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We present a new formulation of curved projective superspace. The 4D N ¼ 2 supermanifold M4j8

(four bosonic and eight Grassmann coordinates) is extended by an auxiliary SU(2) manifold, which
involves introducing a vielbein and related connections on the fullM7j8 ¼ M4j8 × SUð2Þ. Constraints are
chosen so that it is always possible to return to the central basis where the auxiliary SU(2) manifold largely
decouples from the curved manifoldM4j8 describing 4DN ¼ 2 conformal supergravity. We introduce the
relevant projective superspace action principle in the analytic subspace of M7j8 and construct its
component reduction in terms of a five-form J living onM4 × C, with C a contour in SU(2). This approach
is inspired by and generalizes the original approach, which can be identified with a complexified version of
the central gauge of the formulation presented here.
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I. INTRODUCTION

It is well-known that theories of eight supercharges in
various dimensions possess natural on shell representations
(such as the hypermultiplet) that do not admit off shell
representations with a finite number of auxiliary fields—at
least, not without a central charge. In fact, a no-go theorem
guarantees that the most general charged hypermultiplet
cannot be lifted to a finite off shell representation (see e.g.
[1] for a clear discussion with references). Both harmonic
and projective superspace solve this problem in the same
way: the hypermultiplet is lifted to an off shell multiplet by
introducing an infinite number of auxiliary fields in a
controlled way. For harmonic superspace [1,2], these
auxiliary fields correspond to Fourier modes on an aux-
iliary S2 manifold, and the hypermultiplet is associated
with a globally defined function on S2. For projective
superspace [3], the auxiliary fields appear as components of
a Taylor (or Laurent) expansion in a coordinate ζ para-
metrizing the space CP1. (For recent reviews, see [4] and
[5].) As a result, both superspaces actually allow the direct
construction of the most general off shell actions involving
hypermultiplets. Of equal importance is the way in which
both superspaces allow superfield gauge prepotentials for
Yang-Mills theories,1 which are necessary for performing
quantum calculations in a manifestly supersymmetric way.
These two approaches are not actually too dissimilar and

make use of the superspace introduced by Rosly [13]
[Hartwell and Howe have also discussed the so-called
ðN ; p; qÞ superspaces [14,15], which provide generaliza-
tions to higher N .] Proposed relations between harmonic

and projective superspaces have also been discussed in [16]
and [17,18]. Our concern here will mainly be with 4D
N ¼ 2 projective superspace.
The incorporation of a curved supermanifold into pro-

jective superspace, a necessary step for the description of
general supergravity-matter systems, was explicitly accom-
plished first in five dimensions in a series of papers by
Kuzenko and Tartaglino-Mazzucchelli [19]. It was sub-
sequently extended to dimensions 2 through 6 by various
collaborations involving Kuzenko, Linch, Lindström,
Roček, and Tartaglino-Mazzucchelli [20–23].2 (Because
we are interested here in 4D N ¼ 2 supersymmetry, we
will make frequent reference to the four-dimensional
references [20], but many important features were already
present in [19].) The formulation of curved projective
superspace presented in these works we will refer to as
conventional projective superspace.
A key ingredient of the conventional approach is to

understand the role of superconformal projective multiplets
of weight n, which are the natural objects of interest in
projective superspace [28,29] (see [5] for a pedagogical
discussion). In curved space, such superfields QðnÞðz; viÞ
are holomorphic in vi on some open domain of C2�≡
C2nf0g, homogeneous in vi of degree n, QðnÞðz; cviÞ ¼
cnQðnÞðz; vÞ and transform under the superconformal
gauge transformations as

δQðnÞ ¼ ξADAQðnÞ þ nΛDQðnÞ − λijvj
∂
∂viQ

ðnÞ; ð1:1Þ

where the covariant derivatives DA are built from the
supervielbein and other connections of some curved1The early work in harmonic superspace [6] (see also the

monograph [1] for references) stimulated many manifestly super-
symmetric calculations in N ¼ 2 super Yang-Mills theories.
Projective supergraphs and their applications have been discussed
in [7–12].

2Corresponding constructions of harmonic superspace in other
dimensions, which preceded the projective constructions, can be
found in [24–27].
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supermanifold M4j8, with ΛD and λij, respectively, the
dilatation and SUð2ÞR gauge parameters. The SUð2ÞR
transformation can be rewritten

δλQðnÞ ¼−λþþD−−QðnÞþnλ0QðnÞ; λ0¼λij
viuj
ðv;uÞ;

D−−¼ ui

ðv;uÞ
∂
∂vi ; λþþ¼λijvivj; ðv;uÞ¼vjuj: ð1:2Þ

The parameter ui appearing in (1.2) is an arbitrary
coordinate, required only to obey ðv; uÞ ≠ 0 in the region
of interest. Given this prescription, it is consistent to impose
the covariant analyticity constraint3

viDα
iQðnÞ ¼ viD̄ _α

iQðnÞ ¼ 0: ð1:3Þ

This implies that QðnÞ depends on only half the Grassmann
coordinates of superspace, in much the same way as chiral
multiplets in N ¼ 1 superspace depend (essentially) on θ
and not θ̄.
Once the means to minimally couple supergravity is

understood, the curved extension of many flat space results
becomes possible. This is done by generalizing the natural
action principle of flat projective superspace [3,29,32]

S ¼ −
1

2π

I
C
vidvi

Z
d4xd4θþLþþ;

θαþ ¼ θαivi; θ̄ _αþ ¼ θ̄ _αivi; ð1:4Þ

where Lþþ is a weight-two projective multiplet
Lagrangian, and C is some contour in CP1. A full
description of the action requires both elements as different
contours can lead to different actions. The component form
can be written

S ¼ −
1

2π

I
C
vidvi

Z
d4xL−−;

L−− ¼ 1

16

uiujukul
ðv; uÞ4 DijD̄klLþþ; ð1:5Þ

in terms of an additional coordinate ui; however, the result
is actually independent of ui, except for the requirement
that ðv; uÞ ≠ 0 along the contour C. The extension to the
curved case was given in [20] as

S ¼ −
1

2π

I
C
vidvi

Z
d4xeL−−;

L−− ¼ 1

16

uiujukul
ðv; uÞ4 DijD̄klLþþ þ � � � ð1:6Þ

An additional requirement of constant ui turned out to be
useful to impose. The elided terms in the above expression
for L−− were determined by requiring independence under
small shifts of the constant ui. Large classes of actions can
then be constructed directly from (1.6) by choosing Lþþ to
be built out of fundamental arctic, antarctic, vector and
tensor multiplets: the resulting actions include general
supergravity-matter systems [20]. The coupling to con-
formal supergravity naturally occurs automatically because
of the super-Weyl invariance of the action [20].
There are some curious features about this formulation.

First, as noted in [20], the coordinates vi are effectively
invariant under SU(2) transformations. Second, the mani-
fold is M4j8 × CP1 but the action and constraints are
clearly formulated in a central gauge (or central basis in
the language of [1]) where M4j8 and CP1 are largely
decoupled. One is not permitted to make CP1-dependent
Lorentz transformations (for example) or arbitrary diffeo-
morphisms onCP1. Finally, an auxiliary coordinate ui must
be introduced to evaluate the action, subject only to the
condition that ðv; uÞ ≠ 0 along C. (Such a constant ui exists
for any contour.) In the original flat superspace approach of
[3,32], the coordinate ui could actually be chosen to vary
along the contour; in the curved superspace approach, it
was chosen constant for convenience.
In this paper, we will shed some light on these features

by presenting a modified version of curved projective
superspace where we emphasize similarities with the
harmonic superspace approach [1]. The main idea will
be to introduce a supermanifoldM4j8 × SUð2Þ, that admits
gauge transformations and diffeomorphisms involving both
the coordinates zM of M4j8 and the coordinates vi� of SU
(2), placing them on an equal footing.4 Because our fields
will always be chosen to depend only on
CP1 ≅ SUð2Þ=Uð1Þ, the supermanifold will effectively
be M4j8 × CP1. We will assume that, as in harmonic
superspace, there exists a central basis (or central gauge)
where M4j8 and CP1 largely decouple.
We will find that the coordinates vi� indeed transform

under SU(2) diffeomorphisms; however, upon restriction to
a central gauge they can be interpreted as inert. This in turn
explains the two curious features mentioned above. In the
new framework, the role of the coordinate ui will be played
by the complex conjugate v−i of viþ, so that viþv−i ¼ 1. The
conventional formulation of projective superspace will
arise after a complexification of viþ → vi and

3Such superfieldsQðnÞ with these properties can be understood
as generalizations of complex OðnÞ superfields GðnÞ ¼
vi1 � � � vinGi1���inðzÞ whose components Gi1���in transform as sym-

metric tensors of SU(2), with the constraint Dðj
α Gi1���inÞ ¼

D̄ðj
_α G

i1���inÞ ¼ 0 [30,31]. 4A similar approach was sketched by Hartwell and Howe [15].
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v−i → ui=ðv; uÞ, which is always possible provided ðv; uÞ is
nonzero along the contour C of interest.
Although a full discussion would be beyond the scope of

this paper (but see the conclusion for a few additional
comments), there is a deep relationship between the
harmonic superspace approach to supergravity and the
projective superspace approach that we are describing
here. Both (as usually formulated) involve the same super-
manifold M4j8 × SUð2Þ [with the SU(2) factor effectively
CP1], and we will emphasize the similarity in later sections
by employing the same language (e.g. harmonic coordi-
nates vi� and harmonic derivatives D�� and D0) for the
auxiliary SU(2) manifold. What will differ will be the fields
employed and the action principle. The advantage of
emphasizing the common aspects of the two approaches
will be that the projective approach we present obviously
admits diffeomorphisms on the auxiliary manifold just as in
the analytic basis of harmonic superspace. This leads to
some important conceptual advantages, which we will
discuss in the conclusion.
This paper is organized as follows. In Sec. II, we review

the properties of the SU(2) manifold that will augment the
usual supermanifold M4j8. Many of the important features
of the full superspace will already be apparent when
considering just the SU(2) manifold itself. Section III
presents the structure of the supermanifold M4j8×
SUð2Þ, upon which projective superspace can be placed.
In Sec. IV, we present three action principles on M4j8 ×
SUð2Þ involving, respectively, integration over all, half, or
3=4 of the Grassmann coordinates. The most important of
these is the analytic superspace action involving half the
Grassmann coordinates (the others can always be reduced
to it) so we give its component reduction in Sec. V. This
yields an interesting surprise: in a general gauge, the
component action can always be written as the integral
of a five-form J living on M4 × C, where M4 is the
spacetime manifold and C is the contour in SU(2).5 When
restricted to the central gauge, the five-form leads to a
component action similar to (1.6) with one intriguing
difference. In the Conclusion, we briefly speculate on
possible advantages of this new extended formulation.
Three appendices are included. Appendix A covers

details of the superspace curvatures that are not included
in Sec. III. Appendix B briefly reviews how to formulate
invariant integrals over submanifolds, which is necessary
for constructing invariant actions over 1=2 or 3=4 of the
Grassmann coordinates. Appendix C presents the details of
the component reduction of the analytic superspace action.
The notation and conventions for the SU(2) manifold are

largely those of [1] and are straightforwardly related to
those employed in [20]. The conventions for N ¼ 2
superspace, spinors, σ-matrices, and so on follow [34].

II. GEOMETRIC PROPERTIES OF SU(2)

In this section, we provide a compact review of the
geometric properties of the auxiliary SU(2) manifold,
following mainly the approach commonly used in har-
monic superspace [1]. As harmonic and projective super-
space utilize the same auxiliary manifold, there is no
obstruction to exploiting the same technology in both; in
fact, a common notation can help accentuate the mean-
ingful differences between them.
As in [20], we are not actually interested in SU(2) but

rather the projective space CP1. This will come about
because, as in harmonic superspace, we will always be
dealing with quantities of fixed charge under the diagonal
U(1) subgroup of SU(2). In other words, the effective space
will actually be the coset SUð2Þ=Uð1Þ ≅ CP1 ≅ S2.
Afterwards, we will highlight how complexifying SU(2)
to SLð2;CÞ naturally recovers the formulation of [20].

A. The relations SUð2Þ=Uð1Þ ≅ S2 ≅ CP1

Let us begin with the usual formulation of CP1 ≅
C2�=C�. Introduce two complex coordinates vi for
i ¼ 1; 2, with complex conjugates v̄i ¼ ðviÞ�. These are
homogeneous coordinates on CP1 under the identification

vi ∼ cvi; c ∈ C�: ð2:1Þ

The north chart of CP1 is where v1 is nonzero, while the
south chart possesses nonzero v2. We denote the point
vi∼ð1;0Þ as the north pole and vi∼ð0;1Þ as the south pole.6
The space CP1 can alternatively be described within

the space SUð2Þ ≅ C2�=Rþ. The normalized harmonic
variables

viþ ≔
vi

jvj ; v−i ≔
v̄i
jvj ;

jv2j ¼ ðv; v̄Þ≡ vkv̄k; viþv−i ¼ 1; ð2:2Þ

can be used to construct a generic SU(2) group element

g ¼
� v1þ −v−2
v2þ v−1

�
¼

�
v1þ −v1−

v2þ −v2−

�
;

g−1 ¼ g†; detg ¼ 1: ð2:3Þ

CP1 is then identified as SUð2Þ=Uð1Þ by imposing the
equivalence relation

5A five-form description of the flat projective superspace
action was also discussed by Biswas and Siegel [33].

6Note that some references (e.g. [5]) define the north pole to lie
at vi ∼ ð0; 1Þ and the south pole at vi ∼ ð1; 0Þ. In that convention,
the north chart is generated by stereographic projection from the
north pole, and so the north pole lies outside the north chart.
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viþ ∼ eiαviþ; eiα ∈ Uð1Þ: ð2:4Þ

We can use the inhomogeneous coordinate ζ ¼ v2=v1 of
CP1 to parametrize the harmonics. The harmonics v�i are
given in terms of ζ and the phase eiψ ≔ v1=jv1j by

viþ ¼ ðv1þ; v2þÞ ¼ eiψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζζ̄

p ð1; ζÞ;

v−i ¼ ðv−1 ; v−2 Þ ¼
e−iψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζζ̄

p ð1; ζ̄Þ: ð2:5Þ

The coordinates ζ; ζ̄ describe the north chart of the
Riemann sphere, so the coordinates ym ¼ ðζ; ζ̄;ψÞ may
be called the north chart of SU(2). In what follows, we will
frequently present quantities in terms of this chart.
Following [1], complex conjugation can be extended by

an additional antipodal map on S2. The new complex

conjugation is denoted with a ~ and acts as ~vi� ¼ −v�i ,
equivalently ~v�i ¼ vi�. This is exactly the smile conjuga-
tion of the conventional formulation of projective super-
space [20].

B. Vielbeins and covariant derivatives of SU(2)

The three derivative operations Dþþ, D−− and D0

correspond to the right action of SU(2) on g. Following
[1], they are conventionally defined on the harmonic
coordinates as

Dþþ ≔ vþi
∂

∂v−i ; D−− ≔ vi−
∂

∂viþ ;

D0 ≔ viþ
∂

∂viþ − v−i
∂

∂v−i ; ð2:6Þ

but can also be written in terms of the homogeneous
coordinates vi and v̄i, Dþþ ¼ vi ∂

∂v̄i, D−− ¼ v̄i ∂
∂vi, and

D0 ¼ vi ∂
∂vi − v̄i ∂

∂v̄i or in terms of the inhomogeneous
coordinate ζ and the phase ψ ,

Dþþ ¼ e2iψ
�
ð1þ ζζ̄Þ∂ ζ̄ −

i
2
ζ∂ψ

�
;

D−− ¼ −e−2iψ
�
ð1þ ζζ̄Þ∂ζ þ

i
2
ζ̄∂ψ

�
;

D0 ¼ −i∂ψ : ð2:7Þ

They possess the commutation relations

½Dþþ; D−−� ¼ D0; ½D0; Dþþ� ¼ 2Dþþ;

½D0; D−−� ¼ −2D−−; ð2:8Þ

and one can interpret D0 as a charge generator, with Dþþ
andD−− respectively carrying chargeþ2 and −2. It will be

convenient to denote the charges on these derivatives by an
index a and to introduce a convention for lowering this
index. A convenient definition is

Da ¼ ðDþþ; D−−; D0Þ; Dþþ ≔ −D−−;

D−− ≔ Dþþ; D0 ≔ D0: ð2:9Þ

Then the algebra of these covariant derivatives can be
written as ½Da;Db� ¼ −Tab

cDc for a constant torsion
tensor. Associated with these are three vielbeins
Va ¼ dymVm

a, given by (using different conventions
than [1])

Vþþ ¼ vþi dv
iþ; V−− ¼ v−i dv

i−;

V0 ¼ v−i dv
iþ ¼ vþi dv

i−: ð2:10Þ

In the homogeneous coordinate system, these are

Vþþ ¼ 1

ðv; v̄Þ vidv
i; V−− ¼ 1

ðv; v̄Þ v̄idv̄
i;

V0 ¼ 1

ðv; v̄Þ
1

2
ðv̄idvi − vidv̄iÞ; ð2:11Þ

and in the inhomogeneous coordinate system by

Vþþ ¼ e2iψ

1þ ζζ̄
dζ; V−− ¼ e−2iψ

1þ ζζ̄
dζ̄;

V0 ¼ idψ þ 1

2

1

1þ ζζ̄
ðζ̄dζ − ζdζ̄Þ: ð2:12Þ

The Cartan structure equations are7

dVþþ ¼ 2Vþþ ∧ V0; dV−− ¼ −2V−− ∧ V0;

dV0 ¼ Vþþ ∧ V−−: ð2:13Þ

The covariant derivative can be written in the usual way,
Da ¼ Va

m∂m, in terms of the inverse vielbein. One can
verify these relations by checking that d ¼ VaDa ¼ dym∂m

acts as an exterior derivative on any function of the SU(2)
coordinates ym. Note that under the ~ conjugation, the
derivatives and vielbeins are real, ~Da ¼ Da and ~Va ¼ Va.8

The isometries of SU(2) correspond to the left action on
the group element g. These can be denoted by generators
Îij which act as

7We use the superspace conventions for forms so that exterior
derivatives act from the right (see e.g. [35]).

8The metric on SU(2) can be chosen as ds2SUð2Þ ¼
Trðdg−1 ⊗ dgÞ ¼ 2Vþþ ⊗ V−− − 2V0 ⊗ V0 ¼ 2dviþ ⊗ dv−i ,
although we will not use it explicitly in what follows.
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Îij ¼ −viþ
∂

∂vjþ þ v−j
∂

∂v−i þ 1

2
δij

�
vkþ

∂
∂vkþ − v−k

∂
∂v−k

�
:

ð2:14Þ

These leave the covariant derivatives invariant,
½Îij; Da� ¼ 0. One can further verify that an isometry with
constant parameters λji can be rewritten as

δI ¼ λjiÎ
i
j ¼ λaDa

¼ −λþþD−− þ λ0D0 þ λ−−Dþþ; ð2:15Þ

where λ�� and λ0 are coordinate-dependent transforma-
tions given by

λ�� ≔ v�i v
�
j λ

ij; λ0 ≔ vþi v
−
j λ

ij: ð2:16Þ

(It is sometimes convenient to denote λ0 ¼ λþ− in analogy
with λ��.) The appearance of the minus sign in (2.15) was
the reason for introducing the sign in (2.9).
If we now restrict to the space S2 ≅ SUð2Þ=Uð1Þ, then

the covariant derivatives Da possess a different interpreta-
tion. D0 can be identified with the rotation generator on the
tangent space of S2, while Dþþ and D−− can be identified
with the covariant holomorphic and antiholomorphic
derivatives. Then a scalar function fðqÞ of fixed D0 charge
on SU(2) is reinterpreted as a function of fixed spin
weight on S2 (see e.g. the discussion in [36]). In what
follows, although we will always remain with an explicit
SU(2) manifold, we will only be dealing with such
functions fðqÞ, and so it will always be possible to
reinterpret calculations as being performed on the space
SUð2Þ=Uð1Þ ≅ S2 ≅ CP1.

C. Harmonic and holomorphic tensors on CP1

There are two interesting classes of tensors onCP1 ≅ S2.
The first are the so-called harmonic functions, which are
globally defined functions on SU(2) with fixed D0 charge.
These are given by

fðqÞ ¼
X∞
n¼0

fði1…inþqj1…jnÞvþi1 � � � vþinþq
v−j1 � � � v−jn ; ð2:17Þ

with D0fðqÞ ¼ qfðqÞ (assuming q ≥ 0, but similarly for
q < 0) and are extensively discussed in [1].
The second interesting class are the functions QðqÞ with

fixed D0 charge but annihilated by Dþþ,

D0QðqÞ ¼ qQðqÞ; DþþQðqÞ ¼ 0: ð2:18Þ

The most general class of such functions is not
globally defined on SU(2). If they are nonsingular near

the north pole, they are called arctic and possess an
expansion9

QðqÞ ¼ ðv1þÞqQðζÞ ¼ ðv1þÞq
X∞
n¼0

Qnζ
n: ð2:19Þ

Their conjugates ~QðqÞ are nonsingular near the south pole
and are called antarctic. They possess an expansion

~QðqÞ ¼ ðv2þÞq ~QðζÞ ¼ ðv2þÞq
X∞
n¼0

ð−1ÞnQ̄nζ
−n: ð2:20Þ

It will be convenient to refer to functions QðqÞ satisfying
(2.18) as holomorphic although strictly speaking they are
generically holomorphic only on an open domain of
SUð2Þ=Uð1Þ.
Of course, it is possible for such functions to be both

holomorphic and globally defined. These generally have an
expansion of the form GðqÞ ¼ Gði1…iqÞvþi1 � � � vþiq and can be
real only if q is even.

D. Integration measures and global SU(2) invariance

The most straightforward integration over the
auxiliary manifold SU(2) is accomplished using the usual
Haar measure. Given some globally defined function
fð0Þðvþ; v−Þ, one can define the action integral

S ¼
Z

dvfð0Þ ¼ i
4π2

Z
2π

0

dψ
Z

dζ ∧ dζ̄
ð1þ ζζ̄Þ2 f

ð0Þ

¼ i
2π

Z
dζ ∧ dζ̄

ð1þ ζζ̄Þ2 f
ð0Þ; ð2:21Þ

normalized so that
R
dv ¼ 1. Integrals of the above type are

encountered when using harmonic superspace, which is
concerned with globally defined functions. Since we will be
dealing instead with holomorphic functions, the natural
integration principle will involve a one-dimensional con-
tour integral on SU(2), with the contour avoiding regions
where the functions become singular. The natural integrand
is a one-form ω ¼ dymωm ¼ Vaωa and the corresponding
integral is

S ¼ 1

2π

I
C
Vaωa: ð2:22Þ

Because we are actually interested in contours inCP1 ≅ S2,
we will always assumeω0 ¼ 0 so that the resulting action is
given by

9Superfields in projective superspace with such expansions
were introduced in [3]. The arctic or antarctic nomenclature
appeared later in [7].
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S ¼ −
1

2π

I
C
Vþþω−− þ 1

2π

I
C
V−−ωþþ

¼ −
1

2π

I
C
vþi dv

iþω−− þ 1

2π

I
C
v−i dv

i−ωþþ: ð2:23Þ

For later convenience we have “raised” the indices on ωa,
using the same convention as in (2.9), so that the D0

charges of the integrands are clear.
A natural question to ask is whether the contour action

(2.23) is invariant under SU(2) isometries. It turns out that
the answer is yes, provided the integrands ω−− and ωþþ
obey a certain condition. First let us establish Stokes’
theorem. Suppose ω ¼ dΛð0Þ for some function Λð0Þ. Then
we must have

0 ¼ −
1

2π

I
C
VþþD−−Λð0Þ þ 1

2π

I
C
V−−DþþΛð0Þ: ð2:24Þ

If Λð0Þ is holomorphic, this reduces to

0 ¼ −
1

2π

I
C
VþþD−−Λð0Þ; if DþþΛð0Þ ¼ 0:

These two results are quite important, so let us discuss their
form in an explicit coordinate basis. If τ is the coordinate
parametrizing the contour, one can show that

1

2π

I
C
VþþD−−Λð0Þ ¼ −

1

2π

I
C
dτ

dζ
dτ

∂Λð0Þ

∂ζ : ð2:25Þ

If Λð0Þ is holomorphic, then the right-hand side vanishes as
a total derivative. If not, we find that

−
1

2π

I
C
dτ

dζ
dτ

∂Λð0Þ

∂ζ ¼ 1

2π

I
C
dτ

dζ̄
dτ

∂Λð0Þ

∂ζ̄
¼ 1

2π

I
C
V−−DþþΛð0Þ: ð2:26Þ

This establishes (2.24).
Now let us calculate δIS. The vielbein one-forms are

necessarily invariant under the isometry while ωa trans-
forms as δIωa ¼ λbDbωa. This implies, using the explicit
form (2.16) of the parameters λa,

δIω
−− ¼ −D−−ðλþþω−−Þ þ λ−−Dþþω−−;

δIω
þþ ¼ Dþþðλ−−ωþþÞ − λþþD−−ωþþ: ð2:27Þ

This leads, using (2.24), to

δI

Z
Vþþω−− ¼ −

Z
V−−Dþþðλþþω−−Þ

þ
Z

Vþþλ−−Dþþω−−;

δI

Z
V−−ωþþ ¼

Z
VþþD−−ðλ−−ωþþÞ

−
Z

V−−λþþD−−ωþþ; ð2:28Þ

and one can see that the difference between these two terms
vanishes (and so δIS ¼ 0) precisely when10

Dþþω−− ¼ D−−ωþþ: ð2:29Þ

This is merely the tangent space version of the condition
that ω is closed.

E. Extension to local SU(2) transformations

Up until now, we restricted our attention to SU(2)
isometries. These preserved the form of the SU(2) vielbein
V and were generated by constant parameters λij. In
principle, there is no reason why we cannot perform local
SU(2) transformations of the form (2.15) but with param-
eters ξþþ, ξ−− and ξ0 subject only to the condition that ξ��

and ξ0 have D0 charges �2 and 0, respectively. That is, we
can take

δ ¼ ξaDa ¼ −ξþþD−− þ ξ0D0 þ ξ−−Dþþ ð2:30Þ

but with e.g. ξþþ not necessarily of the form ξijvþi v
þ
j . Such

SU(2) diffeomorphisms can be interpreted as diffeomor-
phisms on S2 (generated by ξ��) along with local U(1)
frame rotations (generated by ξ0).
Under such a local transformation, the vielbeins trans-

form in the usual way, δVa ¼ dξa þ VbξcTcb
a, leading to

δVþþ ¼ dξþþ − 2V0ξþþ þ 2Vþþξ0; ð2:31aÞ

δV−− ¼ dξ−− þ 2V0ξ−− − 2V−−ξ0; ð2:31bÞ

δV0 ¼ dξ0 þ Vþþξ−− − V−−ξþþ: ð2:31cÞ

One can check that the above transformations are consistent
with the definitions (2.10).
Now let us briefly discuss the consequences of requiring

that the contour action (2.23) remain invariant under such
diffeomorphisms. A general diffeomorphism on ω can
always be written as δξω ¼ dð{ξωÞ þ {ξdω. The first term

10It is possible to have purely holomorphic one-forms ω that
obey ωþþ ¼ 0 and Dþþω−− ¼ 0. The one-forms we consider in
projective superspace will generally not be purely holomorphic,
but will instead carry some small nonvanishing ωþþ piece.
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vanishes along the contour integral so we conclude that ω
must be closed. In the tangent frame, with the condition
ω0 ¼ 0, this leads to (2.29), and so the condition for
invariance under SU(2) isometries is the same condition as
for full diffeomorphism invariance. This closure condition
has an obvious geometric interpretation. An arbitrary
diffeomorphism of an integral

H
C ω can be interpreted as

a small deformation of the contour C, and this can
generically vanish only if the flux of dω through any δC
vanishes in the vicinity of C. This leads to the well-known
condition in projective superspace that the integrals

H
C ω

depend only on the topology of the contour and how it
winds around singularities of ω.

F. The complexified SU(2) and the emergence
of a projective structure

Our final topic in this opening section is to address how
the SU(2) framework we have been discussing can be
related to the CP1 framework that one encounters in the
conventional formulation of projective superspace coupled
to supergravity. The key idea is to complexify SU(2) and to
treat vi and v̄i as independent coordinates. Beginning with
the representation (2.2) for the harmonic coordinates,
complexify v̄i → ui. In doing so, it is convenient to modify
the definitions of the harmonics so that

viþ ¼ vi; v−i ¼ ui
ðv; uÞ ;

viþv−i ¼ 1; v−i ≠ ðviþÞ�: ð2:32Þ

We have shifted the entirety of the ðv; uÞ factor into the
second harmonic because

ffiffiffiffiffiffiffiffiffiffiffiðv; uÞp
is not well-defined. This

can be interpreted as a local complex D0 gauge trans-
formation, converting all quantities of fixed D0 charge q
into quantities of degree q in vi and degree 0 in ui. In other
words, the þ and − labels on the harmonics (as well as any
other quantities) now denote their homogeneity under the
projective transformation

vi → cvi; c ∈ C: ð2:33Þ

The resulting group element g given in (2.3) still obeys
detg ¼ 1 but is no longer unitary. In other words, we have
complexified SU(2) to SLð2;CÞ.
It is straightforward to extend the entirety of the previous

discussion to SLð2;CÞ. Instead of dealing with operators
and functions of fixed D0 charge, we have fixed homo-
geneity under (2.33) and invariance under ui → cui. One
can introduce derivatives

Dþþ ¼ ðv; uÞvi
∂
∂ui ; D−− ¼ ui

ðv; uÞ
∂
∂vi ;

D0 ¼ vi
∂
∂vi − ui

∂
∂ui ; ð2:34Þ

and their corresponding vielbeins

Vþþ ¼ vidvi; V−− ¼ uidui

ðv;uÞ2 ; V0 ¼ uidvi

ðv;uÞ : ð2:35Þ

It is natural to convert all holomorphic functions QðqÞ to
new quantities of definite homogeneity in vi and indepen-
dent of ui, Q0ðqÞðcvÞ ¼ cqQ0ðqÞðvÞ. These are related to the
original QðqÞ by the same complex D0 transformation, and
we will drop the primes when it is clear from context which
quantities we are discussing.
Finally, the complex version of the contour integral

(2.23) takes the form

S ¼ −
1

2π

I
C
Vþþω−− þ 1

2π

I
C
V−−ωþþ; ð2:36Þ

where ω−− and ωþþ are respectively degrees −2 and þ2 in
vi, degree zero in ui, and related by the complex version of
(2.29). Under a local SLð2;CÞ diffeomorphism, the coor-
dinates vi and ui transform as

δvi ¼ ξ0vi −
ξþþ

ðv; uÞ u
i;

δui ¼ −ξ0ui þ ðv; uÞξ−−vi; ð2:37Þ

while ωþþ and ω−− transform as

δω−− ¼−ξþþD−−ω−− −2ξ0ω−−þξ−−Dþþω−−;

δωþþ ¼−ξþþD−−ωþþþ2ξ0ωþþþ ξ−−Dþþωþþ: ð2:38Þ

The parameters ξ�� and ξ0 are each assumed to be of
degree zero in ui while possessing homogeneity of the
indicated degree in vi.
The major advantage of the complexified SU(2) is that

we may choose vi and ui to have entirely uncorrelated
behavior along the contour. In particular, one can take ui to
be fixed, subject only to the condition that ðv; uÞ ≠ 0 along
the contour. This can be interpreted as deforming the
contour C within SLð2;CÞ. After such a choice, the gauge
freedom (2.37) is no longer arbitrary, but is restricted by the
requirement that δui is similarly constant. This implies
certain constraints on the functions ξ−− and ξ0. (This
residual freedom was discussed in [20].) The advantage
of this choice is that the second contour integral in (2.36)
automatically vanishes even if ωþþ is nonzero. This is a
consequence of the property that a total contour derivative
is simplified from (2.24) to
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0 ¼ −
1

2π

I
C
VþþD−−Λ0ðv; uÞ; ð2:39Þ

where we emphasize that Λ0ðv; uÞ may depend on fixed ui
(with degree zero).
Although taking ui to be constant can simplify the

contour integrals, we have found it useful to remain with
a real SU(2) manifold in defining our formulation of
projective superspace. This guarantees, for example, that
the harmonics are always well-defined; there is no require-
ment that the contour avoid the location where ðv; uÞ ¼ 0.
It also permits full SU(2) diffeomorphisms, rather than the
restricted SLð2;CÞ diffeomorphisms that leave ui constant.
Nonetheless, starting from a real SU(2) manifold it is
always possible to complexify to SLð2;CÞ and then to
adopt the choice of constant ui where needed.

III. PROJECTIVE SUPERSPACE
AND M4j8 × SUð2Þ

In this section, we will describe how to construct a
covariant projective superspace generalizing the work of
[20]. We will do this first by constructing a direct product
of the supermanifold M4j8 and SU(2), and then splicing
together the tangent space action of Iij on M4j8 with the
isometry transformation on SU(2). The resulting construc-
tion will correspond to that given in the usual version of
projective superspace. We will then show how to lift to a
general gauge. Finally, we will comment briefly on the
admissible types of primary analytic superfields.

A. Conformal superspace on M4j8 × SUð2Þ:
A bottom-up construction

Let us begin with a conventional supermanifold
M4j8 with local coordinates zM¼ðxm;θμ{;θ̄ _μ

{Þ with m ¼
0; 1; 2; 3, μ ¼ 1; 2, _μ ¼ 1; 2 and { ¼ 1; 2. The associated
superspace vielbein is given by EM

A ¼ ðEM
a; EM

α
i; EM _α

iÞ.
We will assume we are working with conformal superspace
[34], so that the supermanifold possesses the full super-
conformal structure group, but the framework we present
here would work equally well with SU(2) or U(2) super-
space where the superconformal transformations take the
form of super-Weyl transformations [20,37].
In conformal superspace, the covariant derivative

∇A ¼ ð∇a;∇α
i; ∇̄ _α

iÞ is defined implicitly by11

∂M ¼ EM
A∇A þ VM

j
iIij þ

1

2
ΩM

abMba þ AMA

þ BMDþ FM
αiSαi þ FM _αiS̄ _αi þ FM

aKa; ð3:1Þ

which can equivalently be written

∇A ¼ EA
M

�
∂M − VM

k
jIjk −

1

2
ΩM

bcMcb − AMA

− BMD − FM
βjSβj − FM _βjS̄

_βj − FM
bKb

�
: ð3:2Þ

Mab is the Lorentz generator, A and Iij are the U(1) and
SU(2)R-symmetry generators,D is the dilatation generator,
Sαi and S̄ _αi are S-supersymmetry generators, and Ka is the
special conformal generator. Their algebra is summarized
in [34].
Now we wish to combine this structure with the SU(2)

manifold with covariant derivatives Dþþ, D−−, and D0.
The only nontrivial step is to decide how the action of Iij
should be manifested on functions F ðz; vþ; v−Þ depending
also on the SU(2) coordinates, which we choose as in
(2.14). The operator Iij acts as the isometry generator on
the SU(2) manifold. At this stage, we immediately recover
the construction of [20], since a general supergravity
SUð2ÞR transformation is given by

λjiIijF ¼ −λþþD−−F þ λ−−DþþF þ λ0D0F ; ð3:3Þ

for arbitrary local λijðzÞ independent of the harmonics.
Specializing this equation to holomorphic functions
QðnÞðz; vþÞ of fixed D0 charge n recovers the transforma-
tion law (1.2), up to the complexification of SU(2) to
SLð2;CÞ discussed in Sec. II F.
At this stage, we have two different ways in which Iij

can act. It can act on a function F ðz; vþ; v−Þ as an SU(2)
isometry, or it can act on an SU(2) tensor independent of
vi�, such as EM

α
iðzÞ, as a tangent space rotation. Now we

wish to eliminate the latter in favor of the former so that the
operator acts in only one way. Consider for definiteness
some superfield qi with a single SU(2) index, independent
of vi� and transforming covariantly under SUð2ÞR. (For
example, qi could be EM

αi.) If we interpret qi as a
component of qþ ¼ qivþi , then the action of SUð2ÞR on
qi, treating vþi as invariant, is

δλqþ ¼ λijqjv
þ
i ¼ −λþþD−−qþ þ λ0qþ: ð3:4Þ

This is exactly the same transformation rule as (3.3),
corresponding to an isometry transformation on the
SU(2) manifold. If we exchange all quantities with
SUð2ÞR indices for scalar functions on the SU(2)
manifold, e.g.

EM
αi ⇒ EM

α�; EM _α
i ⇒ EM _α

�; ð3:5Þ

then Iij can be interpreted as always acting as (3.3). In
particular, the SU(2) connection can be rewritten as

11We have relabeled the SU(2) connection ΦM
i
j of [34] to

VM
i
j.
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VM
i
jIji ¼ −VM

þþD−− þ VM
0D0 þ VM

−−Dþþ;

VM
�� ≔ v�i v

�
j VM

ij; VM
0 ≔ vþi v

−
j VM

ij: ð3:6Þ

Note that VM
�� and VM

0 do not transform as scalar
functions under the SU(2) isometry, but rather as
connections,

δλVM
þþ ¼ ∂Mλ

þþ − 2VM
0λþþ þ 2VM

þþλ0; ð3:7aÞ

δλVM
−− ¼ ∂Mλ

−− þ 2VM
0λ−− − 2VM

−−λ0; ð3:7bÞ

δλVM
0 ¼ ∂Mλ

0 þ VM
þþλ−− − VM

−−λþþ: ð3:7cÞ

This is exactly how the SU(2) vielbeins Vm
�� and Vm

0

transform under SU(2) diffeomorphisms (see (2.31)) but
with the arbitrary ξ��, ξ0 parameters replaced with λ��, λ0.
Before interpreting this further, let us make a few additional
comments.
The implicit expression (3.1) for the covariant derivative

can be rewritten

∂M ¼ EM
α−∇þ

α − EM
αþ∇−

α þ EM
a∇a

− VM
þþD−− þ VM

−−Dþþ þ VM
0D0

þ 1

2
ΩM

abMba þ AMAþ BMD

þ FM
αþS−α − FM

α−Sþα þ FM
aKa; ð3:8Þ

where we use

EM
α� ¼ EM

αivi�; ∇�
α ¼ v�i ∇α

i;

FM
α� ¼ FM

αiv�i ; S�α ¼ v�i Sα
i; ð3:9Þ

for the spinor vielbeins, S-supersymmetry connections, and
their corresponding operators. We have introduced a new
compact notation

ψα ¼ ðψα; ψ̄ _αÞ; ψα ¼ ðψα; ψ̄ _αÞ; ð3:10Þ

to deal collectively with the left- and right-handed viel-
beins, spinor derivatives, etc. It is helpful to introduce some
further notation to simplify the first line of (3.8). As in the
previous section, we wish to treat the �� and 0 indices
of the SU(2) derivatives as tangent space indices and to
lower them using the same conventions (2.9), with
Da ≔ ðDþþ; D−−; D0Þ. It will also be useful to introduce
a convention for lowering the � on ∇�

α , and similarly for
the S-supersymmetry generator:

∇α∓ ≔ �∇�
α ; Sα∓ ≔∓ S�α : ð3:11Þ

Now introducing ∇A ¼ ð∇a;∇α�Þ and KA ¼ ðKa; Sα�Þ,
we can rewrite (3.8) as

∂M ¼ EM
A∇A þ VM

aDa þ
1

2
ΩM

abMba

þ AMAþ BMDþ FM
AKA: ð3:12Þ

Recalling that the partial derivatives ∂m can be written in a
similar way,

∂m ¼ Vm
aDa

¼ −Vm
þþD−− þ Vm

0D0 þ Vm
−−Dþþ; ð3:13Þ

a new unified notation becomes apparent. Let zM denote the
full set of coordinates zM ¼ ðzM; ymÞ and introduce a
unified covariant derivative ∇A ¼ ð∇A;DaÞ. Then (3.12)
and (3.13) can be written

∂M ¼ EM
A∇A þ 1

2
ΩM

abMba þ AMA

þ BMDþ FM
AKA; ð3:14Þ

where the full supervielbein is given by

EM
A ¼

0
BBB@

EM
A VM

þþ VM
−− VM

0

0 Vζ
þþ Vζ

−− Vζ
0

0 V ζ̄
þþ V ζ̄

−− V ζ̄
0

0 Vψ
þþ Vψ

−− Vψ
0

1
CCCA ð3:15Þ

and the other connections live purely on M4j8,

ΩM
ab ¼ ðΩM

ab; 0; 0; 0Þ; AM ¼ ðAM; 0; 0; 0Þ;
BM ¼ ðBM; 0; 0; 0Þ; FM

A ¼ ðFM
A; 0; 0; 0Þ: ð3:16Þ

This rearrangement is equivalent to that proposed in [15].
These identifications (3.15) are completely consistent so

long as two conditions are obeyed. First, the only SU(2)
diffeomorphisms that we may perform are those that are
isometries on the SU(2) manifold. Then the full SU(2)
vielbeins Va ¼ dzMVM

a transform as (2.31) with the
special choice of ξa ¼ λa with λij depending on zM alone.
Second, the only zM diffeomorphisms and other gauge
transformations (i.e. Lorentz, Uð1ÞR, S-supersymmetry and
special conformal) that are allowed are those that do not
depend on vi�. This ensures the zeros in the identifications
(3.15) and (3.16) as well as the decompositions (3.9).
As a final check, we can invert (3.14) to find the

covariant derivative ∇A:

∇A ¼ EA
M

�
∂M − VM

aDa −
1

2
ΩM

bcMcb

− AMA − BMD − FM
BKB

�
; ð3:17aÞ
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∇a ≡Da ¼ Va
m∂m: ð3:17bÞ

The first equation exactly matches (3.2).
The algebra of the redefined operators retains its original

form but with minor modifications involving the exchange
of e.g. Iij for D�� and D0 and Sβi for Sβ�, and will be
given in a general gauge in the next subsection.
It is evident that starting from this formulation of

conformal superspace on M4j8 × SUð2Þ, there is no intrin-
sic barrier to performing vi�-dependent gauge transforma-
tions and diffeomorphisms. These will move us away from
the original gauge where (3.9), (3.15), and (3.16) hold and
where the SU(2) vielbein Vm

a takes the simple form (2.10).
Of course, we can always return to this gauge. We refer to it
as the central gauge (or central basis) in analogy with the
terminology employed within the harmonic superspace
literature.12 In the next section, we will extend this con-
struction to a completely general gauge.

B. Conformal superspace on M4j8 × SUð2Þ:
The top-down construction

In contrast to the preceding treatment where we spliced
together SU(2) with the supermanifold M4j8 of conformal
superspace, we can simply postulate the structure of the
new superspace M7j8 ¼ M4j8 × SUð2Þ and impose all the
relevant constraints. This will have the benefit of not
requiring that we begin in central gauge, although central
gauge always remains a possibility.
The supermanifold M7j8 ¼ M4j8 × SUð2Þ possesses

local coordinates zM ¼ ðzM; ymÞ ¼ ðxm; θμ�; ζ; ζ̄;ψÞ. For
convenience, we have labeled the Grassmann coordinates
θμ{ by { ¼ � to facilitate a later discussion of analytic
gauge. (We emphasize that { is a world index and so does
not correspond to any notion of charge; we could just as
well have used { ¼ 1; 2.)
The covariant derivatives ∇A ¼ ð∇A;∇aÞ ¼

ð∇a;∇α�;∇��;∇0Þ are defined implicitly as in (3.14).
The supervielbein is required to be invertible, and its
components can be labeled as

EM
A ¼

0
BBB@

EM
A EM

þþ EM
−− EM

0

Eζ
A Eζ

þþ Eζ
−− Eζ

0

Eζ̄
A Eζ̄

þþ Eζ̄
−− Eζ̄

0

Eψ
A Eψ

þþ Eψ
−− Eψ

0

1
CCCA: ð3:18Þ

We make no assumptions about whether the vielbeins and
connections are globally defined onM4j8 × SUð2Þ. In fact,
we generically need (at least) two charts for SU(2).

Again we have a prescription for raising the � tangent
space indices, ∇α∓ ¼ �∇�

α , ∇∓∓ ¼ �∇��, Sα∓ ¼∓ S�α ,
and ∇0 ¼ ∇0, so that they correspond to the ∇0 charge of
the operator. Now let us summarize the algebra of the
various operators. The Lorentz generator is normalized to
obey

½Mab;Mcd� ¼ −2ηc½aMb�d þ 2ηd½aMb�c;

½Mab;∇c� ¼ ηbc∇a − ηac∇b;

½Mab;∇�
γ � ¼ ðσabÞγβ∇�

β ;

½Mab; ∇̄_γ�� ¼ ðσ̄abÞ_γ _β∇̄ _β�: ð3:19Þ

The action of the dilatation and Uð1ÞR generators is

½D;∇�
α � ¼

1

2
∇�

α ; ½D; ∇̄ _α�� ¼ 1

2
∇̄ _α�;

½D; S�α � ¼ −
1

2
S�α ; ½D; S̄ _α�� ¼ −

1

2
S̄ _α�;

½D;∇a� ¼ ∇a; ½D; Ka� ¼ −Ka;

½A;∇�
α � ¼ −i∇�

α ; ½A; ∇̄ _α�� ¼ þi∇̄ _α�;

½A; S�α � ¼ þiS�α ; ½A; S̄ _α�� ¼ −iS̄ _α�: ð3:20Þ

The special conformal and S-supersymmetry generators
obey

½Ka;∇b� ¼ 2ηabD − 2Mab;

fS�β ;∇�
α g ¼ �4ϵβα∇��;

fS̄ _β�; ∇̄ _α�g ¼∓ 4ϵ _β _α∇��;

fS∓β ;∇�
α g ¼ �ð2ϵβαD − 2Mβα − iϵβαAÞ − 2ϵβα∇0;

fS̄ _β∓; ∇̄ _α�g ¼∓ ð2ϵ_β _αD − 2M _β _α þ iϵ_β _αAÞ þ 2ϵ_β _α∇0;

½Ka;∇�
α � ¼ iðσaÞα _βS̄ _β�;

½Ka; ∇̄ _α�� ¼ iðσ̄aÞ _αβS�β ;
½S�α ;∇a� ¼ iðσaÞα _β∇̄ _β�;

½S̄ _α�;∇a� ¼ iðσ̄aÞ _αβ∇β
�;

½∇��; S�α � ¼ 0; ½∇∓∓; S�α � ¼ S∓α ;
½∇0; S�α � ¼ �S�α : ð3:21Þ

Up to this point, we have only been discussing the
algebra of the gauge generators with themselves and with
the covariant derivatives ∇A. These dictate how the con-
nections transform under the corresponding symmetries.
(An explicit discussion of this can be found, for example, in
[34].) What remains is to specify the algebra of the
covariant derivatives themselves, corresponding to the
torsion and curvatures on the supermanifold. The various
constraints imposed will dictate the supergeometry.

12Note that the central gauge is not unique; any harmonic-
independent gauge transformation, zM-diffeomorphism or SU(2)
isometry will take us from one central gauge to another.

DANIEL BUTTER PHYSICAL REVIEW D 92, 085004 (2015)

085004-10



Begin by specifying the algebra of the SU(2) covariant
derivatives with the spinor derivatives:

½∇þþ;∇−−� ¼ ∇0; ½∇0;∇��� ¼ �2∇��;

½∇��;∇�
α � ¼ 0; ½∇∓∓;∇�

α � ¼ ∇∓
α ;

½∇0;∇�
α � ¼ �∇�

α : ð3:22Þ

These conditions imply that the SU(2) part of the manifold
is flat, possessing only constant torsion and no curvature,
and are necessary for the existence of a central gauge where
the SU(2) manifold (almost) decouples. In other words, if
we did not impose these constraints, then we would be
introducing new degrees of freedom. For the algebra of the
spinor covariant derivatives, we impose

f∇�
α ;∇�

β g ¼ 0: ð3:23Þ

This is an integrability condition for the existence of
analytic superfields, which we will discuss shortly. The
remainder of the dimension-1 curvatures can be written

f∇�
α ; ∇̄∓

_β
g ¼∓ 2i∇α_β;

f∇�
α ;∇∓

β g ¼ �2ϵαβW̄;

f∇̄ _α�; ∇̄_β∓g ¼ �2ϵ _α _βW: ð3:24Þ
The first equation of (3.24) is a conventional constraint and
serves to define ∇α _β ¼ ðσaÞα _β∇a. As a consequence, the
vector covariant derivative has vanishing algebra with the
SU(2) derivatives, ½∇��;∇a� ¼ ½∇0;∇a� ¼ 0, and obeys
the other algebraic properties given in Eqs. (3.19)–(3.21).
The second and third equations involve a chiral primary
operator W and its conjugate antichiral primary operator
W̄, which are constrained by

½∇��;W� ¼ ½∇0;W� ¼ ½∇̄�
_α ;W� ¼ 0;

½∇��; W̄� ¼ ½∇0; W̄� ¼ ½∇�
α ; W̄� ¼ 0;

f∇γþ; ½∇þ
γ ;W�g ¼ f∇̄þ

_γ ; ½∇̄_γþ; W̄�g: ð3:25Þ

The solution corresponding to conformal superspace
involves specifying W in terms of a superfield Wαβ,

W ¼ 1

2
WαβMβα þ

1

4
∇βþWβ

αS−α −
1

4
∇β−Wβ

αSþα

þ 1

4
∇ _αβWβ

αKα _α; ð3:26aÞ

W̄ ¼ 1

2
W̄ _α _βM

_β _α þ 1

4
∇̄−

_β
W̄ _β

_αS̄ _αþ −
1

4
∇̄þ

_β
W̄ _β

_αS̄ _α−

þ 1

4
∇α _βW̄

_β
_αK _αα: ð3:26bÞ

These operators obey (3.25) provided Wαβ is primary and
obeys the constraints

∇��Wαβ ¼ ∇0Wαβ ¼ ∇̄�
_γ Wαβ ¼ 0;

∇αβWαβ ¼ ∇̄ _α _βW̄ _α _β; ð3:27Þ

where we have introduced the abbreviations

∇αβ ≔ 2∇ðαþ∇βÞ− ¼ −2∇ðα−∇βÞþ;

∇̄ _α _β ≔ 2∇̄ð _αþ∇̄ _βÞ− ¼ −2∇̄ð _α−∇̄ _βÞþ: ð3:28Þ

In other words, Wαβ is a chiral primary superfield inert
under covariant SU(2) derivatives.
The dimension-3=2 curvatures can be written

½∇�
β ;∇α _α� ¼ −2ϵβαW̄�

_α ;

½∇̄�
_β
;∇α _α� ¼ −2ϵ _β _αW

�
α : ð3:29Þ

The operators W�
α are given by W�

α ¼ − i
2
½∇�

α ;W� and
W̄�

_α ¼ − i
2
½∇̄�

_α ;W� with explicit forms

Wþ
α ¼ −

i
8
∇_γβ∇þ

αWβ
γKγ _γ þ

i
16

ð∇þÞ2Wα
γS−γ þ i

8
∇þ

α∇β−Wβ
γSþγ þ 1

4
∇_γ

βWβαS̄_γþ

−
i
4
∇βþWγ

αMγβ −
i
4
∇βþWβα

�
D −

i
2
A −∇0

�
þ i
2
∇β−Wβα∇þþ þ i

2
Wα

β∇þ
β ;

W̄þ
_α ¼ þ i

8
∇_βγ∇̄þ

_α W̄ _β
_γKγ _γ þ

i
16

ð∇̄þÞ2W̄ _α
_γS̄−_γ −

i
8
∇̄þ

_α ∇̄_β−W̄ _β
_γS̄þ_γ þ 1

4
∇γ

_βW̄ _β _αS
γþ

−
i
4
∇̄þ

_β
W̄ _γ _αM̄ _γ _β þ i

4
∇̄_βþW̄ _β _α

�
Dþ i

2
A −∇0

�
−
i
2
∇̄_β−W̄ _β _α∇þþ −

i
2
W̄ _α

_β∇̄þ
_β
;

W−
α ¼ ½∇−−;Wþ

α �: ð3:30Þ
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Above we have introduced ð∇�Þ2 ≔ ∇γ�∇�
γ and

ð∇̄�Þ2 ≔ ∇̄�
_γ ∇̄_γ�. Note that these operators obey the rules

½∇��;W�
α � ¼ 0 and ½∇��;W∓

α � ¼ W�
α as a consequence

of (3.25).
The dimension-2 curvatures ½∇b;∇a� are a bit more

complicated. Writing

½∇β _β;∇α _α� ¼ −F β _βα _α ¼ −2ϵ _β _αF⌣
βα þ 2ϵβαF

⌣
_β _α ; ð3:31Þ

the antiselfdual and selfdual components of F ba are

F
⌣
βα ¼ 1

4
f∇þ

ðβ; ½∇−
αÞ;W�g;

F
⌣
_β _α ¼

1

4
f∇̄þ

ð_β; ½∇̄−
_αÞ; W̄�g: ð3:32Þ

The curvatures F ba must be invariant under the SU(2)
derivatives, ½∇��;F ba� ¼ ½∇0;F ba� ¼ 0. The explicit
expressions for F ba won’t be of much use to us here, so
we will not discuss them explicitly. Instead, we collect
them, along with the other curvatures, in Appendix A.
We note that under the generalized ~ conjugation, the

derivatives transform as in [1]:

f∇�
α ¼ −∇̄�

_α ;
f̄∇�
_α ¼ ∇�

α : ð3:33Þ

Finally, observe that this superspace admits a full set
of gauge transformations, δ ¼ ξA∇A þ 1

2
λabMba þ λAþ

ΛDþ ϵAKA, where each of the parameters may depend
arbitrarily on the coordinates zM.
Now let us argue that we can always recover the central

gauge of the previous section. Because it is obvious that we
can always start from the central gauge in constructing
M4j8 × SUð2Þ, we will only give a sketch of a proof. As a
consequence of the algebra (3.22), one can always adopt a
gauge where ∇�� and ∇0 are given by their forms in the
central gauge in terms of vi�. This implies that the
superspace vielbein takes the form (3.15) and the other
connections the form (3.16). It is easy to prove that ΩM

ab,
AM, BM and FM

a are independent of the SU(2) coordinates:
one merely needs that the corresponding curvature
components RnM all vanish in this gauge. For the S-
supersymmetry connection FM

α�, the vanishing of
RðSÞnMα� implies that FM

α� ¼ v�i FM
αi as expected. For

the vielbein EM
A, similar arguments imply that EM

a is
harmonic independent while EM

α� ¼ EM
αiv�i . Finally, a

similar argument with VM
a establishes that they are given

by VM
�� ¼ VM

ijv�i v
�
j and VM

0 ¼ VM
ijvþi v

−
j .

C. Consequences of analyticity

In this paper, we will not present specific actions (e.g.
explicit models involving hypermultiplets), so we will not
have much need for an extended discussion of the types of

superfields possible in this superspace. However, it is clear
that if we wish to use the superspace M4j8 × SUð2Þ for
projective multiplets like those discussed in the introduc-
tion, then we must discuss (at least briefly) the conse-
quences of imposing analyticity on superfields.
Due to the integrability conditions (3.23), it is admissible

to have primary analytic superfields Ψ,

S�αΨ ¼ KaΨ ¼ 0; ∇þ
αΨ ¼ 0: ð3:34Þ

Consistency with the algebra implies that Ψ is a Lorentz
scalar, invariant under Uð1ÞR, and obeys

∇0Ψ ¼ DΨ; ∇þþΨ ¼ 0: ð3:35Þ

The first condition implies Ψ must have ∇0 charge equal to
its conformal dimension; for definiteness, denote both
quantities by n. The second condition ensures that in the
central gauge Ψ is a holomorphic tensor on (an open
domain of) CP1. These are exactly the same conditions (up
to the complexification discussed in Sec. II F) as those for
admissible projective multiplets QðnÞ in the usual formu-
lation of projective superspace [20]. These conditions also
match those found for superconformal projective multiplets
in flat projective superspace [28].
An interesting feature of the superspaceM4j8 × SUð2Þ is

that it forbids analytic superfields of the general harmonic
type. Primary analytic superfields must be holomorphic on
an open domain of SUð2Þ=Uð1Þ. We will briefly comment
on this further in the conclusion.

IV. SUPERSPACE ACTION PRINCIPLES
ON M4j8 × SUð2Þ

The original supermanifold M4j8 came equipped with
two natural action principles, involving respectively inte-
grals over the full superspace and the chiral superspace,Z

d4xd4θd4θ̄EL;
Z

d4xd4θELc: ð4:1Þ

Here E and E were defined respectively as

E ¼ sdetEM
A; E ¼ sdet

�
Em

a Em
{α
i

Eμ
{a Eμ

{α
i

�
; ð4:2Þ

the superspace Lagrangian L was required to be a con-
formal primary scalar superfield of vanishing dilation and
Uð1ÞR weight, inert under SUð2ÞR,

DL ¼ AL ¼ IijL ¼ KAL ¼ 0; ð4:3Þ

and the chiral Lagrangian Lc was required to be a
conformal primary chiral scalar superfield, inert under
SUð2ÞR, with certain weights,
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DLc ¼ 2Lc; ALc ¼ 4iLc;

∇̄ _α
iLc ¼ IijLc ¼ KALc ¼ 0: ð4:4Þ

These properties of the respective Lagrangians can be
proven e.g. by applying the results of Appendix B.
After extending the superspace to M4j8 × SUð2Þ, other

possibilities emerge. The ones we will discuss below fall
into three classes: full superspace integrals involving
integrals over both S2 and over a contour C, analytic
superspace integrals over a contour C, and chiral-analytic
superspace integrals over a contour C.

A. Full superspace integrals

One can extend the full superspace action to include an
integral over SUð2Þ=Uð1Þ. In the central basis,Z

d4xd4θd4θ̄E
Z

dvL0; ð4:5Þ

where dv is the standard measure on the S2,

dv ≔
i
2π

dζ ∧ dζ̄
ð1þ ζζ̄Þ2 ; ð4:6Þ

and L0 is assumed to have vanishing D0 charge, vanishing
Weyl and Uð1ÞR weights, and to be globally defined on
SU(2), but otherwise to be unconstrained. In a generic
gauge, this action is writtenZ

d4xd4θd4θ̄d2ζE0L0; ð4:7Þ

using the abbreviation d2ζ ≔ i
2π dζ ∧ dζ̄ for the complex

coordinates on the S2. The rest of the usual S2 measure is
contained in the full superspace measure

E0 ¼ sdet

0
B@

EM
A EM

þþ EM
−−

Eζ
A Eζ

þþ Eζ
−−

Eζ̄
A Eζ̄

þþ Eζ̄
−−

1
CA: ð4:8Þ

The full superspace action can also be extended to
involve an integral over a contour C. The natural choice
is a purely holomorphic contour, given in the central
gauge by13

−
1

2π

Z
d4xd4θd4θ̄E

I
C
VþþL−−; ð4:9Þ

where L−− has vanishing Weyl and Uð1ÞR weights, but is
required to be holomorphic with D0 charge −2,

DþþL−− ¼ 0; D0L−− ¼ −2L−−: ð4:10Þ

Extending to a generic gauge is straightforward. Letting τ
be the coordinate parametrizing the contour, we introduce
the action

−
1

2π

I
C
dτ

Z
d4xd4θd4θ̄EþþL−−: ð4:11Þ

where

Eþþ ¼ sdet

�
EM

A EM
þþ

Eτ
A Eτ

þþ

�
; ð4:12Þ

with Eτ
A corresponding to the pullback of the one-form EA

to the contour.14 Applying the results of Appendix B, L−−

must be a covariantly holomorphic primary superfield with
vanishing Weyl and Uð1ÞR weights and ∇0 charge −2:

0 ¼ ∇þþL−− ¼ KAL−− ¼ DL−− ¼ AL−−;

∇0L−− ¼ −2L−−: ð4:13Þ

Within projective superspace, the natural quantities are
holomorphic on SUð2Þ=Uð1Þ, so the action principle (4.9)
[or (4.11) in its generic form] is more commonly encoun-
tered than (4.5) [or (4.7) in its generic form]. In fact, as we
will shortly review, the action principle (4.9) can also
efficiently encapsulate the other relevant action principles
involving integrals over smaller superspaces. Let us
describe these other possibilities next.

B. Analytic superspace integrals

As discussed in the Introduction, the natural action
principle in projective superspace involves a contour
integral and a Grassmann integration over θμþ ¼ vþ{ θμ{

and θ̄ _μþ ¼ vþ{ θ̄ _μ{. In flat projective superspace, such actions
take the form [29,32]

−
1

2π

I
C
vþi dv

iþ
Z

d4xd4θþLþþ

¼ −
1

2π

I
C
vþi dv

iþ
Z

d4xðD−Þ4Lþþ; ð4:14Þ

where Lþþ is a holomorphic analytic Lagrangian,
DþþLþþ ¼ Dþ

αLþþ ¼ 0.
The curved generalization of the analytic superspace

integral (4.14) is naturally written

−
1

2π

I
C
dτ

Z
d4xd4θþE−−Lþþ; ð4:15Þ

where the measure is13This action principle is used as the universal action principle
in the conventional formulation of projective superspace [20]. We
will discuss shortly why this form is actually universal. 14For example, Eτ

þþ ≡ _ζEζ
þþ þ _̄ζEζ̄

þþ, where _ ≔ d=dτ.
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E−− ¼ sdet

0
B@

Em
a Em

αþ Em
þþ

Eμþa Eμþαþ Eμþþþ

Eτ
a Eτ

αþ Eτ
þþ

1
CA: ð4:16Þ

The action is invariant under all gauge transformations
provided Lþþ is a covariantly holomorphic, analytic,
conformal primary superfield, with vanishing Uð1ÞR weight
and equal Weyl and ∇0 weights,

∇þþLþþ ¼ ∇þ
αLþþ ¼ KALþþ ¼ ALþþ ¼ 0;

DLþþ ¼ ∇0Lþþ ¼ 2Lþþ: ð4:17Þ

The integral (4.15) is the natural action principle in
projective superspace onM4j8 × SUð2Þ. We will discuss its
component reduction in Sec. V. For now, we wish to
establish the relationship between analytic superspace
actions (4.15) and full superspace actions (4.11). Begin
by recalling two relationships between N ¼ 1 full super-
space and chiral superspace integrals, which are respec-
tively writtenZ

d4xd2θd2θ̄EL;
Z

d4xd2θELc: ð4:18Þ

The first relationship is that any full superspace integral can
be written as a chiral superspace integral asZ

d4xd2θd2θ̄EL ¼ −
1

4

Z
d4xd2θE∇̄2L

¼ −
1

4

Z
d4xd2θEðD̄2 − 8RÞL: ð4:19Þ

We have written the chiral integrand in two ways; the first
expression is appropriate for N ¼ 1 conformal superspace
[38] while the second involves the conventional formu-
lation of N ¼ 1 Poincaré (old minimal) superspace.15 The
second relationship can be writtenZ

d4xd4θELc ¼ −4
Z

d4xd4θE
X

∇̄2X
Lc

¼ −4
Z

d4xd4θE
X

ðD̄2 − 8RÞXLc; ð4:20Þ

where X is a real primary superfield of dimension 2. [The
proof follows by applying (4.19) to the right-hand side.] In
this expression, ∇̄2X is chiral and primary and so the
second integrand is primary. The third integrand involves
the same expression in Poincaré (old minimal) superspace.
This last expression is especially useful because we can
adopt the Weyl gauge where X ¼ 1, in which case the
above equality simplifies to

Z
d4xd4θELc ¼

1

2

Z
d4xd4θ

E
R
Lc: ð4:21Þ

It turns out that two analogous relationships can be
constructed between full superspace and analytic super-
space, both over a contour C. The first relationship we will
establish is the analogue of (4.19),

−
1

2π

I
C
dτ

Z
d4xd4θd4θ̄EþþL−−

¼ −
1

2π

I
C
dτ

Z
d4xd4θþE−−ð∇þÞ4L−−: ð4:22Þ

To prove this, we go to the analytic gauge where the
covariant derivative ∇α− ≡∇þ

α is simply given by ∂=∂θα−.
This is always possible to do because of the constraints
(3.23). This fixes the gauge up to θμ−-independent gauge
transformations. In this gauge, Eþþ is equal to E−−; the
difference in apparent ∇0 charges of the two quantities
arises because in the analytic gauge, any ∇0 gauge trans-
formation must be accompanied by a special diffeomor-
phism to maintain that gauge. The integral becomes

−
1

32π

I
C
dτ

Z
d4xd4θþ∂α

−∂α−∂̄ _α−∂̄ _α
−ðE−−L−−Þ: ð4:23Þ

E−− is itself analytic in this gauge,

∂α−E−− ¼ E−−ð∂α−EN
BÞEB

Nð−ÞN
¼ E−−Tα−N

BEB
Nð−ÞN ¼ 0: ð4:24Þ

As a result, we find

−
1

32π

I
C
dτ

Z
d4xd4θþE−−∂α

−∂α−∂̄ _α−∂̄ _α
−L−−; ð4:25Þ

with the integrand equal to ð∇þÞ2ð∇̄þÞ2L−− in this gauge.
Rewriting in a gauge-invariant way recovers (4.22).
In projective superspace, the expression analogous to

(4.20) is

−
1

2π

I
C
dτ

Z
d4xd4θþE−−Lþþ

¼ −
1

2π

I
C
dτ

Z
d4xd4θd4θ̄Eþþ X

ð∇þÞ4XLþþ; ð4:26Þ

where X is a real superfield of conformal dimension 2 and
invariant under the SU(2) derivatives. ð∇þÞ4X is a real
conformal primary of dimension 4 and so the integrand on
the right-hand side is a real primary superfield of vanishing
weight. The advantage of the right-hand side is that it can
be formulated directly in the central gauge. Indeed, an
equivalent formulation appeared in [20] (mirroring an
identical construction in 5D [19]) where it was used to

15We use the conventions of [35]. See also [39,40], where
different conventions are employed.
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define analytic integration in the central gauge. There the
particular choice X ¼ WW̄ was made, where W was an
abelian vector multiplet. Moving to the central gauge where
Eþþ ¼ EVþþ

τ , one finds

−
1

2π

I
C
dτ

Z
d4xd4θþE−−Lþþ

¼ −
16

2π

I
C
Vþþ

Z
d4xd4θd4θ̄

EWW̄

ð∇þÞ2Wð∇̄þÞ2W̄ Lþþ:

ð4:27Þ

If one degauges conformal superspace to SU(2) superspace,
ð∇þÞ2W becomes ððDþÞ2 þ 4SþþÞW. The super-Weyl
gauge W ¼ 1 leads to the final relation

−
1

2π

I
C
dτ

Z
d4xd4θþE−−Lþþ

¼ −
1

2π

I
C
Vþþ

Z
d4xd4θd4θ̄

E
ðSþþÞ2 L

þþ: ð4:28Þ

The expression on the right is a particularly elegant form of
the analytic action principle [20], permitting easy manipu-
lation in the central gauge. The similarity with the N ¼ 1
analogue (4.21) is especially striking.
Before moving on to another possible action principle,

we should comment why we did not consider analytic
integrals over the full S2, which would presumably lead to a
curved harmonic superspace action principle. From the
discussion in Sec. III C, we know that any analytic primary
Lagrangian obeying ∇þ

α LðqÞ ¼ 0 must also be covariantly

holomorphic ∇þþLðqÞ ¼ 0. This condition is difficult to
reconcile with harmonic integration on the S2, where we
expect any integrand to be globally defined. Even if this
barrier could be overcome, one still finds an essential
difficulty in the equality between the ∇0 charge and the
Weyl weight. If one is to construct the curved superspace
generalization of a harmonic superspace integral, the
leading term should be ð∇−Þ4LðqÞ, which suggests the
choice q ¼ 4. However, the Weyl weight of LðqÞ requires
q ¼ 2, and so the charge is inconsistent with harmonic
integration. We will comment further about the resolution
to the problem of covariant harmonic superspace in the
conclusion.

C. Chiral-analytic superspace

The final action principle we will discuss is a curious
one because it involves an integration over 3=4 of the
Grassmann variables, with a complex conformal primary
Lagrangian L0 that is chiral-analytic, ∇̄þ

_α L
0 ¼ 0. Such a

Lagrangian would, in the analytic gauge, be independent of
θ̄ _μ−. Provided that the Lagrangian is holomorphic with

certain weights, ∇þþL0 ¼ 0, DL0 ¼ L0 AL0 ¼ 2L0, and
∇0L0 ¼ 0, then the following action is invariant:

−
1

2π

I
C
dτ

Z
d4xd4θd2θ̄þE0L0 þ H:c:; ð4:29Þ

where the measure is

E0 ¼ sdet

0
BBB@

Em
a Em

α� Em
_αþ Em

þþ

Eμ�a Eμ�α� Eμ� _αþ Eμ�þþ

E_μþa E_μþα� E_μþ _αþ E_μþþþ

Eτ
a Eτ

α� Eτ
_αþ Eτ

þþ

1
CCCA: ð4:30Þ

Such chiral-analytic actions are naturally a higher deriva-
tive and have been discussed recently in [41] in the context
of curved projective superspace, as well as [42] in the
context of flat harmonic superspace.
To evaluate such actions, one can convert them

to analytic integrals by integrating over the two θμ−

coordinates:

−
1

2π

I
C
dτ

Z
d4xd4θd2θ̄þE0L0

¼ 1

8π

I
C
dτ

Z
d4xd4θþE−−ð∇þÞ2L0: ð4:31Þ

The integrand ð∇þÞ2L0 satisfies all the required properties
of an analytic superspace Lagrangian. Alternatively, one
can lift a chiral-analytic superspace integral to full super-
space in the same way as Eqs. (4.26)–(4.28). For example,
using the antichiral field strength W̄ of a vector multiplet,
one has in the central gauge

−
1

2π

I
C
dτ

Z
d4xd4θd2θ̄þE0L0

¼ 2

π

I
C
Vþþ

Z
d4xd4θd4θ̄E

W̄

ð∇̄þÞ2W̄ L0 ð4:32Þ

or imposing the Weyl-U(1) gauge W̄ ¼ 1,

−
1

2π

I
C
dτ

Z
d4xd4θd2θ̄þE0L0

¼ 1

2π

I
C
Vþþ

Z
d4xd4θd4θ̄E

1

Sþþ L0: ð4:33Þ

This formulation of the chiral-analytic projective super-
space action appeared in [41]. Finally, we mention that one
can convert a chiral-analytic integral to a chiral superspace
integral by integrating over θμþ. This is easiest in the central
gauge:
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−
1

2π

I
C
dτ

Z
d4xd4θd2θ̄þE0L0

¼ 1

8π

Z
d4xd4θE

I
C
Vþþð∇̄−Þ2L0: ð4:34Þ

The simplest proof of this is to convert the full superspace
integral on the right-hand side of (4.32) to a chiral super-
space integral while remaining in the central gauge.

V. COMPONENT REDUCTION OF ANALYTIC
SUPERSPACE ACTION

Our goal in this section is to perform the component
reduction of the general analytic superspace action

S ¼ −
1

2π

I
C
dτ

Z
d4xd4θþE−−Lþþ ð5:1Þ

in the central gauge. We begin by noting that the action
can be evaluated at θμ− ¼ 0. Along this submanifold,
it is possible to adopt a gauge where ∇αþ ¼ ∂=∂θαþ,
corresponding to

E−− ¼ sdet

0
B@

Em
a Em

þþ Em
αþ

Eτ
a Eτ

þþ Eτ
αþ

0 0 δμ
α

1
CA

¼ sdet

�
Em

a Em
þþ

Eτ
a Eτ

þþ

�
≡ eþþ; ð5:2Þ

so our goal is to evaluate

S ¼ −
1

2π

1

16

Z
d4x

I
C
dτð∂þÞ2ð∂̄þÞ2ðeþþLþþÞ: ð5:3Þ

At this stage, we emphasize that θμ�-independent gauge
transformations are still permitted in the gauge
∇αþ ¼ ∂=∂θαþ. In other words, the gauge of the compo-

nent fields at θμ� ¼ 0 remains completely unfixed.
Naturally, one expects the resulting action should take
its simplest form if we adopt the central gauge at θμ� ¼ 0,
and we will do this at the very end. However, it is not easy
to impose central gauge at the component level prior to
taking the θμþ derivatives, so we will remain in a more
general gauge for the time being.
To organize the calculation, it is convenient to write the

integrand as a five-form:

S ¼ −
1

2π

1

16

Z
M4×C

ð∂þÞ2ð∂̄þÞ2ðêþþL−−Þ; ð5:4Þ

where êþþ is the volume five-form

êþþ ¼ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτeþþ

¼ 1

4!
ϵabcdEa ∧ Eb ∧ Ec ∧ Ed ∧ Eþþ: ð5:5Þ

Taking the θμþ derivatives of this five-form proves to be
simpler than the corresponding calculation with the deter-
minant. Expanding out the action, one finds

S ¼ −
1

2π

Z
M4×C

J ; ð5:6Þ

where the five-form J is

J ¼ êþþð∇−Þ4Lþþ −
1

8
∂αþêþþ∇−

α ð∇̄−Þ2Lþþ −
1

8
∂̄ _αþêþþ∇̄ _α−ð∇−Þ2Lþþ

þ 1

16
ð∂þÞ2êþþð∇̄−Þ2Lþþ þ 1

16
ð∂̄þÞ2êþþð∇−Þ2Lþþ þ 1

8
∂αþ∂̄ _αþêþþ½∇α−; ∇̄ _α−�Lþþ

−
1

8
∂αþð∂̄þÞ2êþþ∇−

αLþþ −
1

8
∂̄ _αþð∂þÞ2êþþ∇̄ _α−Lþþ þ 1

16
ð∂þÞ2ð∂̄þÞ2êþþLþþ: ð5:7Þ

In the above expression, we have replaced ∂αþ → ∇αþ for
all the derivatives acting upon the analytic LagrangianLþþ.
This is allowed because after projecting to θμþ ¼ θμ− ¼ 0
(implicitly assumed above) the result holds in a general
component gauge. To recover the explicit expression for J ,
one must evaluate each of the θμþ derivatives of êþþ. This
can be done systematically, although the resulting formulae
grow quite complicated as the number of spinor derivatives
increases. The results are given in Eqs. (C9)–(C12) of
Appendix C, where some details of the calculation are also

included. We emphasize that upon using Eqs. (C9)–(C12),
the result for J is given in a general component gauge.
Some comments should now be made about the nature of

this five-form:
(i) It is invariant under all gauge transformations, up to

an exact form. This is a direct consequence of its
origin from a gauge-invariant superspace action, but
it can be checked explicitly. A straightforward
calculation shows, for example, that J transforms
under S-supersymmetry, δ ¼ ηαþS−α − ηα−Sþα , into
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an exact form involving ηαþ. Therefore, strictly
speaking, J is not a conformal primary five-form,
although its integral is invariant.

(ii) Viewed as a five-form in superspace, J is closed. In
principle, this can also be established by an explicit
computation but is a direct consequence of its
construction. Under an arbitrary diffeomorphism
on M4j8 × SUð2Þ, J transforms as

δξJ ¼ dð{ξJ Þ þ {ξdJ : ð5:8Þ
The first term vanishes upon integration over the
bosonic manifold M4 × C, while the second must
vanish for arbitrary ξ because the original action was
invariant under diffeomorphisms of all types. This
implies that J is closed.

These two features are indicative of the superform approach
to supersymmetric invariants [43], known within the super-
space literature as the ectoplasm method [44,45] (see also
[46]). There one usually encounters a superform expanded

entirely in terms of the supervielbein—in our case, this
would mean J ¼ 1

5!
EA1 ∧ � � � ∧ EA5J A5���A1

—but this is
by no means a necessary requirement (see e.g. the dis-
cussion at the end of [44]). In fact, the five-form we have
found above, given by (5.7) upon substituting (C9)–(C12),
involves the explicit appearance of S-supersymmetry and
special conformal connections.
A dramatic simplification of J occurs if we now adopt

the central gauge for the θμ� ¼ 0 components of the
connections. We leave the details again to Appendix C
and merely summarize that the action can then be written
S ¼ R

d4xeL where the Lagrangian L involves a contour
integral with two distinct integrands,

L ¼ −
1

2π

I
C
VþþL−− þ 1

2π

I
C
V−−Lþþ; ð5:9Þ

where

L−− ¼ 1

16
ð∇−Þ2ð∇̄−Þ2Lþþ −

i
8
ðψ̄−

mσ̄
mÞα∇−

α ð∇̄−Þ2Lþþ −
i
8
ðψ−

mσ
mÞ _α∇̄ _α−ð∇−Þ2Lþþ

þ 1

4
ððψ−

nσ
nmÞαψ̄m

_α− þ ψn
α−ðσ̄nmψ̄−

mÞ _α − iV−−
m ðσmÞα _αÞ½∇−

α ; ∇̄−
_α �Lþþ

þ 1

4
ðψ−

mσ
mnψ−

n Þð∇−Þ2Lþþ þ 1

4
ðψ̄−

mσ̄
mnψ̄−

n Þð∇̄−Þ2Lþþ

−
�
1

2
ϵmnpqðψ−

mσnψ̄
−
pÞψα−

q − 2ðψ−
mσ

mnÞαV−−
n

�
∇−

αLþþ

þ
�
1

2
ϵmnpqðψ̄−

mσ̄nψ
−
pÞψ̄−

q _α − 2ðψ̄−
mσ̄

mnÞ _αV−−
n

�
∇̄ _α−Lþþ þ 3ϵmnpqðψ−

mσnψ̄
−
pÞV−−

q Lþþ; ð5:10Þ

Lþþ ¼ −½3Dþ 4faa − 4ðψ̄−
mσ̄

mn ˆ̄ϕ
þ
n Þ þ 4ðψ−

mσ
mnϕ̂þ

n Þ − 3ϵmnpqðψ−
mσnψ̄

−
pÞVþþ

q �Lþþ

þ
�
3

2
χαþ − iðϕ̄þ

mσ̄
mÞα þ 2ðψ−

mσ
mnÞαVþþ

n

�
∇−

αLþþ −
�
3

2
χþ_α − iðϕþ

mσ
mÞ _α þ 2ðψ̄−

mσ̄
mnÞ _αVþþ

n

�
∇̄ _α−Lþþ

−
i
4
Vþþ
m ðσ̄mÞ _αα½∇−

α ; ∇̄−
_α �Lþþ: ð5:11Þ

The component fields appearing above are defined in [34]
and correspond to the matter content of N ¼ 2 conformal
supergravity. These consist of (i) five fundamental
connections—the vierbein ema, the gravitini ψm

α
i, the

SUð2ÞR and Uð1ÞR connections Vm
i
j and Am, and the

dilatation connection bm; (ii) covariant auxiliary fields
Wab, χαi, and D; and (iii) composite connections ωm

ab,

ϕm
αi and fma, given in terms of the other fields, which are

associated respectively with Lorentz, S-supersymmetry and
special conformal gauge symmetries. In the expression for

Lþþ, we have used the symbol ϕ̂m
αþ to denote the gravitino-

dependent part of the S-supersymmetry connection. It is
given by

ϕ̂mα
j ≔ ϕmα

j þ i
4
ðσmχ̄jÞα ¼

i
2

�
σpnσm −

1

3
σmσ̄

pn

�
α _β

�
Dpψ̄n

_βj þ i
4
W̄abðσ̄abσ̄pψn

jÞ _β
�
;

ˆ̄ϕm
_α
j ≔ ϕ̄m

_α
j þ

i
4
ðσ̄mχjÞ _α ¼

i
2

�
σ̄pnσ̄m −

1

3
σ̄mσ

pn

�
_αβ
�
Dpψnβj −

i
4
Wabðσabσpψ̄njÞβ

�
: ð5:12Þ
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Note that Lþþ vanishes in the rigid limit, where we recover
the five-form of [33].
Introducing

ω−− ≡
Z

d4xeL−−; ωþþ ≡
Z

d4xeLþþ; ð5:13Þ

it is a straightforward exercise to demonstrate that ω is
closed as a one-form on SU(2),

Dþþω−− ¼ D−−ωþþ⇔

eDþþL−− ¼ eD−−Lþþ þ total x derivative: ð5:14Þ
This is a direct consequence of our construction, but it can
also be checked explicitly.
The importance of two distinct integrands can be

attributed to the fact that L−− is not holomorphic, even
up to a total derivative. The presence of the Lþþ term is
necessary in order for the full action to be invariant under
all of the component gauge transformations. These include
not only S-supersymmetry and Q-supersymmetry but also
SU(2) diffeomorphisms that leave us in the central basis.
Recall that these act as

δλ ¼ −λþþD−− þ λ0D0 þ λ−−Dþþ; ð5:15Þ

where λ�� and λ0 are given by (2.16), now with λij
potentially depending on x. Invariance under δλ can
actually be used to uniquely determine L−− and Lþþ
starting from the leading term in L−−.
At this stage, we should mention that the action (5.9) is

actually invariant under another group of transformations—
arbitrary diffeomorphisms on the SU(2) manifold,

δviþ ¼ −ξþþvi− þ ξ0viþ;

δv−i ¼ ξ−−vþi − ξ0v−i ; ð5:16Þ

where ξ�� and ξ0 are x independent but otherwise arbitrary.
This implies an invariance of the action under small
deformations of the contour C.
The component action (5.9) can be compared with the

original expression (4.13) in [20] [where SU(2) superspace
was used] as well as the later result (4.13) in [47] (using
conformal superspace). Both expressions involve only the
first contour integral with L−−. This earlier formulation can
be interpreted in our language as involving a complex
SU(2) manifold [i.e. an SLð2;CÞ manifold] as discussed in
Sec. II F. This involves making a certain complexification
of the harmonic variables vi�,

�
viþ

v−i

�
→

�
vi

ui=ðv; uÞ

�
; ð5:17Þ

where ui ≠ ðviÞ�. Then it is possible to choose a contour
in SLð2;CÞ where vi varies with ui fixed, with the

requirement that ðv; uÞ be nonzero. In such a case, V−− ¼
0 on the SLð2;CÞ manifold and so the second contour
integral vanishes automatically even through Lþþ is non-
zero. Moreover, if we take the rigid limit with nonconstant
ui, it is easy to see that Lþþ vanishes even though V−− is
nonzero. Thus we recover both the original flat space
formulation of [3,32] with arbitrary ui as well as the curved
formulation of [20] with fixed ui.
We emphasize that the original derivation of L−− in [20]

was based on a very similar observation to (5.14). The
method there was to construct L−− iteratively by first
specifying the leading term, analogous to ð∇−Þ4Lþþ, and
then to add the terms needed to ensure that L−− was
independent of the fixed coordinate ui, up to a total contour
derivative (analogous to D−−Lþþ) and a total spacetime
derivative. More explicitly, let us consider the complexified
version of the expression (5.10) for L−− in the central
gauge,

L−− ¼ ð∇−Þ4LþþðvÞ þ � � �

¼ 1

16

uiujukul
ðv; uÞ4 ∇ij∇̄klLþþðvÞ þ � � � ð5:18Þ

Following the same argument as [20], the action must be
invariant under constant shifts δui, which can be para-
metrized as

δui ¼ αui þ βvi; ð5:19Þ

in terms of x-independent parameters α and β. (This is
possible since vi and ui are linearly independent along the
contour.) The parameters α and β must depend on the
contour coordinate τ in order for δui to be τ independent,
but the precise relationship will not concern us here. The
important feature is that δv−i ¼ βvþi =ðv; uÞ and so the
transformation (5.19) can be interpreted as the SLð2;CÞ
diffeomorphism δ ¼ ξ−−Dþþ with ξ−− ¼ β=ðv; uÞ. This
acts only on v−i . It follows that

δL−− ¼ ξ−−DþþL−−: ð5:20Þ

Now in order for this to vanish under the contour integral, it
must be that (5.14) holds for some choice of function Lþþ.
This allows one to iteratively determine all contributions to
L−− starting from the leading term (5.18). This uniquely
specifies L−− and Lþþ in (5.10) and (5.11). Now assuming
that L−− has been so constructed, one has

δL−− ¼ ξ−−D−−Lþþ þ total x derivative: ð5:21Þ

Using D−−δui ¼ 0, one can prove D−−β ∝ D−−ξ−− ¼ 0,
and so one recovers

δL−− ¼ D−−ðξ−−LþþÞ þ total x derivative: ð5:22Þ
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The remaining contour can then be discarded and invari-
ance under (5.19) confirmed.
A natural question to ask is what happens if we keep an

SLð2;CÞmanifold but allow ui to vary along the contour, as
in [3,32]. We may still demand the invariance of the action
under (5.19), but now there is no need for any constraint to
be imposed on α or β. We find as before (5.20). This leads
[using δVþþ ¼ δðvidviÞ ¼ 0] up to a total x derivative to

δ

I
C
VþþL−− ¼

I
C
Vþþξ−−D−−Lþþ; ð5:23Þ

which does not vanish automatically. But now the second
contour integral is not zero, so we must analyze its
variation. This involves calculating δV−− using the expres-
sion for the complexified vielbeins (2.35). The result is
δV−− ¼ dξ−− þ 2ξ−−V0, the same expression as (2.31)
found on the real SU(2) manifold. This leads to

δ

I
C
V−−Lþþ ¼

I
C
ðδV−−Lþþ þ V−−ξ−−DþþLþþÞ

¼
I
C
ðdξ−−Lþþ þ 2ξ−−V0Lþþ

þ ξ−−V−−DþþLþþÞ ð5:24Þ

and the difference between (5.23) and (5.24) is, after rewriting
VaDaLþþ¼dLþþ and discarding a total derivative,

−δ
I
C
VþþL−−þδ

I
C
V−−Lþþ ¼

I
C
ðdξ−−Lþþþξ−−dLþþÞ

¼ 0: ð5:25Þ

This is a happy state of affairs. The expression (5.9),
which we derived using a real SU(2) manifold in the central
gauge, proves to generalize to an SLð2;CÞ manifold in the
central gauge, no matter the behavior of ui along the
contour, so long as ðv; uÞ ≠ 0. In practice, one expects
the calculation either with constant ui or with ui ¼ v̄i to be
convenient: both correspond to special cases of a more
general formulation involving the auxiliary manifold
SLð2;CÞ. That we can make arbitrary shifts (5.19) ensures
that one can analytically continue from ui ¼ v̄i to ui ¼
constant (and back again) without any difficulty. This
ensures the formulation presented here and the conven-
tional formulation [20] are equivalent.

VI. CONCLUSION

In this paper we have constructed curved projective
superspace using the supermanifold M4j8 × SUð2Þ. This
approach generalizes previous work [20] in four dimensions,
which we have interpreted as the central gauge of the
superspace M4j8 × SLð2;CÞ, the complexified version of
the superspace taken here. This approach to curved projective

superspace can straightforwardly be extended to dimensions
2 through 6 using the existing body of work [19,21–23].
In particular, a recent paper [48] has explored superforms

in 6D curved superspace [23], motivated partly by an
attempt to construct the component form associated with
the 6D projective superspace action principle. It seems to us
that an interpretation of 6D projective superspace along the
lines we have taken here should be possible. We reiterate
here that the five-form J corresponding to the component
Lagrangian of the 4D analytic projective superspace action,
which we gave implicitly in (5.7) upon substituting
Eqs. (C9)–(C12), rather curiously does not possess the
standard form J ¼ 1

5!
EA1 ∧ � � � ∧ EA5J A5���A1

of an expan-
sion purely in terms of the supervielbeins. It is plausible
that this is a source of the difficulties observed in [48].
Another intriguing feature of [48] was its use of pure spinor
Lorentz harmonics to drastically simplify the study of the
complex of differential forms; perhaps a curved superspace
which implements such Lorentz harmonics directly within
the superfields could have powerful applications.
To keep our construction as simple as possible, we

have avoided introducing a Yang-Mills connection on
M4j8 × SUð2Þ, but there is no barrier to doing so. This
was already discussed in the conventional formulation [20],
and the extension to the formulation here is completely
straightforward. Similarly, we have not discussed the various
possible actions one can construct involving covariantly
arctic, antarctic, tensor and vector multiplets. These have
been discussed elsewhere in the conventional approach; see
[20] where the vector multiplet action and off shell super-
gravity-matter actions with a tensor multiplet compensator
were constructed in curved superspace. Their construction in
the general gauge is similarly straightforward.
The main benefit of this new extended formulation is that

it transparently admits the existence of an analytic gauge
where (at least locally)∇þ

α ¼∂=∂θα− andDþþ¼vþi ∂=∂v−i ;
in such a gauge, covariantly analytic superfields are
characterized simply by their independence of v−i and
θα−. It is well-known in harmonic superspace that the
analytic gauge (known as the analytic basis in the harmonic
context) plays a critical role when one constructs the
supergravity prepotentials [49,50]. It seems likely that
the analytic gauge should help resolve the problem of
finding supergravity prepotentials in projective superspace,
a partial solution of which was presented in [19].
Presumably, it would follow closely the approach utilized
in [50], where the supergravity prepotentials in harmonic
superspace were explicitly derived from the constraints on
the algebra of covariant derivatives. Perhaps the harmonic
and projective approaches could even be related to each
other, as was the case with the gauge prepotentials [16,17].
We intend to revisit this subject in the near future.
Another interesting feature is that it provides a window

into a covariant formulation of harmonic superspace. We
have mentioned in passing that harmonic superspace seems
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to be less feasible in the curved superspaceM4j8 × SUð2Þ,
at least when the SU(2) manifold is identified with the R-
symmetry group. The main barrier is that analyticity in the
Grassmann coordinates imposes holomorphy in the SU(2)
coordinates, but this negates the possibility of using
globally defined superfields. This issue has been noted
in harmonic superspace—one is forced to distinguish
between the SU(2) of the harmonics and the SU(2) of
the superconformal group (see Chapter 9 of [1])—and a
solution has also been suggested: one should complexify
the S2 of harmonic superspace to two copies of CP1, with
the superconformal SU(2) group acting only on one of
them. A similar observation was made in [17] and elab-
orated upon in [18] where it was suggested to complexify
harmonic superspace in a similar way to recover projective
superspace. Based on this observation, it seems feasible to
construct curved harmonic superspace using the curved
superspace M4j8 × SUð2Þ × SUð2Þ (effectively M4j8×
CP1 × CP1). As discussed in [18], harmonic superfields
can be interpreted as biholomorphic superfields on
CP1 × CP1, restricted to possess a harmonic expansion
on the subspace where the CP1 manifolds are identified.
This will be explored in a subsequent publication [51].
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APPENDIX A: CURVATURES OF CONFORMAL
SUPERSPACE ON M4j8 × SUð2Þ

1. Torsion

The torsion two-forms are defined by

Ta ≔ dEa þ Eb ∧ Ωb
a þ Ea ∧ B; ðA1aÞ

Tα� ≔ dEα� þ 1

2
Eα� ∧ B − iEα� ∧ A

þ Eβ� ∧ Ωβ
α þ iEb ∧ F�

_γ ðσ̄bÞ_γα; ðA1bÞ

T _α� ≔ dE _α� þ 1

2
E _α� ∧ Bþ iE _α� ∧ A

− E_β� ∧ Ω _β
_α − iEb ∧ Fγ

�ðσ̄bÞ _αγ; ðA1cÞ

T�� ≔ dE�� þ 4Eβ� ∧ F�
β ; ðA1dÞ

T0 ≔ dE0 þ 2Eβþ ∧ F−
β þ 2Eβ− ∧ Fþ

β : ðA1eÞ

The nonvanishing components of the torsion tensor can be
grouped by dimension:

(i) Dimension 0

Tγ� _β∓a ¼ �2iðσaÞγ _β;
T��β∓α� ¼∓ δβ

α; T0β�α� ¼ �δβ
α;

T0���� ¼ �2; T−−þþ0 ¼ 1: ðA2aÞ

(ii) Dimension 1

T _γ�β _β
α� ¼ iϵ_γ _βWβ

α;

Tγ�β _β
_α� ¼ −iϵγβW̄ _β

_α: ðA2bÞ

(iii) Dimension 3=2

Tγ _γβ _β
α� ¼ 1

2
ϵ_γ _β∇α�Wγβ;

Tγ _γβ _β
_α� ¼ 1

2
ϵγβ∇̄ _α�W̄ _γ _β;

Tβ�α _α
�� ¼ −iϵβα∇̄ _ϕ�W̄ _ϕ _α;

T _β�α _α
�� ¼ iϵ_β _α∇ϕ�Wϕα;

Tβ�α _α
0 ¼ −

i
2
ϵβα∇̄ _ϕ∓W̄ _ϕ _α;

T _β�α _α
0 ¼ i

2
ϵ _β _α∇ϕ∓Wϕα: ðA2cÞ

(iii) Dimension 2

Tβ _βα _α
�� ¼ −

1

4
ϵ _β _α∇γ�∇�

γ Wβα þ
1

4
ϵβα∇̄�

_γ ∇̄_γ�W̄ _β _α;

Tβ _βα _α
0 ¼ −

1

4
ϵ _β _α∇γþ∇−

γ Wβα þ
1

4
ϵβα∇̄þ

_γ ∇̄_γ−W̄ _β _α:

ðA2dÞ

Some subtleties arise when one compares these equa-
tions to those in [34]. For example, there one finds
(relabeling Φj

i → Vj
i)

Tα
i ¼ dEα

i þ Eα
j ∧ Vj

i þ
1

2
Eα

i ∧ B

− iEα
i ∧ Aþ Eβ

i ∧ Ωβ
α þ iEb ∧ F_γiσ̄

_γα
b : ðA3Þ

There is an apparent discrepancy in the second term, which
is absent in the corresponding equation for Tα�. This is
because here the tensor Vj

i is no longer interpreted as part
of the vielbein and so the formal definition of the torsion
two-form differs. However, what does not differ is the
actual equation one finds for dEα

i. From [34], one finds the
constraint
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Tα
i ¼ −iEb ∧ E_γiðσ̄bÞ_γβWβ

α

−
1

8
Eb ∧ EcðσcbÞγβ∇α

iWγβ; ðA4Þ

which should be equated to (A3) to give a constraint on
dEα

i. In our framework here, we have instead

Tα� ¼ −iEb ∧ E�
_β
ðσ̄bÞ _ββWβ

α

−
1

8
Eb ∧ EcðσcbÞγβ∇α�Wγβ

∓ Eα∓ ∧ E�� � Eα� ∧ E0: ðA5Þ

This should be equated with (A1b) to find a constraint for
dEα�. In the central basis, the two equations for dEα

i are
identical. The “additional” terms in the second line of (A5)
are the same as the terms “missing” in (A1b); this swapping
amounts merely to a redefinition of the torsion two-form.
Moreover, this redefinition does not change the values of
the tangent space components TCB

A, so the same algebra of
covariant derivatives holds in both approaches.
A similar alteration happens in the definitions of T��

and T0 when compared with the SU(2) curvature RðVÞij
given in [34]. Nevertheless, the values of TCB

�� and TCB
0

are identical in the central basis to RðVÞCBijv�i v�j
and RðVÞCBijvþi v−j .
This swapping of terms between the constraints on and

the definition of the torsion tensor occurs also when one
compares the curvature RðPÞnma from the tensor calculus
formulation of conformal supergravity with the torsion
tensor Tnm

a. These differ by a term proportional to
ψmjσ

aψ̄n
j. In the component formulation, this bilinear

appears in the definition of RðPÞnma (which is set to zero).
In the supergravity formulation, it appears in the constraint
equation from the nonzero component Tγ

k
_βj
a ¼ 2iδkjðσaÞγ _β.

However, the curvature ½∇b;∇a� is the same in both
approaches, as is the equation for dea, which is used to
determine the spin connection.

2. Lorentz curvature

The conformal Lorentz curvature two-form is

Rba ¼ dΩbaþΩbc ∧Ωc
a−2E½b ∧Fa�

þ4Eβ− ∧FαþðσbaÞαβ −4Eβþ ∧Fα−ðσbaÞαβ
þ4E_βþ ∧F _α−ðσ̄baÞ _α _β −4E_β− ∧F _αþðσ̄baÞ _α _β ðA6Þ

and may be canonically decomposed as RDCβ _βα _α ¼
2ϵ _β _αRDCβα − 2ϵβαRDC _β _α. It is simplest to express the
curvature results in terms of these components. We group
the nonvanishing components by dimension.

(i) Dimension 1

Rδþγ−_β _α ¼ −2ϵδγW̄ _β _α;

R_δþ_γ−βα ¼ 2ϵ_δ _γWβ _α: ðA7aÞ

(ii) Dimension 3=2

Rδ∓γ _γ _β _α
¼∓ i

2
ϵδγ∇̄�

_β
W̄ _α _γ ∓ i

2
ϵδγ∇̄�

_α W̄ _β _γ; ðA7bÞ

R_δ∓γ _γβα
¼∓ i

2
ϵ_δ _γ∇�

β Wαγ ∓ i
2
ϵ_δ _γ∇�

αWβγ: ðA7cÞ

(iii) Dimension 2

Rδ_δγ _γβα ¼ −
1

8
ϵ_δ _γðϵδβϵγα þ ϵδαϵγβÞ∇ϕρWρϕ

þ 1

4
ϵ_δ _γ∇βαWδγ þ ϵδγW̄ _δ _γWβα; ðA7dÞ

Rδ_δγ _γ _β _α ¼ þ 1

8
ϵδγðϵ_δ _βϵ_γ _α þ ϵ_δ _αϵ_γ _βÞ∇̄ _ϕ _ρW̄

_ρ _ϕ

−
1

4
ϵδγ∇̄ _β _αW̄ _δ _γ − ϵ_δ _γWδγW̄ _β _α: ðA7eÞ

3. Dilatation and Uð1ÞR curvatures

The conformal field strengths for dilatations and chiral
rotations are

RðDÞ ¼ dBþ 2Ea ∧ Fa − 2Eα− ∧ Fþ
α

þ 2Eαþ ∧ F−
α ; ðA8Þ

RðAÞ ¼ dAþ iEα− ∧ Fþ
α − iEαþ ∧ F−

α

− iE _α− ∧ Fþ
_α þ iE _αþ ∧ F−

_α : ðA9Þ

We group the nonvanishing components by dimension.
(i) Dimension 3=2

RðDÞβ∓α _α
¼ � i

2
ϵβα∇̄ _ϕ�W̄ _ϕ _α; ðA10aÞ

RðDÞ _β∓α _α
¼∓ i

2
ϵ_β _α∇ϕ�Wϕα; ðA10bÞ

RðAÞβ∓α _α
¼∓ 1

4
ϵβα∇̄ _ϕ�W̄ _ϕ _α; ðA10cÞ

RðAÞ _β∓α _α
¼∓ 1

4
ϵ_β _α∇ϕ�Wϕα: ðA10dÞ
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(ii) Dimension 2

RðDÞβ _βα _α ¼
1

8
ϵ _β _αð∇β

ϕWϕα þ∇α
ϕWϕβÞ

−
1

8
ϵβαð∇̄_β _ϕW̄

_ϕ
_α þ ∇̄ _α _ϕW̄

_ϕ
_βÞ; ðA10eÞ

RðAÞβ _βα _α¼−
i
16

ϵ_β _αð∇β
ϕWϕαþ∇α

ϕWϕβÞ

−
i
16

ϵβαð∇̄_β _ϕW̄
_ϕ
_αþ ∇̄ _α _ϕW̄

_ϕ
_βÞ: ðA10fÞ

4. Special superconformal curvatures

The special superconformal curvatures RðKÞA, consist-
ing of S-supersymmetry RðSÞα� and special conformal
curvatures RðKÞa, are defined by

RðKÞa ¼ dFa − Fb ∧ Ωb
a − Fa ∧ B

þ 2iðσaÞα _αðFα− ∧ F _αþ − Fαþ ∧ F _α−Þ; ðA11Þ

RðSÞα� ¼ dFα� −
1

2
Fα� ∧ Bþ iFα� ∧ A

þ Fβ� ∧ Ωβ
α ∓ Fα� ∧ E0 � Fα∓ ∧ E��

− iFb ∧ E _α
�ðσ̄bÞ _αα; ðA12Þ

RðSÞ _α� ¼ dF _α� −
1

2
F _α� ∧ B − iF _α� ∧ A

− F _β� ∧ Ω_β
_α ∓ F _α� ∧ E0 � F _α∓ ∧ E��

þ iFb ∧ Eα
�ðσ̄bÞ _αα: ðA13Þ

We give the nonvanishing components of RðSÞCBα�
grouped by dimension.

(i) Dimension 3=2

RðSÞ_γþ _β−
α� ¼ 1

2
ϵ_γ _β∇ϕ�Wϕ

α; ðA14aÞ

RðSÞγþβ−
_α� ¼ 1

2
ϵγβ∇̄ _ϕ�W̄ _ϕ

_α: ðA14bÞ

(ii) Dimension 2

RðSÞγ�β _β
α� ¼ 1

2
ϵγβ∇ _ϕαW̄ _ϕ _β; ðA14cÞ

RðSÞ_γ�β _β
_α� ¼ 1

2
ϵ_γ _β∇ _αϕWϕβ; ðA14dÞ

RðSÞ_γ�β _β
α� ¼ � i

4
ϵ_γ _β∇∓

β ∇ϕ�Wϕ
α; ðA14eÞ

RðSÞγ�β _β
_α� ¼ � i

4
ϵγβ∇̄∓

_β
∇̄�

_ϕ
W̄ _ϕ _α; ðA14fÞ

RðSÞ_γ∓β _β
α� ¼ � i

8
ϵ_γ _βð∇�Þ2Wβ

α; ðA14gÞ

RðSÞγ∓β _β
_α� ¼ � i

8
ϵγβð∇̄�Þ2W̄ _β

_α: ðA14hÞ

(iii) Dimension 5=2

RðSÞγ _γβ _βα� ¼ 1

4
ϵγβði∇ _ϕα∇̄�

ð_γW̄ _βÞ _ϕ þ W̄ _γ _β∇ϕ�Wϕ
αÞ

� 1

16
ϵ_γ _βð∇�Þ2∇∓

ðγWβÞα; ðA28Þ

RðSÞγ _γβ _β _α� ¼ −
1

4
ϵ_γ _βði∇ _αϕ∇�

ðγWβÞϕ þWγβ∇̄�
_ϕ
W̄ _ϕ _αÞ

∓ 1

16
ϵγβð∇̄�Þ2∇̄∓

ð_γW̄ _βÞ
_α: ðA29Þ

The nonvanishing components of RðKÞCBα _α ¼
RðKÞCBaðσaÞα _α are given by

RðKÞγþβ−α _α ¼ ϵγβ∇α _ϕW̄
_ϕ
_α; ðA15aÞ

RðKÞ_γþ _β−α _α ¼ −ϵ_γ _β∇ _α
ϕWϕα; ðA15bÞ

RðKÞγ∓β _βα _α ¼ � i
2
ϵγβ∇̄�

_β
∇α _ϕW̄

_ϕ
_α; ðA15cÞ

RðKÞ_γ∓β _βα _α ¼ � i
2
ϵ_γ _β∇�

β ∇ _α
ϕWϕα; ðA15dÞ

and

RðKÞγ _γβ _βα _α ¼ −
1

8
ϵ_γ _β∇ _α

ϕ∇γβWϕα −
1

8
ϵγβ∇α

_ϕ∇̄_γ _βW̄ _ϕ _α þ
1

4
ϵ_γ _β∇γ

_ϕðW̄ _ϕ _αWβαÞ þ
1

4
ϵ_γ _β∇β

_ϕðW̄ _ϕ _αWγαÞ þ
1

4
ϵγβ∇_γ

ϕðWϕαW̄ _β _αÞ

þ 1

4
ϵγβ∇_β

ϕðWϕαW̄ _γ _αÞ þ
i
4
ϵ_γ _βð∇̄ _ϕ−W̄ _ϕ _αÞð∇þ

ðγWβÞαÞ −
i
4
ϵ_γ _βð∇̄ _ϕþW̄ _ϕ _αÞð∇−

ðγWβÞαÞ

þ i
4
ϵγβð∇ϕþWϕαÞð∇̄−

ð_γW̄ _βÞ _αÞ −
i
4
ϵγβð∇ϕ−WϕαÞð∇̄þ

ð_γW̄ _βÞ _αÞ: ðA15eÞ
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APPENDIX B: INTEGRATION OVER
SUBMANIFOLDS

In this appendix, we briefly review some elements of
integration theory over submanifolds. A complementary
discussion can be found in [20].
Let M be a supermanifold of dimension D with local

coordinates zM, M ¼ 1;…;D. We denote the grading of a
coordinate zM by ð−ÞM. The manifold possesses a vielbein
EM

A, and we can introduce an integral over a Lagrangian L
in the usual way as

S ¼
Z

dDzEL: ðB1Þ

Provided that L transform as a scalar field under diffeo-
morphisms, δξL ¼ ξM∂ML, the action S is invariant. If the
manifold possesses an additional local symmetry group H
with generators Xa, under which the vielbein transforms as

δHEM
A ¼ EM

BgcfcBA; ðB2Þ

with structure constants fcBA (see the discussion in e.g.
[34]) then the action S is invariant provided L transforms as

δHL ¼ −ð−ÞAgbfbAAL: ðB3Þ

Now suppose we are given a submanifold M of
dimension d with local coordinates zm, m ¼ 1;…; d. We
have in mind a situation where the original coordinates zM

can be decomposed (at least in the vicinity of M) as zM ¼
ðzm; yμÞ with the submanifold M corresponding to the
surface with yμ ¼ 0. We make no assumptions about
whether zm and yμ are bosonic or fermionic; in fact, we
are interested in cases where both consist of bosonic and
fermionic coordinates. We decompose the vielbein and its
inverse as

EM
A ¼

�
Em

a Em
α

Eμ
a Eμ

α

�
; EA

M ¼
�
Ea

m Ea
μ

Eα
m ϕα

μ

�
; ðB4Þ

with the assumption that both Em
a and ϕα

μ are invertible,
with inverses Ea

m and ϕμ
α, respectively. This allows one to

compactly specify all the remaining components of the
vielbein and its inverse in terms of these quantities, and Em

α

and Eα
m:

EM
A ¼

� Em
a Em

α

−ϕμ
βEβ

nEn
a ϕμ

α − ϕμ
βEβ

nEn
α

�
;

EA
M ¼

� Ea
m − Ea

nEn
βEβ

m −Ea
nEn

βϕβ
μ

Eα
m ϕα

μ

�
: ðB5Þ

No assumptions need to be made about Em
α or Eα

m. One
can check that

E≡ sdetEM
A ¼ sdetEm

asdetϕμ
α ¼ sdetEm

a

sdetϕα
μ ; ðB6Þ

although we won’t make use of this feature.
Now consider the action S over the submanifoldM with

Lagrangian L:

S ¼
Z

ddzEL; E ¼ sdetEm
a: ðB7Þ

This is invariant under zm diffeomorphisms provided L
transforms as a scalar function. If we impose fcβa ¼ 0, then
(B2) implies δHE ¼ ð−Þagbfbaa. So a set of sufficient
conditions for H-invariance is

δHL ¼ −ð−ÞagbfbaaL; fcβa ¼ 0: ðB8Þ

It turns out that S can also be made invariant under
diffeomorphisms generated by ξμ. The easiest way to see
this is to note that because Eα

μ ≡ ϕα
μ is invertible, it is

possible to construct a one-to-one relation between any
diffeomorphism in ξμ and a covariant diffeomorphism
generated by ξ0α ¼ ξμϕμ

α modulo a certain diffeomorphism
in zm and an H gauge transformation. Recall that a
covariant diffeomorphism is given by

δξ ¼ ξA∇A ¼ ξAEA
M∂M − ξAHA

bXb; ðB9Þ

where HM
a is the connection associated with the group H.

Taking ξA ¼ ð0; ξ0αÞ ¼ ð0; ξμϕμ
αÞ, one finds

ξ0α∇α ¼ ξ0αϕα
μ∂μ þ ξ0αEα

m∂m − ξ0αHα
bXb

¼ ξμ∂μ þ ξμϕμ
αEα

m∂m − ξμϕμ
αHα

bXb: ðB10Þ

Since we have already established invariance under zm

diffeomorphisms and H gauge transformations, we need
only check covariant diffeomorphisms generated by arbi-
trary ξα. This will establish invariance under the full set of
diffeomorphisms. To prove invariance under covariant
diffeomorphisms with parameter ξα, observe that

δEm
a ¼ Em

bξγTγb
a þ Em

βξγTγβ
a: ðB11Þ

We will restrict our attention to superspaces where Tγβ
a ¼

0 so only the first term in δEm
a contributes. Noting that

δL ¼ ξα∇αL, it follows that the remaining sufficient
conditions for invariance of the action (B7) are

∇αL ¼ −ð−ÞbTαb
bL; Tγβ

a ¼ 0: ðB12Þ
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APPENDIX C: COMPONENT ACTION
DERIVATION

In this appendix, we describe how to derive the compo-
nent action of

S ¼ −
1

2π

I
C
dτ

Z
d4xd4θþE−−Lþþ: ðC1Þ

The integral can be understood as evaluated at θμ− ¼ 0,
since these Grassmann variables do not appear in the
measure. To evaluate the action, it helps to exploit the
θμþ-dependent parts of our gauge transformations (includ-
ing covariant diffeomorphisms) to fix the gauge16

∇αþ ¼ ∂=∂θαþ. Now the analytic superspace vielbein is
given by

EM
Ajθ−¼0 ¼

0
B@

ema Vm
þþ 1

2
ψm

αþ

eτa Vτ
þþ 1

2
ψτ

αþ

0 0 δμ
α

1
CA: ðC2Þ

In this equality, we have relabeled the components of the
one-forms EA by ea, Vþþ, and 1

2
ψαþ to simplify the

notation that will follow.17 Its determinant E−− is equal
in this gauge to eþþ given by

eþþ ¼ det

�
ema Vm

þþ

eτa Vτ
þþ

�
: ðC3Þ

This determinant is over the five-by-five component viel-
bein describing both the base manifold with coordinates xm

and the SU(2) contour with coordinate τ.
The easiest way to evaluate the component action is to

rewrite S as

S ¼ −
1

2π

1

16

Z
M4×C

ð∂þÞ2ð∂̄þÞ2ðêþþLþþÞ; ðC4Þ

where êþþ is the volume five-form

êþþ ¼ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτeþþ

¼ 1

4!
ϵabcdea ∧ eb ∧ ec ∧ ed ∧ Vþþ: ðC5Þ

In order to evaluate successive spinor derivatives of êþþ,
one must work out the rules for spinor differentiation of the

one-forms ea and Vþþ in the gauge where ∇αþ ¼ ∂αþ.
These can be derived by using the relations for the
corresponding curvatures Ta and Tþþ. For example, from
the definition of Ta, one can show that

TνþM
a ¼ −ð−ÞMTνþ_β−

aEM
_β− ¼ ∂νþeMa ⇒

∂νþea ¼ −iðσaÞν_βψ̄ _β−: ðC6Þ

Similar relations can be used to define the spinor derivative
of any one-form. The ones we will need are

∂αþea ¼ −iðσaÞα _βψ̄ _β−;

∂αþVþþ ¼ 2ϕþ
α þ 3i

2
ebðσbÞα _βχ̄ _βþ; ∂αþV−− ¼ 0;

∂αþψβ− ¼ −2δαβV−−; ∂αþψ̄
_β− ¼ 0;

∂αþϕβþ ¼ −2ecRðSÞcαþβþ;

∂αþϕ̄
_βþ ¼ 3

2
ψ−
α χ̄

_βþ − 2ecRðSÞcαþ _βþ þ 2ifbðσbÞα _β;

∂αþfb ¼ −ecRðKÞcαþb −
1

2
ψγ−RðKÞγ−αþb; ðC7Þ

as well as their complex conjugates,

∂̄ _αþea ¼ iðσaÞβ _αψβ−;

∂̄ _αþVþþ ¼ 2ϕþ
_α −

3i
2
ebðσbÞβ _αχβþ; ∂̄ _αþV−− ¼ 0;

∂̄ _αþψ̄
_β− ¼ −2δ _α

_βV−−; ∂̄ _αþψβ− ¼ 0;

∂̄ _αþϕ̄
_βþ ¼ −2ecRðSÞc _αþ _βþ;

∂̄ _αþϕβþ ¼ 3

2
ψ−

_α χ
βþ − 2ecRðSÞc _αþβþ − 2ifbðσbÞ _αβ;

∂̄ _αþfb ¼ −ecRðKÞc _αþb −
1

2
ψ̄ _γ−RðKÞ_γ− _αþb: ðC8Þ

As with the other connections, we label the superfield
connections FA by their component names, FA ¼
ðfa; 1

2
ϕα�Þ.

Applying these rules and using the explicit expressions
for the curvatures RðKÞ and RðSÞ where needed, one can
derive all the spinor derivatives of êþþ. Suppressing the
explicit ∧ symbol from now on, we find

∂αþêþþ ¼ ϵabcdeaebec
�
i
6
ψ̄−

_β
Vþþðσ̄dÞ _βα þ 1

12
edϕαþ

�
;

∂̄ _αþêþþ ¼ ϵabcdeaebec
�
i
6
ψβ−VþþðσdÞβ _α þ

1

12
edϕþ

_α

�
:

ðC9Þ

The second spinor derivatives are

16This is just the superspace analogue of Riemann normal
coordinates for the Grassmann coordinates [52]. For an extensive
discussion of using normal coordinates to derive component
actions, see [20].

17A precise notation would reserve these labels for the
component projections EAjθ¼0, but it is convenient to use the
same labels for the full superfields.
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ð∂þÞ2êþþ ¼ −2ieaebψ̄ _α−ψ̄ _β−Vþþðσ̄abÞ _α _β þ
2i
3
eaebecψ̄ _β−ϕβþϵabcdðσdÞβ _β −

1

4
eaebecedψ̄−

_β
χ̄ _βþϵabcd;

ð∂̄þÞ2êþþ ¼ 2ieaebψα−ψβ−VþþðσabÞαβ þ
2i
3
eaebecψβ−ϕ̄_βþϵabcdðσdÞβ _β −

1

4
eaebecedψβ−χþβ ϵabcd;

∂αþ∂̄ _αþêþþ ¼ −
i
3
ϵabcdeaebecðV−−VþþðσdÞα _α þ ψβ−ϕþ

α ðσdÞβ _α þ ψ̄ _β−ϕ̄þ
_α ðσdÞα _βÞ

þ i
6
eaebecedffðσfÞα _αϵabcd þ

1

2
eaebψβ−ψ̄ _β−VþþðσcÞα _βðσdÞβ _αϵabcd: ðC10Þ

The terms with three spinor derivatives are

∂αþð∂̄þÞ2êþþ ¼ ϵabcdeaebeced
�
1

2
V−−χαþ þ 1

4
ψα−D −

1

6
ψβ−ðTde

0 − RðDÞdeÞðσdeÞβα
�

− ϵabcdeaebec
�
4i
3
ϕ̄þ
_β
V−−ðσ̄dÞ _βα − 4

3
ψβ−feðσdσ̄eÞβα þ iψ̄−

_β
ψβ−χþβ ðσ̄dÞ _βα

�

þ eaeb
�
8iψβ−V−−VþþðσabÞβα − 2ψ̄−

_αψ
βþϕ̄_βþϵabcdðσ̄cÞ _ααðσdÞβ _β

þ 4iψβ−ψγ−ϕαþðσabÞβγ
�
þ 4eaψ̄ _β−ψβ−ψα−VþþðσaÞβ _β;

∂̄ _αþð∂þÞ2êþþ ¼ ϵabcdeaebeced
�
−
1

2
V−−χþ_α −

1

4
ψ̄−

_αDþ 1

6
ψ̄−

_β
ðTde

0 − RðDÞdeÞðσ̄deÞ _β _α
�

þ ϵabcdeaebec
�
4i
3
ϕβþV−−ðσdÞβ _α −

4

3
ψ̄−

_β
feðσ̄dσeÞ _β _α − iψβ−ψ̄−

_β
χ̄ _βþðσdÞβ _α

�
þ eaeb½8iψ̄−

_β
V−−Vþþðσ̄abÞ _β _α − 2ψβ−ψ̄ _βþϕγþϵabcdðσ̄cÞβ _αðσdÞγ _β

− 4iψ̄ _β−ψ̄ _γ−ϕ̄þ
_α ðσ̄abÞ _β _γ

�
− 4eaψ̄ _β−ψβ−ψ̄−

_αV
þþðσaÞβ _β: ðC11Þ

The highest term involves four spinor derivatives:

ð∂þÞ2ð∂̄þÞ2êþþ ¼ 2DϵabcdeaebecedV−− þ eaebec
�
8ψβ−ψ̄ _β−ðσcÞβ _βðTab

0 − RðDÞabÞ þ
32

3
fdV−−ϵabcd

þ 4iψ̄−
_αV

−−χþα ðσ̄dÞ _ααϵabcd − 4iψα−V−−χ̄ _αþðσdÞα _αϵabcd
�

þ eaeb
�
32iψ̄ _β−ϕ̄_γþV−−ðσ̄abÞ _β _γ þ 32iψβ−ϕγþV−−ðσabÞβγ

þ 12iψ̄ _β−ψ̄ _γ−ψα−χþα ðσ̄abÞ _β _γ − 12iψβ−ψγ−ψ̄−
_α χ̄

_αþðσabÞβγ þ 32ψβ−ψ̄ _β−faðσbÞβ _β
�

þ 16eaψα−ψ̄ _α−½ψβ−ϕþ
β − ψ̄−

_β
ϕ̄_βþ þ 3V−−Vþþ�ðσaÞα _α: ðC12Þ

In the above expressions, we note that the curvatures Tab
0 and RðDÞab were actually found by spinor differentiation of

covariant fields such as χαþ and χ̄ _αþ that appeared at lower dimensions, using the explicit expressions for T0 and RðDÞ in
terms of Wαβ and W̄ _α _β.

The component action can then be written as

S ¼ −
1

2π

I
C
dτ

Z
d4xd4θþE−−Lþþ ¼ −

1

2π

Z
M4×C

J ; ðC13Þ
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where J is a five-form given by (5.7). The full expression
for the five-form J is quite complicated in the general
component gauge. In practice, one should always analyze
component actions in the central gauge. Recall in this
gauge

ea ¼ dxmema; ψαþ ¼ dxmψm
αþ; etc: ðC14Þ

while only the connections V�� and V0 possess a dτ
component,

V�� ¼ dxmVm
�� þ dτVτ

��;

V0 ¼ dxmVm
0 þ dτVτ

0: ðC15Þ

Because the integral selects out only the component J
involving dx0dx1dx2dx3dτ, only those components of J
involving at least one of V�� and V0 can contribute. Now
one can make a dramatic simplification by going to the
central gauge:

½∂αþêþþ�CG ∼
i
6
ϵabcdeaebecψ̄−

_β
Vþþðσ̄dÞ _βα; ½∂̄ _αþêþþ�CG ∼

i
6
ϵabcdeaebecψβ−VþþðσdÞβ _α;

½ð∂þÞ2êþþ�CG ∼ −2ieaebψ̄ _α−ψ̄ _β−Vþþðσ̄abÞ _α _β; ½ð∂̄þÞ2êþþ�CG ∼ 2ieaebψα−ψβ−VþþðσabÞαβ;

½∂αþ∂̄ _αþêþþ�CG ∼ eaeb
�
1

2
ψβ−ψ̄ _β−VþþðσcÞα _βðσdÞβ _α −

i
3
ecV−−VþþðσdÞα _α

�
ϵabcd;

½∂αþð∂̄þÞ2êþþ�CG ∼
1

2
ϵabcdeaebecedV−−χαþ −

4i
3
ϵabcdeaebecϕ̄

þ
_β
V−−ðσ̄dÞ _βα

þ 8ieaebψβ−V−−VþþðσabÞβα þ 4eaψ̄ _β−ψβ−ψα−VþþðσaÞβ _β;

½∂̄ _αþð∂þÞ2êþþ�CG ∼ −
1

2
ϵabcdeaebecedV−−χþ_α þ 4i

3
ϵabcdeaebecϕβþV−−ðσdÞβ _α

þ 8ieaebψ̄−
_β
V−−Vþþðσ̄abÞ _β _α − 4eaψ̄ _β−ψβ−ψ̄−

_αV
þþðσaÞβ _β;

½ð∂þÞ2ð∂̄þÞ2êþþ�CG ∼ eaebecð2edV−−Dþ 4iψ̄−
_αV

−−χþα ðσ̄dÞ _αα − 4iψα−V−−χ̄ _αþðσdÞα _αÞϵabcd
þ 32

3
eaebecfdV−−ϵabcd þ 48eaψα−ψ̄ _α−V−−VþþðσaÞα _α

þ 32ieaebψ̄ _β−ϕ̄_γþV−−ðσ̄abÞ _β _γ þ 32ieaebψβ−ϕγþV−−ðσabÞβγ:

Converting the five-form into its corresponding integral density givesZ
M4×C

J ¼
I
C
dτ

Z
d4xeðVþþ

τ L−− − V−−
τ LþþÞ; ðC16Þ

where

L−− ¼ 1

16
ð∇−Þ2ð∇̄−Þ2Lþþ −

i
8
ðψ̄−

mσ̄
mÞα∇−

α ð∇̄−Þ2Lþþ −
i
8
ðψ−

mσ
mÞ _α∇̄ _α−ð∇−Þ2Lþþ

þ 1

4
ððψ−

nσ
nmÞαψ̄m

_α− þ ψn
α−ðσ̄nmψ̄−

mÞ _α − iV−−
m σmα _αÞ½∇−

α ; ∇̄−
_α �Lþþ

þ 1

4
ðψ−

mσ
mnψ−

n Þð∇−Þ2Lþþ þ 1

4
ðψ̄−

mσ̄
mnψ̄−

n Þð∇̄−Þ2Lþþ

−
�
1

2
ϵmnpqðψ−

mσnψ̄
−
pÞψα−

q − 2ðψ−
mσ

mnÞαV−−
n Þ∇−

αLþþ

þ
�
1

2
ϵmnpqðψ̄−

mσ̄nψ
−
pÞψ̄−

q _α − 2ðψ̄−
mσ̄

mn

�
_α

V−−
n Þ∇̄ _α−Lþþ

þ 3ϵmnpqðψ−
mσnψ̄

−
pÞV−−

q Lþþ ðC17Þ

and

DANIEL BUTTER PHYSICAL REVIEW D 92, 085004 (2015)

085004-26



Lþþ ¼ −
�
3Dþ 3i

2
ðψ̄−

mσ̄
mχþÞ − 3i

2
ðψ−

mσ
mχ̄þÞ þ 4faa − 4ðψ̄−

mσ̄
mnϕ̄þ

n Þ þ 4ðψ−
mσ

mnϕþ
n Þ − 3ϵmnpqðψ−

mσnψ̄
−
pÞVþþ

q �Lþþ

þ
�
3

2
χαþ − iðϕ̄þ

mσ̄
mÞα þ 2ðψ−

mσ
mnÞαVþþ

n

�
∇−

αLþþ −
�
3

2
χþ_α − iðϕþ

mσ
mÞ _α þ 2ðψ̄−

mσ̄
mnÞ _αVþþ

n

�
∇̄ _α−Lþþ

−
i
4
Vþþ
m ðσ̄mÞ _αα½∇−

α ; ∇̄−
_α �Lþþ: ðC18Þ
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