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We study the average rate of change of energy for a static atom immersed in a thermal bath of
electromagnetic radiation in the cosmic string spacetime and separately calculate the contributions of
thermal fluctuations and radiation reaction. We find that the transition rates are crucially dependent on the
atom-string distance and polarization of the atom and they in general oscillate as the atom-string distance
varies. Moreover, the atomic transition rates in the cosmic string spacetime can be larger or smaller than
those in Minkowski spacetime contingent upon the atomic polarization and position. In particular, when
located on the string, ground-state atoms can make a transition to excited states only if they are polarizable
parallel to the string, whereas ground-state atoms polarizable only perpendicular to the string are stable as if
they were in a vacuum, even if they are immersed in a thermal bath. Our results suggest that the influence of
a cosmic string is very similar to that of a reflecting boundary in Minkowski spacetime.
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I. INTRODUCTION

Spontaneous emission is one of the most important
phenomena in the interaction of atoms with radiation, and
it can be attributed to vacuum fluctuations [1,2], radiation
reaction [3], or a combination of them [4,5]. So far, a lot
of effort has been made to resolve the ambiguity in the
underlying mechanism regarding the radiative properties of
atoms [3,5–11]. In this regard, Dalibard, Dupont-Roc and
Cohen-Tannoudji (DDC) suggested a resolution which
distinctively separates the contributions of vacuum fluctua-
tions and radiation reaction by choosing a symmetric
ordering between the operators of the dynamical variables
of the atom and the field which ensures the Hermitianity of
the Hamiltonians of vacuum fluctuations and radiation
reaction [12]. Later, the DDC formalism was generalized
to investigate the radiative properties of atoms in different
circumstances, such as a noninertial atom in interaction with
various quantum fields [13–24], and an inertial atom
immersed in a thermal bath [25–27]. In both cases, as the
contribution of the fluctuations of the quantum field and that
of the radiation reaction to the rate of change of the atomic
energy no longer cancel completely, an atom in the ground
state can make a spontaneous transition to excited states.
In recent years, investigations on the radiative properties

of atoms have been extended to curved spacetime [28–31].
It is interesting to note that these studies along with those
for noninertial atoms in flat spacetime have shed light on
the nature of the Hawking radiation of black holes, the
Gibbons-Hawking effect of de Sitter space as well as the
Unruh effect related to uniformly accelerated observers as
atoms can serve as a model of realistic particle detectors. In

this paper, we plan to study the spontaneous excitation of
static atoms in yet another typical curved spacetime, i.e.,
the spacetime of a cosmic string. In comparison to other
spacetimes, the cosmic string spacetime is characterized by
its structure with nontrivial topology, a planar deficit angle
to be specific. Although now much remains to be done to
fully understand the behavior of strings, people are con-
vinced that they may raise a number of issues in funda-
mental physics, for example, gravitational effects such as
lensing of distant objects and conical bremsstrahlung
[32–34]. Interestingly, one can also use atoms to sense a
cosmic string. In this respect, J. Audretsch et al. studied the
spontaneous emission and the Lamb shift of an atom in a toy
model where the atom is assumed to be coupled to vacuum
quantum scalar fields in the cosmic string spacetime and
found that the spontaneous emission rate is modified by the
presence of a cosmic string [35]. Recently, a number of
authors have studied the Casimir effect and Casimir-Polder
force in a more realistic situation where the atom interacts
with electromagnetic vacuum fluctuations in the geometry
of a straight cosmic string [36–38]. In this paper, we plan to
study the spontaneous excitation and emission of a static
atom immersed in a thermal bath of electromagnetic
radiation in the vicinity of a straight cosmic string, where
the atom is coupled to quantum electromagnetic fields rather
than scalar fields in [35].
The paper is organized as follows. In Sec. II, we

introduce the quantization of electromagnetic fields in
cosmic string spacetime. In Sec. III, we generalize the
DDC formalism to study the average rate of change of the
atomic energy in the cosmic string spacetime. In Sec. IV,
we concretely calculate the average rate of change of a
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static atom immersed in a thermal bath in the cosmic string
spacetime and discuss how the conical deficit angle affects
the rate of change of atomic energy. Finally in Sec. V, we
give some concluding remarks. Throughout the paper, we
adopt the natural unit, ℏ ¼ c ¼ 1, and let the Boltzmann
constant kB ¼ 1.

II. QUANTUM ELECTROMAGNETIC FIELD
IN THE COSMIC STRING SPACETIME

The metric of a static, straight cosmic string lying
along the z-direction in the cylindrical coordinate system
is given by

ds2 ¼ dt2 − dρ2 − ρ2dθ2 − dz2 ð1Þ

where 0 ≤ θ < 2π
ν , ν ¼ ð1 − 4GμÞ−1 withG and μ being the

Newton’s constant and the mass per unit length of the string
respectively. The Lagrangian density of the electromagnetic
field can be written as

L ¼ ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2
ðAμ

;μÞ2
�
: ð2Þ

The quantization of the field is to be carried out in the
Feynman gauge

Aμ
;μ ¼ 0: ð3Þ

Inserting the above Lagrangian density into the Euler-
Lagrangian equation, we obtain

Fμν
;ν ¼ 0: ð4Þ

In terms of the vector potential of the electromagnetic field,
the above equation becomes

□Aρ −
2

ρ3
∂θAθ −

1

ρ2
Aρ ¼ 0; ð5Þ

□Aθ −
2

ρ
∂ρAθ þ

2

ρ
∂θAρ ¼ 0; ð6Þ

Az ¼ □At ¼ 0 ð7Þ

with

□ ¼ Δ − ∂2
tt; Δ ¼ 1

ρ
∂ρðρ∂ρÞ þ

1

ρ2
∂2
θθ þ ∂2

zz: ð8Þ

To solve Eqs. (5)–(7), we first decouple the field equations
by introducing the spin-weighted components of the vector
potential [33], i.e., define

Aξ ¼
1ffiffiffi
2

p
�
Aρ þ

iξ
ρ
Aθ

�
for ξ ¼ �1; ð9Þ

Aξ ¼ Az; At for ξ ¼ 3; 0: ð10Þ

Then the decoupled field equations can be collectively
written as

□ξAξ ¼ 0 ð11Þ

with

□ξ ¼ Δξ − ∂2
tt; ð12Þ

Δξ ¼
1

ρ
∂ρðρ∂ρÞ −

1

ρ2
L2
3 þ ∂2

tt; ð13Þ

L3 ¼ −i∂θ þ ξ: ð14Þ

The normal modes for the independent components, Aξ, are

fξjðxÞ ¼ fξjð~xÞe−iωt ð15Þ

with

fξjð~xÞ ¼
1

2π

ffiffiffiffiffiffi
ν

2ω

r
Jjνmþξjðk⊥ρÞeiðνmθþk3zÞ; ð16Þ

where the symbol J denotes Bessel J function, the subscript
j ¼ ðk3; k⊥; mÞ and ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ k2⊥

p
. The modes are nor-

malized according to

Z
d3xf�ξjðxÞði∂t

↔
Þfξj0 ðxÞ

¼ δj;j0 ¼ δm;m0δðk3 − k03Þ
δðk⊥ − k0⊥Þffiffiffiffiffiffiffiffiffiffiffi

k⊥k0⊥
p : ð17Þ

In order to quantize the electromagnetic field, we define
the canonically conjugate field Πμ corresponding to Aμ as

Πμ ¼
1ffiffiffiffiffiffi−gp ∂L0

∂Aμ
;0

¼ −Aμ
;0 ð18Þ

in which L0 describes the dynamics of the electromagnetic
field and it is obtained by discarding a four-divergence term
in L which has no influence on the field equations. We
impose the following equal-time commutation relations for
the field operator Aμ and Πμ:

½Aμðt; ~xÞ; Aνðt; ~xÞ� ¼ ½Πμðt; ~xÞ;Πνðt; ~xÞ� ¼ 0; ð19Þ

½Aμðt; ~xÞ;Πνðt; ~x0Þ� ¼ iδνμδ3ð~x − ~x0Þ: ð20Þ

Now we expand the field operator in terms of the complete
set of normal modes [see Eq. (15)],
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Aξðt; ~xÞ ¼
Z

dμj½cξjðtÞfξjð~xÞ þ c†−ξjðtÞf�−ξjð~xÞ� ð21Þ

in which

Z
dμj ¼

X∞
m¼−∞

Z
∞

−∞
dk3

Z
∞

0

dk⊥k⊥; ð22Þ

and cξjðtÞ ¼ cξjð0Þe−iωt and c†−ξj ¼ c†−ξjð0Þeiωt are respec-
tively the annihilation and creation operators for a photon
with quantum numbers ðk3; k⊥; mÞ at time t. One can show
that

cξjð0Þ ¼ i
Z

d3~xf�ξjðt; xÞ∂t

↔
Aξðt; xÞ; ð23Þ

c†ξjð0Þ ¼ −i
Z

d3~xfξjðt; xÞ∂t

↔
Aξðt; xÞ: ð24Þ

Now by using the relations Eqs. (9)–(10) and (19)–(20), the
commutation relations of the annihilation and creation
operators are found to be

½cξjðtÞ; c†ξj0 ðtÞ� ¼ δj;j0 for ξ ¼ �1; 3; ð25Þ

½c0jðtÞ; c†0j0 ðtÞ� ¼ −δj;j0 for ξ ¼ 0: ð26Þ

Here let us point out that a minus sign in the commutation
relations for ξ ¼ 0 in Eq. (26), which is missing in
Ref. [39], has been added.
Finally by calculating the T00 component of the stress

tensor of the quantum electromagnetic field, we obtain the
Hamiltonian operator of the field

HF ¼
Z

dμjωjðc†þjcþj þ c†−jc−j þ c†3jc3j − c†0jc0jÞ:
ð27Þ

III. THE GENERALIZED DDC FORMALISM

We consider a multilevel atom in interaction with the
quantum electromagnetic field in a thermal bath in the
cosmic string spacetime. The Hamiltonian that governs
the evolution of the atom with respect to the proper time, τ,
is given by

HAðτÞ ¼
X
n

ωnσnnðτÞ; ð28Þ

in which σnn ¼ jnihnj and jni denotes a complete set of
atomic stationary state with energy ωn. The Hamiltonian of
the quantum electromagnetic field in the proper time, τ, is

HFðτÞ ¼
Z

dμjωjðc†þjcþj þ c†−jc−j þ c†3jc3j

− c†0jc0jÞ
dt
dτ

: ð29Þ

We assume that the atom interacts with the quantum
electromagnetic field in the multipolar coupling scheme
[15], so the interaction Hamitonian can be written as

HIðτÞ ¼ −erðτÞ ·EðxðτÞÞ ¼ −e
X
mn

rmn · EðxðτÞÞσmnðτÞ

ð30Þ
where e is the electron electric charge, er is the atomic
dipole moment, and xðτÞ↔ðtðτÞ; ~xðτÞÞ is the spacetime
coordinate of the atom in the cosmic string spacetime. The
Hamiltonian that determines the time evolution of the
system (atomþ field) is composed by the above three parts

HðτÞ ¼ HAðτÞ þHFðτÞ þHIðτÞ: ð31Þ
Starting from the above Hamiltonian, we can write out

the Heisenberg equations for the dynamical variables of the
atom and the field. In the formal solutions, we can separate
each solution of either the variable of the atom or the field
into the “free” part which exists even in the vacuum, and the
“source" part which is induced by the interaction between
the atom and the field,

σmnðτÞ ¼ σfmnðτÞ þ σsmnðτÞ; ð32Þ

cξjðtðτÞÞ ¼ cfξjðtðτÞÞ þ csξjðtðτÞÞ; ð33Þ

where8<
:

cfξjðtðτÞÞ ¼ cξjðtðτ0ÞÞe−iωj½tðτÞ−tðτ0Þ�;

csξjðtðτÞÞ ¼ −ie
R
τ
τ0
dτ0½rðτ0Þ ·Eðxðτ0ÞÞ; cfξjðtðτÞÞ�;

ð34Þ

and

(
σfmnðτÞ ¼ σfmnðτ0Þeiωmnðτ−τ0Þ;

σsmnðτÞ ¼ −ie
R
τ
τ0
dτ0½rðτ0Þ · Eðxðτ0ÞÞ; σfmnðτÞ�:

ð35Þ

Consequently, the free part and source part of the vector
potential operator can be expressed as

Af
ξ ðt; ~xÞ ¼

Z
dμj½cfξjðtÞfξjð~xÞ þ cf†−ξjðtÞf�−ξjð~xÞ�; ð36Þ

As
ξðt; ~xÞ ¼ −ie

Z
τ

τ0

dτ0½rfðτ0Þ ·Efðxðτ0ÞÞ; Af
ξ ðxðτÞÞ�: ð37Þ

Notice that in the source parts of the above solutions, all
operators on the right-hand side have been replaced by their
free parts, which are correct to the first order in e.
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Taking the observable to be the energy of the atom, we
obtain

dHAðτÞ
dτ

¼ −ie½rðτÞ ·EðxðτÞÞ; HAðτÞ�: ð38Þ

Now following DDC [12], we separate the field operator
into the free part and the source part,EðxðτÞÞ ¼ EfðxðτÞÞþ
EsðxðτÞÞ, and choose a symmetric ordering between the
operators of the variables of the atom and the field. Then we
can identify the contributions of the free part and the source
part, i.e., the contributions of thermal fluctuations and
radiation reaction,

dHAðτÞ
dτ

¼
�
dHAðτÞ

dτ

�
tf
þ
�
dHAðτÞ

dτ

�
rr

ð39Þ

with

�
dHAðτÞ

dτ

�
tf
¼ −

ie
2
ðEfðxðτÞÞ · ½rfðτÞ; HAðτÞ�

þ ½rfðτÞ; HAðτÞ� ·EfðxðτÞÞÞ; ð40Þ
�
dHAðτÞ

dτ

�
rr
¼ −

ie
2
ðEsðxðτÞÞ · ½rfðτÞ; HAðτÞ�

þ ½rfðτÞ; HAðτÞ� · EsðxðτÞÞÞ: ð41Þ

Averaging the above two equations over the state of the
field, jβi, and the atomic state, jai, we obtain, after some
simplifications, the contributions of thermal fluctuations
and radiation reaction to the average rate of change of the
atomic energy,

�
dHAðτÞ

dτ

�
tf
¼ 2ie2

Z
τ

τ0

dτ0CFβ
ij ðxðτÞ; xðτ0ÞÞ

d
dτ

χijAb ðτ; τ0Þ;

ð42Þ
�
dHAðτÞ

dτ

�
rr
¼ 2ie2

Z
τ

τ0

dτ0χFβij ðxðτÞ; xðτ0ÞÞ
d
dτ

CijA
b ðτ; τ0Þ;

ð43Þ

where CFβ
ij ðxðτÞ; xðτ0ÞÞ and χFβij ðxðτÞ; xðτ0ÞÞ are respec-

tively the symmetric correlation function and the linear
susceptibility function of the quantum electromagnetic field
defined as

CFβ
ij ðxðτÞ; xðτ0ÞÞ ¼

1

2
hβjfEf

i ðxðτÞÞ; Ef
j ðxðτ0ÞÞgjβi; ð44Þ

χFβij ðxðτÞ; xðτ0ÞÞ ¼
1

2
hβj½Ef

i ðxðτÞÞ; Ef
j ðxðτ0ÞÞ�jβi; ð45Þ

and CijA
b ðτ; τ0Þ and χijAb ðτ; τ0Þ are the two statistical func-

tions of the atom in state jbi which are defined as follows,

CijA
b ðτ; τ0Þ ¼ 1

2

X
d

½hbjrið0Þjdihdjrjð0Þjbieiωbdðτ−τ0Þ

þ hbjrjð0Þjdihdjrið0Þjbie−iωbdðτ−τ0Þ�; ð46Þ

χijAb ðτ; τ0Þ ¼ 1

2

X
d

½hbjrið0Þjdihdjrjð0Þjbieiωbdðτ−τ0Þ

− hbjrjð0Þjdihdjrið0Þjbie−iωbdðτ−τ0Þ�; ð47Þ

where ωbd ¼ ωb − ωd and the sum extends over a complete
set of atomic states.

IV. RATE OF CHANGE OF THE ENERGY
OF A STATIC ATOM

Assume that an atom is placed static in a thermal bath
with temperature T in the cosmic string spacetime. In the
cylindrical coordinates we use, the position of the atom is
denoted by xðτÞ ¼ ðtðτÞ; ρ; θ;ϕÞ where ρ, θ, ϕ are con-
stants. As we have shown in the preceding section, in
order to calculate the average rate of change of the atomic
energy, details on the two statistical functions of the field
are indispensable. Combine Eqs. (9)–(10) with Eq. (21) and
we get

Aρðt; ~xÞ ¼
1ffiffiffi
2

p
Z

dμj½ðcþjfþj þ c−jf−jÞ

þ ðc†þjf
�
þj þ c†−jf

�
−jÞ�; ð48Þ

Aθðt; ~xÞ ¼ −
iρffiffiffi
2

p
Z

dμj½ðcþjfþj − c−jf−jÞ

− ðc†þjf
�
þj − c†−jf

�
−jÞ�; ð49Þ

Az;tðt; ~xÞ ¼
Z

dμj½c3j;0jf0j þ c†3j;0jf
�
0j�; ð50Þ

where we have used the abbreviations cþjðtÞ↔cþj and
fξjð~xÞ↔fξj. Making use of the relation Ei ¼ A0;i − Ai;0

leads to

hβjEiðxÞEjðx0Þjβi ¼ ∂0∂ 0
0hβjAiðxÞAjðx0Þjβi

þ ∂i∂ 0
jhβjA0ðxÞA0ðx0Þjβi: ð51Þ

The average value of an arbitrary operator, G, over the
thermal state jβi can be obtained by using the following
formula,

hβjGjβi ¼ tr½ρG�
tr½ρ� ; ð52Þ

where ρ ¼ e−βHF with β ¼ T−1 being the density matrix.
Combining Eqs. (48)–(52) with Eq. (44), the nonzero
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components of the correlation functions of the field are
found to be

CFβ
11 ðxðτÞ; xðτ0ÞÞ ¼

ν

8π2

Z
dμj cothðω=TÞ cosðωðt − t0ÞÞ

×

�
ω

2
ðJ2jνmþ1jðk⊥ρÞ þ J2jνm−1jðk⊥ρÞÞ

−
1

ω

�
dJjνmjðk⊥ρÞ

dρ

�
2
�
; ð53Þ

CFβ
22 ðxðτÞ; xðτ0ÞÞ ¼

νρ2

8π2

Z
dμj cothðω=TÞ cosðωðt − t0ÞÞ

×

�
ω

2
ðJ2jνmþ1jðk⊥ρÞ þ J2jνm−1jðk⊥ρÞÞ

−
1

ω

ν2m2

ρ2
J2jνmjðk⊥ρÞ

�
; ð54Þ

CFβ
33 ðxðτÞ; xðτ0ÞÞ

¼ ν

8π2

Z
dμj

k2⊥
ω

cothðω=TÞJ2jνmjðk⊥ρÞ cosðωðt − t0ÞÞ:

ð55Þ

Similarly, a combination of Eqs. (48)–(52) with Eq. (45)
gives the nonzero components of the susceptibility func-
tions of the field

χFβ11 ðxðτÞ; xðτ0ÞÞ ¼ −
iν
8π2

Z
dμj sinðωðt − t0ÞÞ

×

�
ω

2
ðJ2jνmþ1jðk⊥ρÞ þ J2jνm−1jðk⊥ρÞÞ

−
1

ω

�
dJjνmjðk⊥ρÞ

dρ

�
2
�
; ð56Þ

χFβ22 ðxðτÞ; xðτ0ÞÞ ¼ −
iνρ2

8π2

Z
dμj sinðωðt − t0ÞÞ

×

�
ω

2
ðJ2jνmþ1jðk⊥ρÞ þ J2jνm−1jðk⊥ρÞÞ

−
1

ω

ν2m2

ρ2
J2jνmjðk⊥ρÞ

�
; ð57Þ

χFβ33 ðxðτÞ;xðτ0ÞÞ¼−
iν
8π2

Z
dμj

k2⊥
ω
J2jνmjðk⊥ρÞsinðωðt− t0ÞÞ:

ð58Þ
Insert the correlation functions of the field [Eqs. (53)–

(55)] and the antisymmetric statistical functions of the atom
[Eq. (47)] into Eq. (42), assume that τ − τ0 → ∞, make the
coordinate transformation, k⊥ ¼ ω sin α, k3 ¼ ω cos α in
which α ∈ ½0; π�, ω ∈ ½0;∞Þ, and then we obtain, after
some lengthy simplifications, the contributions of thermal

fluctuations to the average rate of change of the atomic
energy

�
dHAðτÞ

dτ

�
tf
¼ −

e2

3π

X
ωbd>0

ω4
bdjhbjrið0Þjdij2fiðωbd; ρ; νÞ

×

�
1

2
þ 1

eωbd=T − 1

�

þ e2

3π

X
ωbd<0

ω4
bdjhbjrið0Þjdij2fiðjωbdj; ρ; νÞ

×

�
1

2
þ 1

ejωbdj=T − 1

�
; ð59Þ

where we have defined

f1ðω; ρ; νÞ ¼
3ν

4

X
m

Z
1

0

dt
tffiffiffiffiffiffiffiffiffiffiffiffi

1 − t2
p ½ð2 − t2ÞJ2jνmþ1jðωρtÞ

þ t2Jjνmjþ1ðωρtÞJjνmj−1ðωρtÞ�; ð60Þ

f2ðω; ρ; νÞ ¼
3ν

4

X
m

Z
1

0

dt
tffiffiffiffiffiffiffiffiffiffiffiffi

1 − t2
p ½ð2 − t2ÞJ2jνmþ1jðωρtÞ

− t2Jjνmjþ1ðωρtÞJjνmj−1ðωρtÞ�; ð61Þ

f3ðω; ρ; νÞ ¼
3ν

2

X
m

Z
1

0

dt
t3ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p J2jνmjðωρtÞ: ð62Þ

In obtaining the above results, we have used the following
properties of the Bessel J functions:

X
m

J2jνmþ1jðxÞ ¼
X
m

J2jνm−1jðxÞ; ð63Þ

X
m

J2jνmjþ1
ðxÞ þ

X
m

J2jνmj−1ðxÞ

¼ 2
X
m

J2jνmþ1jðxÞ; ðν ≥ 1Þ: ð64Þ

It is easy to show that functions fiðω; ρ; νÞ are always
positive. For an atom in the excited state, only the first term
in Eq. (59), which is negative, contributes, while for an
atom in the ground state, only the second term in Eq. (59),
which is positive, contributes, i.e., the thermal fluctuations
always deexcite an atom in the excited state and excite it in
the ground state. This is similar to what happens to an atom
in Minkowski spacetime with no boundaries [13].
However, there are also some sharp differences between
the two cases. Obviously, as can be seen from Eq. (59), in
the cosmic string spacetime, the contribution of thermal
fluctuations depends on the polarization and the position of
the atom, which is similar to a static atom in the Minkowski
spacetime with boundaries [17,18,26], while in a free
Minkowski spactime with no boundaries, the contribution
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of thermal fluctuations does not depend on the polarization
and position of the atom [13].
Similarly, plug the correlation functions of the field

[Eqs. (56)–(58)] and the symmetric statistical function
[Eq. (46)] of the atom into Eq. (43), do some simplifications,
and then we obtain the contribution of radiation reaction to
the average rate of change of the atomic energy,

�
dHAðτÞ

dτ

�
rr
¼ −

e2

6π

X
ωbd>0

ω4
bdjhbjrið0Þjdij2fiðωbd; ρ; νÞ

−
e2

6π

X
ωbd<0

ω4
bdjhbjrið0Þjdij2fiðjωbdj; ρ; νÞ:

ð65Þ

For both the ground and the excited-state atoms, the
contribution of the radiation reaction is always negative.
So just as in a free Minkowski spacetime [13], radiation
reaction always diminishes the atomic energy. Comparing
this result with the contribution of thermal fluctuations,
Eq. (59), we find that both contributions of thermal
fluctuations and radiation reaction depend on the polariza-
tion and position of the atom.
Adding up Eqs. (59) and (65), we arrive at the total

average rate of change of the atomic energy,

�
dHAðτÞ

dτ

�
tot

¼ −
e2

3π

X
ωbd>0

ω4
bdjhbjrið0Þjdij2fiðωbd; ρ; νÞ

×

�
1þ 1

eωbd=T − 1

�

þ e2

3π

X
ωbd<0

ω4
bdjhbjrið0Þjdij2fiðjωbdj; ρ; νÞ

×
1

ejωbdj=T − 1
: ð66Þ

For an atom in the excited state, the first term, which is
negative, contributes. It describes the spontaneous emission
rate of the excited atom immersed in a thermal bath in the
cosmic string spacetime. For an atom in the ground state,
the second term contributes and it is always positive. It
describes the spontaneous excitation rate of the atom. This
is clearly distinct from the transition rate of an inertial atom
in the ground state in vacuum,

�
dHAðτÞ

dτ

�
vac

tot
¼ −

e2

3π

X
ωbd>0

ω4
bdjhbjrið0Þjdij2fiðωbd; ρ; νÞ;

ð67Þ

which is obtained by taking T ¼ 0 in Eq. (66). Obviously,
the rate of change of the ground-state atom reduces to zero
as a result of the complete cancellation of the contributions
of vacuum fluctuations and radiation reaction, i.e., for a

ground-state atom placed in a vacuum in the cosmic string
spacetime, no spontaneous excitation occurs.
Generally, analytical expressions for the functions

fiðω; ρ; νÞ are not easy to find, but in some special cases,
approximate analytical results are obtainable. We examine
these cases in the following.

A. The case for ν ¼ 1

The case when ν ¼ 1 corresponds to a flat spacetime
without cosmic strings. As a result of the following
properties of the Bessel J function,X

m

J2jmjðxÞ ¼ 1;
X
m

Jjmjþ1ðxÞJjmj−1ðxÞ ¼ 0; ð68Þ

fiðω; ρ; νÞ ¼ 1 (i ¼ 1, 2, 3). So the contributions of
thermal fluctuations and radiation reaction to the average
rate of change of the atomic energy reduce to

�
dHAðτÞ

dτ

�
tf
¼−

e2

3π

X
ωbd>0

ω4
bdjhbjrð0Þjdij2

�
1

2
þ 1

eωbd=T−1

�

þ e2

3π

X
ωbd<0

ω4
bdjhbjrð0Þjdij2

�
1

2
þ 1

ejωbdj=T−1

�
;

ð69Þ

�
dHAðτÞ

dτ

�
rr
¼−

e2

3π

X
ωbd>0

ω4
bdjhbjrð0Þjdij2

�
1

2
þ 1

eωbd=T−1

�

−
e2

3π

X
ωbd<0

ω4
bdjhbjrð0Þjdij2

�
1

2
þ 1

ejωbdj=T−1

�
;

ð70Þ

where we have used the abbreviation

jhbjrð0Þjdij2 ¼
X
i

jhbjrið0Þjdij2: ð71Þ

Thus, the total rate of change of the atomic energy becomes

�
dHAðτÞ

dτ

�
tot
¼−

e2

3π

X
ωbd>0

ω4
bdjhbjrð0Þjdij2

�
1þ 1

eωbd=T−1

�

þ e2

3π

X
ωbd<0

ω4
bdjhbjrð0Þjdij2

1

ejωbdj=T−1

ð72Þ

which is just the average rate of change of an inertial atom
placed in a thermal bath with temperature T in a free
Minkowski spacetime, i.e., when ν ¼ 1, the result in
Minkowski spacetime is recovered as expected.
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B. The case for ν > 1

Let us note that when ωρ ≪ 1, one has

f1ðω; ρ; νÞ ≈ f2ðω; ρ; νÞ ≈
3ν2ðνþ 1Þ
Γ½2νþ 2� ðωρÞ

2ðν−1Þ

≡ gðωρ; νÞ; f3ðω; ρ; νÞ ≈ ν: ð73Þ

So, when ρ ≪ ω−1
max where ωmax denotes the largest energy

gap between two levels of the atom, the contribution of
thermal fluctuations reduces to

�
dHAðτÞ

dτ

�
tf
≈−

e2

3π

X
ωbd>0

ω4
bd½jhbjr⊥ð0Þjdij2gðωbdρ;νÞ

þ jhbjrzð0Þjdij2ν�
�
1

2
þ 1

eωbd=T −1

�

þ e2

3π

X
ωbd<0

ω4
bd½jhbjr⊥ð0Þjdij2gðjωbdjρ;νÞ

þ jhbjrzð0Þjdij2ν�
�
1

2
þ 1

ejωbdj=T −1

�
ð74Þ

where we have defined

jhbjr⊥ð0Þjdij2 ¼
X2
i¼1

jhbjrið0Þjdij2; ð75Þ

and we call this region (ρ ≪ ω−1
max) the near zone. The

contribution of radiation reaction becomes

�
dHAðτÞ

dτ

�
rr
≈ −

e2

6π

X
ωbd>0

ω4
bd½jhbjr⊥ð0Þjdij2gðωbdρ; νÞ

þ jhbjrzð0Þjdij2ν�

þ e2

6π

X
ωbd<0

ω4
bd½jhbjr⊥ð0Þjdij2gðjωbdjρ; νÞ

þ jhbjrzð0Þjdij2ν�: ð76Þ

As a result, the total average rate of change of the atomic
energy can be written as

�
dHAðτÞ

dτ

�
tot

≈ −
e2

3π

X
ωbd>0

ω4
bd½jhbjr⊥ð0Þjdij2gðωbdρ; νÞ

þ jhbjrzð0Þjdij2ν�
�
1þ 1

eωbd=T − 1

�

þ e2

3π

X
ωbd<0

ω4
bd½jhbjr⊥ð0Þjdij2gðjωbdjρ; νÞ

þ jhbjrzð0Þjdij2ν�
1

ejωbdj=T − 1
: ð77Þ

This shows that when the atom is located in the near zone,
the spontaneous emission rate of the atom in the excited
state and spontaneous excitation rate of that in the ground
state are proportional to ðjωbdjρÞ2ðν−1Þ ≪ 1. As a result, the
average rate of change of the energy of an atom polarizable
perpendicular to the string is much smaller than that in a
free Minkowski spacetime, while for an atom polarizable
parallel to the string, this rate is always slightly larger as ν is
slightly larger than 1 for a grand unified theory string. In
other words, the deficit in angle in the cosmic string
spacetime slightly amplifies this rate.
When ρ ¼ 0, i.e., the atom is exactly located on the

string,

f1ðω;ρ;νÞ ¼ f2ðω;ρ;νÞ ¼ 0; f3ðω;ρ;νÞ ¼ ν: ð78Þ
Then the contributions of vacuum fluctuations and radia-
tion reaction reduce to

�
dHAðτÞ

dτ

�
tf
¼ −

νe2

3π

X
ωbd>0

ω4
bdjhbjrzð0Þjdij2

×

�
1

2
þ 1

eωbd=T − 1

�

þ νe2

3π

X
ωbd<0

ω4
bdjhbjrzð0Þjdij2

×

�
1

2
þ 1

ejωbdj=T − 1

�
; ð79Þ

�
dHAðτÞ

dτ

�
rr
¼ −

νe2

3π

X
ωbd>0

ω4
bdjhbjrzð0Þjdij2

×

�
1

2
þ 1

eωbd=T − 1

�

−
νe2

3π

X
ωbd<0

ω4
bdjhbjrzð0Þjdij2

×

�
1

2
þ 1

ejωbdj=T − 1

�
: ð80Þ

The above two equations show that thermal fluctuations
and radiation reaction affect only atoms polarizable parallel
to the string and they have no effect on atoms polarizable
perpendicular to the string. This can be traced back to the
fact that on the string, only the z-component of the electric
field is nonzero. It is reminiscent of a perfect conducting
boundary where only the component of the electric field
which is perpendicular to the surface is nonzero. In this
sense, the effect of a cosmic string is very similar to that of a
perfect conducting boundary. This is understandable since
the cosmic string only modifies the global spacetime
topology while leaving the local space flatness intact,
which is pretty much the same as what a conducting
boundary does to a flat space.
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Adding up the above two equations, we obtain the total
rate of change of the atomic energy,

�
dHAðτÞ

dτ

�
tot

¼ −
νe2

3π

X
ωbd>0

ω4
bdjhbjrzð0Þjdij2

×

�
1þ 1

eωbd=T − 1

�

−
νe2

3π

X
ωbd<0

ω4
bdjhbjrzð0Þjdij2

1

ejωbdj=T − 1
:

ð81Þ

This shows that when the atom is located on the string, the
average rate of change of the atomic energy depends
crucially on the polarization of the atom. For an atom in
the excited state, spontaneous emission can occur only if it
is polarizable parallel to the string, whereas those which are
only polarizable perpendicular to the string will remain in
the excited states and thus are stable. Meanwhile, the
ground-state atoms can make a transition to excited states
only if they are polarizable parallel to the string. Even if
immersed in a thermal bath, ground-state atoms polarizable
only perpendicular to the string are stable as if they were in
a vacuum. This is in sharp contrast to the case of a thermal
bath in the Minkowski spacetime, where spontaneous
emission takes place for excited atoms polarizable in any
direction, and spontaneous excitation occurs for any polar-
izable ground-state atoms [see Eq. (72)]. It is interesting to
note that similar properties also appear in the case of an
atom located near a perfect conducting plate in Minkowski
spacetime, in which the rate of change of the energy of an
atom polarizable parallel to the surface of the plate vanishes
when the atom-surface distance approaches zero, while the
rate for an atom polarizable perpendicular to the surface of
the conducting plate does not vanish [18]. This suggests
that the effect of a deficit angle induced by a cosmic string
is similar to that of a reflecting boundary in a flat spacetime.
This is reasonable from a physical point of view since the
cosmic string spacetime is locally flat and what distin-
guishes it from a Minkowski spacetime is its nontrivial
topology characterized by the deficit angle.
When ωρ ≫ 1, we first do the t-integrals in Eqs. (60)–

(62), and then in the limit ωρ ≫ 1we can cut off the infinite
m-summation by jmj ≤ ωρν−1, which results in

fiðω; ρ; νÞ ≈ 1þ 3ν

4ωρ
; ði ¼ 1; 3Þ;

f2ðω; ρ; νÞ ≈ 1 −
ν2

4ω2ρ2
: ð82Þ

As a result, for an atom located in the region, ρ ≫ ω−1
min,

where ωmin denotes the smallest energy gap between two
levels of the atom, the contributions of thermal fluctuations

and radiation reaction to the average rate of change of the
atomic energy reduce to

�
dHAðτÞ

dτ

�
tf
≈−

e2

3π

X
ωbd>0

ω4
bdjhbjrð0Þjdij2

�
1

2
þ 1

eωbd=T −1

�

þ e2

3π

X
ωbd<0

ω4
bdjhbjrð0Þjdij2

×

�
1

2
þ 1

ejωbdj=T −1

�
; ð83Þ

�
dHAðτÞ

dτ

�
rr
≈−

e2

3π

X
ωbd>0

ω4
bdjhbjrð0Þjdij2

�
1

2
þ 1

eωbd=T −1

�

−
e2

3π

X
ωbd<0

ω4
bdjhbjrð0Þjdij2

×

�
1

2
þ 1

ejωbdj=T −1

�
; ð84Þ

and thus the total rate of change of the atomic energy
becomes

�
dHAðτÞ

dτ

�
tot
≈−

e2

3π

X
ωbd>0

ω4
bdjhbjrð0Þjdij2

�
1þ 1

eωbd=T −1

�

þ e2

3π

X
ωbd<0

ω4
bdjhbjrð0Þjdij2

1

ejωbdj=T −1
:

ð85Þ

We call the region, ρ ≫ ω−1
min, the far zone. In the above

three equations, we have only kept the leading terms. For an
atom polarizable along the radial direction or parallel to the
z-direction, the rate is actually slightly larger than that in a
Minkowski spacetime as a positive term proportional to ρ−1

exists going to the next order [see Eq. (82)]; and for an atom
polarizable along the tangential direction, the rate is slightly
smaller than that in a Minkowski spacetime because
f2ðω; ρ; νÞ is actually amended by a negative term propor-
tional to ρ−2 [see Eq. (82)]. The above results show that in
the far zone where the atom-string distance is much larger
than the longest transition wavelength of the atom, the
average rate of change of the atomic energy approximates
to that in a Minkowski spacetime. This is similar to the
behavior of the rate of a static atom placed far away from a
perfect reflecting boundary in Minkowski spacetime as the
boundary effect vanishes at infinity [18]. This is in
accordance with our observation that the deficit angle in
the cosmic string spacetime affects the fields the atom
couples to in a way which is very similar to a reflecting
boundary in Minkowski spacetime. Compare this result
with that of a static atom coupled to quantum scalar field in
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the cosmic string spacetime [35], we find that the con-
clusions are consistent, as in the latter case, the decay rate
of a static atom coupled to quantum scalar field in the
cosmic string spacetime also approaches the result in a free
Minkowski spacetime at infinity.
It is worth pointing out here that the above approxima-

tions in the present case do not hold when ν ¼ 1 which has
already been discussed in the preceding subsection (case A).
For a generic atom-string distance, an analytical analysis is
impossible for the average rate of change of the atomic
energy. So, instead, we now give some numerical results in
this case. The following figures show how the rate of change
of the atomic energy varies as a function of the parameter ν
and the atom-string distance. We consider the ratio Γcs

Γ0
with

Γcs and Γ0 denoting the average rates of change of energy of
a two-level atom in the cosmic string spacetime and the
Minkowski spacetime respectively. The spacing between the
two levels of the atom is represented by ω0.
As shown in the four figures, the relative rate Γcs

Γ0
for a

static atom generally oscillates with the atom-string dis-
tance, and the amplitude of oscillation decreases with

increasing atom-string distance. Moreover, the oscillation
is more severe for larger ν, i.e., larger deficits in the angle
induce more severe oscillation. For a two-level atom
polarizable along the radial direction, the rate of change
of the atomic energy in the cosmic string spacetime is
smaller than that in Minkowski spacetime when the atom is
located very close to the string, which means that the
atomic energy varies slower than in a free Minkowski
spacetime. When the atom-string distance exceeds a critical
value, the average rate of change of energy in the cosmic
string overtakes that in a free Minkowski spacetime as
indicated by the relative rate becoming larger than unity
[see Fig. 1(a)], although the relative rate still oscillates with
the distance. The rate of change of the atomic energy
approaches that in a Minkowski spacetime as the atom-
string distance becomes larger and larger. For an atom
polarizable in the tangential direction [see Fig. 1(b)], the
rate of change of the atomic energy is always smaller than
that in a free Minkowski spacetime, and the difference
becomes smaller with the increase of the atom-string
distance. For an atom polarizable parallel to the string
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FIG. 1 (color online). Ratio between the rate of change of a two-level static atom in the cosmic string spacetime and that in a free
Minkowski spacetime. (a) The case for an atom polarizable along the radial direction, (b) The case for an atom polarizable along the
tangential direction, (c) The case for an atom polarizable parallel to the string, (d) The case for an atom polarizable isotropically.
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[see Fig. 1(c)], the rate of change of the atomic energy can
be larger or smaller than that in a free Minkowski spacetime
as the ratio Γcs

Γ0
oscillates around unity as the atom-string

distance varies. Notice that here the numerical results are
consistent with our previous analytical analysis on the
average rate of change of the energy of an atom located
very close to the string in that for an atom polarizable
perpendicular to the string, the rate is proportional to
ρ2ðν−1Þ ∼ 0, and for an atom polarizable parallel to the
string, the rate is proportional to ν. We show also the ratio
Γcs
Γ0

for an isotropically polarizable atom in Fig. 1(d), and one
can see that it also oscillates around unity, but the amplitude
of oscillation is much smaller than the ratio of an atom
polarizable parallel to the string [see Fig. 1(c)].

V. CONCLUSIONS

We have studied the average rate of change of a
multilevel static atom coupled to quantum electromagnetic
field in a thermal bath in the cosmic string spacetime. We
separately calculate the contributions of thermal fluctua-
tions of the field and radiation reaction of the atom to the
average rate of change of the atomic energy. We analyze the
behavior of the transition rates analytically in both the near
zone and the far zone and numerically for a generic atom-
string distance. We find that the transition rates are crucially
dependent on the atom-string distance and polarization of
the atom and they in general oscillate as the atom-string
distance varies. Moreover, the atomic transition rates in the
cosmic string spacetime can be larger or smaller than those

in Minkowski spacetime contingent upon the atomic
polarization and position, meaning the transition rates
can be either enhanced or weakened by the cosmic string.
In particular, when located on the string, ground-state
atoms can transition to excited states only if they are
polarizable parallel to the string, whereas ground-state
atoms polarizable only perpendicular to the string are
stable as if they were in a vacuum, even if they are
immersed in a thermal bath. This feature can be attributed
to the fact that on the string, only the z-component of the
electric field is nonzero and it is reminiscent of a perfect
conducting boundary where only the component of the
electric field which is perpendicular to the surface is
nonzero. In this sense, the effect of a cosmic string is very
similar to that of a perfect conducting boundary. This does
not come as a surprise since the cosmic string only modifies
the global spacetime topology while leaving the local space
flatness intact in a similar way as what a conducting
boundary does to a flat space.
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