where we used the fact that e commutes with S in the
calculation. By the explicit construction specified later P is
a differential polynomial in g and so is the commutator
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[P, L]. Hence the Lax equation is essentially a evolution
equation for g,

99 = p(q). (4.7)
where p(q) means a differential polynomial in ¢g. We
require the evolution equation to preserve gauge equiv-
alences; that is, when starting with two initial conditions for
g which are connected by a gauge transformation, the two
solutions should be also connected by a (time-dependent)
gauge transformation at any time. The Lax equation
preserving gauge equivalence is actually an evolution
equation of gauge equivalent classes. Needless to say,
we can choose representatives of some special form to
specify the time evolution of the gauge equivalent classes.
This motivates the definition of the canonical form of L, or
q. We denote the part of g with weight —i by ¢;. In principle
g; lies in the (N — |i|)-dimensional linear space spanned by

V‘Z-’HI, ..., VN By restricting ¢; to be in a one-dimensional
subspace, that is, a specific linear combination, we define a
canonical form for ¢. For technical reasons, we also require
that the one-dimensional subspace has a nonzero lowest
weight projection. The name canonical form is justified by
the following theorem: for any ¢ there is a unique gauge
transformation to transform it into the canonical form, and
the expression in the canonical form is unique. See
Appendix B 1 for a proof. The choice of the one-dimen-
sional subspaces that ¢! lie in defines the specific canonical
form. Two choices are of particular importance in our
discussion. The first one, we restrict g} to be lowest weight,
if not an abuse of language, and we call this the lowest
weight canonical form. The second one, we restrict g} to be
amultiple of e; ; 1, which we call the KdV canonical form.
In the lowest weight canonical form,

N
_ i
q= E :aiv—i+1’
=1

the Lax equation 4 L = [P, L] gives us the flatness con-
dition of Chern-Simons theory in the lowest weight gauge
(by appropriately choosing a,). In the KdV canonical form

(4.8)

N

q=— E uey i,

i=1

(4.9)

the Lax equation 4 L = [P, L] gives us KdV, as proven in
the paper by Drinfeld and Sokolov. The evolution equation
in the lowest weight canonical form and that in the KdV

>This notion of preserving gauge equivalence has nothing to do
with the gauge invariance of the flatness condition. The former is
about the gauge transformation of the PDO or ¢ defined in the
paper by Drinfeld and Sokolov; the latter is about the usual gauge
transformation in field theory simultaneously acted on a, and «,.
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canonical form are just two special explicit forms of the
same equation. There is a unique gauge transformation that
transforms between these two canonical forms, which
establish the one-to-one correspondence between Lifshitz
Chern-Simons theory with sl(N,R),z and KdV with
n=N,m =z, and explicitly the map from a;’s to u;’s.
From the relation

Tr[P, L] = —Tr[m_,, e] = 0, (4.10)
it follows that the trace part of L must be constant by the
equation of motion. In the following we set it to be zero for
simplicity. For example, we can set a; = O for the ¢ in the
lowest weight canonical form.

Now let us construct the conserved quantities from the
Lax equation. In general, a general matrix A whose
elements are power series in A (both positive and negative)
can be uniquely expanded in the form

A= ZaiAi,

where a;’s denote diagonal matrices which are independent
of A. Note that the summation index 7 in (4.11) ranges over
positive and negative integers.

Here ¢ is lower triangular, so it has the expansion
SNV di A, or equivalently

(4.11)

N—-1

L=0,+A+)> dA. (4.12)
i=0

There is a similarity transformation to transform L into a
scalar coefficient form; that is, there is a formal series

T=E+ hA, (4.13)
=1
where h;’s are diagonal matrices, such that
Lo=TLT™' =0, +A+)_ fiA™, (4.14)

i=0

where f;’s are scalar functions, as opposed to matrices
multiplied to the left. 7" is determined up to multiplication
by series of the form E 4+ > %, #;A’ where #;’s are scalar
functions, and f;’s are determined up to a total derivative.

Most importantly
q = / fi

are conserved by the Lax equation. See Appendix B 2 for
the proof.

The scalar coefficient form Ly = 9, + A+ > % f;A™
not only gives us the conserved quantities, but also can help

(4.15)
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us to determine the form of the matrices that commute with
L, and ultimately the form of P. Matrices that commute
with L, must take the form > 7 ¢;A" with ¢;’s as
constant coefficients; see Appendix B3 for a proof.
Therefore matrices that commute with L must have the
form

(4.16)

(35 en)r

i=—00

because [M,L] =0 is equivalent to [TMT!, Ly =0.
Setting P =M, we get the consistent Lax equation
4L =[P,L]. Despite the simple appearance, several
remarks about this equation are necessary. First, 7 is the
series that transforms L into a form with scalar coefficients
Lg and it is in general a differential polynomial in ¢; hence
P is a differential polynomial in g and so is the commutator
[P,L]. Second, though T has the indeterminacy of a
multiplicative series E + > %, ;A~" where ;s are scalar
functions, P is uniquely defined because > 7 c;A!
commutes with this series. Last but the most important,
this Lax equation preserves gauge equivalence; a proof of
this statement will be given in Appendix B 4.

As an evolution equation of gauge equivalent classes, the
explicit form of the Lax equation < L = [P, L] is certainly
not unique and different explicit forms correspond to the
choice of different representatives in gauge equivalent
classes. We have the following theorem: if the difference
between P; and P, is a negative weight matrix with no time
or A dependence, then 4 L = [P, L] and £ L = [P,, L] give
the same evolution equations of gauge equivalent classes.
See Appendix B 5 for a proof. Applying this theorem, we
can add a negative weight matrix both independent on time
and A to P without actually changing the evolution equation
of gauge equivalent classes. We do need to do so when we
want to obtain the Lax equation in certain canonical form,
because the commutator [P, L] is guaranteed to be negative
weight, but not necessarily in the specific canonical form.
The correction added to P can be uniquely determined. The
proof of this statement will be omitted because it is
structurally the same as the proof of existence and unique-
ness of the gauge transformation that transforms L into a
canonical form.

At last we have enough ingredients to explain how the
integrable Lifshitz Chern-Simons theory for sl(N,R) and z
emerges from the Drinfeld-Sokolov formalism. First the
Lax equation 41 =[P, L] is equivalent to the flatness
condition 4 D, + [a,, D,] = 0 with the identification a, =
V34 g and a, = —Zero(P). Second, the Lax equation
viewed as an evolution equation of gauge equivalent classes
can be put in the lowest weight canonical form, which
corresponds to lowest weight gauge choice in the Chern-
Simons theory. Then, considering the Lifshitz exponent is
z, we set P = (T7'A*T), up to a multiplicative constant.
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At last we add a correction to P to make [P, L] lowest
weight. From P obtained in this way, a, = —Zero(P)
coincides with a, in “KdV gauge” in our previous paper.
If we choose the KdV canonical form for L, we get KdV
hierarchy as proven in the paper by Drinfeld and Sokolov.
The gauge transformation between the two canonical forms
gives us the explicit map between the Lifshitz Chern-
Simons theory and the KdV hierarchy. This map is z
independent simply because z is not involved in the
construction of gauge transformation between the two
canonical forms.

V. DISCUSSION

In the present paper we showed that there is an explicit
relation of the Lifshitz Chern-Simons theories and
the integrable KdV hierarchy. This relation identifies the
parameters N and z of the Chern-Simons theory to the
parameters n and m of the KdV hierarchy. Consequently
the map exists for all values of N. We discuss the status
of the generalization to the infinite-dimensional alge-
bra hs(4).

The fact that the equations of motion obey the scaling
laws implies that the equation of motion, as well as the
KdV map for a CS field «;, only contains finitely many
terms since fields with a too large scaling dimension cannot
appear. Since the hs(1) truncates to sl(N,R) and we
adopted the normalization of our sl(N, R) generators which
is compatible with this truncation, for a finite number of
fields the results for sl(N,R) are mapped to the general
hs(A) case by replacing N — A. It would nevertheless be
interesting to see whether it is possible to derive a closed
form expression valid for all q;.

The construction of the CS Lifshitz theory has a close
relation to the construction of the asymptotically AdS
theories which realize W algebras, with many equations
related by an exchange of light cone coordinates x* with
space and time x,t [see [28] for the discussion of the
SL(3, R) case]. It would be interesting to see whether this
relation can also be understood on the level of the
conformal field theory; for some early discussion in this
direction in the literature see [29,30].

In the present paper we have related the CS Lifshitz
theory to the integrable KdV hierarchy. There exists a
related and in some sense more universal integrable
hierarchy the so-called KP hierarchy [31]. It would be
interesting to investigate whether a relation of the CS
Lifshitz theory for As(4) to the KP hierarchy exists (see for
possibly relevant work [32-37]). We leave these interesting
questions for future work.
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APPENDIX A: CONVENTIONS FOR GAUGE
ALGEBRAS

In this appendix we collect our conventions for the
sI(N,R) and hs(4) algebras. We recall that for integer
values of A = N the hs(A) algebra has an ideal and by
factoring the algebra over this ideal, it truncates to a finite
algebra, namely sl(N, R). We use the same notation for the
generators of the two algebras.

1. s1(N,R) conventions

In the fundamental representation the generators of the
sI(N,R) algebra are N x N matrices labeled by two
integers s, m with 2 < s <N and |m| < s < N. All gen-
erators are built starting from the generators {V3, V2, } of
the canonical sl(2, R) subalgebra, whose nonzero matrix
elements are given by (indices range from 1 to N)

N+1 |
=5 (V%)j+1,j ==

The other generators are obtained according to

. o (s Fm—1)!
vm*(_1> ! (2S—2)'
< V2 V2L v (v (A2)
s—m—1

2. hs(4) conventions

The hs(A) algebra is spanned by the infinite set of
generators V3, s=1,23,...and m=—s+1,—s+2,...,
s — 1. The associative lone star product is defined as

s+1—|s—t]—1

an*V;:% >

u=1

VS+t u

giit(mvnﬂw m—+n (A3)

The structure constants of the /s(4) algebra were defined in
[38] and can be represented as follows

qu72

ST AN (),

g (m.n; 2) = (A4)

where ¢ is a normalization constant which can be elimi-
nated by a rescaling of the generators; we choose g = 1/4
to agree with the literature. The other terms in (A4) are
given by
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wionn) = S0 (1 s 1l

k=0

X[s—1—=m

i (A) = 4F3

The descending Pochhammer symbol [a], is defined as

n

[a], =ala—1)...(a—n+1), (A6)
and the commutator is defined as
Vo Vil = Vo s Vi =V x V), (A7)

v} is the unit element. The trace of an /s(1) element is
defined as the coefficient of V} up to a multiplicative
constant tr(V}). When A= N is an integer, hs(1) is
truncated to sl(N,R). That means, we can consistently
set V3, to be zero if s > N, and the remaining elements can
be identified with the sl(N,R) generators defined above;
the star product becomes the usual matrix multiplication
and the trace the usual matrix trace.

APPENDIX B: PROOF STATEMENTS USED IN
THE DRINFELD-SOKOLOV FORMALISM

In this part of the appendix we give the proofs to the
theorems used in Drinfeld-Sokolov formalism. Most of
them are essentially contained in the original paper by
Drinfeld and Sokolov. However, the original paper is a little
bit condensed, so we add details to the proofs to make them
easier to follow.

1. Gauge transformation of PDOs

Here we give the proof of the following statement: For
any ¢ and any canonical form, there exists a unique gauge
transformation S to transform ¢ into ¢’ = S~'V3S — V2 +
$~10.S in the canonical form chosen.

The proof proceeds as follows: We rewrite the gauge
transformation as

Sq' =qS+ V3.8 + 0.8 (B1)
and then by comparing the weight —i part we get
Zsl i = qus, VS8, (B2)

which holds for all i’s. Using the fact S is the identity
matrix E, we put it in a recursive form
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i—1 i—1
= Siidit Y 4iSiy
=0 =0

(B3)

q;—[V3.8i1] = q; + 0,5,

Given ¢, and suppose q} and S; | are known for all j < i,
from the lowest weight projection of the right-hand side we
can find ¢} if we restrict it to be in a one-dimensional
subspace of weight —i elements which has nonzero lowest
weight projection. Then S, is also determined by equat-
ing the nonlowest weight terms on both sides. The initial
conditions, needless to say, are ¢, = gy and Sy = E

2. Scalar coefficient form and conserved quantities

Here we proof the following statement: For generic L,
there is a formal series

T=E+>» hA™ (B4)
i=1
where h;’s are diagonal matrices, such that
Ly=TLT™' =0, +A+ ) _ fA™ (B5)
i=0

where f;’s are scalar functions. T is determined up to
multiplication by series of the form E 4+ > %, ;A" where
t;’s are scalar functions, and f;’s are determined up to a
total derivative. Furthermore ¢’ = [ f; are conserved by the
Lax equation.

The proof proceeds as follows: By equating the coef-
ficients of the same powers of A in the equality TL = LT
we get

i—1
d;+higy + > hide "
Jj=0

= f,E+ 0.h +hl+1+2f,_1 a7 (B6)

Here the notation A® means A/AA~, which is i times
cyclic permutation of the diagonal elements for a diagonal
matrix A. For example if A = Diag{a;,a,,as,a,} then

A’ = Diag{a,, as,as,a;}. We rewrite the equation
above as
hl+l fl

—d;+8,h; — Zh_, (. +Zf,_, . (BY)

fi 1s obtained by taking the trace on both sides, then /4, is
determined up to an additive multiple of identity. Now
suppose T’ transforms L to

PHYSICAL REVIEW D 92, 085005 (2015)

Ly=TLT" = 8+A+Zf’A— (B3)
Define TT' ' = A = E + Y%, a;A’ where a;’s are diago-
nal matrices. We have A~'LyA = L{, or LoA = AL{,. By
equating the coefficients of the same power in A we get

i1 i1
/ _ —i /
A —ay + fiE— fiE = 0.a; + E fiai_; — E fiai;
Jj=0 J=0

(B9)
with the initial conditions
ay—a§ + foE— foE =0,
ay — a3 + f1E— f1E = 0,a;. (B10)
From this recursive formula it is easy to see a; — a? = 0 for

all i’s; that is g;’s are all multiples of identity, say, a; = t;E.
Plug this back into the recursive formula we have

fi=fi= 0y Zrl S —=f)  (BI)
with the initial condition
fo—fo=0
1= f1=0:. (B12)

One can prove by induction that f% — f; is a total derivative.
The evolution equation of L is

d
—Lo = [Py, Ly).

0 (B13)

where Py = 4LT~! + TPT~'. Expand P as Y. _ p;A’,
then the Lax equation above gives us

0= Pn —PZ,

0=-0p;i+pis1—p{+ Zf.f*i(pl p(/ﬂ )

j=i

0<i<n,
. n
foi==0:pi+ piny —P?_1+ij7i PT ),
J=i
i<0. (B14)

This recursive formula demands all p;’s to be multiples of
identity. From this, in turn, the commutator simplifies to
—0,Py; hence f i’s are equal to total derivatives and [ f;’s
are conserved.
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3. Matrices that commute with L,

Here we would like to show that all matrices that
commute with Ly = 9, + A+ > %, f;A~" have the form

" ciA with ¢;’s as constant coefficients.

This follows from letting M = " m; A’ be a matrix
commuting with L. By equating coefficients of the same
power in A in the equation MLy = LoM we get

m, —m% =0,

n
—O0um;+m;_y—mi |+ ijfi(mj —m9 ) =0,

] < .
Jj 1 n
j*i

(B15)

Therefore all m;’s are constants times identity matrix.

4. The Lax equation preserves gauge equivalence

In this subsection we prove the statement that by
choosing P = (T!(>°7_ ¢;A)T), the Lax equation
preserves gauge equivalence.

This can be shown as follows: It suffices to prove if L
satisfies the Lax equation, then so does L' = S—'LS where
S is a gauge transformation matrix that only depends on x.
In other words 0,q = p(q) implies 9,¢4' = p(q’). Using the
original Lax equation, it is straightforward to get

dp- [S71PS. L.

- (B16)

So we want S~!PS = P’, which means, S~! PS is the same
differential polynomial in ¢’ as P in g. Explicitly we have

s7ips =51 <T1 < > c,-Ai> T) S
+

i=—0o0

_ ((TS)—I ( 3 c,.Af> (TS)>+.

i=—00

(B17)

Suppose T’ transforms L’ into the form of scalar coef-
ficients, that is 7/L'T'~! = L{, so T’ is the same differential
polynomial in ¢’ as T in ¢g. Plug in L' = S™'LS we get
(T'SHL(T'S™") ' =Lj=Ly=TLT'. Hence T'S™! =
T or TS =T, and at last we get

srs— (135 o))~
i +

=—00

(B18)

5. Equivalent evolution equations of gauge
equivalent classes

We want to prove the following statement: Given that the
difference between P; and P, is a negative weight matrix
with no time or A dependence, then %L = [Py,L] and

PHYSICAL REVIEW D 92, 085005 (2015)

%L = [P,, L] give the same evolution equations of gauge
equivalent classes.

The proof proceeds as follows: Let R denote the ring of
scalar differential polynomials in ¢ which are invariant
under gauge transformation. For any f &€ R the time
derivative of f by the Lax equation also belongs to R,
and the form of time derivatives of all f € R uniquely
specify the evolution equation of gauge equivalent classes.
Now for any f € R, let g be the difference of the time
derivative of f by the above two Lax equations, then g is
actually the time derivative of f by the Lax equation
41 = [P, — P,,L]. Formally

o(L) = = FLO)o. (B19)
where £(r) satisfies
£(0) =L,
L L)) = [Py~ Pa. L. (B20)

dt

Apparently £(t) = SLS™" where S = E + t(P, — P,) sat-
isfies these conditions, and its time evolution is just a gauge
transformation. Therefore we have g = 0 because g € R.

APPENDIX C: EXPLICIT RESULTS FOR
VARIOUS N AND z

In this appendix we collect explicit results for several
pairs (N, z). For each N, we list the z-independent CS-KdV
map and, for various z, the explicit KdV and CS equations
of motion. Due to the length of the equations we do not
write all the cases for N =6 and N =7, limiting the
presentation to the first values of z (up to z=4,3
respectively).6

1.N=3
CS-KdV map:
U, = 4(12,
us :20/2—403. (Cl)
KdV equations of motion at z = 2:
iy = 2uly — uj,
2 2

I:l3 = —g Mzulz + I/lg/ — gulz//. (C2)

CS equations of motion at 7z = 2:

®Additional data are available from the authors upon request.
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(Xz = —2(1,3,
b 8 /1
a3 = gazaz -+ 6052
2.N=4
CS-KdV map:
U, = 10612,
= 10a}, — 24as,

= —12a} + 3 + 9, + 36a.
KdV equations of motion at z = 2:

iy = 2uly — 2u,

iy = —upuhy + 2u) + ufj —2uf,
S 1 -
u4:—§u3u’2 2”2”2+”Z_§“2 .

CS equations of motion at 7z = 2:

24
S
8 1
d?’ = gazaz 30/ + a///
. 10 12 / ///
ay = 3 a3a2 -+ ?az% + — 15

KdV equations of motion at z = 3:

. 3 1
142:—1142u’2—|—3uﬁL u3—|—4 uy',
. 3 3 3
ity = —Zu3u’2 —Zuzug + 3uly —2uf +Zug4),
it4:—éugu/3+—u2ug—|——u3u/2/—§u2u/3/
4181y 8 4
3 3 @, 3 6
+8u2u’2”+uﬁ{’—1u3 tgh -

CS equations of motion at z = 3:

. 21 54 7

) = 10(12(12 —+ ?ail %ag/,

. 15 15

a3 = —70(30/2 —70520/3 2 /3//,

a —ga/a’w——a 2o, + —a 12050,
4 — 60 2%2 5 2 2 10 2(14 343

13 " 1 /// 1 (5)
Tp®% % T %

(Co)

(C8)
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3.N=5
CS-KdV map:
U, = 20612,
uz = 300, — 84as,

— —84d, + 18} + 64a,> + 2880y,

us = 64y + 1440, — 24 + 4a' — 192,05 — 5760s.
(C9)
KdV equations of motion at z = 2:
ity = 2uly — 3uf,
by 6 / ! 7 "
U = _5”2”2 + 2uy + uy —4uy
4 6
iy = —§u3u'2 + 2us —guzu’z’ +uy — 2u§4),
. 2 2 2 2 (s
its :—§u4u’2 5”3”2+”5_§”2”/2//_§”g)- (C10)
CS equations of motion at 7z = 2:
) 42
a, = —?03,
8 48 1
[e£} gaza/z 7 g+6a/2”a
10 12 1
ay ?a3a’2 + ?azag 40 +1—5ag”,
. 14 16
x5 = ?0303 +4a4ajz + — 7 0204 4+ — 28 W (Cll)
KdV equations of motion at z = 3:
l;lz = —guzu/z + 31/!2 — 3143/ + M/zll,
6 6
ity = —§u3u’2 — guzug + 3us + 3uly — Suf + 3ué4),
by 6 / !/ 3 / 3 " 9 "
Uy = —§M3M3 —§u41/l2 +§u2u4 +§M3u2 —§u2u3
6 12
+ 3ul +5u2u’2”+uﬁ’ 3ult )—i—? ul,
1:15 = ——u4u' +—M2M/ —Ellgu + 3M4M + = u3u"’
5T 5T 5T s s
3 3w 35,3 6
—§u2u’3”+u’5”+§u2u<>—§ug>+§ug>. (C12)

CS equations of motion at 7z = 3:
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) 24, 216 , 4
R
. 120 120
B R R R
) 59 , . 24 36, 147 o
ay = (12(12 — ay C¥2 — —(12(14 — 03 3
60 5 5 5
1 1
— 12040, + 30 — ) — gaﬁ{’ + moéS),
. 97 29 144 396
A5 = magalzl + 56(1/0” +§(122(1/3 +§a3a2a2
36, 126 72, 5 "
+ 70205 — 3 a4a3 ?a3a4 + %az%
123 /11 1 /// 1 (5)
= i C13
28077 T7% T560% (€13)
KdV equations of motion at 7 = 4:
6 4 4 6
iy :gu’22 —§u3u'2 —§u2u'3 +4ul +§u2u’2’ —2ul +ul?,
.24 12 4 2, 4
us :?M2M2 25”2 M2 5”2”4—51/!2”3—5”3”3
4 2 6
—gu4u’2 —gu2u’3’ +6ud + 2uyuy’ —4ul + (4) +§u(25),
. 16 1o 12 - / - /
Uy = 5 — Uyl +25 Uity —1-25 UsUylly +5u2u5
4 2 4 12
—§u4ug—§u’2ug—§u3u4 75 —uyuly — SMZMZ
12 2 2 2
—|—?u’2’2—|—5 4u2—|—5u2u’3”—|—5u3u/2”—|—4u”’
6 6 2
—|—5u2u2) 3144 —1—5 () gug’),
s = lzuzuzu2 —|—i 24) +——uguyub + 4 — usuy?
25 5 25 25
4
—guwﬁl 5u2u5—|—5u3u5+5u’2’u’2”+25u3u2u2
4 2 4 4
+§u2u’5’+gu4u’3’—§u3u4 25 2211!/2”—51/!21/!2/
2 2 4 s 45 2 6
+5u3u’3’/—|—5u2ug ) —l—ug ) +25u2u(2 ) —gug ) +§u§ ),
(C14)

CS equations of motion at z = 4:
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. 144 144 576 , 18
02:?a3 2+ 5 0203—?05"‘?03’
. 24 64 384 336
az = —70/20/2/ —7 22aj + — 7 aHa 4 + — 5 a3a'3
384 12 24 1 s
+ 7 a4a2 7 2 /2//+7 /// ﬁa(z),
. 68 61 96 208
G =~ 50 T 3 5 W 5 mmd,
64 , 336 , 336 , 26
— ?azas + Ta4a3 —+ Ta3a4 15 azag
13 1
_?0%0/21/ < g//_%ag>’
1108 7 8
5 Eazaéa/ﬁ — 503(13 + (Il a2 + 70/20(2(
13 () 256 o 256, , 272 ,
T8 2% +35 R T S e
32 6 576
35 —uond, + 63 —32a3%dy +— 5 a0
144 47 244 4
5 (13(1/ + %(l’z/(l/z// + m 22(1/2// += 7 azaﬁ{’
5
19 B s 29,0 1
10 T 35742 1260 ' 140 4
o)
+ 5040 (C15)
4.N=6
CS-KdV map:
U, = 35(12,
uy = 700, — 224a3,
= —3360d} + 63a; + 259a,% + 12960,
us = 518may + 12960, — 192af + 2824’
— 1760a,a3 — 576005,
ug = —880a, 0ty + 130a% — 8803, — 28800

+ 1550 + 3600 — 400 + 5ot + 2250,

+ 360040, + 1600032 + 144000 (C16)

KdV equations of motion at z = 2:
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iy = 2uly — 4uf,

. 4 2
iy = —guzu’2+2ug+u’3’——u’2”,

3
ity = —uzuhy + 2ul — 2uyu’y + uj — 5u§4>,
2 4
s = —§u4u2 +2u6’ — uzuly + ul — 34 Juy — 2u£5),
1 1 1 1 1
ltg = —§u5u’2 —§u4u’2’ + u6” —gu iy’ —§u2u<24) —gug@. (C17)
CS equations of motion at z = 2:
.64
ay = —?0@,
. 8 81 1
s = §a2a'2 - 7(12‘ + ga’z”,
. 10 12 80 1
(X4:?(13(X/2 ?azag—ga's—i—lsag”,
14 16 1
as = 5 — w30 + 4y + — azaﬁ1 — Sag + 53 —ay,
. 16 18 14 20 1
a6 =~ —audy + — a3a’ +— aSa’ +— 5 aza’s+45a’5" (C18)
KdV equations of motion at z = 3:
9 9 3 3 15
iy = —Euzu’2 + 3uly — 5143 +4u’2”,1'43 514314’2 —§u2u’3 + 3ul + 3uly — uf’ +7u(24),1'44
1 3 5 5 33
= —§u3u’3 — uquy + 5”2”:1 + 3u6’ + Zu3u2 Bupuly + 3ui + 2”2”/2” +uy — 7ué4) + Iugs), its
3 7 5
= —uquy — Eusué + zuzug — §u3u/3’ + uguly +3u6” + 4u3u’2” 2upuly + u Euzu?) — 3ug5) + 4u§6), iLg
1 1 1 3 1 3 3 1 3 1 3
= §u2u6’ — §u5u’3 5 ~uyufy + 4u5u2 — §u3u2 + 4u4u’2” +u6” +Zu3u<24) — Euzug“) + Zuzu(zs) — Euf) + Zug).
(C19)
CS equations of motion at z = 3:
8L 3888, 27,
B T A TR TR
. _ 405 405 ., s40, 27,
I T T A VR E
.59, 24 ., 557 152 80 100, 13,017, 1
= 600 +?“2 T A e e e S Tl L I L DT
. 144 396 85 252 1188 35 5
(15 = 140 3612 + a'a” 35 22(1/3 + 35 (13(12(12 14(12(1/5 — ?046% —?03(12 — 7(15(1’2 + ﬁaz(lgﬁ
123 1 1 (5)
o — o+ —a,
2800 T2 % T560%
. 9 19 80 976 196 55 45 972
G =55 %% 140“/4 5692% + 57 070 T g5 Wt + T3y +gw + s - S aud,
224 120 41 92 7 1 a
— ?asag — ?0530,5 + maza’” + %O@a’” 15 0540/2” + 6 /6// 16480 . (CZO)

KdV equations of motion at 7z = 4:
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. 8 4 4 8 2 8
Uy = gu’zz —§u3u2 guzug + 4 +§u2u’2’ — 4u] +§ug” +§u§ ),
. 40 8 4 2 4 4 2 16 28
Uz = ?Mlzbllz/ +§M22M/2 —guzuﬁ‘ —gl/l/zug —§M3M/3 —§M4M/2 +4M/6 §M2M3 + 61/!/5/ + — 3 le/llz// ?MZ/
13 4 34 5
iy = —ubull + = uyuh? + = usuyul, + = us it — = uguy — = ubuly — = uzuly — = usith +A—lu22u”—9u2u + 10us?
2 4 14 5
+3 uguy + Oug + ~ 3 upuly + uzuy + 4u + 3 uzugt) — 9u£4) + 6u§5) —|—§ugé),
; 20 4) 4 12 4 / ! 2 / 40 u'ul
Us = 3u2u2u2 +? uh U, +9u4u2u2 + 3u2u6 + 3u3u2 —§u4u4 3 Usily = 3 Ul +§u3u5 +? LUy + 3u3u2u2
2 2 8 8 4 4 !
+ S upul 4+ = uguly — 2usul] + S usul + —up?uy — ~upu) + —usulf + —ugut + 4u + 2u2ug )42 u3u5 ) 4+ ug>
3 3 3 9 3 3 9 3
14 10
Bl ) 200,
. 8 " 4 (5) 2 12 / 2 10 4) 2 72
Ug = 3 —uzusus + 9u2u2u2 +3 3 uhuy + 9u5u2u2 + 9u4u2 §u5u4 —§u2u6 + = 3 U3 U +? uhuy + = 3 Uiy
2 2 2 2 2 1 2 4
+§M4M2M/2/ +§M2M/6/ —§u4u4 + = 3 u5u3 + 91431/!214/2” +— 9 M/ZHZ + = 3 M4Mg” —5143142‘” —61/!51/!/2” +§u22u(2)
g 1 4 4 5) 1 55 1 6 2 (6 2 I
—guzuf) +§u3ug ) —§u4ug) + ué ) +§u2ug ) —§u3u<2) +§u2u§ ) —gug ) +§ug7) —§u§ ), (C21)
CS equations of motion at 7z = 4:
2048, 2048, 4608 , 256
by = 5 s+ 5wy~ ds + el
. 160, , 1280 , , 1440 5072, 1440 1800, 80 ., 90, 10
W= B0 T W a+— 7 * ay +—— 1 aaz + e I B v 2+7 4 T g3 ®
. 272 244 128 832 1504 896 896 2800 104
a, = —7(113(1/2/ —7(1/2(19’/ — T(Zzzag — 7(13(12(1,2 + — 27 aza’ + — a4aj3 + Taﬂl:‘ + 7(15(1/2 — 7(120!!3”
52 8 5
—30{30/2" +9a’5" 77 ag ),
08 oy 58 39 5L 3 26, 1504 o 2720
@5 = 35 0% ~ 05 B0 T 40 %2 T g M T iee@m |+ 55 a@ — e didy — o asnd
6208 800 62 528 1944 448 1088 47 244
105 4@t ~ o Ml + ey’ = T aytay a5 asay + sy + g’ + s ey
(7)
9 156 ., 156 10 , 29aa)) 1 o
_° _° _ g _ %
T T3y M T s MR T T 60 T 280 +5040
11828mydyay  89020,a50y | 3673ascyely 104 , 56 2., 116, , 451"
%= 4ms 4725 1050 25 % T T G asd s+ g
4ldpal’ 128 . 2624 3200 " 2080 1824 448 ,
1890 +Ha2 o3 + 105 a3, 139 ma o1 e — 35 — Q300 +Ea5a2a2
6577a,%a, 608 752 1728 1152 1936 5595y 8
3150 7 O Ty @ e asd o adl = S asa + =g s+ sl
15380’y | 4S0cardy 152, 664, 108 . 392 . 1 5 13laa)
4725 1575 T 189™% TI75 MG T 175 BN T 135 BN T ige Mt 6300
2 0 o)
— . C22
+315 +37800 ( )
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CS-KdV map:

U, = 56612,
uz = 140a), — 504a;,
uy = —1008a} + 168a; + 784> + 43200y,

PHYSICAL REVIEW D 92, 085005 (2015)
S.N=17

us = 23520y + 64800, — 864a] + 112a5" — 8928mya3 — 3168005,

e = —8928ayas + 1180,2 — 8928asty — 31680, + 1408, + 3600ct, — 360y’ + 40as" + 230403

+ 40320a,a, + 18000a32 + 1728000,

uy = 708aya + 34560,y + 20160a,a, — 4488a,fy + 1800030 + 20160a4a, + 86400a) — 2544a,ct;
— 26643t} — 8640at! + 312052 + 720 — 600 + 60 — 138243057 — 103680asa,

— 864003014 — 518400a. (C23)
KdV equations of motion at z = 2:
iy = 2uly — 5ufj,
h 10 / / " "
ty = = —Ully + 2uy + uf — 10uy’,
8 20
iy = —?u3u’2 + 2u —714214’2’ +uy — 10u<24),
6 12 20
s = — = ugith + 2ug — — uzuy + us — —upuly — 6u§5),
7 7 7
4 10
= —714514,2 +2uf — ?u4u’2’ + ug — 7u3u'2” — 7u2ué4) — 214;6),
2 2 2 2 2 2
iy = —?u6u’2 — §u5u’2’ + uf — §u4u’2” - ?u3u§4) - §u2u§5) — aug). (C24)
CS equations of motion at 7z = 2:
[Xz - —18(1/ B
8 120 1
T R
) o, 12, 44, ”
ay = ?05302 +?a2a3 —?as +Ea3 s
. 14 120 1
a5 = 5 o303 + 400 + — @0y — < ds + 50y,
. 16 18 20 1
a6:?a4a’3 ta ?a5a’2+6a2a’5—6a’7+5a’5”,
. 20 18 22 16 24 1
a; = 7&4(12‘ + ?aSag + ?0!36!/5 + ?%a’z + ﬁazajﬁ + &a’ﬁ”. (CZS)

KdV equations of motion at z = 3:
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a2:—7u2u’2+3u4 6us +4uy’,
12 2
ﬁ3:—7u3u’2—7u2ug+3u’5—|—3uﬁ{—14u/3”—|—15u(24),
12 3 6 30 30
lly = —— Uzl — = Uglty + - Uptlly + 3utg + - usuy ——upus +3us + —uzu’z”+uﬁ{’—15u§4>+21u§5),
7 7 7 7 7 7 -
i15:—2u4u’ ——usuy +=uyus +3uh ——uzu +=ugul +3ul +—uszuly ——Ougu”/ ’”—I—ﬁuzu() 9ul) + 151,
7 Ualty —ZUsly Tl s 7Ty Ul T gl 6 T sty — gl 7 thalty 3 2
. 6 5 o 15 4
itg = —7u5u’3 —7u6u’2 +?u2u’6 7u4u3 +7u5u2 +3uf —7u3u’3”+7u4u’2”+ug’+3u3ug ) —7142145 )
27 39 7
. 3 3 6 3 @4 6 w 6 5 3 s
ity = —§u6u/3 +?u2u’7 7u5u3 —|—7u6u2 —?u4u/3”+7u5u/2”+u’7”—?u3ug )+7u4u; ) +§u3u§ ) —?uzug )
6 © 37 6 ;s
+7u2ug)—7ug )—|—7u§ ), (C26)
CS equations of motion at z = 3:
1620
= —12mad), + ——a, —2a5,
. 300 300 o 1320, 20,
a3=—7a3a2—?0{20{3 +T(15 7 (13,
. 24 13 379 59 1
ay = ?a’zazz —32aja, + %a’z”az —44a,0, — ?ogag + 1200 + — 0 ayaly — o) + mazm
. 144, 396, 1488 , 5 . 420, 882 4392 540
a5 = 35 o G+ 35 30,0 — 77 ——— a5 +28a3 a — 1 — 505 — 11 ago; — 77 ——— 30y +Ta7
97 25 1
a’ " — g (5)’
T 1a0%% 55 S+ o 280 B T77% T 560™
. 80 196 7 45 9
s =57 Ay + — G aoha, +ﬁa3a’3a2 —4daga, +420aﬁ{’0¢ +7a3 )y — 24ae0ay — 5 — asa — 54a40,
275 79 19 7 92 a,®
T s g% g 05 S mal g mar 5 saas g,
. 40, , 816 3996 1940 156 , 61 o 304 7,
[e%} H(ZS ) +— 55 (15(12(12+ 385 a4a3a2+ 231 (13(14(12+ 11 a5 2+990 5 2+ 21 (1304(124‘ 15(13 (1/3
324 220 443,y 103 Old,a? 83
720ty — = sty — sl = 205 + e o g e+ ger® +casal
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