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I. INTRODUCTION

The supersymmetric field theory models are constructed
on the base of specific supermultiplets represented by
corresponding superfields [1,2]. The most used super-
multiplets are the chiral one, widely used for the description
of the scalar matter, and the vector one, naturally describing
supersymmetric extensions of gauge theories. However, the
set of possible supermultiplets is much larger. The most
important examples are presented in Ref. [2].
One of the important although less studied multiplets is

the tensor one described by the spinor chiral superfield.
Originally, it was introduced in Ref. [3], where it was
shown to describe a gauge theory. Furthermore, it was
demonstrated in Ref. [4] that this superfield allows one to
construct the supersymmetric extension of the BF gauge
theory in four-dimensional space-time, allowing thus for
the superfield description of the models involving the
antisymmetric tensor field, which is essentially important
within the string theory context [5] as well as within the
quantum gravity context [6]. While in Ref. [4] the free
action for this theory was constructed, it is natural to make
the next step, that is, to couple this theory to matter, which
is as usual represented by a chiral scalar superfield, and to
study the low-energy effective action in the resulting
theory.
In our previous work [7], the coupling of the spinor

chiral gauge superfield to chiral matter has been consid-
ered, and the leading one-loop contribution to the effective
potential has been calculated. However, the action consid-
ered in Ref. [7] does not involve the terms responsible for
the BF action. Therefore, we propose another theory which,
from one side, is similar in some aspects to the model
discussed in Ref. [7] and, from another side, involves the

BF terms, allowing one thus to treat the BF theory in a
manner analogous to Ref. [7].
Within our studies, we consider the composite theory

whose action involves, first, the usual superfield Maxwell
term describing the dynamics of the real scalar gauge
superfield, second, the action for the spinor chiral super-
field involving the gauge-invariant BF term, and, third, the
coupling of these gauge fields to chiral matter. For this
theory, we calculate the low-energy effective action
described by the Kählerian effective potential.
The structure of the paper reads as follows. In Sec. II, we

formulate the model involving two gauge fields and matter.
In Sec. III, we perform the one-loop calculations. In the
summary, we discuss the results.

II. THE MODEL

We start with the Abelian gauge theory describing
two gauge fields, the real scalar one V and the chiral
spinor one ψα:

Sk ¼
1

2

Z
d6zWαWα − 1

2

Z
d8zG2; ð1Þ

where

Wα ¼ iD̄2DαV; G ¼ − 1

2
ðDαψα þ D̄ _αψ̄ _αÞ: ð2Þ

The theory (1) is gauge invariant, while the corresponding
gauge transformations look like

δV ¼ iðΛ̄ − ΛÞ; δψα ¼ iD̄2DαL;

δψ̄ _α ¼ −iD2D̄ _αL; ð3Þ

where, as in Ref. [2], the parameters Λ and Λ̄ are chiral and
antichiral, respectively, and L ¼ L̄ is a real one.
We can introduce mass terms for the theory (1). They are

given by [3]
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Sm ¼ im
2

�Z
d6zψαWα −

Z
d6z̄ψ̄ _αW̄ _α

�

þm2
ψ

4

�Z
d6zψαψα þ

Z
d6z̄ψ̄ _αψ̄ _α

�

þm2
V

2

Z
d8zV2: ð4Þ

Actually, Eq. (4), considered at mV ¼ 0, describes the
superfield BF model [4]. In that paper, the dimensional
reduction of that model has been carried out, and a mass
generation mechanism for the Kalb-Ramond field was
performed without the loss of gauge and supersymmetry
invariance.
Therefore, let us now consider the theory whose action is

given by S ¼ Sk þ Sm. We note that the term
R
d8zG2 in its

action is necessary, since if this term were absent, one could
simply eliminate the ψα and ψ̄ _α through their equations of
motion, thus reducing the theory to a simple supersym-
metric QED.
Now, we can obtain the equations of motion for the

model given by a sum of (1) and (4). For the superfields V,
ψα, and ψ̄ _α, respectively, they look like

δðSk þ SmÞ
δV

¼ iDαWα −mGþm2
VV ¼ 0; ð5Þ

2
δðSk þ SmÞ

δψα
¼ D̄2DαG − imWα −m2

ψψ
α ¼ 0; ð6Þ

2
δðSk þ SmÞ

δψ̄ _α
¼ D2D̄ _αGþ imW̄ _α −m2

ψ ψ̄
_α ¼ 0: ð7Þ

It follows from (5)–(7) that, first, the superfield strengths
Wα and G satisfy the field equations [7]

ð□−m2ÞWα¼0; ð□−m2ÞG¼0; formV¼mψ ¼0; ð8Þ

second, the gauge superfields V, ψα, and ψ̄ _α satisfy the field
equations [1]

ð□ −m2
VÞV ¼ 0; ð□ −m2

ψÞψα ¼ 0;

ð□ −m2
ψ Þψ̄ _α ¼ 0; for m ¼ 0: ð9Þ

We conclude that both the superfield strengths and the
gauge superfields satisfy Klein-Gordon equations. Notice
that (4) is not invariant under the gauge transformations (3)
unless mV ¼ mψ ¼ 0. As a consequence of this fact,
Eqs. (8) are invariant under the gauge transformations,
but Eqs. (9) are not.
In order to overcome the lack of gauge symmetry of the

theory Sk þ Sm, for mV ≠ 0 and mψ ≠ 0, let us generalize
(4) by introducing the Stückelberg superfields Ω, Ω̄, and N
in the following way:

S0m ¼ im
2

�Z
d6zψαWα −

Z
d6z̄ψ̄ _αW̄ _α

�
þm2

ψ

4

�Z
d6z

�
ψα − i

mψ
D̄2DαN

��
ψα − i

mψ
D̄2DαN

�

þ
Z

d6z̄

�
ψ̄ _α þ i

mψ
D2D̄ _αN

��
ψ̄ _α þ

i
mψ

D2D̄ _αN

��
þm2

V

2

Z
d8z

�
V þ i

mV
ðΩ − Ω̄Þ

�
2

; ð10Þ

where these new superfields transform as

δΩ ¼ mVΛ; δΩ̄ ¼ mVΛ̄; δN ¼ mψL: ð11Þ

By construction, the action (10) (and Sk þ S0m) is invariant under the gauge transformations (3) and (11).
Note that there are mixed Stückelberg and gauge superfield terms in (10). This makes the one-loop calculations more

cumbersome. However, if one fixes the gauge through adding the gauge-fixing term of the form

SGF ¼ − 1

α

Z
d8z

�
D̄2V − iαmV

D̄2

□
Ω̄
��

D2V þ iαmV
D2

□
Ω
�
− 1

8β

Z
d8zðDαψα − D̄ _αψ̄ _α þ 2iβmψNÞ2; ð12Þ

where α and β are the gauge-fixing parameters, the
mixed terms are eliminated. Of course, since the gauge
symmetry in this theory is Abelian, the ghosts completely
decouple.
Up to now, we have considered only the free theory.

Now, let us introduce its coupling to the matter represented
as usual by chiral and antichiral scalar fields [1]. It is known
that, under the usual gauge transformation, the chiral and
antichiral matter superfields transform as [2]

Φ0 ¼ e2igΛΦ; Φ̄0 ¼ Φ̄e−2igΛ̄: ð13Þ

Then, we introduce the following gauge-invariant action
involving coupling of matter and gauge fields [8] studied
also in Ref. [9] within the cosmic strings context:

SM ¼
Z

d8zΦ̄e2gVΦe4hG: ð14Þ
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The coupling constants g and h have mass dimensions 0 and −1, respectively (the last fact implies the
nonrenormalizability of the theory; however, renormalizable and gauge-invariant couplings of superfields ψα and
ψ̄ _α simply do not exist).
Finally, the complete supersymmetric massive gauge theory we study here is described by the sum of (1), (10), (12), and

(14), that is,

S ¼ − 1

2

Z
d8zV

�
−DαD̄2Dα þ

1

α
fD2; D̄2g

�
V − 1

8

Z
d8z

��
1þ 1

β

�
½ψαDαDβψβ

þ ψ̄ _αD̄ _αD̄_βψ̄ _β� þ 2

�
1 − 1

β

�
ψαDαD̄_βψ̄ _β

�
þm

2

Z
d8zVðDαψα þ D̄ _αψ̄ _αÞ

þm2
V

2

Z
d8zV2 þ 1

2

Z
d8z

�
ðDαψαÞ

m2
ψ

2□
ðDβψβÞ þ ðD̄ _αψ̄ _αÞ

m2
ψ

2□
ðD̄_βψ̄ _βÞ

�

þ
Z

d8zΦ̄e2gVΦe−2hðDαψαþD̄ _αψ̄ _αÞ þ ð…Þ; ð15Þ

where the dependence on the gauge superfields is given
explicitly. Here the dots are for the contributions involving
the Stückelberg superfields which completely decouple,
giving only a trivial contribution to the effective action.
Finally, notice that there is a nonlocality which was
introduced in order to rewrite the mass term as an integral
over the whole superspace.
Now, let us calculate the effective action for our theory. It

is known [1] that, in the matter sector, the low-energy
effective action in theories involving chiral and antichiral
matter fields is characterized by the Kählerian effective
potential (KEP) depending only on the background matter
fields but not on their derivatives. Within this paper, we
concentrate namely on calculating the KEP KðΦ; Φ̄Þ in our
theory.
The standard method of calculating the effective action is

based on the methodology of the loop expansion [10,11].

To do this, we make a shift Φ → Φþ ϕ in the superfield Φ
(together with the analogous shift for Φ̄), where now Φ is a
background (super)field and ϕ is a quantum one. Since our
aim in this paper will consist in consideration of the KEP,
we assume that the gauge superfields V, ψα, and ψ̄ _α are
purely quantum ones. In the one-loop approximation, one
should keep only the quadratic terms in the quantum
superfields. Therefore, (15) implies the following quadratic
action of quantum superfields:

S2½Φ̄;Φ; ϕ̄;ϕ;ψα; ψ̄ _α; V� ¼ Sq þ Sint; ð16Þ

Sq ¼
1

2

Z
d8z

�
−V□

�
Π1=2 þ

1

α
Π0

�
V

− 1

2
ψαDαD̄_βψ̄ _β þ 2ϕ̄ϕ

�
; ð17Þ

Sint ¼
1

2

Z
d8z

�
ðm − 8ghΦ̄ΦÞVðDαψα þ D̄ _αψ̄ _αÞ þ 2ð2gÞΦ̄Vϕþ 2ð2gÞΦϕ̄V

þ ðm2
V þ ð2gÞ2Φ̄ΦÞV2 − 4hΦ̄ðDαψα þ D̄ _αψ̄ _αÞϕ − 4hΦϕ̄ðDαψα þ D̄ _αψ̄ _αÞ

þ ðDαψαÞ
�
− 1

4

�
1þ 1

β

�
þ m2

ψ

2□
þ ð2hÞ2Φ̄Φ

�
Dβψβ þ ðD̄ _αψ̄ _αÞ

�
− 1

4

�
1þ 1

β

�

þ m2
ψ

2□
þ ð2hÞ2Φ̄Φ

�
D̄ _βψ̄ _β þ 2

�
1

4β
þ ð2hÞ2Φ̄Φ

�
ðDαψαÞD̄ _αψ̄ _α

�
; ð18Þ

where the terms involving derivatives of the background
superfields were omitted, being irrelevant for us. Here, we
use the projection operators Π1=2 ≡−□−1DαD̄2Dα and
Π0 ≡□

−1fD2; D̄2g.
The one-loop approximation does not depend on the

manner of splitting the Lagrangian into free and
interacting parts, since, at this order, one should deal
only with the quadratic action of quantum superfields

[12]. Usually, the propagators are defined from the
background-independent terms, and the vertices are
defined from the ones involving couplings of quantum
superfields with the background ones. However, as a
matter of convenience, here we will extract the
propagators from Sq and treat the remaining terms
as interaction vertices. Therefore, we obtain from Sq
the propagators
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hVð1ÞVð2Þi ¼ − 1

p2
ðΠ1=2 þ αΠ0Þ1δ12;

hψαð1Þψ̄ _αð2Þi ¼
4pα _α

p4
δ12;

hϕð1Þϕ̄ð2Þi ¼ 1

p2
δ12: ð19Þ

It is convenient to transfer the covariant derivatives
from the vertices to the propagators of the two-form
superfield. This will allow us to define new scalar
propagators written in terms of projection operators.
To do it, let us employ some tricks used in Ref. [7]:
one can observe from (18) that there is a factor DαD̄2

in a vertex associated to one end of the propagator
hψαð1Þψ̄ _αð2Þi, and there is a factor D̄ _αD2 in the other
vertex at the other end of the same propagator. Thus,
we absorb these covariant derivatives into a redefini-
tion of the propagator hψαð1Þψ̄ _αð2Þi (instead of asso-
ciating them to vertices) and define a new scalar field
ψ ¼ Dαψα whose propagator is

hψð1Þψ̄ð2Þi≡Dα
1D̄

2
1D̄

_α
2D

2
2hψαð1Þψ̄ _αð2Þi ¼ 4ðΠ1=2Þ1δ12;

ð20Þ

where we took into account that D̄ _α
2D

2
2δ12 ¼ −D2

1D̄
_α
1δ12.

We proceed in the same way with vertices and
propagators involving ϕ and ϕ̄.
Finally, redefining the propagators and vertices in this

manner, we get

hVð1ÞVð2Þi ¼ − 1

p2
ðΠ1=2 þ αΠ0Þ1δ12; ð21Þ

hψð1Þψ̄ð2Þi ¼ hψ̄ð1Þψð2Þi ¼ 4ðΠ1=2Þ1δ12; ð22Þ

hϕð1Þϕ̄ð2Þi ¼ −ðΠ−Þ1δ12; hϕ̄ð1Þϕð2Þi ¼ −ðΠþÞ1δ12;
ð23Þ

whereΠ− ≡□
−1D̄2D2 andΠþ ≡□

−1D2D̄2 are projection
operators. The new interaction part of the action looks like

~Sint ¼
1

2

Z
d8z

�
2MVðψ þ ψ̄Þ þ 2ð2gÞΦ̄Vϕþ 2ð2gÞΦϕ̄V þ ðm2

V þ ð2gÞ2Φ̄ΦÞV2

þ ψ

�
− 1

4

�
1þ 1

β

�
þMψ

�
ψ þ ψ̄

�
− 1

4

�
1þ 1

β

�
þMψ

�
ψ̄ þ 2

�
1

4β
þ ð2hÞ2Φ̄Φ

�
ψψ̄

�
; ð24Þ

where M ≡ 1
2
ðm − 8ghΦ̄ΦÞ and Mψ ≡ m2

ψ

2□
þ ð2hÞ2Φ̄Φ (no-

tice that Mψ , although it characterizes the mass term, has
zero mass dimension). We note that we redefined the theory
in terms of scalar superfields only, which allows one to
simplify the calculations drastically.
In the next section, namely the new propagators (21)–

(23) and the new vertices (24), written only in terms of
scalar superfields, will be used.

III. ONE-LOOP CALCULATIONS

So, let us proceed with calculating the KEP. The usual
methods of its calculation are performed by means of
perturbative series in powers of ℏ, the so-called loop
expansion [1,10], namely,

KðΦ; Φ̄Þ ¼ Kð0ÞðΦ; Φ̄Þ þ ℏKð1ÞðΦ; Φ̄Þ
þ ℏ2Kð2ÞðΦ; Φ̄Þ þ � � � : ð25Þ

The tree approximation can be read from the classical
action (14) by replacing g and h by zero, yielding

Kð0ÞðΦ; Φ̄Þ ¼ ΦΦ̄: ð26Þ

In order to calculate the one-loop contribution Kð1ÞðΦ; Φ̄Þ,
we will use the methodology of summation over

supergraphs originally elaborated in Ref. [13] and applied
in many other examples including Ref. [7].
We proceed in three steps. First, we draw all the one-loop

supergraphs allowed by (24). Second, we discard super-
graphs involving covariant derivatives of Φ and Φ̄ and
calculate the contributions of each supergraph, with the
external momenta equal to zero, to the effective action.
Finally, we sum all contributions and calculate the integral
over the momenta. The result will be just the KEP.
Because of the known properties of the supersymmet-

ric projectors, that is, Π1=2Π− ¼ Π−Π1=2 ¼ Π1=2Πþ ¼
ΠþΠ1=2 ¼ 0, and the fact that there is no any spinor
covariant derivative in the vertices (24), it follows from
(22) and (23) that the mixed contributions containing
both hψð1Þψ̄ð2Þi and hϕð1Þϕ̄ð2Þi propagators cannot arise.
Therefore, the set of the one-loop supergraphs contributing
to the effective action in the theory under consideration are
of four types.
In our graphical notation, solid lines denote hϕð1Þϕ̄ð2Þi

propagators, the dashed ones denote hψð1Þψ̄ð2Þi propa-
gators, the wavy ones denote hVð1ÞVð2Þi propagators, and
the double ones denote Φ or Φ̄ background superfields.
Let us start the calculations of the one-loop super-

graphs involving only the gauge superfield propagators
hVð1ÞVð2Þi in the internal lines connecting the vertices
ðm2

V þ ð2gÞ2Φ̄ΦÞV2. Such supergraphs are the simplest
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and exhibit structures given in Fig. 1. Of course, if we
had taken the particular case α ¼ 1, such one-loop
corrections would be zero, because the corrections would
not contain any D2D̄2 acting on the Grassmann delta
function.
We can compute all the contributions by noting that each

supergraph above is formed by n links, like those shown
in Fig. 2.
Hence, the contribution of this link is simply given by

Q12 ¼ ðm2
V þ ð2gÞ2Φ̄ΦÞ1

�
− 1

p2
ðΠ1=2 þ αΠ0Þ

�
1

δ12: ð27Þ

Therefore, the contribution of a loop formed by n such links
is given by

ðIaÞn ¼
Z

d4x
1

2n

Z
d4θ1d4θ3…d4θ2n−1

×
Z

d4p
ð2πÞ4Q13Q35…Q2n−3;2n−1Q2n−1;1

¼
Z

d8z
Z

d4p
ð2πÞ4

1

2n

�
−m2

V þ ð2gÞ2Φ̄Φ
p2

�
n

× ðΠ1=2 þ αnΠ0Þδθθ0 jθ¼θ0 ; ð28Þ

where we integrated by parts the expression ðIaÞn and used
the usual properties of the projection operators.
The contribution for the effective action is given by the

sum of all supergraphs ðIaÞn:

Γð1Þ
a ¼

X∞
n¼1

ðIaÞn ¼
Z

d8z
Z

d4p
ð2πÞ4

1

p2

�
− ln

�
1þm2

V þ ð2gÞ2Φ̄Φ
p2

�
þ ln

�
1þ α

m2
V þ ð2gÞ2Φ̄Φ

p2

��
: ð29Þ

Notice that this contribution vanishes at α ¼ 1 (Feynman gauge), as it should.
Let us proceed the calculation of the second type of one-loop supergraphs, which involve the hϕð1Þϕ̄ð2Þi and hVð1ÞVð2Þi

propagators in the internal lines connecting the vertices ð2gÞΦϕ̄V and ð2gÞΦ̄Vϕ. Such supergraphs exhibit the structure
shown in Fig. 3. Certainly, if we had taken the particular case α ¼ 0, such one-loop corrections would not contribute to the
effective action, because hVð1ÞVð2Þi ∼ Π1=2 and Π1=2Π− ¼ Π1=2Πþ ¼ 0.
To sum over arbitrary numbers of insertions of vertices ðm2

V þ ð2gÞ2Φ̄ΦÞV2 into the gauge propagators, it is convenient to
define a “dressed” propagator where the summation over all vertices ðm2

V þ ð2gÞ2Φ̄ΦÞV2 is performed (see Fig. 4), which,
as a result, is equal to

hVð1ÞVð2ÞiD ¼ hVð1ÞVð2Þi þ
Z

d4θ3hVð1ÞVð3Þi½m2
V þ ð2gÞ2Φ̄Φ�3hVð3ÞVð2Þi

þ
Z

d4θ3d4θ4hVð1ÞVð3Þi½m2
V þ ð2gÞ2Φ̄Φ�3hVð3ÞVð4Þi½m2

V þ ð2gÞ2Φ̄Φ�4hVð4ÞVð2Þi þ � � � : ð30Þ

Finally, we arrive at

hVð1ÞVð2ÞiD ¼ −
�

Π1=2

p2 þm2
V þ ð2gÞ2Φ̄Φþ αΠ0

p2 þ αðm2
V þ ð2gÞ2Φ̄ΦÞ

�
1

δ12: ð31Þ

Then, we notice that each supergraph above (see Fig. 3) is formed by n links depicted in Fig. 5, each of which yields the
contribution

R13 ¼
Z

d4θ2½ð2gÞΦ�1
�
−
�

Π1=2

p2 þm2
V þ ð2gÞ2Φ̄Φþ αΠ0

p2 þ αðm2
V þ ð2gÞ2Φ̄ΦÞ

�
1

δ12

�
½ð2gÞΦ̄�2½−ðΠ−Þ2δ23�

¼
�

αð2gÞ2Φ̄Φ
p2 þ αðm2

V þ ð2gÞ2Φ̄ΦÞΠ−
�
1

δ13: ð32Þ

FIG. 1. One-loop supergraphs composed by propagators
hVð1ÞVð2Þi. FIG. 2. A typical vertex in one-loop supergraphs involving

ðm2
V þ ð2gÞ2Φ̄ΦÞV2.
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Therefore, the contribution of a supergraph formed by n such links is given by

ðIbÞn ¼
Z

d4x
1

n

Z
d4θ1d4θ3…d4θ2n−1

Z
d4p
ð2πÞ4 R13R35…R2n−3;2n−1R2n−1;1

¼
Z

d8z
1

n

Z
d4p
ð2πÞ4

�
αð2gÞ2Φ̄Φ

p2 þ αðm2
V þ ð2gÞ2Φ̄ΦÞ

�
n
Π−δθθ0 jθ¼θ0 : ð33Þ

By using Π−δθθ0 jθ¼θ0 ¼ −1=p2, we get the effective action

Γð1Þ
b ¼

X∞
n¼1

ðIbÞn ¼
Z

d8z
1

p2
ln

�
p2 þ αm2

V

p2 þ αðm2
V þ ð2gÞ2Φ̄ΦÞ

�
: ð34Þ

We notice that at α ¼ 0 (Landau gauge) this expression vanishes.
By summing (29) and (34), we get

Γð1Þ
a þ Γð1Þ

b ¼
Z

d8z
Z

d4p
ð2πÞ4

1

p2

�
− ln

�
1þm2

V þ ð2gÞ2Φ̄Φ
p2

�
þ ln

�
1þ α

m2
V

p2

��
: ð35Þ

Notice that (35) is explicitly gauge independent for the
massless case mV ¼ 0. However, even in the massive case,
the α dependence is trivial, since the last logarithm does not
depend on the background superfields and hence can be
disregarded.
Now, let us sum over the vertices ½− 1

4
ð1þ 1

βÞþ
Mψ �ψ2 and ½− 1

4
ð1þ 1

βÞ þMψ �ψ̄2. The corresponding

supergraphs exhibit their structures in Fig. 6
with only an even number of vertices. Since we
can insert an arbitrary number of vertices ½ 1

4β þð2hÞ2ðΦΦ̄Þ�ψψ̄ into the propagators hψð1Þψ̄ð2Þi, we
must introduce the dressed propagator hψð1Þψ̄ð2ÞiD
(see Fig. 7). Therefore, this dressed propagator is
equal to

FIG. 3. One-loop supergraphs composed by propagators
hϕð1Þϕ̄ð2Þi and hVð1ÞVð2Þi.

FIG. 4. Dressed propagator.

FIG. 5. A typical link in one-loop supergraphs in a mixed
sector.

FIG. 6. One-loop supergraphs composed by propagators
hψð1Þψ̄ð2Þi.

FIG. 7. Dressed propagator hψð1Þψ̄ð2ÞiD. The vertices are
½ 1
4β þ ð2hÞ2ðΦΦ̄Þ�ψψ̄ .

FIG. 8. A typical vertex in one-loop supergraphs involving
½− 1

4
ð1þ 1

βÞ þMψ �ψ2 and ½− 1
4
ð1þ 1

βÞ þMψ �ψ̄2.
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hψð1Þψ̄ð2ÞiD ¼ hψð1Þψ̄ð2Þi þ
Z

d4θ3hψð1Þψ̄ð3Þi½ð2hÞ2Φ̄Φ�3hψð3Þψ̄ð2Þi

þ
Z

d4θ3d4θ4hψð1Þψ̄ð3Þi½ð2hÞ2Φ̄Φ�3hψð3Þψ̄ð4Þi½ð2hÞ2Φ̄Φ�4hψð4Þψ̄ð2Þi þ � � � : ð36Þ

By using (22) and proceeding as above, we arrive at

hψð1Þψ̄ð2ÞiD ¼
�

4βΠ1=2

β − 1 − 4βð2hÞ2Φ̄Φ
�

1

δ12: ð37Þ

Afterwards, we can compute all the contributions by noting that each one-loop supergraph above is formed by n
vertices like those given by Fig. 8.
Hence, the contribution of this vertex is given by

L13 ¼
Z

d4θ2

�
− 1

4

�
1þ 1

β

�
þMψ

�
1

��
4βΠ1=2

β − 1 − 4βð2hÞ2Φ̄Φ
�

1

δ12

��
− 1

4

�
1þ 1

β

�
þMψ

�
2

��
4βΠ1=2

β − 1 − 4βð2hÞ2Φ̄Φ
�

2

δ23

�

¼
�

β þ 1 − 4βMψ

β − 1 − 4βð2hÞ2Φ̄ΦΠ1=2

�
2

1

δ13: ð38Þ

It follows from the result above that the contribution of a supergraph formed by n vertices is given by

ðIcÞn ¼
Z

d4x
1

2n

Z
d4θ1d4θ3…d4θ2n−1

Z
d4p
ð2πÞ4 L13L35…L2n−3;2n−1L2n−1;1

¼
Z

d8z
1

2n

Z
d4p
ð2πÞ4

�
β þ 1 − 4βMψ

β − 1 − 4βð2hÞ2Φ̄ΦΠ1=2

�
2n
Π1=2δθθ0 jθ¼θ0 : ð39Þ

On one hand, for β ¼ 0, we get (Π1=2δθθ0 jθ¼θ0 ¼ 2=p2)

ðIcÞn ¼
Z

d8z
1

n

Z
d4p
ð2πÞ4

1

p2
: ð40Þ

This integral over the momenta vanishes within the dimen-
sional regularization scheme. Therefore, we get

Γð1Þ
c ¼ 0; for β ¼ 0: ð41Þ

On the other hand, for β ≠ 0, we obtain the effective action

Γð1Þ
c ¼

X∞
n¼1

ðIcÞn ¼ −
Z

d8z
Z

d4p
ð2πÞ4

1

p2

× ln

�
1 −

�β þ 1 − 4βð− m2
ψ

2p2 þ ð2hÞ2Φ̄ΦÞ
β − 1 − 4βð2hÞ2Φ̄Φ

�
2
�
;

ð42Þ

for β ≠ 0. Moreover, we used Mψ ≡− m2
ψ

2p2 þ ð2hÞ2Φ̄Φ. In
particular, if mψ ¼ 0, Eq. (42) also vanishes within the
dimensional regularization scheme.
Finally, let us evaluate the last type of one-loop super-

graphs, which involve the propagators hψð1Þψ̄ð2Þi and
hVð1ÞVð2Þi in the internal lines connecting the vertices
MVψ and MVψ̄ (see Fig. 9). As before, we can insert an
arbitrary number of vertices ½ 1

4β þ ð2hÞ2ðΦΦ̄Þ�ψψ̄ into the

propagators hψð1Þψ̄ð2Þi. Moreover, we can also insert an
arbitrary number of pairs of the vertices ½− 1

4
ð1þ 1

βÞ þ
Mψ �ψ2 and ½− 1

4
ð1þ 1

βÞ þMψ �ψ̄2 into hψð1Þψ̄ð2Þi. Since
hψð1Þψ̄ð2Þi has already been dressed by ½ 1

4β þ
ð2hÞ2ðΦΦ̄Þ�ψψ̄ in (36) and (37), it follows that the desired
dressed propagator hψð1Þψ̄ð2Þi2D can be obtained through
the summation over all pairs of the vertices ½− 1

4
ð1þ 1

βÞ þ
Mψ �ψ2 and ½− 1

4
ð1þ 1

βÞ þMψ �ψ̄2 into hψð1Þψ̄ð2ÞiD (see
Fig. 10). Therefore, we get

FIG. 9. One-loop supergraphs composed by propagators
hψð1Þψ̄ð2Þi and hVð1ÞVð2Þi.

FIG. 10. Dressed propagator hψð1Þψ̄ð2Þi2D.
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hψð1Þψ̄ð2Þi2D ¼ hψð1Þψ̄ð2ÞiD þ
Z

d4θ3d4θ4hψð1Þψ̄ð3ÞiD
�
− 1

4

�
1þ 1

β

�
þMψ

�
3

hψ̄ð3Þψð4ÞiD

×

�
− 1

4

�
1þ 1

β

�
þMψ

�
4

hψð4Þψ̄ð2ÞiD þ
Z

d4θ3d4θ4d4θ5d4θ6hψð1Þψ̄ð3ÞiD

×

�
− 1

4

�
1þ 1

β

�
þMψ

�
3

hψ̄ð3Þψð4ÞiD
�
− 1

4

�
1þ 1

β

�
þMψ

�
4

hψð4Þψ̄ð5ÞiD

×

�
− 1

4

�
1þ 1

β

�
þMψ

�
5

hψ̄ð5Þψð6ÞiD
�
− 1

4

�
1þ 1

β

�
þMψ

�
6

hψð6Þψ̄ð2ÞiD þ � � � : ð43Þ

After some algebraic work, we find

hψð1Þψ̄ð2Þi2D ¼ ðfðΦ̄ΦÞΠ1=2Þ1δ12; ð44Þ
where

fðΦ̄ΦÞ≡ ½1 − βð1 − 4ð2hÞ2Φ̄ΦÞ�p4

ð1 − 4ð2hÞ2Φ̄ΦÞp4 þ ½1þ βð1 − 4ð2hÞ2Φ̄ΦÞ�m2
ψp2 þ βm4

ψ
: ð45Þ

As before, we can compute all the contributions by noting that each supergraph above (Fig. 9) is formed by n links depicted
in Fig. 11, each of which yields the contribution

N13 ¼
Z

d4θ2ðMÞ1
�
−
�

Π1=2

p2 þm2
V þ ð2gÞ2Φ̄Φþ αΠ0

p2 þ αðm2
V þ ð2gÞ2Φ̄ΦÞ

�
1

δ12

�
ðMÞ2 × ½ðfΠ1=2Þ2δ23�

¼
� −fM2Π1=2

p2 þm2
V þ ð2gÞ2Φ̄Φ

�
1

δ13: ð46Þ

Hence, the contribution of a supergraph formed by n such links is given by

ðIdÞn ¼
Z

d4x
1

2n

Z
d4θ1d4θ3…d4θ2n−1

Z
d4p
ð2πÞ4N13N35…N2n−3;2n−1N2n−1;1

¼
Z

d8z
1

2n

Z
d4p
ð2πÞ4

� −fM2

p2 þm2
V þ ð2gÞ2Φ̄Φ

�
n
Π1=2δθθ0 jθ¼θ0 : ð47Þ

Again, by using Π1=2δθθ0 jθ¼θ0 ¼ 2=p2, we get the effective action

Γð1Þ
d ¼

X∞
n¼1

ðIdÞn ¼ −
Z

d8z
Z

d4p
ð2πÞ4

1

p2
ln

�
1þ fM2

p2 þm2
V þ ð2gÞ2Φ̄Φ

�
: ð48Þ

For β ¼ 0, we get the total one-loop KEP (up to terms independent on the background superfields) by summing (35),
(41), and (48):

Kð1Þ
β¼0ðΦ̄ΦÞ ¼ −

Z
d4p
ð2πÞ4

1

p2
ln

�
p2 þm2

V þ ð2gÞ2Φ̄Φþ M2p2

ð1 − 4ð2hÞ2Φ̄ΦÞp2 þm2
ψ

�
; ð49Þ

where we substituted the explicit form of f for β ¼ 0.
For β ≠ 0, we obtain the total one-loop KEP by summing (35), (42), and (48):

Kð1Þ
β≠0ðΦ̄ΦÞ ¼ −

Z
d4p
ð2πÞ4

1

p2

�
ln

�
1 −

�β þ 1 − 4βð− m2
ψ

2p2 þ ð2hÞ2Φ̄ΦÞ
β − 1 − 4βð2hÞ2Φ̄Φ

�
2
�

þ ln

�
p2 þm2

V þ ð2gÞ2Φ̄Φþ ½1 − βð1 − 4ð2hÞ2Φ̄ΦÞ�M2p4

ð1 − 4ð2hÞ2Φ̄ΦÞp4 þ ½1þ βð1 − 4ð2hÞ2Φ̄ΦÞ�m2
ψp2 þ βm4

ψ

��
; ð50Þ
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where we substituted the explicit form of f (45). Notice that
(50) depends on the gauge parameter β, but it does not
depend on the gauge parameter α (one should recall that β
corresponds to the gauge fixing for the ψα field, and α—for

the real V gauge field, and the gauge independence, that is,
α independence of the one-loop KEP in the super-QED
involving only chiral matter and the V field, is a well-
known fact [13]).
Unfortunately we did not succeed in performing the

momentum integrals (50) analytically and finding an
explicit expression for the β-dependent term in a most
generic case. Therefore, in order to proceed with the
calculation and solve explicitly the integral above, at least
in certain cases, we will consider two characteristic
examples where the final result is expressed in closed
form and in terms of elementary functions.
As our first example, let us takemψ ¼ 0 in (49) and (50).

It follows that

Kð1Þ
mψ¼0ðΦ̄ΦÞ ¼ −

Z
d4p
ð2πÞ4

1

p2

�
ln

�
1 −

�
β þ 1 − 4βð2hÞ2Φ̄Φ
β − 1 − 4βð2hÞ2Φ̄Φ

�
2
�

þ ln

�
p2 þm2

V þ ð2gÞ2Φ̄Φþ ½1 − βð1 − 4ð2hÞ2Φ̄ΦÞ�M2

1 − 4ð2hÞ2Φ̄Φ
��

: ð51Þ

The first integral in this expression vanishes within the dimensional reduction scheme. The second one is well known and,
in the limit ω → 2, gives

Kð1Þ
mψ¼0 ¼ Kð1Þ

mψ¼0;divðΦ̄ΦÞ þ Kð1Þ
mψ¼0;finðΦ̄ΦÞ; ð52Þ

where

Kð1Þ
mψ¼0;divðΦ̄ΦÞ ¼ − 1

16π2ð2 − ωÞ
�
m2

V þ ð2gÞ2Φ̄Φþ ½1 − βð1 − 4ð2hÞ2Φ̄ΦÞ�M2

1 − 4ð2hÞ2Φ̄Φ
�
; ð53Þ

Kð1Þ
mψ¼0;finðΦ̄ΦÞ ¼

1

16π2

�
m2

V þ ð2gÞ2Φ̄Φþ ½1 − βð1 − 4ð2hÞ2Φ̄ΦÞ�M2

1 − 4ð2hÞ2Φ̄Φ
�

× ln
1

μ2

�
m2

V þ ð2gÞ2Φ̄Φþ ½1 − βð1 − 4ð2hÞ2Φ̄ΦÞ�M2

1 − 4ð2hÞ2Φ̄Φ
�
; ð54Þ

M ¼ 1
2
ðm − 8ghΦ̄ΦÞ, and μ is an arbitrary scale required on dimensional grounds. If we take the particular case of β ¼ −1

and mV ¼ 0, we recover the result of Ref. [7].
As our second example, let us consider β ¼ 0. Hence, we need only to calculate (49). The procedure to calculate it is quite

analogous to the one reported in Ref. [14]. Therefore, we get

Kð1Þ
β¼0 ¼ Kð1Þ

β¼0;divðΦ̄ΦÞ þ Kð1Þ
β¼0;finðΦ̄ΦÞ; ð55Þ

where

Kð1Þ
β¼0;divðΦ̄ΦÞ ¼ − 1

16π2ð2 − ωÞ
�
m2

V þ ð2gÞ2Φ̄Φþ M2

1 − 4ð2hÞ2Φ̄Φ
�
; ð56Þ

Kð1Þ
β¼0;finðΦ̄ΦÞ ¼

1

16π2

�
Ωþ ln

�
Ωþ
μ2

�
þΩ− ln

�
Ω−
μ2

�
−Ω3 ln

�
Ω3

μ2

��
: ð57Þ

FIG. 11. A typical vertex in one-loop supergraphs involving
MVψ and MVψ̄ .
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Moreover, we introduced a shorthand notation:

Ω� ¼ 1

2

(
m2

V þ ð2gÞ2Φ̄Φþ m2
ψ þM2

1 − 4ð2hÞ2Φ̄Φ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

V þ ð2gÞ2Φ̄Φþ m2
ψ þM2

1 − 4ð2hÞ2Φ̄Φ
�
2 − 4m2

ψ ðm2
V þ ð2gÞ2Φ̄ΦÞ

s )
;

Ω3 ¼
m2

ψ

1 − 4ð2hÞ2Φ̄Φ : ð58Þ

Notice that one-loop results (52) and (55) are both
divergent. Moreover, we notice that the divergent parts
(53) and (56) are nonpolynomial, and, to eliminate the
divergences, it would be necessary to introduce an infinite
number of counterterms and an infinite number of unknown
parameters in order to cancel the ultraviolet divergences
appearing in the quantum corrections, so that the theory
would not have any predictive power. However, it reflects
the fact we already mentioned above, that theory under
consideration is nonrenormalizable and must be interpreted
as an effective field theory for the low-energy domain [15].
It is also clear that, in the case h ¼ 0, we notice that the
divergent terms (53) and (56) are proportional to Φ̄Φ.
Therefore, we can implement a one-loop counterterm such
as the one used in the supersymmetric quantum electro-
dynamics [13] to eliminate the divergences. However, in
this case, the coupling between chiral matter and chiral
spinor gauge fields is switched off; therefore, the spinor
gauge field completely decouples, and the theory reduces to
the usual super-QED.

IV. SUMMARY

We considered the Abelian superfield gauge theory
involving two gauge fields: the real scalar one and the
spinor one. The essentially new feature of this theory
consists in the fact that it essentially involves the BF term,

thus opening the way for constructing more sophisticated
supersymmetric models involving the antisymmetric tensor
fields.
The theory we consider represents itself as an alternative

model involving two gauge fields, different from the one
considered earlier in Ref. [7]. For this theory, we calculated
the one-loop Kählerian effective potential, which turns out
to be divergent, since the only possible gauge-invariant
coupling of matter to the spinor gauge field turns out to be
nonrenormalizable. However, treating this theory as an
effective model for a description of the low-energy limit of
the string theory (one can recall that the antisymmetric
tensor field naturally emerges within the string context,
playing there an important role; see, e.g., Ref. [16]), we can
implement a natural cutoff of the order of the characteristic
string mass.
Further application of this study could consist in devel-

opment of supersymmetric extensions of more sophisti-
cated theories involving the BF theory as an ingredient.
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