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We present a new formulation of curved projective superspace. The 4D N = 2 supermanifold M*83
(four bosonic and eight Grassmann coordinates) is extended by an auxiliary SU(2) manifold, which

involves introducing a vielbein and related connections on the full M7 = M*® x SU(2). Constraints are
chosen so that it is always possible to return to the central basis where the auxiliary SU(2) manifold largely
decouples from the curved manifold M*B describing 4D N = 2 conformal supergravity. We introduce the

relevant projective superspace action principle in the analytic subspace of M7® and construct its
component reduction in terms of a five-form 7 living on M* x C, with C a contour in SU(2). This approach
is inspired by and generalizes the original approach, which can be identified with a complexified version of

the central gauge of the formulation presented here.
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I. INTRODUCTION

It is well-known that theories of eight supercharges in
various dimensions possess natural on shell representations
(such as the hypermultiplet) that do not admit off shell
representations with a finite number of auxiliary fields—at
least, not without a central charge. In fact, a no-go theorem
guarantees that the most general charged hypermultiplet
cannot be lifted to a finite off shell representation (see e.g.
[1] for a clear discussion with references). Both harmonic
and projective superspace solve this problem in the same
way: the hypermultiplet is lifted to an off shell multiplet by
introducing an infinite number of auxiliary fields in a
controlled way. For harmonic superspace [1,2], these
auxiliary fields correspond to Fourier modes on an aux-
iliary S? manifold, and the hypermultiplet is associated
with a globally defined function on $%. For projective
superspace [3], the auxiliary fields appear as components of
a Taylor (or Laurent) expansion in a coordinate { para-
metrizing the space CP!. (For recent reviews, see [4] and
[5].) As a result, both superspaces actually allow the direct
construction of the most general off shell actions involving
hypermultiplets. Of equal importance is the way in which
both superspaces allow superfield gauge prepotentials for
Yang-Mills theories," which are necessary for performing
quantum calculations in a manifestly supersymmetric way.

These two approaches are not actually too dissimilar and
make use of the superspace introduced by Rosly [13]
[Hartwell and Howe have also discussed the so-called
(N, p, q) superspaces [14,15], which provide generaliza-
tions to higher N.] Proposed relations between harmonic

"The early work in harmonic superspace [6] (see also the
monograph [1] for references) stimulated many manifestly super-
symmetric calculations in A =2 super Yang-Mills theories.
Projective supergraphs and their applications have been discussed
in [7-12].
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and projective superspaces have also been discussed in [16]
and [17,18]. Our concern here will mainly be with 4D
N =2 projective superspace.

The incorporation of a curved supermanifold into pro-
jective superspace, a necessary step for the description of
general supergravity-matter systems, was explicitly accom-
plished first in five dimensions in a series of papers by
Kuzenko and Tartaglino-Mazzucchelli [19]. It was sub-
sequently extended to dimensions 2 through 6 by various
collaborations involving Kuzenko, Linch, Lindstrom,
Rocek, and Tartaglino-Mazzucchelli [20—23].2 (Because
we are interested here in 4D A = 2 supersymmetry, we
will make frequent reference to the four-dimensional
references [20], but many important features were already
present in [19].) The formulation of curved projective
superspace presented in these works we will refer to as
conventional projective superspace.

A key ingredient of the conventional approach is to
understand the role of superconformal projective multiplets
of weight n, which are the natural objects of interest in
projective superspace [28,29] (see [5] for a pedagogical
discussion). In curved space, such superfields Q" (z, v%)
are holomorphic in »’ on some open domain of C**=
C?\{0}, homogeneous in v’ of degree n, Q") (z, cv') =
¢"Q"(z,v) and transform under the superconformal
gauge transformations as

!
5O = ED, QM + nApL QM — v/ 57 Q. (1.1)
v

where the covariant derivatives D, are built from the
supervielbein and other connections of some curved

2Corlresponding constructions of harmonic superspace in other
dimensions, which preceded the projective constructions, can be
found in [24-27].
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supermanifold M*®, with Ap and A';, respectively, the
dilatation and SU(2); gauge parameters. The SU(2),
transformation can be rewritten

5,0 = _3++p—Q) L pg0Qm 20— zii U
(v.u)

(v,u)=vu;.

L9
D“:u— ATt =00,

(v,u) 00" e

(1.2)

The parameter u; appearing in (1.2) is an arbitrary
coordinate, required only to obey (v, u) # 0 in the region
of interest. Given this prescription, it is consistent to impose
the covariant analyticity constraint

»,D, 0" = pD;i QM =0 (1.3)

This implies that Q) depends on only half the Grassmann
coordinates of superspace, in much the same way as chiral
multiplets in A/ = 1 superspace depend (essentially) on 6
and not 6.

Once the means to minimally couple supergravity is
understood, the curved extension of many flat space results
becomes possible. This is done by generalizing the natural
action principle of flat projective superspace [3,29,32]

1
S = Udl) /d4 d*ot L,
2

Qo+ — galvi’ 9“* — Ha’yi, (14)

where L7 is a weight-two projective multiplet
Lagrangian, and C is some contour in CP'. A full
description of the action requires both elements as different
contours can lead to different actions. The component form

can be written
= ——]{ v;dv’ /d“x[,“
I wjujugu,

16(,)

L DVDM L, (1.5)

in terms of an additional coordinate u;; however, the result
is actually independent of u;, except for the requirement
that (v, u) # 0 along the contour C. The extension to the
curved case was given in [20] as

*Such superfields Q) with these properties can be understood
as generalizations of complex O(n) superfields G =
v;, -+ v; G'7n(z) whose components G' transform as sym-
metric tensors of SU(2), with the constraint DYGirin) =
DYGhin) = 0 [30,31].
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(1.6)

An additional requirement of constant u; turned out to be
useful to impose. The elided terms in the above expression
for £~ were determined by requiring independence under
small shifts of the constant u;. Large classes of actions can
then be constructed directly from (1.6) by choosing £+ to
be built out of fundamental arctic, antarctic, vector and
tensor multiplets: the resulting actions include general
supergravity-matter systems [20]. The coupling to con-
formal supergravity naturally occurs automatically because
of the super-Weyl invariance of the action [20].

There are some curious features about this formulation.
First, as noted in [20], the coordinates v’ are effectively
invariant under SU(2) transformations. Second, the mani-
fold is M*3 x CP! but the action and constraints are
clearly formulated in a central gauge (or central basis in
the language of [1]) where M*® and CP' are largely
decoupled. One is not permitted to make CP'-dependent
Lorentz transformations (for example) or arbitrary diffeo-
morphisms on CP!. Finally, an auxiliary coordinate «; must
be introduced to evaluate the action, subject only to the
condition that (v, u) # 0 along C. (Such a constant u; exists
for any contour.) In the original flat superspace approach of
[3,32], the coordinate u; could actually be chosen to vary
along the contour; in the curved superspace approach, it
was chosen constant for convenience.

In this paper, we will shed some light on these features
by presenting a modified version of curved projective
superspace where we emphasize similarities with the
harmonic superspace approach [1]. The main idea will
be to introduce a supermanifold M*® x SU(2), that admits
gauge transformations and diffeomorphisms involving both
the coordinates z¥ of M*® and the coordinates v'* of SU
(2), placing them on an equal footing.* Because our fields
will always be chosen to depend only on
CP' = SU(2)/U(1), the supermanifold will effectively
be M8 x CP!. We will assume that, as in harmonic
superspace, there exists a central basis (or central gauge)
where M*® and CP' largely decouple.

We will find that the coordinates »* indeed transform
under SU(2) diffeomorphisms; however, upon restriction to
a central gauge they can be interpreted as inert. This in turn
explains the two curious features mentioned above. In the
new framework, the role of the coordinate u; will be played
by the complex conjugate v; of '™, so that v'*v; = 1. The
conventional formulation of projective superspace will
arise after a complexification of " — o' and

*A similar approach was sketched by Hartwell and Howe [15].
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v; — u;/(v, u), which is always possible provided (v, u) is
nonzero along the contour C of interest.

Although a full discussion would be beyond the scope of
this paper (but see the conclusion for a few additional
comments), there is a deep relationship between the
harmonic superspace approach to supergravity and the
projective superspace approach that we are describing
here. Both (as usually formulated) involve the same super-
manifold M*® x SU(2) [with the SU(2) factor effectively
CP'], and we will emphasize the similarity in later sections
by employing the same language (e.g. harmonic coordi-
nates »'* and harmonic derivatives D** and D°) for the
auxiliary SU(2) manifold. What will differ will be the fields
employed and the action principle. The advantage of
emphasizing the common aspects of the two approaches
will be that the projective approach we present obviously
admits diffeomorphisms on the auxiliary manifold just as in
the analytic basis of harmonic superspace. This leads to
some important conceptual advantages, which we will
discuss in the conclusion.

This paper is organized as follows. In Sec. 1I, we review
the properties of the SU(2) manifold that will augment the
usual supermanifold M*®. Many of the important features
of the full superspace will already be apparent when
considering just the SU(2) manifold itself. Section III
presents the structure of the supermanifold M*®x
SU(2), upon which projective superspace can be placed.
In Sec. IV, we present three action principles on M*® x
SU(2) involving, respectively, integration over all, half, or
3/4 of the Grassmann coordinates. The most important of
these is the analytic superspace action involving half the
Grassmann coordinates (the others can always be reduced
to it) so we give its component reduction in Sec. V. This
yields an interesting surprise: in a general gauge, the
component action can always be written as the integral
of a five-form J living on M* x C, where M* is the
spacetime manifold and C is the contour in SU(2).5 When
restricted to the central gauge, the five-form leads to a
component action similar to (1.6) with one intriguing
difference. In the Conclusion, we briefly speculate on
possible advantages of this new extended formulation.

Three appendices are included. Appendix A covers
details of the superspace curvatures that are not included
in Sec. IIl. Appendix B briefly reviews how to formulate
invariant integrals over submanifolds, which is necessary
for constructing invariant actions over 1/2 or 3/4 of the
Grassmann coordinates. Appendix C presents the details of
the component reduction of the analytic superspace action.

The notation and conventions for the SU(2) manifold are
largely those of [1] and are straightforwardly related to
those employed in [20]. The conventions for N =2
superspace, spinors, o-matrices, and so on follow [34].

A five-form description of the flat projective superspace
action was also discussed by Biswas and Siegel [33].
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II. GEOMETRIC PROPERTIES OF SU(2)

In this section, we provide a compact review of the
geometric properties of the auxiliary SU(2) manifold,
following mainly the approach commonly used in har-
monic superspace [1]. As harmonic and projective super-
space utilize the same auxiliary manifold, there is no
obstruction to exploiting the same technology in both; in
fact, a common notation can help accentuate the mean-
ingful differences between them.

As in [20], we are not actually interested in SU(2) but
rather the projective space CP'. This will come about
because, as in harmonic superspace, we will always be
dealing with quantities of fixed charge under the diagonal
U(1) subgroup of SU(2). In other words, the effective space
will actually be the coset SU(2)/U(1) = CP' ~ S%.
Afterwards, we will highlight how complexifying SU(2)
to SL(2, C) naturally recovers the formulation of [20].

A. The relations SU(2)/U(1) ~ §? ~ CP!

Let us begin with the usual formulation of CP'
C?*/C*. Introduce two complex coordinates v’ for
i = 1,2, with complex conjugates 7; = (v')*. These are
homogeneous coordinates on CP' under the identification

v~ v, ceC. (2.1)
The north chart of CP! is where »! is nonzero, while the
south chart possesses nonzero »Z. We denote the point
vl ~(1,0) as the north pole and v’ ~ (0, 1) as the south pole.®

The space CP! can alternatively be described within
the space SU(2) = C**/R,. The normalized harmonic
variables

LW v;
vt = rk vy = |7’,
[v?] = (v, D) = vFTy, vty =1, (2.2)

can be used to construct a generic SU(2) group element

B A (o —oln
8= Lo+ vr )\t = )
gl =g, detg = 1. (2.3)
CP! is then identified as SU(2)/U(1) by imposing the
equivalence relation

®Note that some references (e.g. [5]) define the north pole to lie
at v’ ~ (0, 1) and the south pole at v’ ~ (1, 0). In that convention,
the north chart is generated by stereographic projection from the
north pole, and so the north pole lies outside the north chart.
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o~ elayit, e“ e U(l). (2.4)

v

We can use the inhomogeneous coordinate ¢ = v2/v! of
CP! to parametrize the harmonics. The harmonics v are
given in terms of ¢ and the phase ¢ := v1/|vl| by

eV
V14¢E
(1.9).

it = (vt 02%) =

(1,4),
e

v, = (UI,UE) :\/T—éf

The coordinates ¢, describe the north chart of the
Riemann sphere, so the coordinates y” = (¢, Z, W) may
be called the north chart of SU(2). In what follows, we will
frequently present quantities in terms of this chart.
Following [1], complex conjugation can be extended by
an additional antipodal map on S%>. The new complex

(2.5)

conjugation is denoted with a ~ and acts as v'* = —vi,
equivalently v = v™*. This is exactly the smile conjuga-
tion of the conventional formulation of projective super-

space [20].

B. Vielbeins and covariant derivatives of SU(2)

The three derivative operations D**, D™~ and D°
correspond to the right action of SU(2) on g. Following
[1], they are conventionally defined on the harmonic
coordinates as

Dt =g 9 D™ =" 8
" ovy o't
0 3}
DY = pit —— — 7 | 2.6
o't Ovy (2:6)
but can also be written in terms of the homogeneous
coordinates v’ and 7;,, DT = v,-%, D = Tji%, and
D=2 — 7, or in terms of the inhomogeneous
v v;

coordinate ¢ and the phase v,
, - i
Dt = g2iw <(1 + CC)({)Z - EC({)V,> s

D™ = —e72W¥ ((1 +¢0)o; +%Z[‘)w>,

D = —id,. (2.7)
They possess the commutation relations
[D'H',D__] — DO, [DO,D'H'] — 2D++,
[D°,D~"] = -2D~, (2.8)

and one can interpret D° as a charge generator, with D*
and D™~ respectively carrying charge +2 and —2. It will be
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convenient to denote the charges on these derivatives by an
index @ and to introduce a convention for lowering this
index. A convenient definition is

D, = (D,..D_.Dy).
D__:=D"", D, = D°.

D, =-D"",
(2.9)

Then the algebra of these covariant derivatives can be
written as [D,,D,] = -T,,<D. for a constant torsion
tensor. Associated with these are three vielbeins
V4 =dy2), 4, given by (using different conventions
than [1])

Vit =ofdo', VT =wvrdo'T,

W = prdo’t = ofdoim. (2.10)

In the homogeneous coordinate system, these are

(2.11)

and in the inhomogeneous coordinate system by

LA L
1+ S 1+ >

0 _idy it (Far— cd?
VO = idy o+ s (B - D).

(2.12)

The Cartan structure equations are’

dytt =2pF A0,
AW =Vt AV,

dVy— = =2V A W,
(2.13)

The covariant derivative can be written in the usual way,
D, =V,/"0,, in terms of the inverse vielbein. One can
ve_rify these relations by checking thatd = V4D, = dy”9,,
acts as an exterior derivative on any function of the SU(2_)

coordinates y”. Note that under the conjugation, the
derivatives and vielbeins are real, D, = D, and V¢ = 12 ®

The isometries of SU(2) correspo;ld to the left action on
the group element g. These can be denoted by generators
It ; which act as

"We use the superspace conventions for forms so that exterior
derivatives act from the right (see e.g. [35]).

5The metric on SU(2) can be chosen as dséU(z) =
Tr(dg™' ® dg) =2V T @ V-~ -2V @ VW0 = 2dv’* @ dv;,
although we will not use it explicitly in what follows.
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n: it _ 6 0 0
(2.14)
These leave the covariant derivatives invariant,

1 s D,] = 0. One can further verify that an isometry with
constant parameters 4/; can be rewritten as

5[ == l]l?lj == ﬂng

= -A"D= +2°D° + 1= D", (2.15)
where A** and A° are coordinate-dependent transforma-
tions given by

A = v oAl A0 = v vy, (2.16)
(It is sometimes convenient to denote 1° = A7~ in analogy
with A*£.) The appearance of the minus sign in (2.15) was
the reason for introducing the sign in (2.9).

If we now restrict to the space S* = SU(2)/U(1), then
the covariant derivatives D, possess a different interpreta-
tion. D can be identified with the rotation generator on the
tangent space of S?, while D** and D~ can be identified
with the covariant holomorphic and antiholomorphic
derivatives. Then a scalar function f(@ of fixed D° charge
on SU(2) is reinterpreted as a function of fixed spin
weight on §? (see e.g. the discussion in [36]). In what
follows, although we will always remain with an explicit
SU(2) manifold, we will only be dealing with such
functions f(@, and so it will always be possible to
reinterpret calculations as being performed on the space

U(2)/U(1) = S ~CP".

C. Harmonic and holomorphic tensors on CP!

There are two interesting classes of tensors on CP! = §2.
The first are the so-called harmonic functions, which are
globally defined functions on SU(2) with fixed D° charge.
These are given by

(5]

f(q) — Zf(i]...in+qjl~<-jrx)1}: P UlT:Jqu/T] . /Uan’ (217)
n=0
with D°f(@) = ¢f(@) (assuming ¢ > 0, but similarly for

g < 0) and are extensively discussed in [1].
The second interesting class are the functions Q9 with
fixed D° charge but annihilated by D+,
D°Q4) = ¢gQa) D+ Q) = (2.18)
The most general class of such functions is not
globally defined on SU(2). If they are nonsingular near
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the north pole, they are called arctic and possess an
expansion

= (111)1Q(¢) (2.19)

1+ ZQ o

Their conjugates 0 are nonsingular near the south pole
and are called antarctic. They possess an expansion

Q( q) _ ( 2+>61Q l]Z Q C—n (220)
n=0
It will be convenient to refer to functions Q%) satisfying

(2.18) as holomorphic although strictly speaking they are
generically holomorphic only on an open domain of
SU(2)/U(1).

Of course, it is possible for such functions to be both
holomorphic and globally defined. These generally have an
expansion of the form G\¢) = g<i1---ia)v: -+~ v; and can be
real only if g is even. !

D. Integration measures and global SU(2) invariance

The most straightforward integration over the
auxiliary manifold SU(2) is accomplished using the usual
Haar measure. Given some globally defined function

f (0>(1}+, v~), one can define the action integral

o[ [ 5

dC/\d(jf())’
2,, (1+88)?

dg“/\dg
(1+¢¢)?

(2.21)

normalized so that f dv = 1. Integrals of the above type are
encountered when using harmonic superspace, which is
concerned with globally defined functions. Since we will be
dealing instead with holomorphic functions, the natural
integration principle will involve a one-dimensional con-
tour integral on SU(2), with the contour avoiding regions
where the functions become singular. The natural integrand
is a one-form w = dy2w,, = V4w, and the corresponding
integral is

1
S = V“ (2.22)
21
Because we are actually interested in contours in CP' & §2,
we will always assume @, = 0 so that the resulting action is

given by

9Superﬁelds in projective superspace with such expansions
were introduced in [3]. The arctic or antarctic nomenclature
appeared later in [7].
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]{VJH’ - +—7{ V=o't

= 2” vidvteT + —7{ vydv~ett. (2.23)

For later convenience we have “raised” the indices on w,,

using the same convention as in (2.9), so that the D°
charges of the integrands are clear.

A natural question to ask is whether the contour action
(2.23) is invariant under SU(2) isometries. It turns out that
the answer is yes, provided the integrands @™~ and @™
obey a certain condition. First let us establish Stokes’
theorem. Suppose @ = dA(®) for some function A®). Then
we must have

__ b 7{ VD AO) 4 - 7{ VDHAO).  (2.24)
If A is holomorphic, this reduces to
__L 7{ VHDAO), if DA — 0,
2r C

These two results are quite important, so let us discuss their
form in an explicit coordinate basis. If 7 is the coordinate
parametrizing the contour, one can show that

dC OA©)
dr oc

% i VDA = (2.25)

If A is holomorphic, then the right-hand side vanishes as
a total derivative. If not, we find that

d¢ OANO ] dg“ 8A
d dr oc 271'}{ dr

This establishes (2.24).
Now let us calculate 6;S. The vielbein one-forms are
necessarily invariant under the isometry while w, trans-

forms as 6,0, = iQDQa)ﬂ. This implies, using the explicit
form (2.16) of the parameters A<,

Siw— =-D—(Atw )+ 1D e,

S0t =D (A ™) = ATTD T, (2.27)

This leads, using (2.24), to

PHYSICAL REVIEW D 92, 085004 (2015)

5,/V++a)“ — —/V“D*ﬂﬁ*w“)
+ / VA~ D o,
O; / V-ott = /V**D“(/I“aﬁ*)
- /V“J’L*D“w*ﬂ (2.28)
and one can see that the difference between these two terms
vanishes (and so §;S = 0) precisely when'?
Dt o™ =D "'t (2.29)

This is merely the tangent space version of the condition
that  is closed.

E. Extension to local SU(2) transformations

Up until now, we restricted our attention to SU(2)
isometries. These preserved the form of the SU(2) vielbein
V and were generated by constant parameters A’ jo In
principle, there is no reason why we cannot perform local
SU(2) transformations of the form (2.15) but with param-
eters £+, &7~ and & subject only to the condition that £+
and & have D° charges +2 and 0, respectively. That is, we
can take

§=£8D, =D+ 8D+ E-DFF (2.30)
but with e.g. £** not necessarily of the form &/v;" v . Such
SU(2) diffeomorphisms can be interpreted as diffeomor-
phisms on S? (generated by &%) along with local U(1)
frame rotations (generated by &°).

Under such a local transformation, the vielbeins trans-
form in the usual way, §V¢ = d&2 + VEEET, 2, leading to

SYH = dEH — OEH 4 QPtHED, (2.31a)
SV = dE— 4+ 2V — 2V ¢, (2.31b)
SV = d&0 4 Prtgm — gt (2.31¢)

One can check that the above transformations are consistent
with the definitions (2.10).

Now let us briefly discuss the consequences of requiring
that the contour action (2.23) remain invariant under such
diffeomorphisms. A general diffeomorphism on @ can
always be written as ;@ = d(1;w) + 1zdw. The first term

01t s possible to have purely holomorphic one-forms @ that
obey ™ =0 and D" w™™ = 0. The one-forms we consider in
projective superspace will generally not be purely holomorphic,
but will instead carry some small nonvanishing ™" piece.
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vanishes along the contour integral so we conclude that @
must be closed. In the tangent frame, with the condition
wo = 0, this leads to (2.29), and so the condition for
invariance under SU(2) isometries is the same condition as
for full diffeomorphism invariance. This closure condition
has an obvious geometric interpretation. An arbitrary
diffeomorphism of an integral ¢, can be interpreted as
a small deformation of the contour C, and this can
generically vanish only if the flux of dw through any 6C
vanishes in the vicinity of C. This leads to the well-known
condition in projective superspace that the integrals fcw
depend only on the topology of the contour and how it
winds around singularities of @.

F. The complexified SU(2) and the emergence
of a projective structure

Our final topic in this opening section is to address how
the SU(2) framework we have been discussing can be
related to the CP! framework that one encounters in the
conventional formulation of projective superspace coupled
to supergravity. The key idea is to complexify SU(2) and to
treat v’ and 7; as independent coordinates. Beginning with
the representation (2.2) for the harmonic coordinates,
complexify ¥; — u;. In doing so, it is convenient to modify
the definitions of the harmonics so that

[ — T = Ui
v ', v; o)’
vty =1, vy # (vi)* (2.32)

We have shifted the entirety of the (v, u) factor into the
second harmonic because / (v, u) is not well-defined. This
can be interpreted as a local complex D° gauge trans-
formation, converting all quantities of fixed D° charge ¢
into quantities of degree ¢ in v and degree 0 in ;. In other
words, the 4 and — labels on the harmonics (as well as any
other quantities) now denote their homogeneity under the
projective transformation

ceC. (2.33)

vt = cv',

The resulting group element g given in (2.3) still obeys
detg = 1 but is no longer unitary. In other words, we have
complexified SU(2) to SL(2,C).

It is straightforward to extend the entirety of the previous
discussion to SL(2, C). Instead of dealing with operators
and functions of fixed D° charge, we have fixed homo-
geneity under (2.33) and invariance under u; — cu;. One
can introduce derivatives

PHYSICAL REVIEW D 92, 085004 (2015)

0 u; 0
D++ — L - — ! ;
(v, u)v; o (v 0) 00"
.0 0
DY =o' — —u,—, 2.34
Vo Ou; (2.34)
and their corresponding vielbeins
. du' o’
VH =y, V= BT (235)
(v.1) (v.u)

It is natural to convert all holomorphic functions Q9 to
new quantities of definite homogeneity in v’ and indepen-
dent of u;, Q"9 (cv) = c1Q'@(v). These are related to the
original Q%) by the same complex D° transformation, and
we will drop the primes when it is clear from context which
quantities we are discussing.

Finally, the complex version of the contour integral
(2.23) takes the form

1 1
§—_ = —wtt,
2ﬂ]€v w +2n£V w

where @™~ and @™ are respectively degrees —2 and +2 in
v', degree zero in u;, and related by the complex version of
(2.29). Under a local SL(2,C) diffeomorphism, the coor-
dinates v’ and u; transform as

(2.36)

Svt = éOvt _ ul’

(v, u)

Su; = —Eu; + (v, u)é v, (2.37)
while @™ and @~ transform as
S~ =& D0 =280 +E D,
Sttt =Dt + 2800t + DTt (2.38)

The parameters £** and £° are each assumed to be of
degree zero in u; while possessing homogeneity of the
indicated degree in v'.

The major advantage of the complexified SU(2) is that
we may choose v’ and u; to have entirely uncorrelated
behavior along the contour. In particular, one can take u; to
be fixed, subject only to the condition that (v, ) # 0 along
the contour. This can be interpreted as deforming the
contour C within SL(2, C). After such a choice, the gauge
freedom (2.37) is no longer arbitrary, but is restricted by the
requirement that Ju; is similarly constant. This implies
certain constraints on the functions &~ and &°. (This
residual freedom was discussed in [20].) The advantage
of this choice is that the second contour integral in (2.36)
automatically vanishes even if @™ is nonzero. This is a
consequence of the property that a total contour derivative
is simplified from (2.24) to
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1
- ++D——A0
0 A % (v, u),

(2.39)
where we emphasize that A°(v, u) may depend on fixed u;
(with degree zero).

Although taking u; to be constant can simplify the
contour integrals, we have found it useful to remain with
a real SU(2) manifold in defining our formulation of
projective superspace. This guarantees, for example, that
the harmonics are always well-defined; there is no require-
ment that the contour avoid the location where (v, u) = 0.
It also permits full SU(2) diffeomorphisms, rather than the
restricted SL(2, C) diffeomorphisms that leave u; constant.
Nonetheless, starting from a real SU(2) manifold it is
always possible to complexify to SL(2,C) and then to
adopt the choice of constant u; where needed.

III. PROJECTIVE SUPERSPACE
AND M8 x SU(2)

In this section, we will describe how to construct a
covariant projective superspace generalizing the work of
[20]. We will do this first by constructing a direct product
of the supermanifold M*® and SU(2), and then splicing
together the tangent space action of I'; on M*® with the
isometry transformation on SU(2). The resulting construc-
tion will correspond to that given in the usual version of
projective superspace. We will then show how to lift to a
general gauge. Finally, we will comment briefly on the
admissible types of primary analytic superfields.

A. Conformal superspace on M*8 x SU(2):
A bottom-up construction

Let us begin with a conventional supermanifold
M8 with local coordinates z¥ :(xm,eﬂ,,é,/) with m =
0,1,2,3, u=1,2, g =1,2 and 1 = 1,2. The associated
superspace vielbein is given by Ey* = (Ey®, Ey%i, Eye').
We will assume we are working with conformal superspace
[34], so that the supermanifold possesses the full super-
conformal structure group, but the framework we present
here would work equally well with SU(2) or U(2) super-
space where the superconformal transformations take the
form of super-Weyl transformations [20,37].

In conformal superspace, the covariant derivative

Vi =(V,,V, V&) is defined implicitly by"’

R
8M - EMAVA + VM/iIlj +§QMabea +AMA
+ ByD + F %S, + FueiSY + Fr°K,, (3.1)

which can equivalently be written

""We have relabeled the SU(2) connection ®,,’ ; of [34] to
VM’]

PHYSICAL REVIEW D 92, 085004 (2015)

|
Va=EM (51\4 - VMijJk - EQMbCMcb —AyA

— ByD = Fy/S5; — Fyy 8 — FM"K,,). (3.2)

M., is the Lorentz generator, A and / "j are the U(1) and
SU(2) R-symmetry generators, D is the dilatation generator,
S, and S% are S-supersymmetry generators, and K, is the
special conformal generator. Their algebra is summarized
in [34].

Now we wish to combine this structure with the SU(2)
manifold with covariant derivatives Dt+, D=, and D°.
The only nontrivial step is to decide how the action of I j
should be manifested on functions F(z, v™, v~) depending
also on the SU(2) coordinates, which we choose as in
(2.14). The operator I'; acts as the isometry generator on
the SU(2) manifold. At this stage, we immediately recover
the construction of [20], since a general supergravity
SU(2), transformation is given by

MIF = =2""DF + A D™ F + °D°F, (3.3)
for arbitrary local 1';(z) independent of the harmonics.
Specializing this equation to holomorphic functions
Q" (z,v*) of fixed D° charge n recovers the transforma-
tion law (1.2), up to the complexification of SU(2) to
SL(2,C) discussed in Sec. ITF.

At this stage, we have two different ways in which I';
can act. It can act on a function F(z, v™,v™) as an SU(2)
isometry, or it can act on an SU(2) tensor independent of
v™, such as Ey%(z), as a tangent space rotation. Now we
wish to eliminate the latter in favor of the former so that the
operator acts in only one way. Consider for definiteness
some superfield ¢’ with a single SU(2) index, independent
of v™* and transforming covariantly under SU(2). (For
example, ¢’ could be E,*.) If we interpret g’ as a
component of g* = g'v;, then the action of SU(2); on
qi , treating v;r as invariant, is

S,qt =Aqlvi = -A2"TD g + %", (3.4)
This is exactly the same transformation rule as (3.3),
corresponding to an isometry transformation on the
SU(2) manifold. If we exchange all quantities with
SU(2), indices for scalar functions on the SU(2)
manifold, e.g.
Ey® = Ey™,  Eyi = Eygt, (3.5)
then I’ j can be interpreted as always acting as (3.3). In
particular, the SU(2) connection can be rewritten as
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VMI/IJZ == _VM++D__ + VMODO + VM__D++,

e S I /. 0. =Y\ ij
V™" = 0; v; Vu, V" = v; v; V.

(3.6)

Note that V,,** and V), do not transform as scalar
functions under the SU(2) isometry, but rather as
connections,

SVt = 0y At =2V, 00T + 2V, 720, (3.7a)
SV = 0A T +2V,°0 =2V, (3.7b)
8V’ = Oy’ + Vy AT = VAT (3.7¢)

This is exactly how the SU(2) vielbeins V,,** and V,,°
transform under SU(2) diffeomorphisms (see (2.31)) but
with the arbitrary £+, £ parameters replaced with ¥+, 1°.
Before interpreting this further, let us make a few additional
comments.

The implicit expression (3.1) for the covariant derivative
can be rewritten

8M - EMQ_V; - EMg+v; + EMava
- VM++D__ + VM__I)Jer + VMODO

1
+ EQM“”M,M +AyA + By,D

+ Fy®* Sy — Fy® St + FyK,, (3.8)
where we use

EMQi — EMgi'l)ii, V;: — U;tvgi,

FMQIE - FMgi'U?:, S;‘: - U?:S(li, (39)

for the spinor vielbeins, S-supersymmetry connections, and
their corresponding operators. We have introduced a new
compact notation

Yo = (l//m l/_/il)’ (310)

we = (y*.y%),

to deal collectively with the left- and right-handed viel-
beins, spinor derivatives, etc. It is helpful to introduce some
further notation to simplify the first line of (3.8). As in the
previous section, we wish to treat the +=+ and 0O indices
of the SU(2) derivatives as tangent space indices and to
lower them using the same conventions (2.9), with
D,:=(D,.,D__,D,). It will also be useful to introduce

a convention for lowering the + on V;E, and similarly for
the S-supersymmetry generator:

Vor =4V5, S,z :=TF S7. (3.11)

Now introducing V4 = (V,,V,y) and K4 = (K, Syt ),
we can rewrite (3.8) as

PHYSICAL REVIEW D 92, 085004 (2015)
1
Oy = Ex*Va+ VD, + EQM‘”’M,M

+AyA+ ByD + Fy K, (3.12)

Recalling that the partial derivatives J,, can be written in a
similar way,

Oy = ViuDy

=V, "D +V,°D° +V,~"D*",  (3.13)

anew unified notation becomes apparent. Let 72 denote the
full set of coordinates 742 = (z” y™) and introduce a
unified covariant derivative V, = (V,4,D,). Then (3.12)

and (3.13) can be written

1
(9M — EMAVA + EQMabea +AMA

+ ByD + Fy" Ky, (3.14)
where the full supervielbein is given by
EMA VM++ VM—— VMO
Vet v v
Ey2 = 3.15
M 0 V&++ Ve~ Vgo ( )
AR P
and the other connections live purely on M*®,
QM”” = (Q4,°,0,0,0), Ay = (Ay.0,0,0),
BM: (BM,0,0,0), FMA — (FMA,O,O,O). (316)

This rearrangement is equivalent to that proposed in [15].

These identifications (3.15) are completely consistent so
long as two conditions are obeyed. First, the only SU(2)
diffeomorphisms that we may perform are those that are
isometries on the SU(2) manifold. Then the full SU(2)
vielbeins V¢ = dz4V,,% transform as (2.31) with the
special choice of & = ¢ with A'; depending on z" alone.
Second, the only z™ diffeomorphisms and other gauge
transformations (i.e. Lorentz, U(1)g, S-supersymmetry and
special conformal) that are allowed are those that do not
depend on v*. This ensures the zeros in the identifications
(3.15) and (3.16) as well as the decompositions (3.9).

As a final check, we can invert (3.14) to find the
covariant derivative V4:

1
V4 =EM <3M - Vu*D, — EQMbCMcb
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V,=D,=V,"0,,. (3.17b)
The first equation exactly matches (3.2).

The algebra of the redefined operators retains its original
form but with minor modifications involving the exchange
of e.g. I'; for D** and D and Sy’ for S4*, and will be
given in a general gauge in the next subsection.

It is evident that starting from this formulation of
conformal superspace on M*® x SU(2), there is no intrin-
sic barrier to performing v**-dependent gauge transforma-
tions and diffeomorphisms. These will move us away from
the original gauge where (3.9), (3.15), and (3.16) hold and
where the SU(2) vielbein V,,¢ takes the simple form (2.10).

Of course, we can always return to this gauge. We refer to it
as the central gauge (or central basis) in analogy with the
terminology employed within the harmonic superspace
literature.'” In the next section, we will extend this con-
struction to a completely general gauge.

B. Conformal superspace on M8 x SU(2):
The top-down construction

In contrast to the preceding treatment where we spliced
together SU(2) with the supermanifold M*® of conformal
superspace, we can simply postulate the structure of the
new superspace M8 = M*® x SU(2) and impose all the
relevant constraints. This will have the benefit of not
requiring that we begin in central gauge, although central
gauge always remains a possibility.

The supermamfold M = M*® x SU(2) possesses

local coordinates zM = (zM,y2) = (x™,6**,¢,C,y). For
convenience, we have labeled the Grassmann coordinates
02 by 1 = + to facilitate a later discussion of analytic
gauge. (We emphasize that 1 is a world index and so does
not correspond to any notion of charge; we could just as
well have used 1 = 1,2.)

The  covariant  derivatives V, = (V,,V,) =
(Var Vo, Vi, V) are defined implicitly as in (3.14).
The supervielbein is required to be invertible, and its
components can be labeled as

EMA EM ++ EM —— EMO

Ey A = BB BB (3.18)
M EEA EZ++ EE—— EZO
EA E,*" E, " Ewo

We make no assumptions about whether the vielbeins and

connections are globally defined on M*® x SU(2). In fact,
we generically need (at least) two charts for SU(2).

"“Note that the central gauge is not unique; any harmonic-
independent gauge transformation, z-diffeomorphism or SU(2)
isometry will take us from one central gauge to another.

PHYSICAL REVIEW D 92, 085004 (2015)

Again we have a prescription for raising the 4 tangent
space indices, Vo = £V5, Voo = £V* § _ =F S,
and V, = VY, so that they correspond to the V° charge of
the operator. Now let us summarize the algebra of the
various operators. The Lorentz generator is normalized to
obey

[Mab’ Mcd] = _2nc[aMb]d + 2’1d[aMb]c’
[Mabv vc] = nbcva - nacvbv
[Mab’ vyi] = (Gab)yﬁvi)’t’
(Mo V7] = (3097 (3.19)

The action of the dilatation and U(1), generators is

1 - 1.
D.Vi]=3VE, DV =2V,
D.S7] = —%S,ﬂf, D, $i+] = _lgixi’
[D.Va] =V [D.K]=-K,,
AVE] ==iVe.  [AVE] = +iVE,
A.83) = +isg.  [ASH] =S (3.20)

The special conformal and S-supersymmetry generators
obey

[Km vb] - znale - ZMab’
{87.VZ} = +4es, VEE,
{Sv/}i, Vi) = 4ePagEE
{Sq:’ v§ = :t(zeﬂa[D - 2Mﬂa -
(5P, Vit =5 (2eﬁ&[m> — M ihep) 4 26PN,

ZEﬁGA) — 2€/}av0,

(K. Va| = i(04) 43S
(K mV“i]=l( a)“”Si

[S£.9,] = i(0,) V™.

3, V,] = i(3,)#V,*,
[V, s5] =0,  [VFF,SE] =7,

[V0, 5% = 482 (3.21)

Up to this point, we have only been discussing the
algebra of the gauge generators with themselves and with
the covariant derivatives V4. These dictate how the con-
nections transform under the corresponding symmetries.
(An explicit discussion of this can be found, for example, in
[34].) What remains is to specify the algebra of the
covariant derivatives themselves, corresponding to the
torsion and curvatures on the supermanifold. The various
constraints imposed will dictate the supergeometry.
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Begin by specifying the algebra of the SU(2) covariant
derivatives with the spinor derivatives:

[VH, V-] = V0, [V, V4] = 42V
[V, VE] =0,  [VFF, Vi = VI,
V0, VE] = +V2, (3.22)

These conditions imply that the SU(2) part of the manifold
is flat, possessing only constant torsion and no curvature,
and are necessary for the existence of a central gauge where
the SU(2) manifold (almost) decouples. In other words, if
we did not impose these constraints, then we would be
introducing new degrees of freedom. For the algebra of the
spinor covariant derivatives, we impose
{VZ, V;)F} =0. (3.23)
This is an integrability condition for the existence of
analytic superfields, which we will discuss shortly. The
remainder of the dimension-1 curvatures can be written

{V;E, W;F} == 2iVa/~,,
{v(jl:’ v[:;:} = :l:2€a/j)/_v,

{V&E VPFY = 42675, (3.24)
The first equation of (3.24) is a conventional constraint and
serves to define V ; = (6),;V,. As a consequence, the
vector covariant derivative has vanishing algebra with the
SU(2) derivatives, [V**,V,] =[V° V,] =0, and obeys
the other algebraic properties given in Egs. (3.19)—(3.21).
The second and third equations involve a chiral primary
operator ¥V and its conjugate antichiral primary operator
W, which are constrained by

[VEE W] = VO W] = [VE, W] =0,
(V=W = VO] = [V W] =0,
{Vr VW = {VE [V V] (3.25)

+_ _iymyrwor. 4L
Wa ] (lWﬂ yy+16
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The solution corresponding to conformal superspace
involves specifying W in terms of a superfield W,

1 1 1
W - EWaﬂMﬂa +Zvﬂ+WﬂaS; —Zvﬂ_WﬁaS;—

1_.
3 VIW K (3.26a)
W= sw. b Yoo ser _ L se
2 ap 4 b a Vi a
1 _ .
5 Vo Wik, (3.26b)

These operators obey (3.25) provided W is primary and
obeys the constraints

ViiWaﬁ — VOWa/j — vinaﬁ - 0,

VAW,5 = VW, (3.27)
where we have introduced the abbreviations

VP .= 2V(a+v[)’)— — _2v(a—v/3)+’

Vi = V@i — oVt (3.28)

In other words, W,; is a chiral primary superfield inert
under covariant SU(2) derivatives.
The dimension-3/2 curvatures can be written

[vﬂi7 vm'l] = _2€ﬁaw(_'f»
o+ _ . +
[VZ Ve = =2¢3, V5.

5 Vaa (3.29)
The operators Wy are given by Wi = —£[V;, W] and
Wi = —L[Vi, W] with explicit forms

a’

. X -
(V4)2W,7S; + évxw- Wy 4+ Vi Wy S

i i i i i
v VIrWr M5 — 1 VIt W, <[D> -3 A — V°> +5 VW, VT + 5 WAV,

+_ , Lopetn ¥
wi _+§V/Vvdwﬂy1<ﬂ+16

A A S i
L VTW. MP L NP . v (]
4VﬂW M +4V Wﬂa<ID+2A \Y

ya

W, = [V W,

i = -

(V)2W5;

- 1 .
B v A s v/ ek £ A0 K\ s . +
s VaVIWyS; +4vyﬁwﬂ.lsr
P i .
—_\Pw. Yt — NAvas
2V WﬂaV 2Wa Vﬂ,

(3.30)
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Above we have introduced (V*)?:=V/EVE  and
(VE)?2 = v;tv"’i. Note that these operators obey the rules
[VEE WE] = 0 and [VEE, W] | = Wi as a consequence
of (3.25). )

The dimension-2 curvatures [V,,V,] are a bit more
complicated. Writing

\%

B Vad] =-F

/}/.}(1{1 = _26/.)’('1‘7:@ + 2€ﬁaf/'}vfz? (331)

the antiselfdual and selfdual components of F,, are
| S —
F =74V} Vo M},

1 -
.7-"@ =7 {V& [V(;), WI}. (3.32)
The curvatures F,, must be invariant under the SU(2)
derivatives, [V, F,,] = [V, F ] =0. The explicit
expressions for F,, won’t be of much use to us here, so
we will not discuss them explicitly. Instead, we collect
them, along with the other curvatures, in Appendix A.

We note that under the generalized ~ conjugation, the
derivatives transform as in [1]:

Vi =_Vi, Vi =V, (3.33)

Finally, observe that this superspace admits a full set
of gauge transformations, § =&V, +119M,, + 1A +
AD + ¢’ K, where each of the parz_tmeters may depend
arbitrarily on the coordinates 7.

Now let us argue that we can always recover the central
gauge of the previous section. Because it is obvious that we
can always start from the central gauge in constructing
M*B x SU(2), we will only give a sketch of a proof. As a
consequence of the algebra (3.22), one can always adopt a
gauge where V** and V° are given by their forms in the
central gauge in terms of »'®. This implies that the
superspace vielbein takes the form (3.15) and the other
connections the form (3.16). It is easy to prove that €,,%*,
Ay, By and F, are independent of the SU(2) coordinates:
one merely needs that the corresponding curvature
components R,,, all vanish in this gauge. For the S-

supersymmetry connection F%, the vanishing of
R(S),%* implies that F,** = vFF % as expected. For
the vielbein E,”, similar arguments imply that E,¢ is
harmonic independent while Ej%* = Ey%v¥. Finally, a
similar argument with V% establishes that they are given
by Vy** = Vy/Uvifvi and Vy,° = Vy/ o7

C. Consequences of analyticity

In this paper, we will not present specific actions (e.g.
explicit models involving hypermultiplets), so we will not
have much need for an extended discussion of the types of

PHYSICAL REVIEW D 92, 085004 (2015)

superfields possible in this superspace. However, it is clear
that if we wish to use the superspace M*® x SU(2) for
projective multiplets like those discussed in the introduc-
tion, then we must discuss (at least briefly) the conse-
quences of imposing analyticity on superfields.

Due to the integrability conditions (3.23), it is admissible
to have primary analytic superfields U,

SEU =K, U =0, ViU =0. (3.34)
Consistency with the algebra implies that W is a Lorentz
scalar, invariant under U(1)g, and obeys

VU = DV, Ve =0. (3.35)
The first condition implies ¥ must have V° charge equal to
its conformal dimension; for definiteness, denote both
quantities by n. The second condition ensures that in the
central gauge W is a holomorphic tensor on (an open
domain of) CP!. These are exactly the same conditions (up
to the complexification discussed in Sec. I F) as those for
admissible projective multiplets Q) in the usual formu-
lation of projective superspace [20]. These conditions also
match those found for superconformal projective multiplets
in flat projective superspace [28].

An interesting feature of the superspace M*® x SU(2) is
that it forbids analytic superfields of the general harmonic
type. Primary analytic superfields must be holomorphic on
an open domain of SU(2)/U(1). We will briefly comment
on this further in the conclusion.

IV. SUPERSPACE ACTION PRINCIPLES
ON M*B x SU(2)

The original supermanifold M*® came equipped with
two natural action principles, involving respectively inte-
grals over the full superspace and the chiral superspace,

/ d*xd*0d*0EL, / dxd*0ec,.  (4.1)

Here E and £ were defined respectively as

E a [oia
E = sdetEy”, &= sdet(Emm Emml >; (4.2)
u wo

the superspace Lagrangian £ was required to be a con-
formal primary scalar superfield of vanishing dilation and
U(1)g weight, inert under SU(2),

and the chiral Lagrangian £, was required to be a

conformal primary chiral scalar superfield, inert under
SU(2)g, with certain weights,
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DL, =2L., AL, = 4il,,

V",-EC — IijEC — KAEC - 0 (44)
These properties of the respective Lagrangians can be
proven e.g. by applying the results of Appendix B.

After extending the superspace to M*® x SU(2), other
possibilities emerge. The ones we will discuss below fall
into three classes: full superspace integrals involving
integrals over both S? and over a contour C, analytic
superspace integrals over a contour C, and chiral-analytic
superspace integrals over a contour C.

A. Full superspace integrals

One can extend the full superspace action to include an
integral over SU(2)/U(1). In the central basis,

/d4xd46d49E/dv£0, (4.5)
where dv is the standard measure on the S2,
i d d¢
21 (1 +¢E)?

and £ is assumed to have vanishing D° charge, vanishing
Weyl and U(1), weights, and to be globally defined on
SU(2), but otherwise to be unconstrained. In a generic
gauge, this action is written

/ d*xd*0d*0d>¢E° L0, (4.7)
using the abbreviation d’( :=3-d{ A d for the complex

coordinates on the S2. The rest of the usual S? measure is
contained in the full superspace measure

Ev* En'" Ey
=sdet| EA EST  EST (4.8)
_A _ _——
Ef BT B

The full superspace action can also be extended to
involve an integral over a contour C. The natural choice
is a purely holomorphic contour, given in the central
gauge by

1 -
——/d“xd“éd“&E% VL, (4.9)
2r C
where £~ has vanishing Weyl and U(1), weights, but is
required to be holomorphic with D° charge —2,

This action principle is used as the universal action principle
in the conventional formulation of projective superspace [20]. We
will discuss shortly why this form is actually universal.
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Dt L™ =0, DL~ =-2L7". (4.10)
Extending to a generic gauge is straightforward. Letting =

be the coordinate parametrizing the contour, we introduce
the action

1 _
- f dr / d*xd*0d*OE "+ L. (4.11)
27 C
where
E A E ++
Ett = sdet< Mo > (4.12)
EA ET

with E A corresyonding to the pullback of the one-form E4
to the contour. ~ Applying the results of Appendix B, £~
must be a covariantly holomorphic primary superfield with
vanishing Weyl and U(1), weights and V° charge —2:

0=V L~ =K, L~ =DL~=AL",

VoL~ =-2L7. (4.13)

Within projective superspace, the natural quantities are
holomorphic on SU(2)/U(1), so the action principle (4.9)
[or (4.11) in its generic form] is more commonly encoun-
tered than (4.5) [or (4.7) in its generic form]. In fact, as we
will shortly review, the action principle (4.9) can also
efficiently encapsulate the other relevant action principles
involving integrals over smaller superspaces. Let us
describe these other possibilities next.

B. Analytic superspace integrals
As discussed in the Introduction, the natural action
principle in projective superspace involves a contour
integral and a Grassmann integration over O¢" =, Q"
and 64+ = v;"@" . In flat projective superspace, such actions
take the form [29,32]

__% +dvz+/d4 d*et o+t
___% +d,Uz+/d4

where L% is a holomorphic analytic Lagrangian,
DYt LT =Di Lt = 0.

The curved_generalization of the analytic superspace
integral (4.14) is naturally written

)AL, (4.14)

1
——j{ dr/d“xd“&*ﬁ“ﬁ**, (4.15)
2r C
where the measure is
“For example, E,*+ = é’Eﬁ* + EE;«**, where := d/dz.
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Ema Emg+ Em++
E77 = sdet Eﬁﬁ-a E,i+g+ E,_H--H_ (4.16)
ETa ETQ+ ET++

The action is invariant under all gauge transformations
provided £ is a covariantly holomorphic, analytic,
conformal primary superfield, with vanishing U(1), weight
and equal Weyl and V° weights,

VLT = VLT = KL = ALY =0,

DL =VOLH =2,++, (4.17)
The integral (4.15) is the natural action principle in
projective superspace on M*® x SU(2). We will discuss its
component reduction in Sec. V. For now, we wish to
establish the relationship between analytic superspace
actions (4.15) and full superspace actions (4.11). Begin
by recalling two relationships between N = 1 full super-
space and chiral superspace integrals, which are respec-
tively written
/ d*xd*0d*0EL, / d*xd’0EL,.  (4.18)
The first relationship is that any full superspace integral can
be written as a chiral superspace integral as

_ 1 -
/ d*xd?0d*0EL = -1 / d*xd20EV2 L

-3 / dxd208(D? —8R)L.  (4.19)

We have written the chiral integrand in two ways; the first
expression is appropriate for A" = 1 conformal superspace
[38] while the second involves the conventional formu-
lation of A/ = 1 Poincaré (old minimal) superspace.15 The
second relationship can be written

X
\25'¢

X
=- / Rt ) e —
(D> — 8R)X

/ d*xd*0EL, = -4 / d*xd*0E —— L,

(4.20)

where X is a real primary superfield of dimension 2. [The
proof follows by applying (4.19) to the right-hand side.] In
this expression, V2X is chiral and primary and so the
second integrand is primary. The third integrand involves
the same expression in Poincaré (old minimal) superspace.
This last expression is especially useful because we can
adopt the Weyl gauge where X = 1, in which case the
above equality simplifies to

SWe use the conventions of [35]. See also [39,40], where
different conventions are employed.
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/d“xd“éé’ﬁc :l/d“xd“égﬁc. (4.21)
2 R
It turns out that two analogous relationships can be
constructed between full superspace and analytic super-
space, both over a contour C. The first relationship we will
establish is the analogue of (4.19),

- i% dr/d4xd49d49E++£“
2 C
1
= ——f df/d4xd46+€“(v+)4£“. (4.22)
2r C

To prove this, we go to the analytic gauge where the
covariant derivative V,_ = V is simply given by 9/06%".
This is always possible to do because of the constraints
(3.23). This fixes the gauge up to 6 -independent gauge
transformations. In this gauge, E*" is equal to £77; the
difference in apparent V° charges of the two quantities
arises because in the analytic gauge, any V° gauge trans-
formation must be accompanied by a special diffeomor-
phism to maintain that gauge. The integral becomes

1

- Axd*or 04 0% (EL). 4.2
32ﬂédr/dxd9 010, 0, 0 (EL).  (423)

£~ is itself analytic in this gauge,

0y € = E (0 ENB)ERN (—)V

As a result, we find
1 R
e dT/d4xd49+5“8‘180,_8d_8‘i£“, (4.25)
32 C

with the integrand equal to (V*)2(V*)2£~" in this gauge.
Rewriting in a gauge-invariant way recovers (4.22).

In projective superspace, the expression analogous to
(4.20) is

1
——j{dr/d4xd49+5“£++
2r C
= —i% d'r/d“xd419d4«§E++ X L
27 Jo (VH)X ’

where X is a real superfield of conformal dimension 2 and
invariant under the SU(2) derivatives. (V)*X is a real
conformal primary of dimension 4 and so the integrand on
the right-hand side is a real primary superfield of vanishing
weight. The advantage of the right-hand side is that it can
be formulated directly in the central gauge. Indeed, an
equivalent formulation appeared in [20] (mirroring an
identical construction in 5D [19]) where it was used to

(4.26)
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define analytic integration in the central gauge. There the
particular choice X = WW was made, where W was an
abelian vector multiplet. Moving to the central gauge where
EtT = EV}T, one finds

1
- dr/d4xd49+5“£++
2r C

16 - EWW
=—-— 12+Jr/d4 d*0d*) ——————— L.
znfé g (V2w (V)W

(4.27)

If one degauges conformal superspace to SU(2) superspace,
(V*)2W becomes ((DF)?+4S*H)W. The super-Weyl
gauge W =1 leads to the final relation

1
- dr/d“xd“@ﬂf‘“ﬁJ“Jr
2r C

1 - E
- ++ d4 d49d49—£++.
e v [ ot

The expression on the right is a particularly elegant form of
the analytic action principle [20], permitting easy manipu-
lation in the central gauge. The similarity with the V' = 1
analogue (4.21) is especially striking.

Before moving on to another possible action principle,
we should comment why we did not consider analytic
integrals over the full §?, which would presumably lead to a
curved harmonic superspace action principle. From the
discussion in Sec. III C, we know that any analytic primary
Lagrangian obeying V £(@ = 0 must also be covariantly

holomorphic V*++ £ = 0. This condition is difficult to
reconcile with harmonic integration on the S2. where we
expect any integrand to be globally defined. Even if this
barrier could be overcome, one still finds an essential
difficulty in the equality between the V° charge and the
Weyl weight. If one is to construct the curved superspace
generalization of a harmonic superspace integral, the
leading term should be (V~)*£(@, which suggests the
choice ¢ = 4. However, the Weyl weight of £(9) requires
g =2, and so the charge is inconsistent with harmonic
integration. We will comment further about the resolution
to the problem of covariant harmonic superspace in the
conclusion.

(4.28)

C. Chiral-analytic superspace

The final action principle we will discuss is a curious
one because it involves an integration over 3/4 of the
Grassmann variables, with a complex conformal primary
Lagrangian £° that is chiral-analytic, Vi £° = 0. Such a
Lagrangian would, in the analytic gauge, be independent of

60"~. Provided that the Lagrangian is holomorphic with

PHYSICAL REVIEW D 92, 085004 (2015)

certain weights, V*+£0 =0, DL = £° AL? = 2£°, and
VO£ = 0, then the following action is invariant:

1 _
-5 7{ de / dxd*0d20+E0L0 + Hee.,  (4.29)
T Jc

where the measure is

Ema Em at Em a+ Em++

a at a+ ++
E." E,. E,. E,.

. a . at . oa+t .+
E.* E" E. " E,,

h
Era Efai Er a+ ET++

EY = sdet (4.30)

Such chiral-analytic actions are naturally a higher deriva-
tive and have been discussed recently in [41] in the context
of curved projective superspace, as well as [42] in the
context of flat harmonic superspace.

To evaluate such actions, one can convert them
to analytic integrals by integrating over the two 6*~
coordinates:

1 _
—j{ dr/ d*xd*0d>6+£0L0
2r C

_ L df/d4xd46+5“(v+)2£0. (4.31)
81 C

The integrand (V*)2L? satisfies all the required properties
of an analytic superspace Lagrangian. Alternatively, one
can lift a chiral-analytic superspace integral to full super-
space in the same way as Eqs. (4.26)—(4.28). For example,
using the antichiral field strength W of a vector multiplet,
one has in the central gauge

1 _
-—¢dr / d*xd*0d*6+E0LO
2z C

2 . w
=— V++/d4 d*0d*OFE — — L0 4.32
rc/(é * (VW (4.32)
or imposing the Weyl-U(1) gauge W = 1,
1 _
-— ¢ dr / d*xd*9d>0+£0.L0
2r C
_ L ja{ yt / dxdOdDE—— 0. (4.33)
27 C S++ . '

This formulation of the chiral-analytic projective super-
space action appeared in [41]. Finally, we mention that one
can convert a chiral-analytic integral to a chiral superspace
integral by integrating over #“". This is easiest in the central
gauge:
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—i]{ dr/d4xd49d29+50£0
= / d*xd*0€ 7{ VHH(VO)2L0, (4.34)

The simplest proof of this is to convert the full superspace
integral on the right-hand side of (4.32) to a chiral super-
space integral while remaining in the central gauge.

V. COMPONENT REDUCTION OF ANALYTIC
SUPERSPACE ACTION

Our goal in this section is to perform the component
reduction of the general analytic superspace action

PHYSICAL REVIEW D 92, 085004 (2015)

At this stage, we emphasize that 6**-independent gauge
transformations are still permitted in the gauge
Vi = 0/06%*. In other words, the gauge of the compo-

nent fields at 6** =0 remains completely unfixed.
Naturally, one expects the resulting action should take
its simplest form if we adopt the central gauge at o= =0,
and we will do this at the very end. However, it is not easy
to impose central gauge at the component level prior to
taking the 6*" derivatives, so we will remain in a more
general gauge for the time being.

To organize the calculation, it is convenient to write the
integrand as a five-form:

11 -
1 __ 2 2(ptt
S — _Tﬂidf/d4xd49+g——£++ (5.1) S 2716 M4><C(a+) (0.)% (e L7),  (54)
in the central gauge. We begin by noting that the action  where &+ is the volume five-form
can be evaluated at 62~ = 0. Along this submanifold,
it is possible to adopt a gauge where V, = 0/06%",
corresponding to - e =dx® Adx! Adx® Adx® A drett
1
E¢ E,** Eo = —€apeaEC N EP N ECANET A ETT. (5.5)
£ =sdet| E.* EfT EST
0 0 5, Taking the %" derivatives of this five-form proves to be
; . - simpler than the corresponding calculation with the deter-
_ sdet (Em E, > — ot (5.2) minant. Expanding out the action, one finds
E“ ET++ ’ :
so our goal is to evaluate S = _L J. (5.6)
27 Jmixe
=——— [ d* ?{dr (04) ettt 53
2 16 +VOA S B3 here the five-form J is
|
J=e¢t (V )4£++ _,3(1 ++V ( )2£++ — ,a +A++va—(v—)2£++
s+ (T 1 - 3. 5 a— -
+ E(&)ze**(v VLY 4107 (VPL 4+ §8a+a&+e++ [Vem, verjors
1 = _ j S 1 = a
- §81(6+)2e++va LT — gad+<a+)2e++v L+ T6 (0,)*(0, )%ttt (5.7)

In the above expression, we have replaced 0, — V., for
all the derivatives acting upon the analytic Lagrangian £+
This is allowed because after projecting to 4 = ¢~ =0
(implicitly assumed above) the result holds in a general
component gauge. To recover the explicit expression for 7,
one must evaluate each of the 8" derivatives of &**. This
can be done systematically, although the resulting formulae
grow quite complicated as the number of spinor derivatives
increases. The results are given in Egs. (C9)-(C12) of
Appendix C, where some details of the calculation are also

|
included. We emphasize that upon using Eqgs. (C9)—-(C12),
the result for J is given in a general component gauge.

Some comments should now be made about the nature of

this five-form:

(1) It is invariant under all gauge transformations, up to
an exact form. This is a direct consequence of its
origin from a gauge-invariant superspace action, but
it can be checked explicitly. A straightforward
calculation shows, for example, that 7 transforms
under S-supersymmetry, & = n*"S; —»%~S;, into
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an exact form involving #2". Therefore, strictly
speaking, J is not a conformal primary five-form,
although its integral is invariant.

Viewed as a five-form in superspace, 7 is closed. In
principle, this can also be established by an explicit
computation but is a direct consequence of its
construction. Under an arbitrary diffeomorphism

on M*B x SU(2), J transforms as

The first term vanishes upon integration over the
bosonic manifold M* x C, while the second must
vanish for arbitrary £ because the original action was
invariant under diffeomorphisms of all types. This
implies that 7 is closed.
These two features are indicative of the superform approach
to supersymmetric invariants [43], known within the super-
space literature as the ectoplasm method [44,45] (see also
[46]). There one usually encounters a superform expanded
|

(i)

(5.8)

1 - j -
L7 = e (VRVPLH = (0™) Ve (V)L

1

+ Z ((Wzonm)aV?md_ + Wna_<5nmli/;1>d -

1
+ 5 (wmo™yy ) (V7)2LTF

2

1 emn
- 2 pq(Wm nl//p)l//q -

iV (o™
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entirely in terms of the supervielbein—in our case, this
would mean J = 1EAl Ao NEAT A4, —but this is
by no means a necessary requirement (see e.g. the dis-
cussion at the end of [44]). In fact, the five-form we have
found above, given by (5.7) upon substituting (C9)-(C12),
involves the explicit appearance of S-supersymmetry and
special conformal connections.

A dramatic simplification of 7 occurs if we now adopt
the central gauge for the 6 =0 components of the
connections. We leave the details again to Appendix C
and merely summarize that the action can then be written
S = [d*xeL where the Lagrangian £ involves a contour
integral with two distinct integrands,

L= ! f]ﬁ*ﬁ“ —% VL, (5.9)
2

where

— g o)V (VRL
)ua) [V VIL+

1 _
+ 7 (") (V7L

n av——>v Lt

1
+ (5 €mnpq(l/_/;16nl//1_7)l/_/;(‘1 Vi ) L+ 3€mnpq<l//m0-nl//p)v__£++ (510)
£¥F = ~BD 4 4f— 4 + o™ ) 3 e,V
v B){ i)+ 2o Vi VL = [Saf = i)+ 2 i | T
_ZV++( m)aa[v v ]£++. (5.11)

The component fields appearing above are defined in [34]
and correspond to the matter content of N' = 2 conformal
supergravity. These consist of (i) five fundamental
connections—the vierbein e,,%, the gravitini y,%; the
SU(2); and U(1)g connections V,,'; and A,, and the
dilatation connection b,,; (ii) covariant auxiliary fields
Wobs Xai» and D; and (iii) composite connections ,,”,
|

i

A
¢ma = ¢ma

2 - . I R I
¢maj = ¢n1aj + Z (Gm)(j>a =

1 n o i ab =
mo-p Danﬁj_ZWab(G O-pl//nj)/i .

|
¢,,* and f,,%, given in terms of the other fields, which are
associated respectively with Lorentz, S-supersymmetry and
special conformal gauge symmetries. In the expression for
LT+, we have used the symbol éﬁmﬁ to denote the gravitino-
dependent part of the S-supersymmetry connection. It is
given by

1 T .
(amﬂﬂ) =3 <0””0m - gﬁma””> , (Dpwn”’ + 7 Wap(57 Gpl//n'))/}>v
af

(5.12)
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Note that £+ vanishes in the rigid limit, where we recover
the five-form of [33].
Introducing

0~ E/d4xe£‘_,

it is a straightforward exercise to demonstrate that @ is
closed as a one-form on SU(2),

wtt E/d4)€€£++, (5.13)

D" o =D"wtt s

eDT" L7 = eD LT 4 total xderivative.  (5.14)

This is a direct consequence of our construction, but it can
also be checked explicitly.

The importance of two distinct integrands can be
attributed to the fact that £~ is not holomorphic, even
up to a total derivative. The presence of the L™ term is
necessary in order for the full action to be invariant under
all of the component gauge transformations. These include
not only S-supersymmetry and Q-supersymmetry but also
SU(2) diffeomorphisms that leave us in the central basis.
Recall that these act as

8, =—-A""D=+ D% + 1D+, (5.15)
where A** and A° are given by (2.16), now with A’;
potentially depending on x. Invariance under §, can
actually be used to uniquely determine £~ and L£tF
starting from the leading term in £7~.

At this stage, we should mention that the action (5.9) is
actually invariant under another group of transformations—
arbitrary diffeomorphisms on the SU(2) manifold,

Spit = —gttpi= 4 it

— gt 0, —
ovy = & vy,

(5.16)
where &5+ and & are x independent but otherwise arbitrary.
This implies an invariance of the action under small
deformations of the contour C.

The component action (5.9) can be compared with the
original expression (4.13) in [20] [where SU(2) superspace
was used] as well as the later result (4.13) in [47] (using
conformal superspace). Both expressions involve only the
first contour integral with £~~. This earlier formulation can
be interpreted in our language as involving a complex
SU(2) manifold [i.e. an SL(2, C) manifold] as discussed in
Sec. II F. This involves making a certain complexification
of the harmonic variables v'*,

it Vi
()= ()
v u;/ (v, u)
where u; # (v')*. Then it is possible to choose a contour
in SL(2,C) where ' varies with u; fixed, with the

(5.17)
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requirement that (v, u) be nonzero. In such a case, V™~ =
0 on the SL(2,C) manifold and so the second contour
integral vanishes automatically even through £ is non-
zero. Moreover, if we take the rigid limit with nonconstant
u;, it is easy to see that £ vanishes even though V™~ is
nonzero. Thus we recover both the original flat space
formulation of [3,32] with arbitrary u; as well as the curved
formulation of [20] with fixed u;.

We emphasize that the original derivation of £~ in [20]
was based on a very similar observation to (5.14). The
method there was to construct £~ iteratively by first
specifying the leading term, analogous to (V~)*£**, and
then to add the terms needed to ensure that £~ was
independent of the fixed coordinate u;, up to a total contour
derivative (analogous to D~~L*") and a total spacetime
derivative. More explicitly, let us consider the complexified
version of the expression (5.10) for £7~ in the central
gauge,

L = (V)P L (v) + -
L wuugn,

~ oI 1) 4

(5.18)

Following the same argument as [20], the action must be
invariant under constant shifts du;, which can be para-
metrized as
Su; = au; + p;, (5.19)
in terms of x-independent parameters « and f. (This is
possible since »; and u; are linearly independent along the
contour.) The parameters a and £ must depend on the
contour coordinate 7 in order for du; to be r independent,
but the precise relationship will not concern us here. The
important feature is that dv; = v /(v,u) and so the
transformation (5.19) can be interpreted as the SL(2,C)
diffeomorphism & = &~D** with &~ = f/(v, u). This
acts only on v;. It follows that
SL—=&7DMT L. (5.20)
Now in order for this to vanish under the contour integral, it
must be that (5.14) holds for some choice of function £+,
This allows one to iteratively determine all contributions to
L™~ starting from the leading term (5.18). This uniquely
specifies £~ and £ in (5.10) and (5.11). Now assuming
that £~ has been so constructed, one has
8L~ =& DL 4 total x derivative. (5.21)
Using D™~ ou; = 0, one can prove D™ "fx D 7~ =0,
and so one recovers

6L~ =D~ (& L") + total x derivative. (5.22)
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The remaining contour can then be discarded and invari-
ance under (5.19) confirmed.

A natural question to ask is what happens if we keep an
SL(2, C) manifold but allow ; to vary along the contour, as
in [3,32]. We may still demand the invariance of the action
under (5.19), but now there is no need for any constraint to
be imposed on a or . We find as before (5.20). This leads
[using SV = §(v;dv’) = 0] up to a total x derivative to

5 j[ VLo = jg VHETDT LT, (5.23)
C C

which does not vanish automatically. But now the second
contour integral is not zero, so we must analyze its
variation. This involves calculating 6V~ using the expres-
sion for the complexified vielbeins (2.35). The result is
SV~ =dE 4+ 267V, the same expression as (2.31)
found on the real SU(2) manifold. This leads to

5 j'{ VLt = ]{ (BV—L+ 4 V=&~ DH L)
C C

= 7{ (gL 425V Lt
C

+ETVTIDTRLTT) (5.24)
and the difference between (5.23) and (5.24) is, after rewriting
VD, LT =dL" and discarding a total derivative,

-5 }[ VL 48 74 VLt = }[ (de L +£-dLH)
C C C

=0. (5.25)

This is a happy state of affairs. The expression (5.9),
which we derived using a real SU(2) manifold in the central
gauge, proves to generalize to an SL(2, C) manifold in the
central gauge, no matter the behavior of u; along the
contour, so long as (v,u) # 0. In practice, one expects
the calculation either with constant u; or with u; = v, to be
convenient: both correspond to special cases of a more
general formulation involving the auxiliary manifold
SL(2,C). That we can make arbitrary shifts (5.19) ensures
that one can analytically continue from u; = 7; to u; =
constant (and back again) without any difficulty. This
ensures the formulation presented here and the conven-
tional formulation [20] are equivalent.

VI. CONCLUSION

In this paper we have constructed curved projective
superspace using the supermanifold M*B3 x SU(2). This
approach generalizes previous work [20] in four dimensions,
which we have interpreted as the central gauge of the
superspace M*® x SL(2, C), the complexified version of
the superspace taken here. This approach to curved projective
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superspace can straightforwardly be extended to dimensions
2 through 6 using the existing body of work [19,21-23].

In particular, a recent paper [48] has explored superforms
in 6D curved superspace [23], motivated partly by an
attempt to construct the component form associated with
the 6D projective superspace action principle. It seems to us
that an interpretation of 6D projective superspace along the
lines we have taken here should be possible. We reiterate
here that the five-form 7 corresponding to the component
Lagrangian of the 4D analytic projective superspace action,
which we gave implicitly in (5.7) upon substituting
Egs. (C9)—(C12), rather curiously does not possess the
standard form J = & E4 A - A EA5 7, ., of an expan-
sion purely in terms of the supervielbeins. It is plausible
that this is a source of the difficulties observed in [48].
Another intriguing feature of [48] was its use of pure spinor
Lorentz harmonics to drastically simplify the study of the
complex of differential forms; perhaps a curved superspace
which implements such Lorentz harmonics directly within
the superfields could have powerful applications.

To keep our construction as simple as possible, we
have avoided introducing a Yang-Mills connection on
M*® x SU(2), but there is no barrier to doing so. This
was already discussed in the conventional formulation [20],
and the extension to the formulation here is completely
straightforward. Similarly, we have not discussed the various
possible actions one can construct involving covariantly
arctic, antarctic, tensor and vector multiplets. These have
been discussed elsewhere in the conventional approach; see
[20] where the vector multiplet action and off shell super-
gravity-matter actions with a tensor multiplet compensator
were constructed in curved superspace. Their construction in
the general gauge is similarly straightforward.

The main benefit of this new extended formulation is that
it transparently admits the existence of an analytic gauge
where (at least locally) V; =0/00% and D"+ =v10/0v7;
in such a gauge, covariantly analytic superfields are
characterized simply by their independence of v; and
0%, It is well-known in harmonic superspace that the
analytic gauge (known as the analytic basis in the harmonic
context) plays a critical role when one constructs the
supergravity prepotentials [49,50]. It seems likely that
the analytic gauge should help resolve the problem of
finding supergravity prepotentials in projective superspace,
a partial solution of which was presented in [19].
Presumably, it would follow closely the approach utilized
in [50], where the supergravity prepotentials in harmonic
superspace were explicitly derived from the constraints on
the algebra of covariant derivatives. Perhaps the harmonic
and projective approaches could even be related to each
other, as was the case with the gauge prepotentials [16,17].
We intend to revisit this subject in the near future.

Another interesting feature is that it provides a window
into a covariant formulation of harmonic superspace. We
have mentioned in passing that harmonic superspace seems
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to be less feasible in the curved superspace M*® x SU(2),
at least when the SU(2) manifold is identified with the R-
symmetry group. The main barrier is that analyticity in the
Grassmann coordinates imposes holomorphy in the SU(2)
coordinates, but this negates the possibility of using
globally defined superfields. This issue has been noted
in harmonic superspace—one is forced to distinguish
between the SU(2) of the harmonics and the SU(2) of
the superconformal group (see Chapter 9 of [1])—and a
solution has also been suggested: one should complexify
the S? of harmonic superspace to two copies of CP!, with
the superconformal SU(2) group acting only on one of
them. A similar observation was made in [17] and elab-
orated upon in [18] where it was suggested to complexify
harmonic superspace in a similar way to recover projective
superspace. Based on this observation, it seems feasible to
construct curved harmonic superspace using the curved
superspace  M*B x SU(2) x SU(2) (effectively M*8x
CP' x CP"). As discussed in [18], harmonic superfields
can be interpreted as biholomorphic superfields on
CP! x CP', restricted to possess a harmonic expansion
on the subspace where the CP' manifolds are identified.
This will be explored in a subsequent publication [51].
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APPENDIX A: CURVATURES OF CONFORMAL
SUPERSPACE ON M*B8 x SU(2)

1. Torsion

The torsion two-forms are defined by

T := dE* + E® A Q,* + E* A B, (Ala)
T%F = dE°* + %E“i A B —iE™* A A
+ B A Q7 +EP A FF ()1, (A1b)
== dESE +%Edi AB+IiE*™ A A
— BT A Q) — iEY A FE(5,), (Alc)
* = dEFE 4 4EPE A Fj. (A1d)
70 := dE® + 2E2T A Fj+ 2EF A Fj. (Ale)
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The nonvanishing components of the torsion tensor can be
grouped by dimension:
(i) Dimension 0

T, 5" = £2i(c) ;.

T:i::l:g:ng =F 9p% To;_sigi = £05%,
TOiiii - :l:2, T__++0 - 1 (AZa)
(i) Dimension 1
Tyupy™ = i€ ;W'
Ty " ﬂ/," ze},ﬁWﬂ". (A2b)
(iii) Dimension 3/2
1
ot _ L \Jot
L™ =265V Wop-
. 1 -
Lot at .
Tigp™™ =56V Wy
T/}ia{lii = _ie/}avfﬁiv_véﬁd,
Tﬁiadii = ieﬁflvd)iwum
o_ L Girp
Tﬂia{'l - __eﬂuvlp:': Wéﬁa'gv
T/ii(l(')to 2 /} (lv W¢Ul (AzC)

(ii1)) Dimension 2

T .. ‘ii:

1 I eigitn
Ppai - ZGBQVYiVYiWﬂa + _€/3av' V=W, Ba

T/”/iado - V vy Wﬁa +7 eﬁav v? W/ia

(A24d)

Some subtleties arise when one compares these equa-
tions to those in [34]. For example, there one finds
(relabeling ®/; — V/))

o1
Tai - dEal' +Ea] AN Vji +§Eai VAN B

—iE NA+EP A QB A Fual. (A3)
There is an apparent discrepancy in the second term, which
is absent in the corresponding equation for 7%*, This is
because here the tensor V/; is no longer interpreted as part
of the vielbein and so the formal definition of the torsion
two-form differs. However, what does not differ is the
actual equation one finds for dE%;. From [34], one finds the
constraint
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T% = —iE" A E;;(6,)PW g

1
- §E” A E(605)PV4W (A4)

which should be equated to (A3) to give a constraint on
dE%;. In our framework here, we have instead

T™ = —iE" A EF(3,)P W,

1 .
- § Eh N E° (Uch)ﬂ}vai W},/}

F E“F A EXE £ E*F A EO. (A5)

This should be equated with (A1b) to find a constraint for
dE**. In the central basis, the two equations for dE¥; are
identical. The “additional” terms in the second line of (A5)
are the same as the terms “missing” in (A 1b); this swapping
amounts merely to a redefinition of the torsion two-form.
Moreover, this redefinition does not change the values of
the tangent space components T ¢5*, so the same algebra of
covariant derivatives holds in both approaches.

A similar alteration happens in the definitions of
and 7° when compared with the SU(2) curvature R(V)
given in [34]. Nevertheless, the values of T and T 5"
are identical in the central basis to R(V)cp"vi vy

and R(V) 5" v v .

This swapping of terms between the constraints on and
the definition of the torsion tensor occurs also when one
compares the curvature R(P),,,* from the tensor calculus
formulation of conformal supergravity with the torsion
tensor 7,,,%. These differ by a term proportional to
Wi ja“y'/nf . In the component formulation, this bilinear
appears in the definition of R(P),,,,* (which is set to zero).
In the supergravity formulation, it appears in the constraint

equation from the nonzero component 7, 5t = 2i5§ (6"),;
However, the curvature [V,,V,] is the same in both
approaches, as is the equation for de“, which is used to
determine the spin connection.

Tii

j

2. Lorentz curvature

The conformal Lorentz curvature two-form is

Rb = dQPe + Qb A Q¢ —2E A FY
+4EP~ A FOt (oba)a/; —4FP+ A F“‘(o-b“)a/}

+HAEPT A FO(55) 5 — 4B AFEH (50

(A6)
and may be canonically decomposed as R
2¢jRpcpa = 2€paRpejs
curvature results in terms of these components. We group
the nonvanishing components by dimension.

~eCol DCppacc —
It is simplest to express the
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(i) Dimension 1

R5+y—/}’& = _zeﬁyW[}(l,
Ry i pa = 2655/Wﬁa- (A7a)
(i) Dimension 3/2
Rotyi 6 ViWai F 5 L, VEW,..  (ATb)
Fripa 24 ay 5y
Rz =F 5€5ViWay T 2es, VW, (AT
F 17 pa 5y RIS
(iii) Dimension 2
= ! \VJ P
Ress 0 = _g%y(eéﬁeya + €5a€yp)V gy W
1 -
+ 1€ ViaWor + €Wy Wpao  (ATd)
Ry oy =+ o Wi
ssrvpa — +§€5y(€5b€?d + €546V, W
1 - -
“ a6 VpaWsi = €W Wps (AT

3. Dilatation and U(1), curvatures

The conformal field strengths for dilatations and chiral
rotations are

R(D) = dB +2E“ A F, —2E% A FJ

+2E4T A Fy, (A8)
R(A) =dA +iE*" A Fj —iE*" AF,
— iE% A Fi +iE*" A F. (A9)

We group the nonvanishing components by dimension.
(i) Dimension 3/2

R(D)ys, = i%eﬁﬁﬁwé N (A10a)
R, =F 5659 Wy (AI0D)
R(A) s ,q =F %eﬁav¢iW¢d, (A10c)
R(A)j: . =F %GMV‘/&W(/,{,. (A10d)

085004-21



DANIEL BUTTER

(i1) Dimension 2

: 1
! R(S);pp™ =565V Wyp,
R(D)ﬂﬁad = geﬁd(v/3¢w()(l + v(1¢W(/)ﬂ)
| T wt _ L Tty a
—§€ﬂa(vB¢W¢&+vd¢W¢ﬁ), (AlOe) R(S);}i/)’/i = iZeMVﬂ A4 W¢ )
i
R(A)ﬁ.ad = _1_6€Bd(vﬂ¢w¢a + VQ¢W¢ﬂ)
; . . R(S) _—_— 7€ V”Fviww
1 = - yiﬁ/} 74
Tera(Vpg WitV Why).  (A10f)
4. Special superconformal curvatures R(S)}":F ﬂ/}"i = iég}; /}(vi)ZWﬁa,
The special superconformal curvatures R(K)?*, consist-
ing of S-supersymmetry R(S)%* and special conformal
curvatures R(K)“, are defined by (S)FF/}/} = j: g€ (Vi)ZW a
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(Al4d)

(Alde)

(A14f)

(Al4g)

(Al4h)

R(K)* = dF* = F" ANQ,*—F* A B (iii) Dimension 5/2
+2i(6%) o (F*~ A F&T — Fo* A F&), (A1)
a 1 ThaTE 1T T a
I R(S)yips™ = 3wV VG Wiy Wy 975W,0)
R(s)ai dF(lj: 2F(1j: A B+ l'Fai AA 1 -
£ 65 (VE)2V W, (A28)
+ PP A QuE F FE A B0 & FOF A EEE 16
— iF? A E;*(5,)%, (A12) " 1
R(S)y}-//}/'}a = 4 },/}(lv V W[f ) + 4 /;V W¢a)
P PR s p— 1 =\ S TF T G
R(8)%* = dFo* — EF EAB—iF* AA ¥ 1_6€yﬁ(vi)2v?;wﬁ)a (A29)
—F/’iAQﬁé’:FFdiAEOj:Fd:FAEii o
. The nonvanishing components of R(K)cp , =
+ iF” A Eai((_jh)(m' (A13) R(K)gBa(O-a)ad are given by
We give the nonvanishing components of R(S)p%* g
grouped by dimension. - R(K)yp-aic = €V o Wi (Al5a)
(i) Dimension 3/2
1 } R(K); joi = —€3Va W e (A15b)
R(S); - =3¢ VW, (Al4a)
. | - ViV W,
R(S)y-&-ﬁ—ai — Eeyﬂv(piw(],a‘ (A14b) R(K)yiFﬂﬂad =+ G},ﬁvﬁ Va¢W & (A]SC)
(i) Dimension 2 i n
R(K)yzpjoe = £56iV5 Va Wyar - (A15d)
R(S),. 55" = ﬂv “Wiyp  (Alde)

R(K) o = = gerﬂva vrﬂWr/)a_ rﬁva vrﬂ g
1 i, P
+Zeyﬁvﬁ¢(w¢aw?) 16 (V W) (VW) — 4eyﬁ(v¢+w¢d)(v(—ywﬁ)a)
feyﬁ(w’*W(pa)(v(mea)—Ze (VW) (VEW)-
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APPENDIX B: INTEGRATION OVER
SUBMANIFOLDS

In this appendix, we briefly review some elements of
integration theory over submanifolds. A complementary
discussion can be found in [20].

Let M be a supermanifold of dimension D with local
coordinates zY, M = 1, ...,D. We denote the grading of a
coordinate z” by (—)M. The manifold possesses a vielbein
E)”, and we can introduce an integral over a Lagrangian £

in the usual way as
S = / dPzEL.

Provided that £ transform as a scalar field under diffeo-
morphisms, 5:L = EM P, L, the action S is invariant. If the
manifold possesses an additional local symmetry group H
with generators X ,, under which the vielbein transforms as

(B1)

SnEr" = Ex®df 8" (B2)
with structure constants f.z* (see the discussion in e.g.
[34]) then the action S is invariant provided £ transforms as
ol = —(—)AgéngAﬁ- (B3)
Now suppose we are given a submanifold I of
dimension d with local coordinates 3", m =1, ...,d. We
have in mind a situation where the original coordinates z"
can be decomposed (at least in the vicinity of ) as zM =
(3", y*) with the submanifold M corresponding to the
surface with y* = 0. We make no assumptions about
whether 3™ and y* are bosonic or fermionic; in fact, we
are interested in cases where both consist of bosonic and
fermionic coordinates. We decompose the vielbein and its
inverse as

En Ep° E,™ E.}*
EMA: < ma ma>’ EAM: < am a ), (B4)
E“ E, ES" ¢

"

with the assumption that both &£, and ¢,* are invertible,
with inverses £, and ¢,*, respectively. This allows one to
compactly specify all the remaining components of the
vielbein and its inverse in terms of these quantities, and E,,,*
and E,™:

g a | E @
B, = < m m >
_¢yﬁEﬁn’5na ‘ ¢M(l _ ¢/AﬁE[anna
M gam - ganEnﬂEﬂm | _ganEnﬂ¢ﬁ”
EM = - o) (B9)

No assumptions need to be made about E,,* or E,”. One
can check that

PHYSICAL REVIEW D 92, 085004 (2015)

sdet&,,“
sdetg,*

E = sdetEy* = sdet€,,“sdetgp,* = (B6)

although we won’t make use of this feature.
Now consider the action S over the submanifold 90t with
Lagrangian L:

S= /ddsgﬁ, & = sdet€,,“. (B7)

This is invariant under 3" diffeomorphisms provided £
transforms as a scalar function. If we impose f 4* = 0, then

(B2) implies 65& = (—=)“g2fp,". So a set of sufficient
conditions for H-invariance is

57‘['6 - _(_)agéfgaaﬁ, fgﬁa =0. (BS)

It turns out that S can also be made invariant under
diffeomorphisms generated by &“. The easiest way to see
this is to note that because E /* = ¢,/ is invertible, it is
possible to construct a one-to-one relation between any
diffeomorphism in & and a covariant diffeomorphism
generated by &' = &¢,* modulo a certain diffeomorphism
in 3" and an 'H gauge transformation. Recall that a
covariant diffeomorphism is given by

O = EAV, = EEMOy — é:AHAéXQv (B9)

where H ¢ is the connection associated with the group H.
Taking &4 = (0,&%) = (0, &¢,*), one finds

glava = é:/a¢a/48” + élaEamam - glaHaéXQ

=80, + &9, ES"O,, — §”¢”“Ha9Xé. (B10)

Since we have already established invariance under 3"
diffeomorphisms and H gauge transformations, we need
only check covariant diffeomorphisms generated by arbi-
trary £% This will establish invariance under the full set of
diffeomorphisms. To prove invariance under covariant
diffeomorphisms with parameter £%, observe that
8E, " = E,PET " + EPET, 40 (B11)
We will restrict our attention to superspaces where T,z =
0 so only the first term in 6&,,* contributes. Noting that
6L =&V, L, it follows that the remaining sufficient
conditions for invariance of the action (B7) are
va’c - _(_>hTabb’C7

T, =0.  (BI2)
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APPENDIX C: COMPONENT ACTION
DERIVATION

In this appendix, we describe how to derive the compo-
nent action of

1
S = ——7{ dr/d4xd49+€“£++.
2r C

The integral can be understood as evaluated at 6~ = 0,
since these Grassmann variables do not appear in the
measure. To evaluate the action, it helps to exploit the
0“"-dependent parts of our gauge transformations (includ-
ing covariant diffeomorphisms) to fix the gauge]6
V.. = 0/060%". Now the analytic superspace vielbein is

(C1)

given by

a ++ 1 a+
€m Vm 2 Y~

a VT++ (CZ)

A _ 1 a+
EM_|€’=0 = e YW
0 0 g

In this equality, we have relabeled the components of the
one-forms &4 by e, V’“’, and 1y2" to simplify the

notation that will follow."” Its determmant £ is equal
in this gauge to e™" given by
e a ) ++
++ — m m
ett = det< oy ) (C3)

This determinant is over the five-by-five component viel-
bein describing both the base manifold with coordinates x”
and the SU(2) contour with coordinate 7.

The easiest way to evaluate the component action is to
rewrite S as

S==3r16 |, (@@RE L. (4
where &+ is the volume five-form
et =dx" Adx! A dx? Adi A dret
= %eabcde“ Ael ne Aed AVTT. (C5)

In order to evaluate successive spinor derivatives of e+,
one must work out the rules for spinor differentiation of the

This is just the superspace analogue of Riemann normal
coordinates for the Grassmann coordinates [52]. For an extensive
discussion of using normal coordinates to derive component
actions, see [20].

A precise notation would reserve these labels for the
component projections E4|,_, but it is convenient to use the
same labels for the full superfields.
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one-forms e and V** in the gauge where V,, = 0.

These can be derived by using the relations for the
corresponding curvatures 7% and T+, For example, from
the definition of 7%, one can show that

= _(_)MTy+B—aEMﬁ_ = Oprey” =

8,.e = —i(c") ;7. (C6)

Similar relations can be used to define the spinor derivative
of any one-form. The ones we will need are

aa e“ = —l(Ga) /}l//ﬁ )
3' p,
2 b(oh) /}Zﬂ+’ 6(1+V__ 0

Oy~ = =25,V
+¢ﬁ+ = _2ecR(S)C(x+ +’

. 3 .
Dur 't = Ew;x/”

a(ﬂr]}++ = 2¢(1

aa+ l/_//}_ =0,

- 2eCR(S)crl+b+ + Zlfb (Ub)ab’

0uf? = ~eR(K) 0! =2y RK), L. (CT)
as well as their complex conjugates,

Daye® = i(6) gy,
Day VT =297 — 3_617(%)/3&){[”’ DoV~ =
Oy~ = —28,/V ", Dasy?~ =0,

Doy PP = —2e°R(S) o, P,
Dor 't = %V/EXM = 26°R(S)ca " = 2if (1)L

Basf? = ~eR(K) 5" =30 RK), . (C)

As with the other connections, we label the superfield
connections F# by their component names, FA =
(f*.30%).

Applying these rules and using the explicit expressions
for the curvatures R(K) and R(S) where needed, one can
derive all the spinor derivatives of é**. Suppressing the
explicit A symbol from now on, we find

1
_ ydpa+
TR )

% ed¢+> )
(C9)

et = egpeqee’e ( ll/ V(G )

Ogr 8" = €qpeaee’e <6 WV 0

The second spinor derivatives are
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25++ - a b= == Byt (= 20 4 b eyif— 1+ d U oab e diz— =+
(0,)7e" = 2iete”y Yyl V (O"ah)a/’;+§€ e’ ey eapea(c )ﬂﬁ—ze e e eV X" Cabeds
= o . s 2i = 1 . _
(0, )287% = 2ietey YV (ouy) o + 5 e Y P eapeal0”) gy — 7 el e ey e,
- i - g -
8a+8d+e++ = —geabcdeaebec (V V++(Gd)aa’t + Wﬁ ¢2¢L (O-d)/}c'z + l//ﬁ ¢: (Gd>a/3)
i ~ 1 e
+ 5 e“ePeed f1 (o) giCapea + Eeaeb‘l’ﬁ_l/’ﬁ V++(6C)a/'}(6d)ﬂd€abcd' (C10)
The terms with three spinor derivatives are

_ 1 1 1
09(04)%e "t = e peqeelec e {5 Vo't + ZWQ_D - gll/ﬁ_(TdeO - R(D)de)(o-de)ﬂa:|

4i - N 4 — re - a N - 5d)Ba
— €gpeqeiele’ {3¢;V“(6d)ﬁ“ - gl//ﬁ f(0%5e) 5" + lllfﬁll/ﬁ x5 (59)P ]
+ edel |:8il//ﬂ_v__v++(6ab>/)’a - 21/_/(‘;V/ﬂ+$ﬁ+€abcd(5c)da(ad)ﬁ[j

+ 4i1//ﬁl//7¢“+(6ab)ﬂy] +4e Py TV (0,) 4

- . 1. 1__ 1__ o
8a+(3+)2€++ = eabcdeaebece {—EV )(;r —Zl//aD "’EU//;(TdeO - R(D)de)@de)ﬂa}

+ €qpeae’e’e” {%MJFV"(GCI)M - gll_/b_fe(f_fd‘fe)/}a - ill/ﬁ_ll_//;_)_{jj+ (Jd)ﬂd]
+ e“eb[Sil/'/ﬁ‘V“V““*(&ab)/}& - 2Wﬂ_lpﬁ+¢y+€abcd(56)ﬂ&(Gd)yﬁ
BB Gy | — AT BV ) (1)
The highest term involves four spinor derivatives:
(04)%(01)%e*" =2Depeqe"ebece?V ™ + eveb e’ [Swﬁ_wﬁ_(ac)ﬁ/j(Tabo - R(D),,) + %fdv__eabcd
+ 40V o (69) %€ gpea — 4™ V7 (09) gaCabea

+ e%eb | 32iph ity (Gan)j; + 32y’ gV (04),

+ 207y (Gap) = 1207w 7 (0an) g, + 32079 ful0)) 4
16y = — P+ VTV (0,) (C12)
In the above expressions, we note that the curvatures 7,;,° and R(D),, were actually found by spinor differentiation of

covariant fields such as y** and 7%* that appeared at lower dimensions, using the explicit expressions for 7° and R(D) in
terms of W, and W, .

The component action can then be written as

1 1
S=— f de / dxddgreE— L = — — 7. (C13)
2r Jo 27 J pmixe
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where J is a five-form given by (5.7). The full expression
for the five-form J is quite complicated in the general
component gauge. In practice, one should always analyze
component actions in the central gauge. Recall in this

gauge

e’ =dx"e,”, wot = dx™y,, %", etc. (C14)
while only the connections V** and 1 possess a dr

component,

. i __ i\
(0% ]G ~ geabcdeaebecl///; V(e

PGV (Gap) g0

[(0,)2" e ~ —2iee”

PHYSICAL REVIEW D 92, 085004 (2015)
V:I:j: — dxmvmj::t + dTV,ii,

W = dx"V,0 4 deV,0. (C15)

Because the integral selects out only the component 7
involving dx’dx'dx*dx*dz, only those components of J
involving at least one of V** and V* can contribute. Now
one can make a dramatic simplification by going to the
central gauge:

_ i 3
[3a+e++]ccNgeabcdeaebecll/ﬁ VI (6?) o

[(04)%e ]G ~ 2ie e’y Y/ VT (04p) g0

__— | . [ o
[0 Oy 2" F]og ~ ee” <5‘lfﬁ gV (o )a/}(o'd)ﬁa—_e v V++(Ud)<za> €abed>

- 1

[8(1 (8 )2 ++]CG ) €abede” ebece?V
+ 8ie‘e
[0 (01)2 e ~

d
Eeabcde ebeced ) )(a

4i
—geabcde e €C¢+V ( )
PP VTV (0,) 7 + ATy Py YV (6,) 45
4i

eabcde e ec¢ﬂ+v ( )/513’

+ 8ie“ebl/7~_V__V++(5ab)/}d — dephy gVt

(Ga)/jﬁv

[(0:)7(9:)% 2" H]eg ~ e“ePe (2e1V 7D + iy V= (67)% = 4iy V™7 (0%) ga)€avea

32
+?€ e e‘de eabcd+486 l//a_l// nZa V+ (Gll){l(l

+ 3216“eby/ﬁ ¢”+V"(_ab)

+ 32ie“ ety gV (0,4) 5, -

Converting the five-form into its corresponding integral density gives

/ J = %dr/d“xe(Vj*E“ V7L,
M4xC C

where
L = e (VRTPL -
16

1 — nm\a,;, a— a—
+_((l//n6 )l//m Ty,

(l//ma w ) (V2)2LH

2L+

o~

—— —m\a\7— (\/— i - m
(VL e

(6" )" —

(C16)

)V (VL

Vo) [Va, Vot

1 -
+ 3 (o) (VR L

Z
- (Jem o v = 2oV VoL

+ (2 m”"?(waénw;)u‘/;d—2(¢/:n6’""> Vi)V Lt

+ 3™ (0,0, )V LT

and

a

(C17)
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L=~ [3D + Y o) -

# [ = i)+ 2oy vy | Ve - |3

Vi @)V VRle
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(Wm0 ") + 4f " = 4(Fnd"" $i) + 4(wmo™ gy ) = 3™ (w0 ) Vo 1L

xi = i(ho™) g + 2" Vit | VLT

(C18)
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