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We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive
magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an
electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive
effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close
comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic
approximation. We have found that there are many similarities between the two evolutions but also one
important difference: the survival time of the hypermassive neutron star increases in a RMHD simulation.
This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter
can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the
RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher
resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla,
B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6
(2011)] but confirm the formation of a low-density funnel with an ordered magnetic field produced by the
black hole-torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting
torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino
annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in
the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.
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I. INTRODUCTION

With the rapid progress made in upgrading and testing a
series of advanced interferometric gravitational-wave detec-
tors such as LIGO [1], Virgo [2], and KAGRA [3], there are
now great expectations that in the next five years we will
witness the first direct detection of gravitational waves.
Prime sources for such a detection are binary systems of
compact objects, namely, binary systems comprising either
two black holes, a black hole and a neutron star, or two
neutron stars. The latter configuration, in particular, is
potentially a very interesting one, as it will represent the
most common source, with a realistic expected detection rate
of ∼40 yr−1 [4]. A detection of gravitational waves from
binary neutron stars would yield a wealth of information
about the chirp mass, the orientation, and the localization of
the binary but also possibly the mass, spin, and radius of the
individual stars [5,6]. In turn, this information could set
constraints on the equation of state (EOS) of the matter in
their interior. Indeed, a number of recent investigations have
revealed that it is possible to set serious constraints on the
properties of the neutron-star structure and EOS, either when
using the inspiral signal only [7,8] or when exploiting the
rich spectral features of the postmerger signal [9–13].
At the same time, themerger of a binary system containing

at least one neutron star represents arguably the most

attractive scenario to explain the complex phenomenology
associated with short gamma-ray bursts (SGRBs), although
many alternatives exist [see Ref. [14] for a recent review].
While such a scenario was suggested already 30 years ago
[15,16], numerical simulations (see, e.g., Refs. [17–21]) and
new observations [14,22] have put this scenario on firmer
grounds. In particular, what these simulations have shown
is that the merger of a binary system of neutron stars
inevitably leads to the formation of a metastable object,
whichwedub the binary-merger product orBMP.Depending
on the total mass and mass ratio of the binary, the BMP can
either be a supramassive neutron star (SMNS), that is, a star
with mass above the maximum mass for nonrotating
configurations MTOV but below the maximum mass for
uniformly rotating configurations Mmax, with Mmax ≃
ð1.15 − 1.20ÞMTOV [23]; a hypermassive neutron star
(HMNS), that is, a star more massive than a SMNS; or a
black hole.1

1In principle, the BMP can also be a stable neutron star, but this
would require that the stars have mass M ≲MTOV=2. Since the
mass distribution in neutron-star binaries is peaked around
1.3–1.4M⊙ [24], this implies that MTOV ≳ 2.8M⊙. Although
this cannot be excluded, there is also no observational evidence
that such massive neutron stars exist.
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The general-relativistic hydrodynamical modelling of
binary neutron stars has seen very considerable progress
over the last decade (see, e.g., Refs. [17–19]), and it has now
reached a rather mature state. In fact, it is presently possible
to calculate inspiral waveforms having a phase accuracy
comparable to that of binary black-hole simulations thanks
to the use of high-order methods with high-order conver-
gence rates [25–27] or of very high-resolution and long
inspirals [28,29]. At the same time, the space of parameters
is also being carefully investigated, both in terms of the
variety of the EOSs considered [11–13] and of the treatment
of radiative losses via neutrino cooling [30,31].
When magnetic fields are present, on the other hand, the

bulk of work carried out so far is considerably more limited.
Investigations of the impact that magnetic fields have on the
dynamics of the binary have in fact started with the first
short-inspiral works in Refs. [32,33], which were comple-
mented by the longer simulations in Ref. [34]. The latter
work, together with Ref. [35], also investigated the possibil-
ity that magnetic fields could have an impact on the
gravitational-wave signals emitted by these systems during
the inspiral. The conclusions reached were that, for realistic
strengths B≲ 1012 G, the presence of magnetic fields could
not be revealed by detectors such as advanced LIGO or
advanced Virgo. The astrophysical implications of the
merger of a magnetized neutron-star binary were explored
in Ref. [36], where it was shown that instabilities in the torus
orbiting the black hole amplify the magnetic field by 3 orders
of magnitude and generate a magnetic-jet structure charac-
terized by an ordered poloidal magnetic field along the black-
hole spin axis. The broad consistency with the observations
in terms of black-hole spin, torus mass and accretion rate,
and magnetic-field topology offered the first evidence that
the merger of magnetized neutron stars can provide the basic
conditions for the central engine of SGRBs.
Considerable effort has also been dedicated to inves-

tigating the properties of the HMNS under more controlled
conditions. For instance, using ultrahigh spatial resolutions
but axisymmetric initial data, Ref. [37] has provided the
first evidence from three-dimensional global simulations
that a magnetorotational instability (MRI) [38,39] is likely
to develop during the lifetime of the HMNS (see also
Refs. [40,41] for earlier work in two dimensions). In
addition, again using axisymmetric initial data and different
magnetic-field configurations, it has been shown that a
magnetically driven wind can be launched from the outer
layers of the HMNS as a result of its differential rotation
[42,43]. These works have also highlighted that for realistic
magnetic-field topologies the wind is baryon loaded and
quasi-isotropic, with bulk velocities of ∼0.1c [43]. More
recently, instead, the use of subgrid modeling as an
effective way to describe the turbulent dynamics that
develops in the shear layer between the two neutron stars
at merger has suggested that amplifications of up to 5
orders of magnitude are possible [44], although these

amplifications are not produced in direct simulations
[35,36], even at very high resolution [45]. Finally, progress
has taken place also on the derivation of improved
numerical techniques, such as those in Ref. [46], where
the significant advantages of a vector-potential approach
and of a Lorentz gauge were discussed.
All of the works mentioned above have been carried out

within the ideal-magnetohydrodynamic (IMHD) approxi-
mation, in which the electrical conductivity is assumed to
be infinite. Under these conditions, the magnetic flux is
conserved, and the magnetic field is frozen into the fluid,
being simply advected with it. This is a very good
approximation for the stellar interior before the merger
because it neglects any effect of resistivity on the dynamics
of the plasma. After the merger, however, there will be
spatial regions with very hot plasma where the electrical
conductivity is finite and the resistive effects, most notably,
magnetic reconnection, will take place.
An obvious improvement over the IMHD description is

the use of the general-relativistic resistive-magnetohydro-
dynamic (RMHD) equations, which provide a complete
magnetohydrodynamic (MHD) description of regions with
a high conductivity, such as the stellar interiors, and of
regions with small conductivity, such as the electrovacuum
exterior. Furthermore, when the conductivity is set to zero,
it yields the Maxwell equations in vacuum, thus allowing
for the study of the magnetic-field evolution also well
outside the stellar magnetosphere [47].
Partly because of the increased complexity of the

equations and partly because of the additional difficulties
posed by their numerical solution (the equations easily
become stiff in regions of high conductivity), RMHD
simulations have started only rather recently. Most of the
work so far has focussed on problems in flat spacetimes
[47–53], but general-relativistic investigations have also
been carried out on fixed spacetimes [54]. Indeed, together
with the work carried out in Refs. [55,56], those reported
here are, to the best of our knowledge, the only RMHD
simulations of the dynamics of binary neutron stars in
general relativity. More specifically, we have followed the
inspiral, merger, and collapse to a black hole of a neutron-
star binary in which the stars have the same gravitational
mass of M ¼ 1.625M⊙ and are modelled with a simple
ideal-fluid EOS.
Complementing the work reported in Refs. [55,56],

which concentrated on the electromagnetic emission during
the inspiral and at the merger, the focus of the simulations
reported here is that of assessing the impact that resistive
effects have on the dynamics of the binary after the merger
and through to collapse to a black hole. To this scope we
have carried out a close comparison with an equivalent
simulation performed for the same binary within the
traditional IMHD approximation. In this way it has been
possible to determine both the similarities between the two
regimes and the novel features. The most important of such
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features is the evidence that the survival time of the
HMNS before collapse to a black hole increases in a
RMHD simulation. This difference is associated to a
less efficient magnetic braking in the resistive regime, in
which matter is no longer perfectly advected with the
flow, but can move across magnetic-field lines. In turn,
this reduces the transport of angular momentum away
from the central regions of the HMNS, increasing its
lifetime. Interestingly, a longer-lived magnetized HMNS
is of help in those models of SGRBs which invoke the
existence of a magnetarlike object produced after the
merger [57–62]. Another important result of the simu-
lations reported here, which have been performed at
higher resolutions and with a different grid structure
than those in the previous work of Ref. [36], is the
confirmation that a magnetic-jet structure is formed in
the low-density funnel produced by the black hole-torus
system. Both in RMHD and in IMHD, the magnetic
field is predominantly toroidal in the highly conducting
torus and predominantly poloidal in the nearly evacu-
ated funnel. Furthermore, because of the effective
decoupling between the matter and the electromagnetic
fields achieved in the RMHD simulations, the magnetic-
jet structure is coherent on the largest scale of our
system. However, as in the IMHD case, also in these
RMHD simulations the magnetic-jet structure does not
lead to an ultrarelativistic outflow. Reconnection proc-
esses or neutrino annihilation occurring in the funnel
could potentially increase the internal energy in the
funnel and launch a relativistic outflow; none of these
effects is modeled in our simulations.
The plan of the paper is as follows. In Sec. II we

briefly review the mathematical setup of our simula-
tions, concentrating mostly on the discussion of the
general-relativistic RMHD equations used and on the
expression of the generalized Ohm’s law we have
employed. Section III, on the other hand, is dedicated
to illustrate the numerical strategy employed in the
solution of the combined set of the Einstein and
RMHD equations, including the properties of our
computational grid, of our matching to the low-density
exterior, and of our initial data. The core of the paper is
represented by Sec. IV, where we present our results.
After a brief overview, we discuss the magnetic-field
topology and magnetic-jet structure produced in the
simulations, as well as the comparison with the
IMHD case. Such a comparison goes over a number
of aspects, from the angular-momentum transfer and
lifetime of the HMNS, over to the black hole-torus
system, and the electromagnetic luminosities. Finally,
Sec. V contains a conclusive summary of our results and
the prospects for future research. Although this is not
the focus of this work, an illustration of the magnetic-jet
structure obtained in the IMHD simulations is presented
in the Appendix for completeness.

We use a spacelike signature ð−;þ;þ;þÞ and a
system of units in which c ¼ G ¼ M⊙ ¼ 1 unless stated
differently.

II. MATHEMATICAL SETUP

A. General-relativistic RMHD equations

Much of the numerical setup used in these simulations
has been presented in greater detail in other papers
[18,34,63–66], and for compactness we will review here
only the basic aspects, referring the interested reader to the
papers above for additional information. However, given its
importance here, we will dedicate some space to a review of
our fully general-relativistic RMHD framework, which was
first presented in Ref. [66] and represents the extension of
the special-relativistic RMHD formalism discussed in
Ref. [47]. A similar but independent extension has been
presented recently in Ref. [60], which describes the first
3þ 1 general-relativistic RMHD implementation in fixed
spacetimes.
We start by presenting the augmented Maxwell

equations

∇νðFμν þ gμνψÞ ¼ Iμ − κnμψ ; ð1Þ

∇νð�Fμν þ gμνϕÞ ¼ −κnμϕ; ð2Þ

where gμν is the 4-metric, Fμν is the Faraday tensor, �Fμν

is the Maxwell tensor, Iμ is the electric four-current
density, and ϕ, ψ are two auxiliary scalar variables
added to the Maxwell equations to control the con-
straints for the magnetic and electric parts, respectively
(see below).
After a standard 3þ 1 splitting of spacetime, the

Maxwell and Faraday tensors can be decomposed in terms
of the electric (Ei) and magnetic (Bi) fields measured by an
observer moving along the normal direction nν (i.e., normal
or Eulerian observer) as

Fμν ¼ nμEν − nνEμ þ ϵμναβBαnβ; ð3Þ
�Fμν ¼ nμBν − nνBμ − ϵμναβEαnβ; ð4Þ

with ϵμναβ ≔ ημναβ=
ffiffiffiffiffiffi−gp

, g the determinant of the 4-metric
and ημναβ the Levi-Civitá symbol. The same can be done for
the electric four-current

Iμ ≔ qnμ þ Jμ; ð5Þ

where q and Jμ are the charge density and the electric
current density for an Eulerian observer, respectively.
Using these definitions and performing a 3þ 1 decom-
position of Eqs. (1) and (2) with respect to the
normal vector nμ, we arrive at the following evolution
equations,
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ð∂t − LβÞEi − ϵijk∇jðαBkÞ þ αγij∇jψ ¼ αKEi − αJi;

ð6Þ

ð∂t − LβÞψ þ α∇iEi ¼ αq − ακψ ; ð7Þ

ð∂t − LβÞBi þ ϵijk∇jðαEkÞ þ αγij∇jϕ ¼ αKBi; ð8Þ

ð∂t − LβÞϕþ α∇iBi ¼ −ακϕ; ð9Þ

where γij is the spatial 3-metric, K ≔ Ki
i is the trace of

the extrinsic curvature Kij, α is the lapse, and β is the
shift 4-vector. We recall that Lβ denotes the Lie derivative
along the shift vector and that ϵijk is related to the four-
dimensional Levi-Civitá tensor via ϵνκλ ¼ ϵμνκλnμ or
alternatively ϵijk ¼ ηijk=

ffiffiffi
γ

p
, where γ now is the deter-

minant of the 3-metric. The scalar fields ϕ;ψ measure the
deviation from the constrained solution, with ϕ driving
the solution of Eq. (9) toward the zero-divergence
condition ∇iBi ¼ 0 and ψ driving the solution of
Eq. (7) toward the condition ∇iEi ¼ q. This driving is

exponentially fast and over a time scale 1=κ. This
approach, named hyperbolic divergence cleaning in the
context of IMHD, was proposed in Ref. [67] as a simple
way of solving the Maxwell equations and enforcing the
conservation of the divergence-free condition for the mag-
netic field. This method has been extended to the resistive
relativistic case in Refs. [47,49].
An obvious consequence of the Maxwell equations in

RMHD is the conservation law associated with the electric
charge

∇μIμ ¼ 0; ð10Þ

which provides an evolution equation for the charge
density

ð∂t − LβÞqþ∇iðαJiÞ ¼ αKq: ð11Þ

Combining the MHD and Maxwell equations, we obtain
the following set of evolution equations, which we write in
a flux-conservative form as

∂tð ffiffiffi
γ

p
BiÞ þ ∂kð−βk ffiffiffi

γ
p

Bi þ αϵikj
ffiffiffi
γ

p
EjÞ ¼ −

ffiffiffi
γ

p
Bkð∂kβ

iÞ − α
ffiffiffi
γ

p
γij∂jϕ; ð12aÞ

∂tð ffiffiffi
γ

p
EiÞ þ ∂kð−βk ffiffiffi

γ
p

Ei − αϵikj
ffiffiffi
γ

p
BjÞ ¼ −

ffiffiffi
γ

p
Ekð∂kβ

iÞ − α
ffiffiffi
γ

p
γij∂jψ − α

ffiffiffi
γ

p
Ji; ð12bÞ

∂tϕþ ∂kð−βkϕþ αBkÞ ¼ −ϕð∂kβ
kÞ þ Bkð∂kαÞ −

α

2
ðγlm∂kγlmÞBk − ακϕ; ð12cÞ

∂tψ þ ∂kð−βkψ þ αEkÞ ¼ −ψð∂kβ
kÞ þ Ekð∂kαÞ −

α

2
ðγlm∂kγlmÞEk þ αq − ακψ ; ð12dÞ

∂tð ffiffiffi
γ

p
qÞ þ ∂k½ ffiffiffi

γ
p ð−βkqþ αJkÞ� ¼ 0; ð12eÞ

∂tð
ffiffiffi
γ

p
DÞ þ ∂k½

ffiffiffi
γ

p ð−βkDþ αvkDÞ� ¼ 0; ð12fÞ

∂tð
ffiffiffi
γ

p
τÞ þ ∂kf

ffiffiffi
γ

p ½−βkτ þ αðSk − vkDÞ�g ¼ ffiffiffi
γ

p ðαSlmKlm − Sk∂kαÞ; ð12gÞ

∂tð ffiffiffi
γ

p
SiÞ þ ∂k½ ffiffiffi

γ
p ð−βkSi þ αSki Þ� ¼

ffiffiffi
γ

p �
α

2
Slm∂iγlm þ Sk∂iβ

k − ðτ þDÞ∂iα

�
: ð12hÞ

The fluid variables D, U, Si, and Sij are the conserved
rest-mass density, the conserved energy density, the con-
served momentum, and the fully spatial projection of the
energy-momentum tensor, respectively. Their explicit def-
initions are therefore

D ≔ ρW; ð13Þ

τ ≔ U −D ¼ ρhW2 − pþ 1

2
ðE2 þ B2Þ −D; ð14Þ

Si ≔ ρhW2vi þ ϵijkEjBk; ð15Þ

Sij ≔ ρhW2vivj þ γijp − EiEj − BiBj þ
1

2
γijðE2 þ B2Þ:

ð16Þ

Here, W ¼ αu0 ¼ ui=vi is the Lorentz factor, where
uμ are the components of the fluid 4-velocity and vi are
the components of the 3-velocity as measured by the
Eulerian observer. Furthermore, h ≔ ðeþ pÞ=ρ ¼ 1þ ϵþ
p=ρ is the enthalpy, with e ¼ ρð1þ ϵÞ the total energy
density, p the pressure, ϵ the specific internal energy, and ρ
the rest-mass density [68]. The important difference be-
tween the RMHD and IMHD equations is that they involve
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stiff relaxation terms that pose serious numerical limitations
on the time evolution of the equations. For this reason, a
distinct class of implicit-explicit evolution methods has
been developed, the RKIMEX schemes [69], which we
have presented in detail in Ref. [66].

1. Generalized Ohm’s law

To close the system of equations presented above, a
relation for the electric current density in terms of the other
fields is necessary, just like Ohm’s law provides a pre-
scription for the spatial conduction current to be propor-
tional to the electric field. A generalized Ohm’s law
provides the necessary coupling of the electric current
density to the electromagnetic and matter fields. Previous
work toward relativistic versions of the generalized Ohm’s
law includes the investigations in Refs. [70–73]. In one of
the simpler cases, the spatial conduction current can be
considered as proportional to the electric field measured by
the comoving observer. Therefore, the electric four-current
density can be written as the superposition of an advective
and a conductive current [74], which takes the form of the
generalized Ohm’s law,

Iμ ¼ ~Jμadv þ ~Jμcond ¼ ~quμ þ ~σμνeν: ð17Þ

Here, ~q ≔ −Iμuμ ¼ ½qþ ð ~JanaÞ�=W is the electric charge
density measured in the rest frame comoving with the fluid
and should be contrasted with q ≔ −Iμnμ, which is instead
the charge density measured by the Eulerian observer.
Similarly, eν and ~σμν are, respectively, the electric field and
the electrical conductivity of the medium (which is a rank-2
symmetric tensor) as measured in the same frame. In
collisional plasmas the current in the comoving frame
can be considered to be carried by the mobile electrons,
with charge e, and the conductivity tensor becomes

~σμν ¼ σðgμν þ ξ2bμbν þ ξϵμναβuαuβÞ; ð18Þ

with bμ being the magnetic field in the comoving frame,
ξ ≔ eτe=me, σ ≔ neeξ=ð1þ ξ2 þ b2Þ, and τe the electron
collision time scale.
Expressing the four-current density of Eq. (17) in terms

of the fields measured by the Eulerian observer, we arrive at

Iμ ¼ qnμ þ qvμ þWσ½Eμ þ ϵμναvνBα − ðvνEνÞvμ�
þWσξ2ðEαBαÞ½Bμ − ϵμναvνEα − ðvνBνÞvμÞ�: ð19Þ

In deriving Eq. (17), we have made the implicit assumption
that the collision frequency between particles is much
larger than the typical oscillation frequency of the plasma,
which, we recall, is defined as ωP ≔ ð4πnee2=meÞ1=2. This
implies that electrons and ions can reach equilibrium on
very short time scales and any correction due to the mass
difference between electrons and protons can be neglected.

As a result, there is no global charge separation, and the
plasma is neutral. Note also that the first term in Eq. (18)
accounts for an isotropic scalar law for the current, while
the rest represent anisotropies due to the presence of a
magnetic field in the comoving frame.
Ideally, it would be desirable to have a well-defined

prescription of the conductivity tensor as a function of the
fluid properties, σμν ¼ σμνðρ; ϵ; bμÞ, which stems from the
microphysical properties of the plasma (see Ref. [73] for a
recent discussion). In practice, however, we are far from
having such a prescription in the extreme physical con-
ditions characterizing merging neutron stars. However, if
the collision time scale is much smaller than the electron
cyclotron period2 or, equivalently, if ξ ≪ jbμbμj−1, elec-
trons do not have sufficient time to gyrate perpendicular to
the magnetic-field lines. Under these conditions, the
isotropic part of the conductivity is the dominant one
(electrons essentially slide along the magnetic-field lines),
and expression (18) can be approximated as σμν ≈ σgμν. As
a result, the spatial three-current density in the Eulerian
frame coming from the generalized Ohm’s law (19) can be
simplified so that

Ji ¼ qvi þWσ½Ei þ ϵijkvjBk − ðvkEkÞvi�; ð20Þ

where we used the fact that the four-current density can be
also written as Iμ ¼ qnμ þ Jμ. In our simulations, the
conductivity σ is chosen to be either a constant or a
function of the rest-mass density, and a discussion will
be presented in Sec. III C 1. The last term in Eq. (19)
represents the Hall effects, which, however, we set to zero
for simplicity.

III. NUMERICAL SETUP

A. Field equations

The evolution of the spacetime (i.e., of the 3-metric,
extrinsic curvature, and conformal factor) is obtained using
the McLachlancode, which implements the BSSNOK formu-
lation of the Einstein equations [75–77] employing three-
dimensional finite-differencing operators for calculating
the fluxes on the right-hand side of the Einstein equa-
tions [78]. The time integration is carried out using the
third-order accurate strong stability preserving implicit-
explicit Runge–Kutta scheme outlined in Ref. [66]. The
time step on each grid is limited by the Courant–
Friedrichs–Lewy condition [68], and hence the Courant
coefficient is set to be 0.25 on all refinement levels. A
Kreiss–Oliger type dissipation is added to the spacetime
evolution equations to ensure that any high-frequency noise

2The electron cyclotron period is defined as Pc;e ≔ 2π=ωc;e,
where ωc;e ≔ eB=me is the cyclotron frequency and represents
the frequency at which electrons gyrate perpendicular to the
magnetic-field lines.
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produced during the evolution (mostly at the refinement
levels boundaries) is damped. The damping parameter in
the evolution equation for the shift was carefully chosen to
be 0.71 so that the additional term does not become stiff on
the coarser grids.

B. GR-RMHD equations

The general-relativistic RMHD (GR-RMHD) equations
are solved with the WhiskyRMHD code [66], which uses high-
resolution shock-capturing schemes [68,79]. In particular,
the reconstruction of the conserved variables is achieved via
the Piecewise Parabolic Method [80], while the fluxes are
calculated through the approximate Riemann solver intro-
duced by Harten–Lax–van Leer–Einfeldt [81] and which
requires only knowledge about the maximum characteristic
speeds of the system, i.e., the speed of light in this case.
The system of RMHD equations is closed by describing

the fluid as ideal and with a Γ-law EOS

p ¼ ρϵðΓ − 1Þ; ð21Þ
where Γ ¼ 2 and K ¼ 123.6. This EOS is clearly an
idealization. Much more sophisticated EOSs have been
implemented in our numerical infrastructure [13,82,83] and
have been used by other groups in general relativistic
magnetohydrodynamics simulations [31]. However, this
idealization is probably adequate at this stage as here we are
mostly interested in assessing the differences introduced in
the dynamics of the BMP by resistive effects. These effects
suffer from even larger uncertainties than those associated
to the different EOSs.

C. Adaptive mesh refinement and symmetries

Our code makes use of the Cactus [84] computational
framework, which allows us to employ a box-in-box vertex-
centered adaptive mesh refinement grid hierarchy that tracks
the “center of mass” of the stars as they orbit each other. This
was achieved via the BNSTracker thorn implemented by W.
Kastaun and the Carpet driver [85]. The numerical domain
consists of six levels of refinement with the resolution
doubling between adjacent refinements. In addition, we
employ moving refinement boxes in order to track the
high-density regions. The outer boundary of the computa-
tional domain is located at ≈378 km. The finest resolution
during the inspiral and merger is Δx ≈ 296 m, but an extra
refinement level is activated right after the merger with a
resolution of Δx ≈ 148 m. It is important to remark that,
although in a small region of spatial extent ∼13.5 km, this
resolution is considerably higher than the one used in
Ref. [36] (i.e., ≈221 m with a spatial extent of
∼35.4 km), where the first evidence was given that the
merger of a binary system of magnetized neutron stars can
lead to the formation of a magnetic-jet structure. Hence,
although in a resistive framework, the simulations reported
here can be considered as a “higher-resolution” counterpart

of those presented in Ref. [36]. We also note that when
considering initial data consisting of a binary in quasicircular
orbits (see Sec. IVC 2) we do not activate the extra refine-
ment level after the merger, hence keeping a resolution of
Δx ≈ 296 m to describe the HMNS.We do this so as to have
two different resolutions to describe the HMNS and hence to
study the numerical consistency of the solution.
To reduce the computational cost associated with the

numerical evolution of an equal-mass binary, we use a
reflection-symmetry condition across the z ¼ 0 plane and a
π-symmetry condition across the x ¼ 0 plane. These con-
ditions respect the symmetries of the scenario we are
investigating. The outer boundary conditions are set by
using simple zeroth-order extrapolation of the hydrodynamic
variables. For the electromagnetic and spacetime variables,
we employ simple Sommerfeld radiative boundary condi-
tions because of the nature of the fields. Given the long time
scale over which our simulations are carried out, reflections
due to imperfections of the boundary conditions experience
several domain crossings before the end of the simulation.
We plan to improve on this in the future by the application of
maximally dissipative boundary conditions that minimize
the effects of reflections.

1. Exterior matching and atmosphere handling

Our goal with the use of a RMHD framework is that of
modelling the exterior of the neutron stars as an electro-
vacuum, where both the conductivity and the charge density
are negligibly small, so that electromagnetic fields should
obey in these regions the Maxwell equations in vacuum. On
the other hand, we want to model the interior of the stars as
highly conducting, so that our equations recover the IMHD
limit in such regions. There are several different ways to
achieve this; see, for example, Refs. [66,86–88]. Each of
them has, in our view, its advantages and disadvantages.
However, because they all try to model the difficult transition
region between two regimes that are intrinsically different,
they all represent an approximation. This difficulty is not
specific to this problem but is a typical feature of physical
problems as, for example, in the transition from an optically
thick to an optically thin regime in radiative-transfer calcu-
lations. Our approach is also an approximation and is similar
to the one in Refs. [66,87] in the sense that the matching
from the stellar interior to the stellar exterior is achieved
through a carefully chosen conductivity profile. More
specifically, the conductivity profile adopted is directly
related to the conserved rest-mass density (and hence to
the rest-mass density) and given by

σ ≔ σ0max

�
1 −

2

1þ exp ½2DtolðD −DrelÞ=Datm�
; 0

�
;

ð22Þ
where σ0 ≫ 1 corresponds to a uniform scalar conductivity.
The parameters Dtol, and Drel determine how sharp the
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transition to the exterior is. For the simulations reported
here, we have chosen3 σ0 ¼ 106 ¼ 2.0 × 1011 sec−1,
Dtol ¼ 0.01, and Drel ¼ 100Datm ¼ 100ρatm, where Datm
and ρatm are the values of the conserved and primitive rest-
mass density in the “atmosphere.”
We recall that, as in other Eulerian hydrodynamics and

MHD codes, also our WhiskyRMHD code makes use of a
very low rest-mass density fluid to handle the evolution of
the MHD equations in regions which are associated to the
exterior of the stars. In such a region, we follow the same
prescription initially implemented in Ref. [89] and then
adopted in essentially all of the simulations performed with
our code, even in its IMHD incarnation [63]. In essence,
we treat as atmosphere any region in the computational
domain which is below ρatm, which we take here to be
6.17 × 106 g cm−3, that is approximately 8 orders of mag-
nitude smaller than themaximum rest-mass density.4 In such
a region, we set the fluid 3-velocity to zero, the rest-mass
density to a floor value, and the specific internal energy to
the value it assumes for a fluid following a polytropic EOS
[68].5 In addition, and differently from the IMHD imple-
mentation of Ref. [35], the use of the prescription (22)
automatically sets the conductivity in the atmosphere to
zero, so that the Maxwell equations reduce there to the
Maxwell equations in vacuum. Hence, in our prescription
the atmosphere is de facto a cold, static, uniform fluid in
which electromagnetic waves propagate as if in vacuum.
A few remarks should be made about modelling the

neutron stars’ exterior, which in reality is expected to be a
highly conducting, low-density, possibly magnetically
dominated plasma in very strong magnetic fields.
First, with our prescription for the atmosphere and with

the conductivity (22), the latter is zero also in regions that are
not at the atmosphere level but close to it, i.e., at D ≤ Drel.
We do this because the strong winds that are produced at the
merger and later on rapidly fill the computational domain. A
direct consequence of this is that the atmosphere is present
only close to the boundaries and therefore an IMHD
prescription would be met essentially everywhere. Yet,
we are interested in deviations from perfect-flux freezing
and in particular in regions where plasma is tenuous and the
magnetic fields essentially decouple from thematter.We can
effectively achieve this by setting σ ¼ 0 in any region that is
below D rel. This approach therefore accomplishes our goal

of decoupling in the low-density regions the evolution of the
electromagnetic fields from the dynamics of the plasma. Of
course, an electrovacuum prescription where the rest-mass
density is nonzero is, strictly speaking, inconsistent, but we
believe that this is a tolerable inconsistency, given that the
rest-mass density in these regions takes essentially the
smallest values in the whole domain.
Second, albeit somewhat arbitrary, our approach suffers

from the same uncertainties of other approaches suggested
in the literature to match the two different regimes (see,
e.g., Refs. [56,87,90]). Ideally, its robustness can be
validated by varying the free parameters Drel and ρatm,
although this is something that admittedly we are not able
to do here because of the computational costs involved.
More importantly, we find that this approach allows us to
take an important step beyond the previous IMHD treat-
ment presented in Ref. [91].
Third, while matching to a force-free regime is appeal-

ing, it can be rather dangerous in the physical conditions
encountered after the merger (by contrast, the force-free
approximation is probably very good before the merger or
in black hole-neutron star binaries, when only magneto-
spheric effects are expected to take place). Our calculations
reveal in fact that the exterior of the conducting matter
(either the HMNS or the torus) is always matter dominated
and the plasma beta parameter, i.e., the ratio of the gas-to-
magnetic pressure,6 βP ≔ 2p=B2, is at least 104 and of the
order of 106 in the polar regions. This is far from the
condition of βP ≪ 1, where the matter inertia can be
neglected and the force-free approximation is a good one.
Finally, despite the fact that our implementation offers a

control over the amount of resistivity in different parts of
the flow, the choice of realistic values for the resistivity is
far from trivial (see, e.g., Ref. [92]) and not addressed at all
in these simulations.

2. Miscellanea

As already mentioned in Sec. II A, in order to ensure that
the magnetic field is essentially divergence free, we have
employed the divergence cleaning method of Ref. [67],
which, however, requires choosing a suitable value for the
constant κ [cf. Eqs. (7) and (9)]. In the simulations
presented here, we have set κ ¼ 0.075. This value does
not lead to stiffness problems in the coarser grids and at the
same time provides a rapid damping of the constraint
violation on a time scale τ ∼ ðBiBiÞ1=2=∇iBi.
When after the merger the HMNS collapses to a black

hole, steep gradients appear in the rest-mass density and
cover just few grid points of the finest grid. If the resolution
is sufficiently low, these gradients are simply dissipated
numerically, and the evolution can proceed without

3We recall that in units in which the speed of light is not set to 1
τd ≔ L2σ0=c2 represents the Ohmic diffusion time scale, with L
the typical length scale of the field. For L ∼ 106 cm,
τd ∼ 102 sec, which is obviously much larger than the time
scale over which our simulations are carried out, i.e., ∼10−2 sec.

4In practice, to avoid being sensitive to the threshold value,
we set to atmosphere any cell of which the rest-mass density is
below ρatm þ ρtol, where ρtol ∼ 10−2ρ atm [18].

5A different prescription is used for the specific internal energy
in the case of hot, nuclear-physics EOSs (see Ref. [82] for
details).

6We note that our definition of βP is the one normally used in
plasma physics but the inverse of the one employed in other
numerical-relativity calculations, e.g., Ref. [21].
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problems. However, for the rather high resolutions used here
for the finest grid, i.e., ≈148 m, the numerical dissipation
is smaller, and the gradients are not removed, leading to
failures in the conversion of the conserved variables to the
primitive ones. To counter this problem, we reset to
atmosphere the hydrodynamical variables in a mask inside
which the lapse function goes below a threshold, e.g.,
α < αthr ¼ 0.1. This reset is done only for the hydrody-
namical variables, while the spacetime and electromagnetic
ones are evolved as usual. Furthermore, the reset is applied
in practice to a handful of cells, well inside the apparent
horizon and thus not influencing the matter dynamics.

D. Initial data

The initial data consist of a magnetized binary neutron-
star system of total Arnowitt–Deser–Misner (ADM) mass
MADM ¼ 3.25M⊙ and an initial orbital separation of 45 km.
Each star has a baryon mass equal to 1.625M⊙ and an
equatorial radius of Req ¼ 13.68 km, so that the initial
separation corresponds to approximately 3.3Req. The initial
orbital velocity is Ω0 ¼ 1.85 radms−1, and the maximum
rest-mass density is 5.91 × 1014 gr cm−3. Lacking self-
consistent initial data for magnetized binaries, our initial
data are generated by the LORENE library as an unmagnetized
irrotational binary in equilibrium on a quasicircular orbit
[93,94]. The magnetic field is then superimposed on the
unmagnetized constraint-satisfying solution. Following
Refs. [34,35], the initial magnetic field is fully contained
inside the stars and purely poloidal. This is achieved after
prescribing the toroidal vector potential Aϕ to have the form

Aϕ ¼ Ab½maxðP − Pcut; 0Þ�2; ð23Þ
where Pcut ¼ 0.04Pmax determines the point at which the
magnetic field goes to zero (typically before it reaches
the surface). The resulting (poloidal) magnetic field is just
the curl of the vector potential and leads to a maximum
magnetic-field strength of 1.97 × 1012 G at the pressure
maximum. Because the initial data constructed in this way
are not a solution of the full Einstein–Euler–Maxwell
system, they will introduce an increased violation of the
constraint equations, which amount to ∼2.5 × 10−6=M2

ADM
and ∼1.7×10−6=M2

ADM in the L2-norm, of the Hamiltonian
andmomentumconstraints, respectively. Thesevalues should
be compared with those before the introduction of the
magnetic field and which are about 1 order of magnitude
smaller, i.e., 5×10−7=M2

ADM and 1.5×10−7=M2
ADM.

The perturbations introduced by the addition of the
magnetic fields are small enough so as not to have a
significant effect on the dynamics of the binary. Indeed, our
experience is that the L2-norm of the constraints relaxes to
values comparable to those of simulations of unmagnetized
binaries after about one crossing time or, equivalently, one
orbit. Obvious ways to improve this approach, and which
could become important for an accurate modelling of the

gravitational-wave emission during the inspiral, exist.
Among them are the use of consistent initial data for
magnetized binaries or the simulation of binaries with
much larger separations, so that the system has several
orbits to reach a more consistent MHD equilibrium.
In addition, because the main focus of this work is the

assessment of resistive effects on the postmerger dynamics
and hence a comparison between IMHD and RMHD
simulations, our interest in an accurate treatment of the
initial data is rather limited here. As a result, and once again
to reduce the computational costs, we accelerate the inspiral
as first suggested in Ref. [95]. More specifically, for most of
our simulations, we modify the initial linear momenta by
adding an initial inward radial velocitywhich is∼20% of the
orbital velocity. This reduces the number of orbits at this
separation from∼3.5 to only∼1.5. Of course, the constraint
violations introduced in this way are even larger than
those discussed above with the introduction of magnetic
fields,7 but we have also verified that this does not introduce
qualitative differences by comparing the results of these
grazing collisions with those obtained from the correspond-
ing binaries in quasicircular orbits.

IV. RESULTS

The dynamics of the same neutron-star binary consid-
ered here has been previously investigated in hydrody-
namic simulations [18], in IMHD simulations [35], and,
more recently, also in RMHD simulations [56]. In all cases,
it was shown that after the merger this specific model forms
a rapidly rotating HMNS with a high degree of differential
rotation. The transient object collapses later to form a
rotating black hole of mass ∼2.9–3.0M⊙. The magnetic-
field strengths chosen here and in previous works [35,56]
are not sufficiently high to affect the bulk dynamics of the
binary during the inspiral [34], which can be considered to
be equivalent to the purely hydrodynamical case for all
practical purposes.
In the following subsections, we focus on the results

obtained from the application of our RMHD implementa-
tion.We start by providing a general description of the basic
features of the RMHD dynamics (Sec. IVA) and then move
to make a detailed comparison with an IMHD simulation of
the same neutron-star binary (Sec. IV C). We note that our
focus here is different from the one in Ref. [56], which
matched the resistive description to a force-free one to study
the interaction of the two stellar magnetospheres before the
merger. Here, on the other hand, we are mostly interested in
the postmerger object and on the effects that resistivity has

7For completeness, we can compare the violations in the L2-
norm of the Hamiltonian and momentum constraints for binaries
with reduced initial momenta with the corresponding violations
for binaries on quasicircular orbits. The latter amount to
∼2 × 10−7=M2

ADM for the Hamiltonian constraint and to ∼4 ×
10−8=M2

ADM for the average of the momentum constraints.
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FIG. 1 (color online). Snapshots of two-dimensional cuts in the ðx; yÞ and ðx; zÞ planes of the rest-mass density ρ (left panel), of
the specific internal energy ϵ (middle panel), and of the modulus of the magnetic field jBj ≔ ðBiBiÞ1=2 (right panel). From the
top, the snapshots correspond to times t ¼ 2.43 ms (top row), t ¼ 3.91 ms (middle row), and t ¼ 11.60 ms (bottom row). Shown
with white lines are the projection of the magnetic-field lines on the different planes, while marked with green solid lines are the
isocontours of the rest-mass density at ρ ¼ f6.2 × 107; 1.2 × 1011; 2.5 × 1011; 3.7 × 1011; 4.9 × 1011; 6.2 × 1011; 1.3 × 1013; 2.5×
1013; 3.7 × 1013; 4.9 × 1013; 6.2 × 1013g gr cm−3. The positions of the two stars are marked with × and þ symbols, and the
stars’ trajectories are marked with red dashed lines. The different panels represent the evolution of the HMNS and highlight
that no ordered magnetic-field topology emerges; this will change when the HMNS collapses to a black hole (see also
Figs. 3–6).
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on the dynamics of the HMNS and subsequent black hole-
torus system. Because of this, and because the scenario we
are investigating is polluted by the large baryonic winds
produced after merger, our resistive matching is made to an
electrovacuum exterior. In this sense, the work carried out
here and in Ref. [56] provide a complementary description
of the dynamics of magnetized binary neutron stars in full
general relativity.

A. Rapid overview

The dynamics of the binary when evolved within the
RMHD framework is summarized in Figs. 1 and 3. The first
one, in particular, reports two-dimensional cuts in the ðx; yÞ
and ðx; zÞ planes of the rest-mass density ρ (left panel), of
the specific internal energy ϵ (middle panel), and of the
modulus of the magnetic field jBj≔ ðBiBiÞ1=2 (right panel).
Marked with white lines are the projection of the magnetic-
field lines on the different planes, while marked with green
solid lines are the isocontours of the rest-mass density. The
snapshots refer to times t¼2.43ms (top row), t ¼ 3.91 ms
(middle row), and t ¼ 11.60 ms (bottom row). The posi-
tions of the two stars are marked with × and þ symbols,
and the stars’ trajectories are marked with red dashed lines.
Given the small initial orbital separation of 45 km and

the reduced linear moment, the two stars merge very
rapidly. More specifically, at approximately t≃ 0.5 ms,
the two stellar surfaces start entering in contact, although
the actual merger takes place at t≃ 3.91 ms.8 As the
merger takes place, the two stellar cores become signifi-
cantly distorted by the large tidal fields and produce spiral
arms. At the leading edges of these spiral arms, the specific
internal energy increases through shock heating (cf. the
middle column of Fig 1).
The time t ¼ 2.42 ms in the top row of Fig. 1 corresponds

to one orbit of the binary, which is sufficient for the magnetic
field to diffuse over the thin transition layer close to the
surface of the stars in an attempt to settle to a new equilibrium
configuration (cf. the discussion in Sec. IV.C.1 of Ref. [66]).
Once the magnetic field has diffused out of the star, it

continues to propagate also in regions that are dynamically
treated as atmosphere andwhere the electrical conductivity is
set to zero as if the medium was an electrovacuum. In this
way, we achieve a rather smooth transition between the
highly conducting stellar interior and the electrovacuum
exterior. This is shown in Fig. 2, wherewe show the electrical
conductivity at three reference times on the ðx; zÞ plane.Note
that the region in black corresponds to our electrovacuum but
does not coincide with the atmosphere. Indeed, the region in
black is filled with tenuous plasma as can be seen in the left
columnofFig. 1.Note also that at this time themagnetic-field
topology is still predominantly poloidal in the exterior of the
star. However, a toroidal component is also being generated
as the highly conducting material in the stellar interior shears
the poloidal magnetic field in the lower-density, high-
conductivity spiral arms.
As mentioned above, at t ¼ 3.91 ms the merger takes

place, at least as measured from the position of the first peak
in the gravitational-wave amplitude. When this happens, a
vortex sheet is created between the two stars, which could
lead to the onset of a Kelvin–Helmholtz instability and the
generation of a large-scale and ultrastrong magnetic field
[97] (see the middle row of Fig. 1). It is presently a matter of
debate whether such large-scale magnetic fields can be
producedwith amplifications of several orders ofmagnitude.
Present direct simulations are not able to reach the resolutions
necessary to resolve the turbulent motion produced by the
instability [34,35]. The results obtained so far with direct,
very high-resolution simulations, either local [98] or global
[45], indicate that the amplification of themagnetic field is of
a factor 20 at most, most likely because resistive instabilities
disrupt the Kelvin–Helmholtz unstable vortex [98] (but see
also Ref. [44] for recent simulations with subgrid modeling
which could lead to much larger amplifications).
In the simulations reported here, we find that the

magnetic-field magnitude increases slightly less than an
order of magnitude during this stage (see Fig. 12 and the
discussion in Sec. IV C). This moderate growth of the
magnetic field is possibly due to insufficient resolution and
our inability to capture the dynamics of the relevant scales.
On the other hand, it could also indicate that a Kelvin–
Helmholtz instability simply does not develop. A possible

FIG. 2 (color online). Two-dimensional cuts on the ðx; zÞ plane of the electrical conductivity distribution at different times t ¼
f11.601; 16.141; 18.537g ms (left to right). Note that the conductivity is very large in the HMNS (left panel) and torus (middle and right
panel), where the IMHD is recovered. On the other hand, the conductivity is outside the HMNS/torus, where the electrovacuum limit is
reached. Note also that the region in black does not coincide with the atmosphere but is filled with tenuous plasma as can be seen in the
left columns of Figs. 1 and 3.

8As is customary, we define the time of merger as the time of
the first peak of the gravitational-wave amplitude [13,83,96].
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reason is that the time scale of the instability might be
longer than the dynamical time scale and the shearing
motion could very rapidly get destroyed as the two stellar
cores collide on a time scale of a fraction of a millisecond.
We should also note that resistive effects might become
important at this stage as the reconnection of magnetic-field
lines might lead to the acceleration of matter due to Ohmic
heating. We believe that higher-order schemes, as those
presented in Refs. [25,26,48], could help resolve this issue.
The bar-deformed HMNS produced after the merger is

differentially rotating, and magnetic braking transfers angu-
lar momentum from the inner core to the outer parts of the
star. The spiral arms widen and merge together generating
more shock heating and dissipation. A magnetically driven
wind as a result of differential rotation is launched from the

outer layers of the HMNS [42,43]. The wind could play an
important role in the modelling of short gamma-ray bursts
(SGRBs), which show an extended x-ray emission [61,62].
Thewind is not constant in time but rather characterized by a
bursty activity in which high internal energy plasma blobs
(i.e., local concentrations of specific internal energy a few
kilometers in size) are launched from near the black-hole
horizon and propagate along the z-direction (bottom row of
Fig. 1). Interestingly, the bursts observed in the specific
internal energy of the hot rotating halo that forms around the
central object are anticorrelated with the bursts observed in
the modulus of the magnetic field; a more detailed dis-
cussion on these bursts follows in Sec. IV C 4.
Unfortunately, the resolution used here is insufficient to

be able to track the development of an MRI, which is,

FIG. 3 (color online). The same as in Fig. 1 but for times t ¼ 15.61 ms (top row) and t ¼ 18.54 ms (bottom row), when a black hole
has already been formed. Note that, in contrast to the dynamics of the HMNS shown in Fig. 1, the collapse of the HMNS leads to the
generation of large-scale coherent magnetic fields and the emergence of a magnetic-jet structure around the black-hole rotation axis. The
magnetic field is mostly poloidal in the funnel and mostly toroidal in the torus (see also Figs. 5 and 6).
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however, expected to develop [37,45] and could signifi-
cantly amplify the magnetic field. Blind to this effect, our
simulation shows that at t ¼ 11.60 ms (see the bottom row
of Fig. 3) magnetic braking has managed to store enough
rotational energy in the winding of the magnetic-field lines
so that the inner core of the star is now less differentially
rotating. The direct consequence of this is that the HMNS
collapses to a black hole of mass M ¼ 2.88M⊙ and
dimensionless spin a ¼ J=M2 ¼ 0.87, as measured from
the apparent horizon [99,100]. We postpone the discussion
on how angular momentum is transported outward and how
this affects the lifetime of the HMNS to Sec. IV C 2.
At time t ¼ 15.61 ms, the black hole is surrounded by a

thick accretion torus that is responsible for confining and
collimating the magnetic field along the z-axis (cf. the top
row of Fig. 3). The properties of the black hole-torus system
are shown in Table I at approximately 4.74 ms after the
collapse and show that themass of the torus is 0.095M⊙. The
magnetic-field topology and matter dynamics soon after
the collapse are highly turbulent, but the high degree of
symmetry introduced by the black hole, which is gravita-
tionally dominant over the torus, rapidly establishes some
order in this system. After about one orbital period, in fact,
the torus becomes essentially axisymmetric, and thematter in
the polar region is rapidly accreted onto the black hole, giving
rise to a funnel where the rest-mass density reaches values
close to that of the atmosphere (cf. the bottom row of Fig. 3).
After black-hole formation, the plasma dynamics in the

funnel is far from being stationary and continues with
repeated bursts having a period of about 2.4–3.7 ms. While
a more detailed discussion of these bursts is postponed to

Sec. IV C 4, it is useful to remark here that the ejected
material does not have sufficient energy to reach large
distances away from the black hole. This is probably due to
the fact that, although the magnetic field is comparatively
strong, the material in the funnel is still matter dominated,
with βP ∼ 104–106. Such large values are not particularly
surprising since the initial magnetic field in the stars is
rather small, i.e., ∼1012 G, and is not amplified signifi-
cantly. At the same time, the torus angular velocity profiles
have become nearly Keplerian, and the MRI could develop
(cf. Fig. 14). However, as for the HMNS, also the spatial
resolution of the grid covering the torus is too small to
capture the fastest growing modes of the instability in the
torus (see the discussion in Sec. IV C 5).
For completeness, we report in Fig. 4 three different two-

dimensional cuts on the ðx; zÞ plane of the specific internal
energy and of the velocity field in this plane. The times
selected are the same as those presented in Fig. 2 and are
useful to gain information on the properties of the flow
during theHMNSstage and after the collapse to a black hole.
Note that during theHMNS stage the flow consistsmostly of
the intense magnetically driven outgoing wind discussed
above (left panel). However, once a funnel is produced, the
flow is ingoing at heights z≲ 100 kmbut becomes outgoing
for z≳ 100 km (middle and right panels). The location of
this stagnation point varies with time and follows the
expansion of hot fluid which is produced by the accretion
process and that can be followed via the increases in the
specific internal energy. In all cases considered, the vertical
flow very close to the black hole is ingoing.

B. Magnetic-field topology and magnetic-jet structure

As mentioned above, the high degree of symmetry near
the rapidly rotating black hole induces a quick rearrange-
ment of the matter and of the magnetic fields. As a result,
the magnetic-field topology at time t ¼ 18.54 ms changes
in the funnel and develops a dominant poloidal component,
giving rise to a well-defined magnetic-jet structure, which
is almost axisymmetric. This result is similar to what was
already found in the simulations of Ref. [36], with the
important difference that this configuration has been

TABLE I. Properties of the black hole-torus system at t ¼
4.74 ms after the appearance of the apparent horizon for both the
resistive and IMHD simulations. Shown are the mass and
dimensionless spin of the black hole, as well as the rest mass
and size of the torus as estimated with a cutoff on the rest-mass
density at ρ ¼ 1010 g cm−3.

M (M⊙) J=M2 Mtor (M⊙) rtor (km)

RMHD 2.88 0.873 0.095 105.9
IMHD 2.91 0.884 0.075 88.9

FIG. 4 (color online). Two-dimensional cuts on the ðx; zÞ plane of the specific internal energy and of the velocity field in this plane.
Note that the times selected coincide with those presented in Fig. 2 and are useful to gain information on the properties of the flow during
the HMNS stage and after the collapse to a black hole. The flow is essentially given by the magnetically driven wind during the HMNS
stage (left panel). However, once a funnel is produced, the flow is ingoing at heights z ≲ 100 km, but becomes outgoing for z≳ 100 km
(middle and right panels).
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reached with a higher spatial resolution and a consistent
treatment of the resistivity.
The rest-mass density of the plasma in the funnel is close

to that of the atmosphere, but also slightly larger. Hence,
given our choice of the conductivity profile in Eq. (22), the
conductivity is essentially zero everywhere in the funnel
(see the middle and right panels of Fig. 2). This has two
important consequences. First, the dynamics of the electro-
magnetic fields in this region is not that prescribed by the
IMHD equations but rather that of electromagnetic waves
in vacuum. At the same time, because of its (comparatively)
small rest-mass density and pressure, the matter in the
funnel tends to move along the field lines. We should
clarify that this behavior is not achieved because the test-
particle limit of the RMHD equations is reached (the rest-
mass density and pressure are in fact nonzero) but rather
because the matter in the funnel can only move in the
vertical direction, either accreting onto the black hole or
moving outward (the matter in the funnel has low or zero
specific angular momentum).
Modelling the dynamics of the matter in the funnel is

among the most challenging aspects of these calculations.
Although the matter there has the largest magnetic-pressure
support (i.e., βP ≳ 104), this is still about 4 orders of
magnitude away from being magnetically dominated. The
reason for this behavior is most likely due to the com-
paratively weak magnetic fields that we are able to build in
the funnel at these resolutions and the short evolution times.
Second, the zero-conductivity plasma in the funnel is just

adjacent to the high-conductivity plasma of the torus; this
large jump in the conductivity helps in preserving the
magnetic-jet structure and in providing a natural agent for
the collimation of the flow at low latitudes.
It is useful to remark that in close analogy with what

found in Ref. [36] the magnetic-jet structure produced here
is not a relativistic outflow. Instead, it can just be viewed as
an almost quasistationary magnetic structure confining the
tenuous plasma in the funnel and confining it away from
the dynamics of the ultradense plasma in the torus. In fact,
despite the resistive losses, the plasma in the funnel does
not have yet sufficient internal energy to be able to launch a
relativistic outflow. It is possible that the strong magnetic
fields in the vicinity of the black hole could provide the
conditions for electromagnetic extraction of the black hole’s
rotational energy through theBlandford–Znajekmechanism
[101] or through a generalized Penrose process [102].
Alternatively, the energy required for launching a relativistic
outflow could also be efficiently deposited along the baryon-
poor funnel by reconnection processes not fully modelled
here or by neutrino pair annihilation [103,104]. Clearly,
additional work is needed to assess the robustness of our
modelling of the funnel region and to assess whether and
how energy can be deposited in the magnetic-jet structure.
A closer look at the magnetic-jet structure is offered in

Fig. 5, which shows two-dimensional snapshots on the
ðx; zÞ planes of the rest-mass density (top row) and of the
magnetic field. The two columns refer to t ¼ 11.60 ms (left
column), when the HMNS is just about to collapse, and to

FIG. 5 (color online). Large-scale two-dimensional snapshots on the ðx; zÞ planes of the rest-mass density (top row) and of the
magnetic field (bottom row). The two columns refer to t ¼ 11.60 ms (left column), when the HMNS has not yet collapsed, and to
t ¼ 18.54 ms (right column), when a black hole has already been formed. Note again the formation of a magnetic-jet structure around
the black-hole rotation axis, which extends on scales that are much larger than those of the accreting torus (i.e., ∼� 60 km) and of the
black hole (i.e., ∼� 5 km) (see also Figs. 3, 6, 16, and 17).
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t ¼ 18.54 ms (right column), when the black hole-torus
system is toward reaching a quasistationary equilibrium.
The different panels in Fig. 5 should be compared with the
corresponding ones in Figs. 3 and 6 but are represented here
on much larger spatial scales (see also Appendix for a
closer comparison of the magnetic structure in the IMHD
simulations). Interestingly, the magnetic-jet structure
extends well beyond the scale of direct influence of the
black hole and shows a coherent structure on scales of
≳250 km. The scale of the magnetic structure is much
larger than that of the accreting torus (i.e., ∼� 60 km) and
of the black hole (i.e., ∼� 5 km).
Additional information on the magnetic-field topology

can be appreciated by considering three-dimensional views
of themagnetic-field strength and field lines. This canbe seen
in Figs. 6, where we show a three-dimensional snapshot of
the toroidal (left panel), poloidal (middle panel), and total
magnetic field (right panel). It is important to remark that
a well-defined magnetic-jet structure has been recently
reported also in Ref. [21] from IMHD simulations of the
merger of a black hole-neutron star binary. In addition to a jet
structure not very different from the one reported here, the
authors in Ref. [21] are also able to produce a sustained
outflow from the accretion torus.At the same time, the IMHD
simulations reported in Ref. [45], where a very high spatial
resolution was used, do not reveal the formation of such a
magnetic-jet structure. It is difficult to assess at the moment
the origin of these differences, partly because of the limited
amount of information provided on the simulations in
Ref. [45]. A more extended discussion of the properties of
the magnetic-field topology and dynamics, made along the
lines suggested in this paper (see also Sec. IV C 1) would be
useful to clarify if there are really differences and their origin.
When studying the magnetic-field topology, i.e., whether

it is mostly poloidal or toroidal, it is unavoidable to discuss

where certain measurements are made, as the magnetic
field can be at the same time mostly poloidal and mostly
toroidal but in two different regions. A quick inspection of
the three panels suggests that the magnetic field in the low-
density funnel is predominantly poloidal (clearly shown in
the middle panel of Fig. 6). It is quite natural to expect that
the magnetic field will be essentially poloidal near the
rotation axis, where matter has a specific angular momen-
tum that is intrinsically small. Equally natural is to expect
that a toroidal component will start to develop away from
the axis and as one approaches the regions filled by the
torus. This behavior can be explained by the fact that some
of the magnetic-field lines in the funnel are anchored to the
highly conducting material at the edges of the torus, which
is rotating at nearly Keplerian velocities. Indeed, the left
panel of Fig. 6 shows that the magnetic field acquires a
toroidal component near the edges of the funnel and then
becomes essentially toroidal in the torus. This is also shown
in Fig. 7, which offers three-dimensional snapshots of the
rest-mass density ρ (left panel), of the specific internal
energy ϵ (middle panel), and of the modulus of the
magnetic field jBj (right panel) at t ¼ 18.3 ms. Also
reported are the magnetic-field lines, of which the three-
dimensional representation confirms that the magnetic field
is mostly poloidal in the magnetic-jet structure, acquiring a
twist and a kink when it reaches the edges of the funnel and
becoming essentially toroidal inside the torus.
Finally, we note that a vigorous outflow develops at the

interface between the magnetic-jet structure and the torus.
The resulting shearing boundary layer could be the site for
the development of a Kelvin–Helmholtz instability, which
unfortunately we cannot investigate at the present reso-
lutions and without a more sophisticated treatment of the
conductivity in the transition between large and small
values (the instability does potentially develop in a

FIG. 6 (color online). Three-dimensional snapshots of the norm of the toroidal magnetic field jBtorj (left panel), of the poloidal one
jBpolj (middle panel), and of the total magnetic field jBj (right panel), all at time t ¼ 18.3 ms. Additionally, we plot the modulus of the
magnetic field at the same time to illustrate where the toroidal and poloidal contributions become dominant. Note that the magnetic field
at the edges of the funnel starts developing a toroidal component that exhibits signs of twisting, while the magnetic field in the evacuated
region is predominantly poloidal. The figures show a cut through the torus, with the z-axis facing down, in order to be able to see the
evacuated region formed along the z-axis and the funnel-wall structure that develops at the interface with the interstellar medium. The
domain plotted corresponds to a rectangular grid with dimensions ½0 km; 115.8 km� × ½−115.8 km; 115.8 km� × ½0 km; 92.16 km�.
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particularly difficult region). It is clear, however, that the
dynamics along the torus walls has all the potential of
yielding interesting observational features and should be
investigated in the future, possibly using advanced numeri-
cal techniques such as those presented in Ref. [105].
Aword of caution should be spent before concluding this

section. While the behavior described above appears
reasonable and is possibly the expected one on the basis
of rather simple considerations, this behavior is ultimately
the result of our choice for the conductivity profile in
Eq. (22) and of our choice of rest-mass density in the
atmosphere. The large computational costs associated with
these simulations prevent us from presenting at this point a
systematic investigation of how sensitive the results are on
the choice for σ and ρatm. We are aware that this represents a
limitation of our investigation, which we plan to resolve
with future simulations.

C. Comparison with IMHD simulations

As described in the previous section, the dynamics of the
RMHD simulations is rather similar, at least qualitatively,
to the one observed in IMHD simulations of the same
binary presented in Ref. [35]. Yet, there are some important
differences, and these can be best appreciated if we perform
a careful comparison of the two evolutions. To this scope,
we have performed additional simulations of the same
binary discussed in the previous section when, however, the
set of equations solved are those of general-relativistic
IMHD. We note that this was necessary because the
simulations in Ref. [35] used a different grid structure
and resolution but also investigated quasicircular initial
data in contrast to the reduced linear momenta we have
considered here.
In the following we present the results of this side-by-

side comparison, first using two-dimensional spacetime

diagrams and then moving to standard one-dimensional
snapshots.

1. Spacetime diagrams

We have found that a very efficient way of carrying out a
comparison between two MHD evolutions which are
qualitatively similar is to use two-dimensional spacetime
diagrams. This technique, which was first introduced in
Ref. [106], provides a color-coded evolution of various
scalar quantities as measured along principal axes (e.g., the
x- and z-directions) and has the advantage of summarizing
simply even rather complex dynamics.
As representative examples, we show in Figs. 8 and 9 the

differences between the RMHD and IMHD implementa-
tions in the evolution of the rest-mass density ρ (top left
panel), of the specific internal energy ϵ (top right panel),
and of the magnetic-field norm jBj (bottom panel). Note
that each panel is split into two diagrams, with the left one
referring to the RMHD solution and the right one to the
IMHD solution. Furthermore, while Fig. 8 refers to
quantities measured along the x-axis and hence is repre-
sentative of motions on the equatorial plane, Fig. 9 refers to
the z-axis and is therefore representative of motions in the
polar region. In all panels we indicate with a solid green
line the evolution of the apparent horizon (see the dis-
cussion in Ref. [89] on how to interpret such a line). Note
that the values in the color bars are saturated and do not
correspond to the minimum and maximum values of the
corresponding fields.
It is clear from both figures that the evolution of all

quantities is very similar during the inspiral, when indeed
the IMHD and RMHD evolutions should be mathemati-
cally identical given that our fields are contained in the
stars. As the binary reaches the merger, matter is expelled
from the stars mainly in the equatorial plane, as is evident

FIG. 7 (color online). Three-dimensional snapshots of the rest-mass density ρ (top left panel), specific internal energy ϵ (top right
panel), and modulus of the magnetic field jBj (bottom panel) at t ¼ 18.3 ms. Additionally, we plot the magnetic-field lines on top of
these quantities to illustrate the topology of the magnetic field. Because of the symmetries applied in our simulation, we only show a
quadrant of the black hole-torus system. The figures show a cut through the torus, with the z-axis facing down, in order to be able to see
the evacuated region formed along the z-axis and the funnel-wall structure that develops at the interface with the interstellar medium.
The domain plotted corresponds to a rectangular grid with dimensions ½0 km; 115.8 km� × ½−115.8 km; 115.8 km� × ½0 km; 92.16 km�.

GENERAL-RELATIVISTIC RESISTIVE- … PHYSICAL REVIEW D 92, 084064 (2015)

084064-15



in Fig. 8, which also shows that the ejected matter moving
through the low-density medium generates shocks that
heat up the plasma and appear as thick lines. The
subsequent bursts of matter are mainly associated with
the fundamental mode (f-mode) of oscillation of the
HMNS [13,107]. The equatorial ejections are also accom-
panied by four or five subsequent “bursts” along the z-
axis, starting in both simulations at approximately 5 ms,
and can be seen in Fig. 9. Clearly, the violent oscillations
experienced by the HMNS launch matter essentially
isotropically.
We have already mentioned that the differentially rotat-

ing HMNS does collapse promptly to a black hole by first
rearranging its angular velocity profile and mass distribu-
tion through magnetic braking. During this phase, angular
momentum is transported outward, with the outer fluid
elements moving further away from the star and the inner
ones moving toward the center as a result of the angular-
momentum losses. Clearly, this redistribution of angular
momentum will be different in the RMHD and IMHD
evolution, with the latter being more efficient in trans-
porting angular momentum outward (in IMHD the fluid
can only move along magnetic-field lines, while it can also
partially cross them in RMHD). As a result, the collapse
can take place slightly earlier, occurring at 11.9 ms in the

IMHD evolution and at 13.8 ms in the RMHD simulation
(cf. Figs. 8 and 9).
We have already commented that one of the major

differences between the IMHD and RMHD simulations
is that our implementation of the latter allows for a
description of propagating electromagnetic waves in vac-
uum. By contrast, the atmosphere treatment of the IMHD
implementation is such that it does not evolve the magnetic
field as the fluid velocities are reset to zero there. As a
result, already after the first 0.5 ms the magnetic field
manages to diffuse out of the stars, heating up the plasma in
the outer layers and forcing it to expand. In this way,
magnetic energy is converted into internal energy, and
therefore the magnetic field at the center of the stars is
(slightly) lower than in the corresponding IMHD simu-
lation. In contrast, the magnetic field along the z-axis in the
RMHD simulation is higher than in the IMHD simulation
in the first few milliseconds. Indeed, the differences
between the IMHD and RMHD simulations become
particularly evident after black-hole formation, when the
funnel is evacuated and the magnetic-jet structure is built
(see the bottom panels of Figs. 8 and 9). The magnetic
diffusivity in the RMHD simulation acts so rapidly that in a
bit more than one crossing time the whole computational
domain in the RMHD run is filled with electromagnetic

FIG. 8 (color online). Two-dimensional spacetime representation of the evolution of the rest-mass density ρ (top left panel), of the
specific internal energy ϵ (top right panel), and of the magnetic-field norm jBj (bottom panel). All quantities are measured along the x-
axis and are therefore representative of motions on the equatorial plane. Indicated with a solid green line is the evolution of the apparent
horizon; note that the values in the color bars are saturated and do not correspond to the minimum and maximum values of the
corresponding fields.
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fields despite the fact that the magnetic field was initially
constrained to the stellar interior.9

Note that the modulus of the magnetic field along the z-
axis is about 2 orders of magnitude larger in the RMHD
simulation (cf. ∼1010 G in IMHD vs ∼1012 G in RMHD).
This is due (mainly) to the intense currents produced by the
rapidly rotating torus and (partly) to the magnetic-field
diffusion of the strong magnetic field in the torus, which
diffuses across the walls of the funnel. This behavior of the
magnetic field is in fact similar to the one observed in a
stable magnetized star with extended magnetic fields which
was studied in Ref. [66], where, after an initial transient, the
system relaxed to a solution consisting of a large-scale,
nearly electrovacuum, dipolar magnetic-field configuration
in the exterior, which was anchored to the highly con-
ducting neutron star. The larger values of the magnetic
field in the funnel are particularly encouraging as strong
magnetic fields are necessary to produce a large acceler-
ation along the z-direction. The maximum Lorentz
factors achieved after the collapse in both simulations is
W ≈ 2.0–2.7, with the highest values occurring at the end
of the simulations.

The magnetic field in the torus is also stronger in the
RMHD simulation than the corresponding field in the
IMHD run, although the differences in this case are only
of 1 order of magnitude. The reason for this has to be
found in the fact that in the RMHD simulation the torus is
more massive and therefore able to sustain larger amounts
of magnetic fields (as for isolated stars, also a self-
gravitating torus in MHD equilibrium will be able to
sustain stronger magnetic fields for increasing masses;
cf. Table I).

2. Angular-momentum transfer and HMNS lifetime

The top panel of Fig. 10 reports the evolution of the
maximum of the rest-mass density ρmax for both the
IMHD (blue solid line) and the RMHD simulation (green
solid line). After the merger takes place at t≃ 3.5 ms, the
maximum rest-mass density oscillates at the f-mode
frequency and experiences a sudden drop when an
apparent horizon is found since matter inside the apparent
horizon is excluded from the calculation of ρmax. It is
quite obvious that the behavior of ρmax is different in
the two simulations, with the HMNS in the RMHD
surviving for a longer time. Note, however, that the first
increase in the central rest-mass density in the top panel of
Fig. 10 is slightly larger in the RMHD case, most likely
because of the resistive increase of the internal energy at
the merger.

FIG. 9 (color online). The same as in Fig. 8 but for quantities measured along the z-axis and therefore representative of motion in the
polar regions.

9We prefer to be repetitive rather than confusing: the magnetic
field diffuses out of the stellar matter because of the finite
resistivity at the surface of the neutron stars, of the HMNS, or of
the torus. Once in the atmosphere, however, the magnetic fields
propagate as electromagnetic waves in vacuum.
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Also shown in the top panel of Fig. 10 is the evolution of
a simulation in which the set of RMHD equations is used
together with a large and uniform conductivity σ ¼ σ0 ¼
106 (red solid line). In this case, despite the very different
set of equations solved and the different approach for
enforcing the divergence-free condition of the magnetic
field, the RMHD evolution should mimic the IMHD one.
This is indeed the case, and it provides considerable
confidence on the robustness of our RMHD approach. It
suggests that the delayed collapse is an effect associated
with the choice of physical resistivity and not due to
numerical artifacts.
Despite the complex dynamics, the differences between

the IMHD and RMHD runs are not difficult to explain. As
mentioned in the previous section, in fact, an important
difference between the IMHD and RMHD simulations is
that in the latter the magnetic field cannot be perfectly
locked with the plasma. As a result, the IMHD evolution is
more efficient in redistributing the angular momentum in
the system and, in particular, in transporting it outward.
This magnetic-braking process deprives the HMNS core of
the angular-momentum support, and this leads to an earlier
collapse. Clearly, since the conductivity in the HMNS
interior is very high also in the RMHD simulation
(although not infinite), magnetic flux freezing is very
efficient here as well, and the differences in the dynamics
of the IMHD and RMHD simulations can only be small.

This explains why overall the time of collapse varies by
only ∼1.9 ms. In addition, the important differences in this
dynamics are also expected to take place in the outer layers
of the HMNS, where the conductivity decreases as a
response to the conductivity profile (22). We should note
that the difference in the lifetime of the HMNS is not
related to the use of initial data with modified momenta but
is present also for a binary of which the initial data are on a
quasicircular orbit. This is shown in the bottom panel of
Fig. 10, where the corresponding quantities are shown and
where it is clear that also in this case the HMNS collapses
earlier to a black hole in the IMHD simulation. We also
recall that for the binary in quasicircular orbit no additional
refinement level is added after the merger. Hence, when
comparing in Fig. 10 the RMHD evolution of the binaries
with reduced momenta and on quasicircular orbits, one is
also effectively comparing the evolution of the HMNS at
two different resolutions, i.e., 148 and 296 m, respectively.
The fact that they both yield a longer lifetime of the HMNS
provides an indirect validation of the numerical consistency
of the RMHD solution.
Because the differences in the magnetic braking between

the RMHD and IMHD implementations are intrinsically
small, it is not easy to show that it is exactly these
differences that are responsible for the earlier collapse of
the HMNS in the IMHD simulations. However, such
evidence is offered in Fig. 11, which reports the spacetime
diagrams along the x-direction of the specific angular
momentum l ≔ −uϕ=ut [68].10 The left panel refers to
lR, the specific angular momentum of the RMHD run,
while the middle panel refers to the corresponding quantity
for the IMHD simulation, lI , and the right panel refers to
the relative difference: 1 − lR=lI.
A rapid inspection of the left and middle panel reveals

that in both the RMHD and IMHD simulations the specific
angular momentum increases outward (as it should for a
rotating fluid satisfying the Rayleigh stability criterion) but
also that the profiles are not constant in time and show
instead periodic variations that are in phase in the two
simulations. These variations reflect the large oscillations
of the HMNS, and, indeed, the oscillations in lR, lI take
place at the same frequency as those in the rest-mass
density and shown in the other spacetime diagrams in Fig. 8
(note the different scale in the x-axis). However, there are
important small differences in the dynamics of lR and lI ,
which are apparent in the right panel of Fig. 11, where
regions in red indicate that the specific angular momentum
in these regions is higher (of ∼20–30%) in the IMHD
simulation than in the RMHD simulation, while blue
regions are exactly the opposite. It is apparent that the
differences are larger in the central parts of the HMNS,

FIG. 10 (color online). Evolution of the maximum of the rest-
mass density for both the IMHD (blue solid line) and the RMHD
simulation (green solid line). The top panel refers to the initial
data with reduced linear momenta, while the bottom one refers to
data in quasicircular orbits. Also shown in the top panel is the
evolution of the RMHD set of equations with a large and uniform
conductivity (red solid line); in this case the evolution should
mimic the IMHD one, as indeed it does.

10A very similar behavior is observed if the specific angular
momentum is shown in terms of l ≔ huϕ (see Ref. [68] for a
discussion in the differences in the two definitions).
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while the specific angular momenta are very similar in the
outer layers, i.e., for x≳ 5 km. We recall that an excess of
specific angular momentum at a given position on the x-
axis reflects fluid elements that are rotating at a larger
frequency (l ¼ Ωx2 in the Newtonian limit), and this is
indeed what one would expect if the magnetic fields and the
fluid are tightly coupled. Hence, the red regions in the right
panel Fig. 11 can be taken to signal a more efficient transfer
of angular momentum from the inner regions of the
HMNS. A direct consequence of this transfer of angular
momentum is the appearance of blue regions adjacent to the
red ones and signalling therefore fluid elements that have
slowed down.
Although the differences in lR and lI are small, the

transfer continues steadily and with an increased rate up to
t ≈ 11 ms, when a much larger transfer of angular momen-
tum takes place. This signals the onset of the instability to
gravitational collapse in the IMHD simulation, which
effectively takes place soon after, i.e., at t ≈ 12 ms.
Three remarks should be made before concluding this

section. First, the fact that an RMHD simulation with a
uniform conductivity yields the same collapse time as an
IMHD simulation gives us great confidence about the
correctness of the RMHD evolution with nonuniform
conductivity. Second, although the difference in the sur-
vival time between the RMHD and IMHD evolution is here
rather small, it can be much larger if smaller values of the
resistivity are chosen for the stellar interior and for less
massive HMNSs; unfortunately present astronomical
observations do not set any stringent constraint on the
values of the conductivity at these temperatures, rest-mass
densities, and magnetic fields. More importantly, however,

a longer survival time is a useful new result in the
modelling of binary neutron stars, as it points out that
the HMNS can survive on comparatively longer time scales
than those computed so far in pure hydrodynamics or in
IMHD simulations. This is not a minor detail as the most
recent modelling of SGRBs with an extended x-ray
emission invokes the existence of a magnetized HMNS
that is able to survive on time scales of the order of
103–104 sec before collapsing to a black hole [57–62].
Finally, computational constraints have prevented us from
extending much past black-hole formation the evolution
of the RMHD/IMHD simulations with initial data on
quasicircular orbits. Nevertheless, the fact that already
the dynamics of the HMNS is unaffected by the initial
reduction in linear momenta and that the HMNS collapses
to a black hole earlier in both cases provides us with
confidence that the magnetic-field dynamics discussed in
Sec. IV B will be very similar also for binaries on
quasicircular orbits. This will also be the focus of our
future work.

3. Magnetic-field growth

In Secs. IV B and IV C 1, we have already discussed the
properties of the evolution of the magnetic fields but have
not quantified in detail how the magnitude of the magnetic
field changes with time and how this evolution varies in the
RMHD and IMHD simulations. This is done now in
Fig. 12, where we report the evolution of the maximum
of the modulus of the magnetic field (black lines) but also
of its toroidal (red lines) and poloidal (blue lines) compo-
nents, either in the RMHD simulation (left panel) or in the
IMHD simulations (middle panel).

FIG. 11 (color online). Spacetime diagrams of the specific angular momentum l ≔ −uϕ=ut for both the RMHD (left panel) and
IMHD (middle panel) simulations. In addition, we show the relative difference in the specific angular momenta between the RMHD and
IMHD implementations (right panel).
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Note that the evolution of the magnetic field in the two
implementations is very similar during the inspiral but also
that this changes considerably after the merger. While in
both cases the toroidal magnetic field grows exponentially,
the growth is of about 1 order of magnitude in the IMHD
simulation but of a factor 2 smaller for the RMHD
simulation. Furthermore, the magnetic field reaches values
of 3 × 1013 G just before the collapse in the IMHD
simulation and 8.3 × 1012 G only just after the merger in
the RMHD simulation. This different behavior is not
difficult to explain and is simply due to the fact that the
shearing of magnetic-field lines is less efficient in RMHD
because of the finite conductivity of the matter. Because the
growth at the merger is mostly due to the shear layer
between the two impacting stars, it is quite natural that a
resistive calculation will lead to a smaller magnetic field,
quite independently of how well the instability is resolved.
As for the rest-mass density (cf. Fig. 10), the collapse of

the HMNS to a black hole leads to a rapid decrease of the
maximum value of the magnetic field, as shown in Fig. 12
where the vertical lines signal the first appearance of the
apparent horizon. Also in this case, the strongest magnetic
fields are hidden inside the horizon, and the maximum
values reported are those relative to the magnetic field in
the torus. As remarked already when commenting on the
spacetime diagrams in Sec. IV C 1, the larger values of the
magnetic field in the RMHD simulation are the result of a
more massive torus produced in this case (cf. Table I).
In the right panel of Fig. 12, we complement the

evolution of the magnetic fields with the evolution of
the L2-norm of the divergence of the magnetic field for the
RMHD simulation (green dashed line) and for the IMHD
one (blue solid line) after it is multiplied by 1013. We recall
that the IMHD simulation makes use of a constrained

transport scheme [108], and hence it is able to maintain the
violations of this constraint down to machine precision.
The RMHD simulation, on the other hand, makes use
of a divergence-cleaning scheme [67], which is widely
known to be less efficient in suppressing the violations.
Yet, the purpose of making this comparison is mostly
that of highlighting that the divergence-cleaning approach
used here may not be as efficient as the constrained
transport, but it yields nevertheless very small violations.
Indeed, the evolution of the L2-norm of the ratio between
the divergence and the magnetic-field strength, i.e.,
‖∇iBi=

ffiffiffiffiffiffiffiffiffi
BiBi

p
‖2 and not shown in Fig. 12, is of the order

of ∼10−2, thus similar to the values reported by similar
works in the literature [87]. Note that the late-time
moderate growth of the divergence in the RMHD simu-
lation is due to the amplification of the magnetic fields in
the torus, and it would be interesting to investigate if a
dynamically adapted dissipation parameter for the diver-
gence cleaning method could help reduce such a growth.

4. Magnetically driven wind and bursting activity

In Secs. IVA and IV C 1, we have already anticipated
that a wind is produced after the merger, either as a result of
shock heating at the merger or because of magnetic
winding and consequent pressure imbalance in the outer
layers of the HMNS or because of neutrino losses
[109,110]. In addition to an almost quasistationary and
quasi-isotropic wind, both the RMHD and the IMHD
simulation show the existence of mildly anisotropic and
quasiperiodic launching of low rest-mass density, high
internal energy blobs of matter that we will refer to as
bursts. Overall, seven bursts are launched during the total
time of the simulation, with five bursts relative to the

FIG. 12 (color online). Evolution of the maximum of the magnetic-field strength jBjmax for both the RMHD (left panel) and the IMHD
simulation (middle panel). The black solid lines correspond to the time series of the maximum magnetic-field modulus; the blue dashed
lines correspond to the time series of the maximum poloidal magnetic-field norm, jBjmax; and the red dotted-dashed lines correspond to
the maximum toroidal magnetic field, jBT jmax. Additionally, we show the L2-norm of the divergence of the magnetic field, for the
RMHD simulation (green dashed line) and IMHD one (blue solid line). The collapse times are depicted with black dotted or black
dashed lines.
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HMNS stage and two being produced after black-hole
formation.
In particular, the first two bursts eject material that is

moving through the low-density atmosphere with an
average speed of ≈0.4–0.6 but that decelerate as they
move away from the HMNS, reaching a final outward
velocity of ∼0.16–0.18. This behavior is in part due to the
natural conversion of kinetic energy to binding energy but
also to the interaction of the bursting material with the slow
isotropic wind. This interaction, which is obviously accom-
panied by shocks, provides a damping mechanism on the
propagation of the ejected material. However, the slow-
down of the baryon rich material could be revived later on if
the slow wind is impacted by a faster, baryon poor wind, as
suggested in the “two-winds” model of Ref. [61].
We have investigated the properties of the bursts by

studying the evolution of the specific internal energy as
measured by an observer on the z-axis. This is reported in
Fig. 13 for an observer at ðx; y; zÞ ¼ ð0; 0; 86.82Þ km, for
both the RMHD simulation (green dashed line) and the
IMHD one (blue solid line). Clearly, after the merger the
specific internal energy exhibits a quasiperiodic behavior in
both simulations, with a very rapid increase. The increase in
the specific internal energy is of slightly less than 2 orders
of magnitude and is followed by a slower decay.
As already mentioned in Sec. IV C 1, this behavior can

be associated with the oscillations of the HMNS and is
observed also in the evolution of the rest-mass density
(cf. the five peaks in Fig. 10 and in Fig. 9, top left panel).
The characteristic frequency of these peaks is related to the
f-mode frequencies of the bar-deformed HMNS [13,107]

and thus these bursts occur every ∼1.7–2.0 ms. Similar
peaks (although less marked) can be observed also in the
magnetic field along the z-axis (cf. Fig. 9, bottom panel).
The difference is that they occur slightly later than the
specific internal energy ones, possibly indicating a con-
version of kinetic energy into magnetic energy and vice
versa. The rest-mass density in the blobs of low-density
material ejected in the bursts depends on height, but, at a
distance of z¼86.82km along the z-axis, it is 6×106grcm−3

–6×108grcm−3, while the magnetic field, at the same
location, has a strength of ∼109 − 5 × 1010 G.
The bursting activity continues also after the collapse,

but with somewhat different properties. First, the frequency
is now set by the radial epicyclic frequencies of the
oscillating torus as deduced, for instance, when analyzing
the time series of the specific internal energy at a ∼60 km
on the x-axis (see Refs. [106,111] for an introduction
to these frequencies in rotating tori). Second, the rest-
mass density of the blobs ejected is smaller and of the
order of 5 × 107 gr cm−3, while the magnetic field oscil-
lates between 108–109 G and is stronger probably as a
result of the magnetic-field increase in the funnel.
With only two bursts observed after black-hole forma-

tion, the time span is too short to reach a firmer conclusion
on the origin of the bursts after the collapse. However, all
present evidence seems to suggest that the postmerger
bursts are triggered by an increased mass-accretion rate as
the torus approaches the black hole during the inward phase
of its epicyclic oscillation. Of course also resistive recon-
nection processes could lead to the conversion of magnetic
energy into internal energy and thus may be invoked to
explain this phenomenology. We find this not a likely
explanation mostly because of the ordered magnetic-field
structure that builds up in the funnel and which seems
rather stationary. Clearly, a more detailed study of long-
term evolutions with different prescriptions for the con-
ductivity profiles is necessary before reaching more robust
conclusions.
We finally note that the outflows produced either by

shock-heating, magnetically driven winds or by the peri-
odic bursts eject a substantial amount of matter. More
specifically, the total rest-mass flux across a spherical
surface located at r ¼ 295.4 km is measured to be
0.5–2.0M⊙ sec−1, which amounts to a total of ∼0.01M⊙
ejected from the beginning of the simulation and over the
survival time of the HMNS (i.e., 13.8 ms). We also note
that the mass-ejection rates reported here are larger than
those obtained in Ref. [43], where mass fluxes of ∼10−3 −
10−2M⊙ sec−1 were reported. However, this is not particu-
larly surprising and for a number of reasons. First, the
HMNS considered here is the self-consistent result of a
binary merger, while the one studied in Ref. [43] was built
using an axisymmetric differentially rotating equilibrium
with a standard (but somewhat arbitrary) law of differential
rotation. Second, as mentioned in Sec. III D, the linear

FIG. 13 (color online). The time series of the specific internal
energy measured at ðx; y; zÞ ¼ ð0; 0; 86.82Þ km are shown for the
RMHD simulation with a green dashed line and for the IMHD
simulation with a solid blue line. The time of collapse for the
RMHD case is depicted with a black dashed line, while it is
depicted with a black dotted line for the IMHD one.
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momenta in our initial data are artificially reduced to
accelerate the inspiral. This also leads to a more violent
merger and to larger mass losses at least till black-hole
formation. After the HMNS collapses, in fact, the mass flux
saturates at 0.2M⊙ sec−1. Finally, the initial magnetic field
in Ref. [43] is about 2 orders of magnitude larger, and this
facilitates substantially the loss of MHD equilibrium at the
surface of the HMNS and thus the mass loss.

5. Black hole-torus properties

Because the magnetic field is not strong enough to alter
the torus dynamics significantly [35], it is natural to expect
the two solutions (IMHD and RMHD) to be very similar in
terms of dynamical properties once a nearly quasistationary
state is established after the collapse to a black hole. This
expectation is confirmed in the upper panel of Fig. 14,
which shows the rest-mass density distribution along the
x-direction at about 4.74 ms after the formation of the
apparent horizon. Clearly, the two distributions are very
similar but not identical. The RMHD simulation, in
particular, yields larger rest-mass densities in the outer
portions of the torus, which, in turn, are responsible for
larger rest masses (cf. Table I) and stronger magnetic fields
(see the discussion in Sec. IV C 1). Furthermore, the
RMHD simulation also yields a larger torus as measured
from the average position on the x-axis where the rest-mass
density falls below ρ ¼ 1010 g cm−3.
Additionally, the bottom panel of Fig. 14 illustrates the

angular velocity profile along the x direction Ω ≔ uϕ=ut

for the RMHD implementations (green dashed line) and for
the IMHD one (blue solid line), at the same time as the

upper panel. Also shown as a black dashed line is a
reference Keplerian profile, i.e., scaling like x−3=2 and
which is well matched by both distributions. As remarked
in Ref. [106], the fact that the outer parts of the torus
have a quasi-Keplerian behavior has two important
implications. First, it suggests that the tori will be stable
and not subject to dynamical instabilities that would lead
to their rapid destruction (see, e.g., Refs. [112–114]).
Second, a quasi-Keplerian profile also provides optimal
conditions for the development of an MRI in the torus,
thus opening the possibility of further amplification of the
magnetic fields that are present after the collapse of
the HMNS.

6. Electromagnetic luminosities

Despite the exploratory nature of the simulations carried
out here, we have computed for both the RMHD and IMHD
implementations the total electromagnetic luminosity LEM
emitted. This has been estimated as a surface integral of the
Poynting flux over spherical surfaces placed at represen-
tative coordinate radii rE, where rE has been varied to
guarantee that the measurement is an asymptotic one and is
not affected by the local plasma dynamics. We recall, in
fact, that, because in the IMHD approximation the mag-
netic fields are locked with the plasma, the electromagnetic
luminosity estimates can be heavily influenced by the
presence of matter in the outer regions and thus not
correspond to a genuine amount of electromagnetic energy
flux leaving the system. Unfortunately, there is no simple
way within the IMHD approximation of determining
whether the integral of the Poynting flux computed on
the numerical grid is genuinely asymptotic. However, it is
certainly reassuring if the values of LEM are independent
from the extraction radius.
The evolution of the electromagnetic luminosity is

illustrated in Fig. 15, where we report it as computed at
three different extraction radii, rE ¼ f147.71; 221.57;
295.43g km. Note that the luminosity during the inspiral
phase of the RMHD simulation is much larger than the
corresponding one in the IMHD simulation because of the
diffusion of the magnetic field across the stars’ surfaces,
that fills the entire domain with vacuum electromagnetic
fields. As remarked already in Sec. III C 1 and IV C 1, these
magnetic fields are in areas which are treated as atmosphere
from a hydrodynamical point of view, but where the
Maxwell equations are solved with zero conductivity, so
that the electromagnetic fields can propagate freely.
We note that a nominal value of σ ¼ 0 does not imply

that the electromagnetic luminosity will be zero, since the
motion of the compact stars will introduce perturbations in
the external electric and magnetic fields, and thus a net
Poynting flux (see Ref. [115] for the electromagnetic
emission of inspiralling binary black holes in electrovac-
uum). Indeed, we have found that the electrovacuum
luminosity before the merger is LEM ∼ 1038 erg sec−1,

FIG. 14 (color online). Upper panel: rest-mass density profile
along the x-axis for the RMHD (green dashed line) and IMHD
(blue solid line) simulations at time t ¼ 4.74 ms after the
apparent-horizon formation. Bottom panel: the same as above
but for the angular velocity; also shown as a reference is a
Keplerian profile (black dashed line).
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which is smaller than the one reported in Ref. [56] (i.e.,
LEM ∼ 1041 erg sec−1), where the stellar exteriors were
modelled in the force-free approximation. Although it
has already been found that the electrovacuum luminosity
is slightly smaller than the force-free one for the same
system (see Refs. [116–118]), the differences found here
are larger than expected, and this may be due to the rather
different way in which the exterior regions of stars are
treated. By contrast, the electromagnetic luminosity before
the merger in the IMHD simulation, where the magnetic
fields are always contained inside the stars, is essen-
tially zero.
After the merger, the electromagnetic luminosity grows

rapidly of about 2 orders of magnitude, essentially as a
result of the growth of the magnetic field already discussed
in the left panel of Fig. 12 (we recall that the electromag-
netic luminosity should scale quadratically with the mag-
netic field). During the postmerger phases, the luminosity
ranges from ∼1039 to 1041 erg sec−1, to reach values up to
1042 erg sec−1 after the collapse of the HMNS to a
black hole.
In the left panel of Fig. 15, the luminosity computed on a

surface of radius rE ¼ 147.71 km (black dot-dashed line)
does not overlap with those computed on larger radii (dark-
blue solid line and light-blue dashed solid lines), signalling
that this radius is too close to the central object and
contaminated by the presence of matter. Fortunately,
however, the luminosities at rE ¼ 221.57 km and rE ¼
295.43 km are very close to each other, confirming the
robustness of these measurements. By contrast, the three
luminosities in the IMHD simulation reported in the right
panel of Fig. 15 provide three different values for the
luminosity, indicating that at least two of them (i.e., those at

the smaller extraction radii) are probably contaminated by
the presence of bound matter and hence not reasonable.

V. CONCLUSIONS

We have presented general-relativistic simulations of the
inspiral and merger of binary neutron stars when evolved
solving the coupled set of the Einstein equations and those
of RMHD. Our main interest here has been to assess the
impact that resistive effects have on the dynamics of these
binaries and which are usually investigated in the more
idealized framework of IMHD.
Because the differences with an IMHD description could

be rather small in certain stages of the process (e.g., during
the inspiral), we have carried out a close comparison
between two simulations evolving the same binary, either
in the context of RMHD or in that of IMHD. More
specifically, we have studied the dynamics of an equal-
mass binary system of neutron stars with a total ADMmass
MADM ¼ 3.25M⊙ and an initial orbital separation of
45 km. The stars are initially irrotational and with zero
magnetic field. A dipolar magnetic field is therefore added
before the evolution is started, which is entirely contained
inside the stars, at least initially. Furthermore, to reduce
computational costs and “accelerate” the inspiral, we have
slightly reduced the linear momenta of the initial data as
done in Ref. [95], so that the merger occurs after approx-
imately one orbit.
A crucial goal of our RMHD approach has been that of

attaining a smooth resistive description from the highly
conducting, high-density stellar interior, out to regions of
very low-density plasma, where the electromagnetic fields
decouple from the fluid. Falling between these two regimes
is the large amount of high-density, small-velocity material

FIG. 15 (color online). Time series of the Poynting flux computed at different extraction radii rE ¼ f147.71; 221.57; 295.43g km are
shown here for the RMHD implementation (left panel) and the IMHD one (right panel). The dotted line represents the time of the
merger, and the black solid line represents the time of horizon formation.
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that is ejected during and after the merger by the HMNS
and, once the latter collapses to a black hole, by the
accreting torus. This material occupies a large portion of
the computational domain and is produced either by the
spiral arms launched at the merger or by the magnetic
winding and consequent pressure imbalance in the outer
layers of the HMNS. Neutrino losses can also be a source of
a wind, but we do not model this here.
While there are several ways of potentially reaching a

smooth transition between the IMHD limit in the stellar
interior and an electrovacuum behavior, we have here
adopted the same approach we have extensively inves-
tigated with isolated neutron stars in Ref. [66]. In essence,
this matching is achieved through a carefully chosen
conductivity profile, where the conductivity is directly
related to the conserved rest-mass density and is set to
zero once the latter reaches a value close to the atmospheric
floor. This prescription has at least two free parameters.
First, they ensure that the transition region covers only a
thin layer close to the surface of the star. Second, they
guarantee that this layer remains “thin” even in the first
steps of the evolution, when the outer layers of the star
expand due to a nonzero pressure in the atmosphere. While
we have set these two parameters to sensible values, their
influence on the results still needs to be fully explored.
Overall, we have found that there are many similarities

between the RMHD and IMHD evolutions, but also one
important difference, namely, the survival time of the
hypermassive neutron star, which increases in a RMHD
simulation. The increased lifetime of the HMNS appears to
be due to a less efficient magnetic-braking mechanism in
the resistive regime, in which matter can move across
magnetic-field lines, so that the outward transport of
angular momentum is reduced. This interpretation is
supported by the analysis of the evolution of the specific
angular momentum, and it shows that the transport is more
efficient in the IMHD simulation. An extended lifetime of
the HMNS could have intriguing astrophysical conse-
quences, since a longer-lived magnetized hypermassive
neutron star brings support to the recent modelling of
SGRBs in terms of long-lived magnetarlike objects pro-
duced by the merger [57,58,60,61].
Another important result of these simulations is the

confirmation that a magnetic-jet structure is formed in the
low-density funnel produced by the black hole-torus
system. We note that these simulations have been carried
out at higher resolutions and with a different grid structure
than those in Ref. [36]. In the RMHD simulations the
magnetic-jet structure is far more regular, essentially
axisymmetric, and extending out to the largest scale in
our system. This is most likely the result of the effective
decoupling established between the dynamics of the plasma
and that of the electromagnetic fields. In the IMHD
simulations, a magnetic-jet structure is still present, but
on the scale of the torus. This difference is due to the fact

that a decoupling of the electromagnetic fields from the
plasma is not possible in the IMHD approximation, and
the magnetic field follows tightly the turbulent dynamics of
the matter. In this case, the magnetic-field lines are almost
parallel to the z-axis (in analogy with what was shown in
Ref. [36]), and the topology becomes more turbulent on
large scales. In both regimes, the magnetic field is pre-
dominantly toroidal in the highly conducting torus and
predominantly poloidal in the nearly evacuated funnel,
although in the IMHD simulation, this happens near the
rotation axis. The matter in the funnel does not have an
internal energy sufficiently large to launch a relativistic
outflow. However, it is reasonable to expect that recon-
nection processes or neutrino annihilation occurring in the
funnel, none of which we model here, could potentially
increase the internal energy in the funnel.
The final comment of this work is in fact a caveat. While

the dynamics of the magnetic-field results presented here
appears reasonable, matching the expectations for this type
of system as well as previous simulations, we should
remark that our results are ultimately dependent on the
choice made for Ohm’s law and for the conductivity profile.
Again, while our choice is a very conservative and a
plausible one, it represents a choice nevertheless. The large
computational costs associated with these simulations have
prevented us from presenting a systematic investigation of
how sensitive the results are on the choices for Ohm’s law,
for the conductivity profile, or on the treatment of the
atmosphere. All of these issues deserve further investiga-
tion and will be the focus of our future work.
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APPENDIX: MAGNETIC-JET STRUCTURE
IN THE IMHD SIMULATIONS

Although the IMHD simulations are not the focus of this
paper, for completeness we provide in this Appendix a
rapid overview of the properties of the magnetic-jet
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structure as obtained within this approximation. The
essence of the results is shown in Fig. 16, which represents
the equivalent of Fig. 5 but within IMHD. The different
panels show large-scale, two-dimensional snapshots on the
ðx; zÞ planes of the rest-mass density (top row) and of the
magnetic field (bottom row). The left column of Fig. 16
refers to t ¼ 10.25 ms (left column), when the HMNS has
not yet collapsed to a black hole, while the right column
refers to t ¼ 18.89 ms, when a black hole has already been
formed. Because in the IMHD approximation the magnetic
fields are tightly locked with the matter, it does not come as
a surprise that no ordered magnetic-field structure seems to
develop before the HMNS collapses and forms a black

hole. This is because the dynamics of the plasma is quite
turbulent at the merger and during the HMNS stage.
However, after a black hole is formed, a well-ordered
magnetic-field structure appears as the system reaches a
quasistationary state. We note again that the formation of
a magnetic-jet structure occurs around the black-hole
rotation axis.
Differently from the corresponding RMHD simulation,

the magnetic-jet structure here is not very regular on large
scales, and it is necessary to go down to the length scale of
the torus, as shown in Fig. 17, for the magnetic-jet structure
to become evident. Note that the magnetic-field lines are
almost parallel to the z-axis, in analogy with what was

FIG. 16 (color online). The same as Fig. 5, but for the IMHD simulation. The two columns refer to t ¼ 10.25 ms (left column), when
the HMNS has not yet collapsed and to t ¼ 18.92 ms (right column), when a black hole has already been formed. Note again the
formation of a magnetic-jet structure around the black-hole rotation axis, which however is far less regular on large scales than the one
produced in the RMHD simulation. See also Fig. 17 for a view on smaller scales.

FIG. 17 (color online). The same as Fig. 16, but on a scale of ½−60; 60� km on the x-axis and of [0,80] km on the z-axis. Note that the
magnetic-jet structure becomes more evident on these scales. See also Fig. 3 for the corresponding quantities in the RMHD simulation.
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shown in Ref. [36]. Finally, although we are here using only
the projection of the magnetic-field lines on the ðx; zÞ
plane, the magnified view in Fig. 17 reveals that the
magnetic field in the low-density funnel is still

predominantly poloidal, although not as ordered as in
the RMHD simulation (cf. Fig. 3, left and right panels).
At the same time, and not shown here for compactness, the
magnetic field is essentially toroidal in the torus.
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