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We deal with relativistic models described by a single real scalar field, searching for topological
structures that behave asymmetrically, connecting minima with a distinct profile. We use such features to
build a new braneworld scenario, in which the source scalar field contributes to generate asymmetric hybrid
brane.
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I. INTRODUCTION

The braneworld concept that appeared in [1] deals with a
warped geometry and engenders a single extra spatial
dimension of infinite extent. It gives rise to the thin brane
profile, but the scenario was soon modified to support the
thick brane profile suggested in [2] and further investigated
in [3–12], as well as in many other more recent works. In
the thick brane scenario, the brane appears through the
inclusion of a source scalar field, which, in the absence of
gravity, is capable of supporting topological structure
known as kink. The scenario is such that when one embeds
the source scalar field into the Einstein-Hilbert action with
the warped geometry with a single extra dimension of
infinite extent, the topological structure that appears from
the scalar field generates the thick brane configuration.
The thick brane scenario in general engenders a sym-

metric brane, since the source scalar field model presents
parity or Z2 symmetry. This means that the profile of the
brane along the extra dimension is the same, at both the left
and right side. However, one can also consider an asym-
metric brane, if the scalar field model can support an
asymmetric structure. This means that the profile in the left
side of the brane is different from that of the right side. The
asymmetric feature of a brane is of current interest, and
has been studied by several authors with distinct motivation
in [13–25].
An important effect of the asymmetric structure of the

brane is to contribute to accelerate the Universe, if one
investigates cosmic evolution in a braneworld scenario
constructed on top of an asymmetric configuration. As we
see in the next section, the asymmetry of the potential
makes the solution and the energy density asymmetric, and
this modifies its behavior. In particular, the force [26,27]
the asymmetric configuration engenders is also asymmet-
ric, and may induce acceleration in the braneworld cos-
mology constructed from an asymmetric structure, or in a
braneworld scenario similar to the one investigated in [28].

In recent work [29] one has offered a new type of
braneworld scenario, with the brane engendering a hybrid
behavior. This is possible when the source scalar field
supports localized structure with compactlike profile [29].
In this case, however, the hybrid brane configuration is
symmetric, so we refer to it as the symmetric hybrid brane
profile. An interesting issue, which is the purpose of the
current work, is then to extend the hybrid brane profile in
order to include the case of an asymmetric hybrid brane,
which allows one to explore possibilities that are not
present in the symmetric case.
The issue is nontrivial, because the presence of com-

pactlike structures requires differential equations that are
more complicated, when compared to the case of the
standard kinks. For this reason, we first focus on the
construction of an asymmetric compactlike structure.
We follow the route introduced in [29], and below we
investigate the presence of compactlike structures that are
asymmetric. In Sec. III we embed a scalar field source
model in a warped geometry with a single extra spatial
dimension of infinite extent, and we build the asymmetric
braneworld scenario. We end the work in Sec. IV, where
we summarize the results and add some directions for
further study.

II. ASYMMETRIC STRUCTURES

In order to investigate the problem, we start from a
Lagrange density with standard kinematics, describing a
real scalar field ϕ. We take the metric diagðþ;−Þ, and use
VðϕÞ as the potential that identifies the way the scalar field
self-interacts. The subject was already investigated in [29],
so we briefly review the main results as follows. We work
with dimensionless field and coordinates, and the equation
of motion for static solution is

d2ϕ
dx2

¼ dV
dϕ

: ð1Þ
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We suppose that VðϕÞ supports at least the two minima
fvi; i ¼ 1; 2g, with dV=dϕjvi ¼ 0 and VðviÞ ¼ 0. A topo-
logical sector is characterized by two neighbor minima,
and the topological solution is a kinklike configuration,
ϕðxÞ, that connects the minima v1 and v2, such that
ϕðx → −∞Þ → v1 and ϕðx → ∞Þ → v2, with vanishing
derivatives.
The kinklike solution goes asymptotically to the minima,

depending exponentially on the mass associated to the
corresponding minima. Thus, for larger and larger values of
the mass, the exponential reaches the minimum faster and
faster, and in the limit m → ∞, the solution tends to
become a compact configuration. The solution has energy
density ρðxÞ, given by

ρðxÞ ¼ 1

2

�
dϕ
dx

�
2

þ VðϕðxÞÞ ¼
�
dϕ
dx

�
2

¼ 2VðϕðxÞÞ: ð2Þ

We study linear stability, adding small fluctuations
around the static solution ϕðxÞ, writing ϕðx; tÞ ¼ ϕðxÞ þ
ηðxÞ cosðωtÞ. We use this in the equation of motion and
expand it up to first order in η to get the Schrödinger-like
equation

�
− d
dx2

þ UðxÞ
�
η ¼ ω2η; UðxÞ ¼ d2V

dϕ2

����
ϕ¼ϕðxÞ

: ð3Þ

We see from the above Eq. (3) that the stability potential
goes asymptotically to m2

1 and m2
2, which are the (squared)

masses of the elementary excitations at the minima v1 and
v2, respectively.
A special case is the one in which the potential can be

written as

V ¼ 1

2

�
dW
dϕ

�
2

¼ 1

2
W2

ϕ; ð4Þ

where W ¼ WðϕÞ. It provides a first-order differential
equation for the field

dϕ
dx

¼ dW
dϕ

; ð5Þ

and the energy density can be written as

ρðxÞ ¼ dW
dx

: ð6Þ

The total energy of the kinklike structure is then

E ¼ jWðv2Þ −Wðv1Þj: ð7Þ

A model of importance is the well-known ϕ4 model, with
spontaneous symmetry breaking. It is described by the
function

WðϕÞ ¼ ϕ − 1

3
ϕ3: ð8Þ

Thus, the potential is

VðϕÞ ¼ 1

2
ð1 − ϕ2Þ2: ð9Þ

The minima are at v� ¼ �1 and the maximum is at the
origin, with Vð0Þ ¼ 1=2. The masses are m2

� ¼ 4 and the
equation of motion is

d2ϕ
dx2

¼ −2ϕð1 − ϕ2Þ ð10Þ

whose solution is

ϕðxÞ ¼ tanhðxÞ; ð11Þ

which we have centered at the origin. The energy density
takes the form

ρðxÞ ¼ sech4ðxÞ ð12Þ

and the energy is E ¼ 4=3. The stability potential is

UðxÞ ¼ 4 − 6sech4ðxÞ: ð13Þ

The topological kinklike structure is linearly stable. In fact,
when the potential is written as in (4), the solution obeys
the first-order Eq. (5) and we can write the stability
potential of (3) as

UðxÞ ¼ W2
ϕϕ þWϕWϕϕϕ; ð14Þ

and so the Schrödinger-like operator in (3) can be factored
in the form

H ¼ S†S; S ¼ d
dx

−Wϕϕ: ð15Þ

This operator is non-negative, so there is no negative
eigenvalue, thus ensuring linear stability.
This model engenders the Z2 symmetry, and so it gives

rise to a symmetric structure. However, we want to study
asymmetric brane, so we need to build asymmetric kinklike
structures. We get inspiration from the previous study [29]
and below we investigate two distinct models, where the
asymmetry is controlled by a single parameter, which
modifies the mass of the field configuration, making the
force [26,27] the solution engenders asymmetric. This
provides a new mechanism to induce acceleration in the
appropriate braneworld scenario, as the one investigated
before in Ref. [28].
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A. Model 1

We start with the model described by the following
function,

WðϕÞ ¼ ϕ − ϕ2

2
þ ϕ1þp

1þ p
− ϕ2þp

2þ p
; ð16Þ

which leads to the potential

VðϕÞ ¼ 1

2
ð1 − ϕÞ2ð1þ ϕpÞ2; ð17Þ

where p is odd integer, p ¼ 1; 3; 5…; we note that it
reproduces the ϕ4 model for p ¼ 1. This potential has the
minima ϕ� ¼ �1 and the associated masses m2þ ¼ 4 and
m2− ¼ 4p2. The parameter p induces the required asym-
metry. The maximum of the potential in between the two
minima can be found through the algebraic equation

1 − pϕp−1 þ pðpþ 1Þϕp ¼ 0: ð18Þ

We see that it is at ϕ ¼ 0 for p ¼ 1.
This model engenders a kinklike solution that obeys the

first-order differential equation, so it is linearly stable. We
have investigated the model numerically, and in Fig. 1 we
depict the potential, kinklike solution, energy density, and
stability potential for several values of p. The energy is
given by

E ¼ 2þ 2p
2þ p

: ð19Þ

As expected, for p ¼ 1 we get the energy of the ϕ4 model,
that is, E ¼ 4=3. As we take larger and larger values of p,
the energy tends to E → 2.
In the limit p → ∞, the solution becomes

ϕðxÞ ¼
�−1; x < 0;

1 − 2e−x; x ≥ 0:
ð20Þ

The energy density is

ρðxÞ ¼
�
0; x < 0;

4e−2x; x ≥ 0:
ð21Þ

After integration, we note that the energy becomes E ¼ 2,
which agrees with the previous result, below Eq. (19). Also,
the stability potential has the form

UðxÞ ¼
8<
:

∞; x < 0;

−∞; x ¼ 0;

1; x > 0:

ð22Þ

In Fig. 2 we depict the solution ϕð0Þ and the energy
density at x ¼ 0� 0.01. We note that the plots for
ρð0� 0.01Þ agree with the general behavior, and show a
discontinuity as p increases to larger and larger values.

B. Model 2

Now, we introduce a model that can be solved analyti-
cally. It recalls the ϕ6 model, and has the following
superpotential,

WnðϕÞ ¼
1

2
nϕ2 − 1

2

n
nþ 1

ϕ
2ðnþ1Þ

n ; ð23Þ

and potential

FIG. 1. The potential (17) (top left), the kinklike solution (top
right), the energy density (bottom left), and the stability potential
(bottom right) depicted for several values of p. The dashed lines
stand for the case p → ∞.

FIG. 2. The solution ϕð0Þ (left) and the energy density
ρðx ¼ �0.01Þ (right), depicted for several values of p. In the
right picture, the solid diamonds are for x ¼ −0.01, and the
hollow diamonds are for x ¼ 0.01.
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VnðϕÞ ¼
1

2
n2ϕ2ð1 − ϕ

2
nÞ2: ð24Þ

Here, n is a positive integer. In fact, we get the ϕ6 model for
n ¼ 1, that is,

W1 ¼
1

2
ϕ2 − 1

4
ϕ4; V1 ¼

1

2
ϕ2ð1 − ϕ2Þ2; ð25Þ

and in the limit n → ∞,

W∞ ¼ 1

2
ϕ2ð1 − lnðϕ2ÞÞ; V∞ ¼ 1

2
ϕ2ln2ðϕ2Þ: ð26Þ

The potential for n arbitrary has the minima in ϕ� ¼ �1
and ϕ0 ¼ 0 for any value of n. The (classical, squared)
mass of the scalar field in each minimum is m2þ ¼ m2− ¼ 4

andm2
0 ¼ n2. Thus, as we increase n,m0 also increases and

the solution tends to become a half-compaction. The
maxima in between the three minima are

ϕ�
mn

¼ �
�

n
nþ 2

�n
2

: ð27Þ

Therefore, the maximum value of the potential in between
the minima is Vðϕ�

mn
Þ ¼ 2ðn=ðnþ 2ÞÞnþ2, and we see that

it is finite in the limit n → ∞: ϕ�
m∞

¼ �e−1, which
gives Vðϕ�

m∞
Þ ¼ 2e−2.

The equation of motion for this model is

d2ϕ
dx2

¼ −nϕð1 − ϕ
2
nÞ½ðnþ 2Þϕ2

n − n�; ð28Þ

and the kink solution in the sector 0 ≤ ϕ ≤ 1 can be
obtained analytically; it is

ϕnðxÞ ¼
�
1þ tanhðx − x0Þ

2

�n
2

; ð29Þ

where x0 is a constant of integration. We have chosen x0 ¼
arctanh½ð2 − nÞ=ð2þ nÞ� to make ϕnð0Þ ¼ ϕþ

mn
as in

Eq. (27). The solution for the sector −1 ≤ ϕ ≤ 0 can be
found by taking ϕnðxÞ → −ϕnðxÞ; in this sector,
ϕnð0Þ ¼ ϕ−

mn
. The kink solution in Eq. (29) has the

following limit when n → ∞:

ϕ∞ðxÞ ¼ e−e−2x : ð30Þ

It shows explicitly how fast the solution goes to zero for
negative values of x. The energy density is

ρnðxÞ ¼
n2

2nþ2
½1þ tanhðx− x0Þ�n½1− tanhðx− x0Þ�2; ð31Þ

and for n → ∞ one gets ρ∞ðxÞ ¼ 4e−4xe−2e−2x . The energy
can be calculated analytically, giving

En ¼
1

2

n
nþ 1

: ð32Þ

In the limit n → ∞, it gives E∞ ¼ 1=2.
Furthermore, we calculate the portion of energy E0;ϕmn

in
the interval 0 ≤ ϕ ≤ ϕmn

, and Eϕmn ;1
in the interval

ϕmn
≤ ϕ ≤ 1. They are

E0;ϕmn
¼ 1

2

3nþ 2

nþ 1

�
n

nþ 2

�
nþ1

; ð33aÞ

and

Eϕmn ;1
¼ 1

2

n
nþ 1

− 1

2

3nþ 2

nþ 1

�
n

nþ 2

�
nþ1

: ð33bÞ

As expected, E0;ϕmn
þ Eϕmn ;1

¼ En. Also, the ratio

E0;ϕmn
=Eϕmn ;1

→ 3=ðe2 − 3Þ when n → ∞.
The stability potential can be calculated analytically too;

it has the form

UnðxÞ ¼
�
2þ 3n

2
þ n2

4

�
tanh2ðx − x0Þ

þ
�
2 − n2

2

�
tanhðx − x0Þ − 3n

2
þ n2

4
: ð34Þ

In the limit n → ∞ one gets U∞ðxÞ ¼ 4 − 12e−2x þ 4e−4x.
In Fig. 3 we plot the potential, solution, energy density, and
stability potential for several values of n.

FIG. 3. The potential (24) (top left), kink solution (top right),
energy density (bottom left), and stability potential (bottom
right), depicted for n ¼ 1 and increasing to larger and larger
values. The dashed lines represent the limit n → ∞.
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III. ASYMMETRIC HYBRID BRANE

We now embed the scalar field action into a warped
geometry with a single extra dimension of infinite extent
that is described by the line element

ds25 ¼ e2Aημνdxμdxν − dy2; ð35Þ

with A ¼ AðyÞ being the warp function, ημν describing the
four-dimensional (μ, ν ¼ 0, 1, 2, 3) Minkowski spacetime,
and y standing for the extra dimension. In this case, the
Einstein-Hilbert action has the form

I ¼
Z

d4xdy
ffiffiffiffiffi
jgj

p �
− 1

4
Rþ Lðϕ; ∂aϕÞ

�
; ð36Þ

where R is the Ricci scalar and Lðϕ; ∂aϕÞ describes the
scalar field. Here, a, b ¼ 0;…; 4 and we are also using
4πG5 ¼ 1, for simplicity.

A. Brane model

We illustrate this case with the potential of Eq. (17), but
now with the flat brane metric (35). We suppose that the
scalar field only depends on the extra dimension, ϕ ¼ ϕðyÞ.
In this case, the equation of motion has the form

d2ϕ
dy2

þ 4
dϕ
dy

dA
dy

¼ dV
dϕ

: ð37aÞ

Also, the several Einstein equations reduce to

d2A
dy2

¼ − 2

3

�
dϕ
dy

�
2

; ð37bÞ
�
dA
dy

�
2

¼ 1

6

�
dϕ
dy

�
2 − 1

3
VðϕÞ: ð37cÞ

We now take

dA
dy

¼ − 2

3
WðϕÞ; dϕ

dy
¼ dW

dϕ
: ð38Þ

These first-order equations solve the equations of motion if
the potential is written as

VðϕÞ ¼ 1

2
W2

ϕ − 4

3
W2: ð39Þ

The presence of first-order equations ensures linear stability
of the gravity sector, so the asymmetric thick brane scenario
is robust against fluctuations in the metric.
We can write the energy density in the form

ρ ¼ e2A
�
W2

ϕ − 4

3
W2

�
: ð40Þ

Also, we use W as in (16) to get

VðϕÞ ¼ 1

2
ð1 − ϕÞ2ð1þ ϕpÞ2

−
4

3

�
ϕ − ϕ2

2
þ ϕpþ1

pþ 1
− ϕ2þp

2þ p

�
2

: ð41Þ

The scalar field solutions are the same for the previous
model, studied in flat spacetime. We solve the first-order
equations numerically, and we depict in Fig. 4 the potential,
kinklike solution, warp factor, and energy density of the
asymmetric hybrid brane, for several values of p. As we
have checked, the potential, solution, warp factor, and
energy density are all continuous and obey the correspond-
ing equations appropriately.
For p very large, in the limit where the kink becomes a

half-compact structure, we use Eq. (38) to show that the
warp function has the form

AðyÞ ¼
(
y − 2

3
; y < 0;

− 1
3
y − 2

3
e−2y; y ≥ 0;

ð42Þ

which is continuous at y ¼ 0. In the same limit, the warp
function can be used to write the energy density analyti-
cally, as

ρðyÞ ¼ e2AðyÞ
�
1; y < 0

− 1
3
ð1 − 20e−2y þ 16e−4yÞ; y ≥ 0;

ð43Þ

FIG. 4. The potential (39) (top left), kink solution (top right),
warp factor (bottom left) and energy density (bottom right),
depicted for several values of p.
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which is also continuous at y ¼ 0. We see that the brane is
asymmetric and hybrid, since it behaves as a thin or thick
brane, depending on y being at its left or right side.
It is interesting to note from the first-order equations (38)

that the energy density (40) can be written as a total
derivative, in the form

ρ ¼ d
dy

ðe2AWÞ: ð44Þ

This means that the energy density integrates to zero,
leading to an asymmetric thick braneworld scenario with
zero energy, despite the asymmetric and somehow exotic
form of the energy density that is shown in the bottom right
panel of Fig. 4.

IV. SUMMARY

In this work we studied the presence of asymmetric
kinklike structures in flat spacetime and its embedding in a
warped geometry with a single extra dimension of infinite
extent to generate asymmetric hybrid brane configurations.
The current investigation extends the previous investigation
[29], which describes the presence of symmetric hybrid
brane, due to the parity or Z2 symmetry engendered by the
source scalar field model. Here, we have considered
scenarios where the Z2 symmetry is not effective anymore.
As a natural continuation of the current study, one can

investigate how to get asymmetric compactlike solutions in

a model with kinematics modified to accommodate higher
order power in the derivative of the scalar field, and how it
behaves embedded in the AdS5 geometry with a single
extra dimension of infinite extent.
There are several other issues of current interest, some of

them related to the presence of fermions and gauge fields,
to see how they can be trapped inside the hybrid brane, and
how the asymmetric features can contribute to the trapping.
Another study concerns investigating cosmic evolution
using the proposed asymmetric braneworld scenario,
inspired by [15,19–21] or taking the alternative route
studied in [28]. Moreover, since we have shown that the
source scalar field model may be described by first-order
differential equations, one may also wonder if the hybrid
brane configuration can be extended to include supersym-
metry. In particular, one could also study the case of bent
brane [30,31] and ask whether it is possible to build a
Hamilton-Jacobi description [32,33] for the novel hybrid
brane scenario proposed in this work.
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