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We define a procedure by which observers can measure a type of special-relativistic linear and angular
momentum ðPa; JabÞ at a point in a curved spacetime using only the spacetime geometry in a neighborhood
of that point. The method is chosen to yield the conventional results in stationary spacetimes near future
null infinity. We also explore the extent to which spatially separated observers can compare the values of
angular momentum that they measure and find consistent results. We define a generalization of parallel
transport along curves which gives a prescription for transporting values of angular momentum along
curves that yields the correct result in special relativity. If observers use this prescription, then they will find
that the angular momenta they measure are observer dependent, because of the effects of spacetime
curvature. The observer dependence can be quantified by a kind of generalized holonomy. We show that
bursts of gravitational waves with memory generically give rise to a nontrivial generalized holonomy: there
is, in this context, a close relation between the observer dependence of angular momentum and the
gravitational-wave memory effect.
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I. INTRODUCTION AND SUMMARY

A. Angular momentum in general relativity

An interesting nonlinear feature of dynamical asymp-
totically flat solutions in general relativity is that there is no
canonical way to define a special-relativistic angular
momentum at future null infinity. This result follows from
the work of Bondi et al. [1] and Sachs [2,3]. They showed
that the group of asymptotic symmetries of asymptotically
flat spacetimes at future null infinity is not the Poincaré
group but is instead an infinite dimensional group now
known as the Bondi–Metzner–Sachs (BMS) group. Its
structure is similar to that of the Poincaré group: rather
than being a semidirect product of the Lorentz group with a
four-parameter Abelian group of spacetime translations, it
is a similar product of the conformal group on a 2-sphere
(which is isomorphic to the universal covering group of the
Lorentz group) with an infinite-dimensional commutative
group called the supertranslations [4]. The translations are a
four-parameter normal subgroup of the larger group of
supertranslations, from which the Bondi energy momentum
[5] is defined. The supertranslations, however, make
relativistic angular momentum (the charge associated with
the Lorentz symmetries) behave differently in asymptoti-
cally flat spacetimes than in Minkowski space. In the latter,
angular momentum depends only upon a choice of origin,
which is a consequence of the four spacetime translations in
the Poincaré group; in the former, angular momentum
depends upon a smooth function on the 2-sphere that
parametrizes the supertranslations in the BMS group. This
property is typically called the supertranslation ambiguity
of angular momentum (e.g., Ref. [6]). It arises because

there is no unique way to pick out a preferred Poincaré
group with which to define a special-relativistic angular
momentum.
Instead of special-relativistic linear and angular momen-

tum, one has an infinite set of conserved charges, one
associated with each generator of the BMS group [7,8].
These charges can be computed from a surface integral over
any cross section of future null infinity, and the difference
between the values of a charge at two different cross
sections is given by the integral of a 3-form (or “flux”) over
the region of future null infinity between the two cross
sections. These BMS charges transform covariantly under
BMS transformations, just as special-relativistic linear and
angular momentum transform under Poincaré transforma-
tions, and they include the Bondi 4-momentum.
Some researchers have argued that it is necessary or

desirable to give a definition of a preferred finite set of
conserved charges, that would be more similar to the
familiar conserved charges of special relativity [9–13].
An alternative philosophy, which we espouse, is that all of
the BMS charges are physically relevant and that one
should try to understand more deeply their physical nature,
starting with operational prescriptions by which they can be
measured by asymptotic observers.
The purpose of this paper is an initial attempt to

understand how BMS charges can be measured. For
simplicity, we take a “bottom-up” approach: we suppose
that observers who are unaware of the BMS group attempt
to measure conserved charges and ask how the charges they
measure are related. (This is analogous to Newtonian
observers who are ignorant of special relativity making
measurements in Minkowski spacetime; their observations
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of Newtonian quantities are inconsistent because of Lorentz
contraction, etc.) Similarly, here we find that the charges
measured by different observers using special-relativistic
methods are inconsistent due to spacetime curvature. One
of our goals is to characterize or interpret the inconsisten-
cies between different observers’ measurements and relate
the inconsistencies to other measurable quantities.
For simplicity, we will restrict attention to measurements

made in stationary regions and focus on how measurements
made in two successive stationary regions can be compared
to one another.
More specifically, our main results are as follows:
(i) We give a local, operational definition of an “angular

momentum” that can be measured by an observer at
a point in a curved spacetime, using only informa-
tion contained in the geometry in a neighborhood of
that point. The result is a pair of tensors ðPa; JabÞ at
that spacetime point. This prescription is chosen to
give the expected result in stationary spacetime
regions near future null infinity. See Sec. II for
details.

(ii) We define a method by which two observers at two
different points in a curved spacetime can compare
the values of angular momenta that they measure.
The philosophy we adopt is to imagine observers
who assume the validity of special relativity and who
make measurements based on this assumption. We
devise a method of comparison based on a gener-
alization of parallel transport, which reduces to the
correct method in flat spacetimes. In curved space-
times, the method of comparison will be curve
dependent, and, in general, inconsistencies will arise
when observers attempt to compare values of an-
gular momenta. Therefore, from this point of view,
angular momentum inevitably becomes observer
dependent in curved spacetimes. See Sec. III for
details.

(iii) We identify a simple physical mechanism that
accounts for and explains the observer dependence
in simple cases. Specifically, two observers who
measure the change in the angular momentum of a
given source can disagree on that change, since they
disagree on where they believe the source used to be.
They disagree on the source’s original location
because of the gravitational-wave memory effect,
the permanent relative displacement of observers
due to the passage of a burst of waves [14–16]. The
memory effect has, unbeknownst to the observers,
displaced them by different amounts. This argument
is given in more detail in Sec. I B below.

(iv) We argue that the close relation between gravita-
tional-wave memory and the observer dependence
of angular momentum is in fact very general, by
using covariant methods and looking at a number of
examples (Secs. III and IV). While the connection

between gravitional-wave memory and angular-
momentum ambiguity has often been noted, our
analysis shows the explicit and precise form of the
relationship in a general context. In addition, there is
a close relation between gravitational-wave memory
and the BMS supertranslation that relates the shear-
free cuts of a stationary spacetime before a burst of
gravitational waves to those after the burst, as noted
by, for example, Strominger and Zhiboedov [17].
Therefore, our examples in Secs. III and IV also
highlight the role of BMS supertranslations in the
observer dependence of angular momentum in these
simple contexts.

B. Universality of observer dependence of
angular momentum

As discussed above, if different observers attempt to
measure angular momentum in general relativity using
special-relativistic methods, they will disagree on the
results. In other words, angular momentum becomes
observer dependent. In this section, we will show that this
observer dependence is a universal and local feature of
general relativity, independent of the choice of asymptotic
boundary conditions. (However, this observer dependence
does not necessarily imply the existence of ambiguities of
the BMS type, as we discuss in Sec. V). We will compute
the observer dependence explicitly in a specific simple case
and show that it is closely related to gravitational-wave
memory.
Consider two observers A and B (Alice and Bob) in

a flat region of spacetime, who are at rest with respect to
one another and share a common inertial frame ðt;xÞ.
Suppose that they both measure the angular momentum
of a nearby particle. The observer A will obtain the
result

JA ¼ Sþ ðxp − xAÞ × p; ð1:1Þ

where S is the intrinsic angular momentum of the particle,
p is its momentum in the observers’ common inertial frame,
xp is the location of the particle, and xA is A’s location.
Here we assume that A measures the angular momentum
about her own location. Similarly, observer B will measure
an angular momentum about his own location and obtain
the result

JB ¼ Sþ ðxp − xBÞ × p: ð1:2Þ

If A and B compare their measurements, they will find a
difference given by

JA − JB ¼ −ðxA − xBÞ × p; ð1:3Þ

which is consistent with their measured relative displace-
ment xA − xB.
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Now suppose that a gravitational-wave burst of finite
duration is incident on the observers. Thus, the spacetime
consists of a flat region, followed by a gravitational-wave
pulse, followed by a subsequent flat region. We can adopt
transverse-traceless (TT) coordinates ðT; XiÞ to describe
the entire relevant spacetime region—before, during, and
after the burst of waves—which we chose to coincide with
the inertial-frame coordinates ðt; xiÞ before the burst. In the
TT coordinates and in the linearized approximation, the
metric is

ds2 ¼ −dT2 þ ½δij þ hijðT − ZÞ�dXidXj; ð1:4Þ

where for simplicity we have specialized to a burst propa-
gating in theþZ direction. At late times, the metric perturba-
tion becomes constant, hijðT − ZÞ → h∞ij ¼ ðconstantÞ,
while at early times, hij vanishes, and T ¼ t, Xi ¼ xi.
We now extend the definition of the coordinates ðt; xiÞ to

the region after the burst by defining

t ¼ T; xi ¼
�
δij þ

1

2
h∞ij

�
Xj: ð1:5Þ

These coordinates are then inertial coordinates after the
burst. Now the observers A and B are freely falling, which
implies that their TT coordinate locations Xi

A and Xi
B are

conserved. Hence, their relative displacement in the ðt; xiÞ
inertial frame after the burst is

x0
A − x0

B ¼
�
1þ 1

2
h∞

�
· ðxA − xBÞ: ð1:6Þ

This is the standard formula for gravitational-wave
memory. Here x0

A and x0
B are the locations of A and B

in the inertial-frame coordinates after the burst.
In the spacetime region after the burst has passed, the

observers A and B can again measure the angular momen-
tum of the particle, in the new inertial frame ðt; xiÞ. The
observer A obtains the result

J0A ¼ S0 þ ðx0
p − x0

AÞ × p; ð1:7Þ

where primes denote quantities as measured after the burst.
We imagine that the particle’s spin and location may have
changed in the intervening period, but for simplicity we
assume that its momentum p has not. A similar formula
applies to the observer B, and once again if A and B
compare their measurements, they will find a difference
given by

J0A − J0B ¼ −ðx0
A − x0

BÞ × p; ð1:8Þ

which is consistent with their measured relative displace-
ment after the burst x0

A − x0
B. So far, there is no observer

dependence.

Next, we assume that observer A wishes to compute the
change in the angular momentum of the particle between
early and late times. This is given by

δJA ¼ J0A − JA þ δxA × p: ð1:9Þ

Here δxA is the change in A’s location between early and
late times, and the third term is necessary to transform the
original angular-momentum measurement to her new
location, so that she is subtracting angular momenta as
measured about the same point. However, as far as observer
A is concerned, δxA vanishes, since she is an inertial
observer sitting at the origin of her inertial frame. In
particular, she is unaware of the effects of the gravita-
tional-wave burst. (More generally, if the observer were
accelerated by nongravitational forces, she could measure
δxA using an accelerometer carried with her. In the present
context, the accelerometer reading would be zero.)
Inserting the assumption δxA ¼ 0 into Eq. (1.9) and

subtracting a similar equation for B finally yields

δJB − δJA ¼ ðxB − xAÞ × p − ðx0
B − x0

AÞ × p: ð1:10Þ

Using the gravitational-wave-memory formula (1.6) sim-
plifies this to

δJB − δJA ¼ −
1

2
½h∞ · ðxB − xAÞ� × p: ð1:11Þ

Thus, A and B disagree on the change in the angular
momentum, by an amount which is proportional to the
gravitational-wave memory. Essentially what has happened
is that the two observers disagree on where the particle used
to be, because they have been displaced relative to one
another by the gravitational-wave memory effect, and they
assume there is no such relative displacement.
The result (1.11) will be rederived by a more formal and

covariant computation in Sec. IVA below.

C. Covariant description of angular momentum’s
observer dependence: Methods of this paper

While the example of the previous section was intuitively
useful and suggestive of the generality of the phenomenon,
it is important to have a covariant method for comparing
angular momenta at different times and as measured by
different observers. There are, however, several subtle
aspects of how to define angular momentum and how to
compare values between different observers in curved
spacetime. The remainder of this paper is devoted to
articulating a procedure that treats these issues and allows
observers to compare angular momentum covariantly.
We now give a brief sketch of the approach taken in this
paper and summarize the organization of this paper’s
sections.

OBSERVER DEPENDENCE OF ANGULAR MOMENTUM IN … PHYSICAL REVIEW D 92, 084057 (2015)

084057-3



Section II contains a local operational definition of a
linear and angular momentum ðPa; JabÞ that can be
measured by individual observers. For simplicity we will
refer to this pair simply as angular momentum. Section II A
defines the mathematical space in which the local angular
momentum lives: the dual space of the space of Poincaré
transformations from the tangent space at a point in
spacetime to itself. The next part, Sec. II B, defines a
prescription whereby an angular momentum (a particular
element of this dual space) can be obtained from local
measurements of the Riemann tensor and its derivatives.
Section II C shows that the prescription for measuring
angular momentum yields the expected value in stationary
spacetimes near future null infinity, Sec. II D describes the
accuracy and errors of the algorithm in more general
spacetimes, Sec. II E notes that the algorithm is not unique,
and Sec. II F focuses on the accuracy with which the center-
of-mass worldline can be measured.
Section III describes how to compare angular momen-

tum at different spacetime points. It defines a transport law
in Sec. III A—which will be called the affine transport—
that can be used for comparing angular momentum at two
different spacetime points. Section III B explains in detail
how to compare angular momentum at two points using
the affine transport. When the curve is a closed loop, the
transport law defines a generalized holonomy operation,
the basic properties of which are given in Sec. III C. When
the generalized holonomy reduces to the identity, it
indicates that there is a consistent (observer-independent)
notion of angular momentum for different observers along
the curve; when it does not, it provides a notion of the size
of the observer dependence in angular momentum between
different observers along the curve. Section III D shows
that the generalized holonomy contains four independent
pieces. When the closed curve is generated by portions of
worldlines of two freely falling observers, connected by
spatial geodesics, each of the four pieces can be interpreted
as a kind of gravitational-wave memory. In particular, for
nearby geodesics, the generalized holonomy contains the
usual gravitational-wave memory.
Section IV gives two examples of the generalized

holonomy for an idealized spacetime consisting of a region
of flat Minkowski space followed by a burst of linearized
gravitational waves with memory that propagates away
leaving a second flat Minkowski spacetime region. The first
half of the section, Sec. IVA, reproduces the nearly
Newtonian argument of Sec. I B using the language of
the generalized holonomy. The next half of the section,
Sec. IV B, examines the more general example of a
gravitational wave expanded in symmetric trace-free multi-
poles that is emitted radially outward from a pointlike
source. The paper concludes in Sec. V.
Throughout this paper, we use units in which

G ¼ c ¼ 1, and we use the conventions of Misner et al.
[18] for the metric and curvature tensors. We use Latin

letters from the beginning of the alphabet for general
spacetime indices and Greek letters for those associated
with specific coordinate systems. Latin letters from the
middle of the alphabet (starting at i) will be reserved for
spatial indices, and a zero will denote a time index in the
latter context.

II. OPERATIONAL DEFINITION OF THE
ANGULAR MOMENTUM OF A SOURCE AS

MEASURED BY A LOCAL OBSERVER

In this section, we describe a method by which an
observer in the vicinity of some source of gravity can
attempt to measure the angular momentum of that source,
by using only information about the geometry of spacetime
in the observer’s vicinity. Specifically, we describe an
algorithm by which an angular momentum can be con-
structed from the Riemann tensor and its gradients at the
observer’s location. The algorithm we propose, moreover,
is not unique, and the angular momenta obtained will differ
from one observer to another. However, in a certain limit
(Sec. II C below), the angular momenta will become
observer independent and characterize the source. In more
general situations, the nonuniqueness of the algorithm will
be unimportant, and the angular momenta will be observer
dependent. In these situations, the nature of this observer
dependence will be physically interesting, as discussed in
the remaining sections of this paper.
While the literature on angular momentum in general

relativity is extensive and well developed (see, e.g.,
Ref. [19]), our approach here introduces a new perspective,
in that it focuses on a local and operational definition of a
quantity that observers can measure. Our procedure can be
applied at any point in any spacetime (subject to a small
number of local assumptions) and yields the expected result
in the limit of large distances from a source in an isolated,
linearized, stationary, vacuum spacetime.
A measurement of the general type considered here,

where the angular momentum of a source is extracted from
measurements of the geometry of spacetime, has been
carried out once in the history of physics: the measurement
of the spin of the Earth to ∼20% by Gravity Probe B [20].1

We start in Sec. II A by defining a vector space that can
be interpreted as the space of angular momenta for an
observer at a given point P in a curved spacetime. We give
the general algorithm for measuring angular momentum in
Sec. II B. In Sec. II C we explain the motivation for this
algorithm: namely, that it gives the expected result in

1Our measurement procedure is not quite the same as that used
by Gravity Probe B. While both extract angular momentum
information from the spacetime geometry, our procedure uses the
curvature tensors in an infinitesimal region about a spacetime
point, while Gravity Probe B uses information about the
geometry in the vicinity of an entire orbit in addition to
information about asymptotic inertial frames provided by the
direction to a guide star.
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stationary linearized spacetimes near future null infinity.
We discuss the physical interpretation of the measured
angular momentum in general spacetimes in Sec. II D, the
nonuniqueness of the algorithm in Sec. II E, and the
accuracy of the center-of-mass measurement in Sec. II F.

A. Definition of a linear space of angular momenta
at a given point in spacetime

At a point P in a spacetime ðM; gabÞ, let TPðMÞ denote
the tangent space. LetGP be the Poincaré group that acts on
TPðMÞ, that is, the space of affine maps from TPðMÞ to
itself that preserve the metric. Since GP is a Lie group, it
has an associated Lie algebra GP that consists of infini-
tesimal Poincaré transformations. The corresponding dual
space G�

P , the space of linear maps from GP to the real
numbers, is the space of linear and angular momenta at the
event P.
To see this explicitly, consider an affine coordinate

system xa on TPðMÞ. Such a coordinate system is asso-
ciated with a choice of basis vectors ~ea and a fixed vector ~x0
such that the coordinates xa of a vector ~x are given by
~x ¼ ~x0 þ xa~ea. In this coordinate system, the maps in GP
have the usual form of a Poincaré transformation:
xa → Λa

bxb þ κa. Here Λa
b is a Lorentz transformation,

and κa is a translation. The infinitesimal versions of these
maps in GP have the same form, but with infinitesimal κa

and with Λa
b ¼ δab þ ωa

b, where ωab is an infinitesimal
antisymmetric tensor. Now consider the dual space, G�

P .
A general linear map from GP to real numbers can be
written as

ðκa;ωabÞ → Paκa −
1

2
Jabωab ð2:1Þ

for some vector Pa and some antisymmetric tensor Jab.
Therefore, elements of G�

P can be parametrized in terms
of pairs of tensors ðPa; JabÞ, a linear momentum and
an angular momentum. The angular momentum Jab

transforms under changes of origin in TPðMÞ as

angular momentum should: for ~x0 → ~x0 þ ~δx, Jab → Jab þ
2P½aδxb�. The angular momentum Jab would be interpreted
by an observer at P as the angular momentum about a point
which is “displaced from P by an amount ~x0,” even though
such a displacement is ambiguous in general relativity.

B. Definition of the general prescription for measuring
an angular momentum

In this section, we define a prescription for how an
observer at an event P can measure an element of the dual
space G�

P of linearized Poincaré transformations on the
tangent space at P. The prescription requires several
assumptions about the geometry near P, as discussed
further below, and therefore it is applicable only in certain
situations.

The steps of the prescription are as follows:
(i) Measure all the components of the Riemann tensor

Rabcd and of its gradient∇aRbcde at the event P. The
electric pieces of the Riemann tensor in the observ-
ers’ frame can be measured by monitoring the
relative acceleration of test masses using the geo-
desic deviation equation. Similarly, the magnetic
pieces can be measured by monitoring the relative
angular velocity of gyroscopes induced by frame
dragging [21]. By repeating these measurements at
nearby spacetime points, the observer can in prin-
ciple also measure the components of the gra-
dient ∇aRbcde.

(ii) Compute the curvature invariants

K1 ≡ RabcdRabcd; ð2:2aÞ

K1 ≡∇aRbcde∇aRbcde: ð2:2bÞ

We assume that K1 > 0 and K1 > 0. Then, compute
quantities M and r using

M ¼ 15
ffiffiffi
5

p
K2

1

4K3=2
1

; ð2:3aÞ

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
15K1

K1

s
: ð2:3bÞ

(iii) Repeat the above measurements and computations at
nearby2 spacetime points, thus measuring the gra-
dient ∇ar of the quantity r.

(iv) Assuming that the vector∇ar is spacelike, define the
unit vector na in the direction of ∇ar by na ¼
N−1∇ar where N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇ar∇ar

p
. Compute the

quantity

ya ¼ −rna; ð2:4Þ

which the observer interprets as the displacement
vector from her own location to the center-of-mass
worldline of the source.

(v) Compute the symmetric tensor Hab from

Hab ¼ Racbdncnd: ð2:5Þ

Compute the eigenvectors ζa and eigenvalues λ of
this matrix from Habζ

b ¼ λζa. From the definition
(2.5), one of the eigendirections will be ζa ¼ na with
corresponding eigenvalue λ ¼ 0. We assume that
there is at least one eigenvector with a strictly

2Equivalently, measure the Riemann tensor and its first two
derivatives at P; the quantity ∇ar can then be expressed in terms
of these using Eqs. (2.2) and (2.3).
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positive eigenvalue, and we denote the eigendirec-
tion corresponding to the largest eigenvalue by ta. It
follows that this vector is orthogonal to na, tana ¼ 0.

(vi) Assuming that the vector ta is timelike, define a unit,
future-directed timelike vector ua by ua ¼ N−1ta

where N2 ¼ −tata and the sign of N is chosen so
that ua is future directed. The linear momentum is
then given by Pa ¼ Mua.

(vii) Compute the curvature invariant

K2 ≡ 1

2
ϵabcdRab

efRcdef: ð2:6Þ

From this compute a spin vector Sa by

Sa ¼ r7K2

288M2
na þ 1

3
r4ϵabcdubncHdeue: ð2:7Þ

(viii) Compute the angular momentum Jab by

Jab ¼ ϵabcducSd þ yaPb − ybPa: ð2:8Þ

Finally from ðPa; JabÞ compute an element of G�
P

using the definition (2.1) specialized to ~x0 ¼ 0.
Although the procedure is somewhat lengthy, these eight

steps define a method for computing an element of G�
P from

the Riemann tensor and its derivatives at a point P.

C. Motivation for the prescription: Stationary
linearized spacetimes near future null infinity

We now explain the motivation for the choice of
prescription described in the last subsection: it is designed
to give the expected answer in a certain limit. Specifically,
we consider spacetimes that are stationary and free of
matter in the neighborhood of an observer and for which
the sources are sufficiently distant from the observer that
the metric can be described by a linearized multipolar
expansion. For these distant sources, the dominant terms in
the multipolar expansion will be the mass monopole and
the current dipole or spin, with the remaining multipoles
being negligible. In this situation, the measured Pa and Jab

coincide with the conserved charges of the spacetime to a
good approximation, as we now show. This requirement
does not fix the prescription uniquely, but we shall argue in
Sec. II E below that the nonuniqueness is not significant.
We start by writing down a Poincaré covariant expres-

sion for the metric for stationary linearized spacetimes,
keeping only the first two multipoles. This metric can be
written as ds2 ¼ ðηαβ þ hαβÞdxαdxβ, where we have spe-
cialized to Lorentzian coordinates xα for the background
metric, and indices are raised and lowered with ηαβ. Let the
4-momentum of the source be P̂α ¼ M̂ûα, where ûa is the
4-velocity and M̂ is the rest mass. (We use a hatted notation
for these quantities to distinguish them from the quantities,
defined in the previous subsection, that the observer

measures.) Let the intrinsic angular momentum of the
source be Ŝα with Ŝαûα ¼ 0, and let ẑα be a point on the
center-of-mass worldline of the source. Let xα be the point
at which we want to evaluate the metric perturbation hαβ.
We define the projection tensor

p̂αβ ¼ ηαβ þ ûαûβ ð2:9Þ

and define the distance r̂ by r̂2 ¼ p̂αβðxα − ẑαÞðxβ − ẑβÞ.
Finally, we define the unit vector n̂α by

n̂α ¼ ∇αr̂ ¼
1

r̂
p̂αβðxβ − ẑβÞ: ð2:10Þ

In terms of these quantities, the total angular momentum
Ĵαβ about the point xα is

Ĵαβ ¼ ϵαβγδûγŜδ þ ŷαP̂β − ŷβP̂α; ð2:11Þ

where ŷα ¼ p̂α
βðẑβ − xβÞ ¼ −r̂n̂α is a vector which points

from the field point xα to the center-of-mass worldline. The
metric perturbation is

hαβðxαÞ ¼
2M̂
r̂

ðηαβ þ 2ûαûβÞ −
4

r̂2
ûðαϵβÞγδϵŜ

γn̂δûϵ; ð2:12Þ

which is equivalent to the stationary limit of the linearized
metric perturbation in Ref. [22], after one makes the
substitution that uα ¼ ðdtÞα þ viδiα, where ðt; xiÞ are
harmonic coordinates. Finally, the Riemann tensor is

Rαβγδ ¼
1

2
ðhαδ;βγ þ hβγ;αδ − hαγ;βδ − hβδ;αγÞ; ð2:13Þ

where

hαδ;βγ ¼
2M̂
r̂3

ðηαδ þ 2ûαûδÞð3n̂βn̂γ − p̂βγÞ

−
12

r̂4
ûðαϵδÞλμνŜ

λûν½ð5n̂βn̂γ − p̂βγÞn̂μ − 2n̂ðβp̂γÞμ�:
ð2:14Þ

We now compute the angular momentum that an
observer at xα would measure in this spacetime, using
the algorithm described in the last subsection. The curva-
ture invariants (2.2) are given by

K1 ¼
48M̂2

r̂6
½1þOðϵÞ�; ð2:15aÞ

K1 ¼
720M̂2

r̂8
½1þOðϵÞ�; ð2:15bÞ

where for ease of notation we have defined
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OðϵÞ≡O

�
Ŝ2

M̂2r̂2

�
þO

�
M̂
r̂

�
: ð2:16Þ

Note that correction terms linear in the spin are forbidden
by parity considerations. Computing M and r using
Eqs. (2.3) yields

M ¼ M̂½1þOðϵÞ�; r ¼ r̂½1þOðϵÞ�: ð2:17Þ

Similarly by evaluating the gradient of r according to steps
(iii) and (iv), we find

nα ¼ n̂α½1þOðϵÞ�; yα ¼ ŷα½1þOðϵÞ�: ð2:18Þ

Next, we evaluate the symmetric tensor (2.5) using the
expression (2.13) for the Riemann tensor. The result is

Hαβ ¼ −
M̂
r̂3

ðηαβ þ 3ûαûβ − n̂αn̂βÞ

þ 6

r̂4
ûðαϵβÞγδϵŜ

γn̂δûϵ: ð2:19Þ

Because of the symmetries of the Riemann tensor, the
tensor Hαβ is symmetric and has nα as an eigenvector with
its corresponding eigenvalue being identically zero. The
three remaining eigenvectors at leading order in an expan-
sion in 1=r̂ are ûα, ϵαβγδŜ

βn̂γûδ, and a third vector that is
orthogonal to those two as well as n̂α. The eigenvalues
associated with these eigenvectors are (again at leading
order in an expansion in 1=r̂) 2M̂=r̂3 and a repeated
eigenvalue equal to −M̂=r̂3 for the latter two, respectively.
Therefore, if we follow step (v) and choose the normalized
eigenvector corresponding to the largest eigenvalue, we
obtain uα ¼ ûα½1þOðϵÞ�. It follows that

Pα ¼ P̂α½1þOðϵÞ�: ð2:20Þ

Next, from Eqs. (2.13) and (2.14), the curvature invariant
(2.6) is given by

K2 ¼
288M̂2

r̂7
ðŜαn̂αÞ½1þOðϵÞ�: ð2:21Þ

Inserting this equation and the expression (2.19) for Hαβ

into the formula (2.7) for the intrinsic angular momentum,
we determine

Sα ¼ Ŝα½1þOðϵÞ�: ð2:22Þ

Thus, the algorithm successfully recovers the linear
momentum and intrinsic angular momentum of the space-
time. Also, from Eqs. (2.8), (2.11), and (2.18), we find that
Jαβ ¼ Ĵαβ½1þOðϵÞ�, so that the algorithm yields the total
angular momentum of the source about the observer’s
location xα.

D. Physical interpretation of the measured linear and
angular momenta in more general contexts

In the previous subsections, we showed that an observer
that is sufficiently distant from a stationary source of
gravity can measure that source’s linear and angular
momentum to a good approximation, using just the
spacetime geometry in the vicinity of the observer. The
measurement procedure required several assumptions
about that spacetime geometry: (i) the curvature invariants
(2.2) needed to be positive, (ii) the vector ∇ar needed to be
spacelike, (iii) the tensor Hab needed to have at least one
strictly positive eigenvalue, and (iv) the corresponding
eigenvector needed to be timelike. These assumptions
are satisfied for linearized stationary spacetimes described
by just two multipoles at sufficiently large r̂. By continuity,
therefore, they will also be satisfied in regions of space-
times that are sufficiently close to this case. We now discuss
in more detail how the measurement procedure applies to
these more general situations and spacetimes.
There are a number of physical effects that can make the

spacetime geometry measured by observers differ from the
idealized case discussed above of asymptotic regions in
linearized stationary spacetimes with two multipoles. The
effects that we consider include nonlinearities, higher-order
multipoles, nonisolated systems, and nonstationarity. We
now estimate the size of these effects in more general
contexts and thereby determine both when we might expect
the assumptions listed above to break down and also when
the algorithm yields physically sensible results. The various
effects are:

(i) Nonlinearities.—Our analysis above assumed that
the spacetime could be described as a linear pertur-
bation about Minkowski spacetime. For an isolated,
stationary source in an asymptotically flat space-
time, there will be corrections to the metric arising
from nonlinearities. These nonlinearities will give
corrections to the metric perturbation hαβ that
scale3 as

O

�
M̂2

r̂2

�
; O

�
M̂ Ŝ
r̂3

�
; O

�
Ŝ2

r̂4

�
: ð2:23Þ

The form of these corrections can be found, for
example, from the leading nonlinear terms in the
post-Newtonian expansion of the metric (given
in, e.g., Ref. [23]). These corrections will be

3This will be true in suitable coordinates, for which the limit
M̂ → 0 of the metric at fixed Ŝ=M̂ is the Minkowski metric in
Minkowski coordinates (for example, Cartesian Kerr–Schild
coordinates in the Kerr spacetime). For more general coordinates
(such as Boyer–Lindquist coordinates), other terms can occur that
are larger than some of the terms in Eq. (2.23) [e.g., Ŝ2=ðM̂2r̂2Þ].
These larger terms are gauge effects, and they can be ignored for
the argument given here.
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small4 compared to the leading-order terms ∼M̂=r̂
and ∼Ŝ=r̂2 in the metric perturbation (2.12), as long

as r̂ is large compared to M̂,
ffiffiffî
S

p
, and Ŝ2=3M̂−1=3. For

sufficiently large r̂, therefore, the effects of non-
linearities can be neglected.

(ii) Higher-order multipoles.—Our analysis in Sec. II C
above included only the mass and spin and neglected
higher-order mass and current multipoles. However,
as is well known, the effect of these multipoles will
be small at sufficiently large r̂. The dominant
correction to the metric perturbation in the parity-
even sector will be

δhαβ ∼
Q
r̂3
; ð2:24Þ

where Q is the mass quadrupole. Using the estimate
Q ∼ M̂L2, where L is the size of the source, we see
that this correction will be small compared to M̂=r̂ in
the regime

r̂ ≫ L: ð2:25Þ

Similarly, in the parity-odd sector, the dominant
correction will be

δhαβ ∼
S
r̂3
; ð2:26Þ

where S ∼ ŜL is the current quadrupole. This
correction will be small compared to the spin term
in Eq. (2.12) whenever r̂ ≫ L. Therefore, in the
regime (2.25), corrections to the measured linear and
angular momentum Pα and Jαβ will be small.
We note that in the context of linearized gravity it

is possible in principle to measure Pα and Jαβ

accurately even in the regime r̂ ∼ L, by using
measurement procedures more sophisticated than
those envisaged in this paper. As is well known, in
linearized gravity the charges Pα and Jαβ can be
extracted unambiguously from the metric perturba-
tion using surface integrals [18]. Therefore, a family
of observers distributed over the surface of a sphere,
who make measurements of the spacetime geometry
in their vicinity and compare notes in a suitable way,
can measure Pα and Jαβ with high accuracy. In this
paper, we will not need to consider such nonlocal
measurement procedures, because the issues we

want to explore are all present in the regime
(2.25) in which our local measurement procedure
is sufficient.

(iii) Nonisolated systems.—So far we have considered
observers near isolated sources in asymptotically flat
spacetimes. Suppose, however, that there are also
distant sources, or that the spacetime is not asymp-
totically flat. In linearized gravity, the effect of
distant sources can be quantified in terms of the
tidal tensor Eij (the electric components of the
associated Riemann tensor). The corresponding
fractional corrections to the linear momentum mea-
sured by observers using the procedure of Sec. II B
will be of order ∼Er̂3=M̂. Similarly the fractional
corrections to the angular momentum will be of
order ∼Br̂4=Ŝ, where Bij is the magnetic tidal tensor.
These effects limit the accuracy and utility of our
measurement method of Sec. II B above. Within the
context of linearized gravity, it is possible to circum-
vent this difficulty using the nonlocal measurement
method discussed above, which uses the angular
dependence to disentangle the effects of the locally
produced curvature ∼M̂=r̂3 from the curvature Eij

produced by distant sources.
When nonlinearities are included, however, there

is an unavoidable ambiguity: the linear and angular
momenta of individual objects cannot be defined in
general. We can estimate the ambiguities from
nonlinearities using the fact that different definitions
of the “mass of an object” in post-1-Newtonian
theory differ by a quantity of order the tidal-
interaction energy, QijEij, where Qij ∼ M̂L2 is a
mass quadrupole. Therefore, objects of mass M̂, size
L, and separated by distances ∼D have an uncer-
tainty or ambiguity in their masses of order5

ΔM̂=M̂ ∼ M̂L2=D3: ð2:27Þ

The measurement method discussed in Sec. II B
above will be subject to this ambiguity; however, in
many situations the ambiguity will be negligible.

(iv) Nonstationary systems.—For dynamical, radiating
sources, it is immediately clear that our measure-
ment procedure will not be applicable in general.
The reason is that the Weyl tensor for radiated
gravitational waves falls off at large r̂ as 1=r̂,
whereas the static piece of the Weyl tensor asso-
ciated with the mass and spin falls off as 1=r̂3.

4An exception is the term ∼M̂2=r̂2 which will be comparable
to the ∼Ŝ=r̂2 term in the metric (2.12) when Ŝ ∼ M̂2. One might
expect that this term would give rise to fractional corrections of
order unity to the measured momentum and angular momentum;
the corrections, however, are suppressed, because the Ŝ=r̂2 term is
parity odd while the M̂2=r̂2 term is parity even.

5This estimate is valid for generic sources which have a
nonvanishing intrinsic quadrupole moment. It is not valid for
spherically symmetric sources whose intrinsic quadrupole van-
ishes. For such sources, the scaling of the mass ambiguity can be
estimated from the quadrupoles Q ∼ M̂L5=D3 induced by tidal
interactions; it is of order ΔM̂=M̂ ∼ M̂L5=D6.
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Therefore, at sufficiently large r̂, if an observer
measures the Riemann tensor and its derivatives at
her location, her result will be dominated by the
radiative pieces of the metric, and the measurement
method of Sec. II B above will fail.
As discussed in the Introduction, however, the

measurement method can still yield interesting
information about dynamical systems, for an inter-
mittently stationary spacetime (by which we mean a
spacetime which is stationary at early times and
again at late times). Observers can apply the meas-
urement procedure at early and at late times and then
attempt to compare their results. This scenario is
discussed in detail in the remaining sections of the
paper.
As an aside, we note that we can classify non-

stationary systems into two types. The first is what
we will call asymptotically linear systems, that is,
systems for which the linear approximation is valid6

at sufficiently large r̂. For these systems, one can
define unambiguous linear and angular momenta
using surface integrals, and they can be measured
using the nonlocal measurement procedure dis-
cussed above. Our local measurement procedure
can work for such systems, but only if L≪ r̂≪ λ,
where λ is the wavelength of the radiation. The
second type of system, asymptotically nonlinear
systems, are those for which the linear approxima-
tion is not valid at large r̂. These are the systems for
which the BMS asymptotic symmetry group is most
relevant. Neither our local measurement procedure
nor the nonlocal measurement procedure based on
surface integrals of linearized theory apply to
systems in this regime.7

E. Nonuniqueness of the measurement algorithm

The algorithm discussed above is not uniquely deter-
mined by the requirement that it give the correct answer in
linearized stationary spacetimes with two multipoles,
because the information about the linear and angular
momentum of the spacetime is encoded redundantly in
the Riemann tensor and its first two derivatives at any point.
Therefore, there are several methods that can be used to
extract these momenta. For example, Eq. (2.4) could be
replaced by ya ¼ −∇ar2=2, which would give the same
result to leading order.
In stationary linearized spacetimes with two multipoles,

there is a unique and accepted definition of the linear and

angular momentum of the spacetime; therefore, any non-
uniqueness or ambiguities in the measurement procedure
must vanish in this limit as the measurement is taken at
large distances from the source. More specifically, this
implies that the effects of these ambiguities all scale as 1=r
as r → ∞ (or as 1=v, where v is a null coordinate that goes
to infinity at future null infinity). Most importantly, they are
small compared to the observer dependence of angular
momentum that we discuss in the remainder of the paper
(that characterized by generalized holonomies, which we
show gives rise to finite effects in the limit v → ∞).

F. Accuracy of measurement of the
center-of-mass worldline

The procedure discussed above allows an observer to
measure the angular momentum of the spacetime about his
own location to an accuracy of ϵ ¼ M̂=r̂:

Jαβ ¼ Ĵαβ½1þOðϵÞ�: ð2:28Þ

In particular, the displacement vector yα from the observer
to the center-of-mass worldline [cf. Eq. (2.8) above] will be
measured with this accuracy:

yα ¼ ŷα
�
1þO

�
M̂
r̂

��
: ð2:29Þ

However, ŷα is of order r̂, and, therefore, the error in the
measurement is of order

δyα ∼ M̂: ð2:30Þ

This error is large; it is of the same order as the maximum
displacements caused by gravitational-wave memory
effects.8

6Here the assumption is that the linear approximation is valid
in a neighborhood of some two-sphere which encloses the source,
not the weaker assumption the linear approximation is valid in a
neighborhood of some observer.

7Except to the extent that measurements before and after the
nonstationarity can probe effects of the nonstationarity, as we
discuss in the remainder of this paper.

8It is possible, however, to modify the measurement method to
increase the accuracy as follows. Modify the definitions ofM and
r in Eqs. (2.3) to

M ¼ 15
ffiffiffi
5

p
K2

1

4K3=2
1

�
1 −

15
ffiffiffi
3

p ðK1Þ3=2
4K1

�
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
15K1

K1

s �
1 −

5
ffiffiffi
3

p ðK1Þ3=2
4K1

�
;

and leave the rest of the measurement algorithm unaltered. Then
the fractional error in the measurement of yα is decreased to
OðM̂2=r̂2Þ, and the errors in yα vanish as the observers approach
future null infinity. This modified algorithm is derived from the
expressions for the curvature invariants of the Kerr spacetime in
Boyer–Lindquist coordinates and therefore yields the Boyer–
Lindquist radial-coordinate values at the observers’ locations.
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III. AFFINE TRANSPORT AND GENERALIZED
HOLONOMY: PROPERTIES AND APPLICATION

TO ANGULAR MOMENTUM

We now turn to the question of how two observers at
different locations in a curved spacetime can compare
values of linear and angular momentum. The philosophy
we adopt is to imagine that the observers attempt to
compare values using the same methods they would use
in special relativity (i.e., in the absence of gravity).
The first part of this section introduces a curve-

dependent transport law, which we call affine transport
and which serves as the basis for our method of comparing
angular momentum. The next subsection describes how the
affine transport can be used to compare values of angular
momentum defined at different spacetime points. The final
subsection describes the affine transport around a closed
curve, which we call the generalized holonomy, and it
explains its relation to the inevitable observer dependence
of angular momentum in curved spacetimes.

A. Definition of an affine transport law

In this section, we define a transport law that can be used
to transport vectors along curves and which is a generali-
zation of parallel transport. Let C be a curve between the
spacetime points P and Q, and let the curve have tangent

vector ~k. Next, define a map χC from TPðMÞ to TQðMÞ
through the solution of the differential equation

∇~k
~ξ ¼ α~k: ð3:1Þ

Here α is a dimensionless constant. Namely, starting from

an initial condition ~ξP in TPðMÞ, we solve the differential
equation to obtain the value ~ξQ of ~ξ at Q. The image of ~ξP
under the map χC is then defined to be ~ξQ. Since we are not
aware of a name for this specific transport law, we will call

it the affine transport of the vector ~ξ along the curve C with

tangent ~k. This map satisfies six important properties that
are listed below:

(i) It is independent of the choice of parametrization
along the curve (which follows because both sides of
the equation are linear in the tangent to the curve ~k).

(ii) When two curves are composed, the composition of
maps is equivalent to the map on the composed
curve (i.e., if C ¼ C1∪C2, then χC ¼ χC1∘χC2).

(iii) For a fixed curve, C, Eq. (3.1) is a linear differential

equation in ~ξ. The solution for given initial data,
therefore, can be expressed as the sum of two terms:
the first term is the solution of the homogeneous
differential equation (parallel transport) with the
same initial data, and the second is the solution of
the inhomogeneous differential equation with zero
initial data. The complete solution is

ξāQ ¼ ΛPQ
ā
aξ

a
P þ αΔξāPQ; ð3:2Þ

where ΛPQ
ā
a denotes the parallel transport opera-

tion from P to Q and ΔξāPQ is the inhomogeneous
solution for α ¼ 1. The notation here is that over-
lined indices are associated with the point Q and
indices without extra adornment are associated
with P.

(iv) It follows that (unlike parallel transport) affine
transport does not preserve the norm of the trans-
ported vector.

(v) For geodesic curves, one can show that the inho-
mogeneous part of the solution Δ~ξPQ is just the

tangent to the curve at the point Q (i.e., α~kQ).
9

(vi) Finally, for curves in a flat spacetime, Δ~ξPQ is just

the vectorial displacement ~Q − ~P in any inertial
coordinate system. In particular, it vanishes for
closed curves in a flat spacetime, because, as we
show later, it is only nontrivial in the presence of
spacetime curvature.

We will use these properties frequently in the calcula-
tions in the remainder of this paper.

B. Application to a curve-dependent definition of
angular-momentum transport

Using the affine transport law, we can define a method of
comparing the local values of angular momentum at two
different spacetime points, by transporting angular
momenta from one spacetime point to another, in a
curve-dependent manner.
We define a map from G�

P to G�
Q that depends on a choice

of curve C that joins these two points. Because the elements
of G�

P act on maps in GP [those from the tangent space
TPðMÞ to itself], a natural map is one based on the affine
transport of elements in GP to elements of GQ. Namely, for
hP ∈ GP , the corresponding hQ ∈ GQ is defined by

hP ¼ χ−1C ∘hQ∘χC; ð3:3Þ

where χC is the affine transport along C. For an element
qP ∈ G�

P , therefore, we define the corresponding element
qQ ∈ G�

Q by

qQðhQÞ ¼ qPðχ−1C ∘hQ∘χCÞ ¼ qPðhPÞ: ð3:4Þ

9The calculation which shows this is short: Let λ ∈ ½0; 1� be an
affine parameter along a geodesic curve with λ ¼ 0 correspond-
ing to P and λ ¼ 1 be the point Q, and denote the directional
derivative along the geodesic by ∇~k ¼ D=Dλ. For a point P0

between P and Q, one can confirm that ξāP0 ¼ ΛPP0 āaξ
a
P þ αλkāP0

is the solution along the geodesic curve, because ∇~kΛPP0 āaξ
a
P ¼

0 and ∇~k
~k ¼ 0. Evaluating the expression at λ ¼ 1, one finds that

the inhomogeneous part of the solution is α~kQ.
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To recover the correct transformation properties of angular
momentum under displacements with this definition, it is
necessary to choose the value

α ¼ −1 ð3:5Þ

of the parameter in the definition (3.1) of the function χC,
which we now show by writing this mapping from the
angular-momentum space G�

P to the angular-momentum
space G�

Q in a more explicit notation.
To do so, let us represent elements of the algebra hP as

pairs

hP ↔ ðκPa ;ωP
abÞ ð3:6Þ

and the map between algebras at different points P and Q,
χC, as

χC ↔ ðαΔξāPQ;ΛPQ
ā
aÞ; ð3:7Þ

where the quantities in this equation are exactly those
appearing in Eq. (3.2). The transformation rule for the
algebra elements (3.3) then has the representation in terms
of these pairs as

ðκPa ;ωP
abÞ ¼ ðΛPQ

ā
aκ

Q
ā þ αΛQP

ā
aΛQP

b̄
bω

Q
ā b̄
ΔξbPQ;

ΛQP
ā
aΛQP

b̄
bω

Q
ā b̄
Þ; ð3:8Þ

which respects the multiplication rule for a semidirect-
product structure. In the above expression, we have used
the notation ΔξaPQ ¼ ΛPQā

aΔξāPQ and the fact that ΛQP
ā
a

and ΛPQ
ā
a are related in accord with the typical notation

for the inverse of the parallel propagator. Keeping in mind
the representation of the maps qP as

qPðhPÞ ¼ Pa
Pκ

P
a −

1

2
JabP ωP

ab ð3:9Þ

given in (2.1), we can then take the definition of the
transformation property of angular momentum in Eq. (3.4)
above and substitute in the result of (3.8); by equating the
coefficients of ωQ

ā b̄
and κQā , we find that the angular

momenta at the two points are related by

Jā b̄Q ¼ ΛQP
ā
aΛQP

b̄
bðJabP þ 2αΔξ½aPQP

b�
P Þ; ð3:10Þ

and the corresponding momenta are related by

Pā
Q ¼ ΛPQ

ā
aP

a
P : ð3:11Þ

We, therefore, see that to have the usual transformation law
for angular momentum

Jā b̄Q ¼ ΛQP
ā
aΛQP

b̄
bðJabP − 2Δξ½aPQP

b�
P Þ ð3:12Þ

we must choose α ¼ −1. An alternative and simpler
formulation of the transport law given by Eqs. (3.12)
and (3.11) is discussed in Appendix A.
If we decompose the angular momentum Jab into an

intrinsic spin Sa and a displacement vector ya using the
definitions

ya ¼ −
1

M2
JabPb; ð3:13aÞ

Sa ¼ 1

2M
ϵbcd

aPbJcd; ð3:13bÞ

then from Eqs. (3.11) and (3.12), the fact that
PaPa ¼ −M2, and that yaPa ¼ 0, we can show after some
algebra that the spin is parallel transported just like the
linear momentum,

SāQ ¼ ΛPQ
ā
aS

a
P ; ð3:14Þ

while the displacement vector transforms as

yāQ ¼ ΛQP
ā
aðybP − ΔξaPQÞ: ð3:15Þ

Additional properties of the affine transport for closed
curves are discussed next.

C. Generalized holonomy: A measure of observer
dependence of angular momentum

For closed curves starting from a point P, the affine
transport around the curve defines a generalized holonomy,
a map from the tangent space at P to itself. For flat
spacetimes, the generalized holonomy is always the iden-
tity map. Specializing the result (3.12) to closed curves
(when Q is the same point as P) yields the mapping

Jab → Λa
cΛb

dðJcd − 2Δξ½cPd�Þ: ð3:16Þ

Thus, if there is a nontrivial holonomy of parallel transport
or a nonzero inhomogeneous solution, then observers along
the curve will find that angular momentum is observer
dependent. The extent to which a generalized holonomy is
nontrivial is a measure of how much spacetime curvature is
an obstruction to separated observers arriving at a con-
sistent definition of angular momentum.
As a simple example of this generalized holonomy,

consider an infinitesimal quadrilateral starting from a point
P with legs given by ϵua and ϵva where ϵ is small. The
quadrilateral is traversed first in the direction of ua, then va,
then −ua, then −va. If we start at P with some initial vector
ξa and solve the transport equation (3.1) around the loop, a
relatively straightforward calculation shows that the homo-
geneous part of the solution is
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ξa þ ϵ2Ra
bcdξ

bvcud þOðϵ3Þ: ð3:17Þ

This is the usual expression for the holonomy around a
small loop. The inhomogeneous part of the solution is

Δξa ¼ 1

2
ϵ3Ra

bcdvcudðub þ vbÞ þOðϵ4Þ: ð3:18Þ

A more detailed calculation is given in Ref. [24]. Thus,
while the holonomy of parallel transport is proportional to
the Riemann tensor contracted with the area of the
quadrilateral, the generalized holonomy contains an addi-
tional term proportional to the Riemann tensor contracted
with both the area and the perimeter of the region.

D. Relation between generalized holonomy and
gravitational-wave memory

In this section, we give a precise and covariant
definition of an observable that can be interpreted as
a “gravitational-wave memory” generalized to an arbi-
trary spacetime. We then show that the generalized
holonomy around a suitably constructed loop contains
information about this covariant gravitational-wave
memory, showing a very general relationship between
these two observables.
However, we also show that the generalized holonomy

contains additional information and specifically contains
three other independent pieces, each of which could arise
as a kind of “memory” effect due to the passage of a
burst of gravitational waves. The first is a difference in
proper time measured by two observers (a gravitational
redshift effect). The second is a relative boost of two
initially comoving observers. The third is a relative
rotation of the inertial frames of two observers. In the
limit of nearby geodesics at large distances from a source
emitting a burst of gravitational waves with memory,
these effects reduce to a combination of more familiar
notions of gravitational-wave memory arising from sol-
utions of the equation of geodesic deviation and of
differential frame dragging and the difference in proper
time of nearby geodesics [25]. (We are also investigating
the relationship between the new gravitational-wave
memory of Pasterski et al., [26] and the memory effects
quantified by the generalized holonomy in Ref. [25].) We
now describe a calculation that elucidates the relationship
between the generalized holonomy and the ordinary
memory plus differences in proper time, relative rota-
tions, and relative boosts.
Consider two freely falling observers A and B in an

arbitrary spacetime. We fix attention on an interval of A’s
worldline between two events P and R, where A’s proper
time τ varies between τ1 and τ2, as illustrated in Fig. 1. We
denote by ~uAðτÞ the 4-velocity of A along her worldline. We
also introduce an orthonormal tetrad ~eα̂ðτÞ which is parallel
transported along A’s worldline, where ~e0̂ ¼ ~uA.

At each point on A’s worldline, there is a unique spatial
vector

ξîBðτÞ~eîðτÞ ð3:19Þ

such that the exponential map evaluated on this vector is a
point zBðτÞ on B’s worldline.10 Or, equivalently, ðτ; ξîBðτÞÞ
gives the location of B’s worldline in Fermi normal
coordinates centered on A’s worldline. We denote by
~uBðτÞ the 4-velocity of observer B at the point zBðτÞ.
We denote byQ and S the initial and final points zBðτ1Þ and
zBðτ2Þ on B’s worldline (see Fig. 1 below). Finally, we let
~fα̂ðτÞ be the orthonormal tetrad at zBðτÞ obtained by
parallel transporting ~eα̂ðτÞ from the corresponding point
on A’s worldline along the spatial geodesic with initial
tangent (3.19).11

We assume that the observers A and B are initially

comoving, in the sense that ~f0̂ðτ1Þ is B’s 4-velocity at Q.
We define a closed loop C by starting at R, traveling along
A’s worldline back to P, traveling along the spatial
geodesic with initial tangent (3.19) to Q, traveling along

FIG. 1. Spacetime diagram of a burst of gravitational waves and
the curve used to compute the generalized holonomy. The gray
region represents the spacetime location of the gravitational
waves, while the unshaded regions are Minkowski spacetimes
before and after the burst. The curve bounded by P and R is the
worldline of observer A, and that bordered by Q and S is that of
B. The curves with end points ðP;QÞ and ðR;SÞ are spacelike
geodesics before and after the burst, respectively, which are just
straight lines in the flat spacetime regions.

10Uniqueness requires that B is sufficiently close to A to be
inside a convex normal neighborhood.

11Note that the parameter τ need not be the proper time along
B’s worldline, and the orthonormal tetrad ~fα̂ need not be parallel
transported along B’s worldline.
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B’s worldline to S, and then back to R along the spatial
geodesic where the final tangent at R is the vector (3.19)
at τ ¼ τ2.
The inhomogeneous part of the generalized holonomy

about the loop C is given by

~Δξ ¼ ½ξîBðτ1Þ − ξîBðτ2Þ�~eî þ ðΔτB − ΔτAÞ~wB

þ ξîBðτ1ÞðΛ · ~eî − ~eîÞ: ð3:20Þ

Here ΔτA ¼ τ2 − τ1 is the interval of A’s proper time
between P and R, and ΔτB is the interval of B’s proper
time between Q and S. The quantity Λa

b is the usual
holonomy around the loop C. Finally ~wB is the 4-vector at
R obtained by parallel transporting B’s 4-velocity ~uBðτ2Þ at
S along the spatial geodesic to R. Equivalently, it can be
obtained by acting with the holonomy around the loop on
A’s 4-velocity at R, wa

B ¼ Λa
bu

b
Aðτ2Þ.

The first term in the generalized holonomy (3.20) can be
interpreted as (a generalization of) the gravitational-wave
memory effect. It is the change in the relative displacement
of the observers A and B, as seen by A in her Fermi normal
coordinates, when A and B are initially comoving. The
second term depends on the difference in the proper times
measured by A and B along the corresponding segments of
their worldlines. It also depends on the boost that relates the
final velocity of B to that of A. Finally, the third term
depends on the holonomy Λa

b around the loop, which in
general will consist of a spatial rotation together with the
aforementioned boost.
We now turn to the derivation of the formula (3.20). The

inhomogeneous part of the generalized holonomy can be
obtained by solving the differential equation (3.1) with α ¼
1 around the loop C starting with ~ξR ¼ 0 at the initial point
R. The solution at the next point P can be obtained from
the fifth property listed in Sec. III A above, that the
inhomogeneous term for a geodesic is just the tangent to
the geodesic. It is given by

~ξP ¼ −ΔτA~uAðτ1Þ: ð3:21Þ

We now solve the differential equation along the leg PQ of
the loop. The solution at Q will be the sum of the parallel
transport of the initial condition (3.21), together with an
inhomogeneous term that is the tangent to the spatial
geodesic. The result is

~ξQ ¼ −ΔτA~uBðτ1Þ þ ξîBðτ1Þ~fîðτ1Þ: ð3:22Þ

Here the first term is the parallel transport term, and we
have used the fact that the parallel transport of A’s initial
4-velocity is B’s initial 4-velocity. The second term is the
tangent to the spatial geodesic at Q, from the definitions

(3.19) of ξîB and of ~fα̂.

Next, we solve the differential equation along the seg-
ment QS of B’s worldline. Since B parallel transports his
own 4-velocity, the result is

~ξS ¼ −ΔτA~uBðτ2Þ þ ξîBðτ1ÞΓ · ~fîðτ1Þ þ ΔτB~uBðτ2Þ:
ð3:23Þ

Here Γa
b is the parallel transport operator fromQ to S, and

the last term is the inhomogeneous term, the tangent to B’s
worldline at S. Finally, we transport this result along the leg
SR of the loop. When we parallel transport B’s 4-velocity
~uB, the result is the vector ~wB defined above. Similarly,

when we parallel transport the vector Γ · ~fî, the result is the
holonomy operator Λa

b of the loop acting on the basis
vector ~eî at R. This is because ~eî is parallel transported

along RP and because ~fî is obtained from ~eî by parallel
transporting along PQ. Thus, we obtain

~ξR ¼ ðΔτB − ΔτAÞ~wB þ ξîBðτ1ÞΛ · ~eî − ξîBðτ2Þ~eî; ð3:24Þ

where the last term is the inhomogeneous term. This is
equivalent to the formula (3.20).

IV. GENERALIZED HOLONOMY IN
LINEARIZED GRAVITY

This section provides two related examples of the
generalized holonomy. Both spacetimes consist of a flat
Minkowski region followed by a burst of gravitational
waves with memory, after which the spacetimes settle to a
different Minkowski region. The first example treats a
linearized plane wave, which reproduces the result of
Sec. I B in a covariant language. The second example
deals with a linearized pulse of waves heading radially
outward from a pointlike source. This more general
example gives an indication of the magnitude and the
form of the disagreement that observers will have when
measuring angular momentum.
A schematic spacetime diagram with the curve used to

compute the generalized holonomy is depicted in Fig. 1. As
discussed in the previous section, there are two freely
falling observers A and B, and we consider a closed curve
consisting of segments of their worldlines together with
spatial geodesics that join the two worldlines. In this
section, we additionally assume that spacetime is flat
initially and at late times (the unshaded portions of the
diagram) and that at intermediate times there is a burst of
gravitational waves present (the gray shaded region). The
two spacelike curves—the one, before the burst, with end
points at P and Q and the other, after the burst, with end
points atR and S—are geodesics of Minkowski space (i.e.,
straight lines in a surface of constant time). The figure
describes both the plane wave (Sec. IVA) and a local region
of the radially propagating gravitational wave (Sec. IV B).
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A. Generalized holonomy for a gravitational plane
wave with memory

We consider a spacetime which is flat at early and at late
times and which contains a linearized plane wave at
intermediate times. We use the conventions described in
Sec. I B above: the metric is given by the expression (1.4) in
global TT coordinates ðT; XiÞ, with the metric perturbation
being hijðT − ZÞ. This metric perturbation vanishes at early
times but at late times asymptotes to the constant value h∞ij .
We also introduce a coordinate system ðt; xiÞwhich at early
times is an inertial coordinate system and coincides with
the TT coordinates ðT; XiÞ and which at late times is again
inertial and related to the TT coordinates by Eq. (1.5).
The observers A and B are freely falling and are therefore

stationary with respect to the TT coordinates, with Xi ¼
Xi
A ¼ constant for A, and Xi ¼ Xi

B ¼ constant for B. The
inertial-frame locations of the observers at early times are

xiA ¼ Xi
A; xiB ¼ Xi

B; ð4:1Þ
while at late times, they are

x0iA ¼
�
δij þ

1

2
h∞i

j

�
Xj
A; x0iB ¼

�
δij þ

1

2
h∞i

j

�
Xj
B;

ð4:2Þ
as discussed in Sec. I B above.
To compute the generalized holonomy, it will be useful to

recall results from Sec. III A. First, recall that the generalized
holonomy along a curve composed of several segments is
just the composition of the individual solutions to Eq. (3.1).
Second, remember that the general solution can be written as
the sum of a homogeneous solution (i.e., the usual holon-
omy) and an inhomogeneous solution (the part that is
independent of the initial data), which allows the two
solutions to be computed independently. Third, note that
for geodesic curves the inhomogeneous part of the solution
is proportional to the tangent to the curve at the end point.
Thus, the generalized holonomy can be found by computing
the affine transport in four steps (P to R to S to Q to P),
while computing the inhomogeneous and homogeneous
parts separately.

1. Calculation of the inhomogeneous solution

(i) P to R: We transport the initial vector ~ξP ¼ 0 along
the geodesic from P to R using the affine transport
law (3.1) with α ¼ 1. The result is

~ξR ¼ ðδtÞ∂T ¼ ðδtÞ∂t;

where δt is the interval of A’s proper time between
P and R. In the second equation, we have
transformed from TT coordinates to the inertial
coordinates.

(ii) R to S: Next, we use the vector ~ξR as an initial
condition for the affine transport along the straight
line extending from R to S in the flat spacetime
region after the burst. It is easiest to perform this
computation in the inertial coordinates ðt; xiÞ. The
result is

~ξS ¼ ðδtÞ∂t þ ðx0iB − x0iAÞ
∂
∂xi :

Next, we use Eqs. (4.1) and (4.2) and transform back
to the TT coordinates, giving

~ξS ¼ ðδtÞ∂T þ ðxiB − xiAÞ
∂
∂Xi :

(Here in the spatial components, there was a cancel-
lation between a factor of 1þ 1

2
h∞ and its inverse.)

(iii) S to Q: This part of the affine transport removes the
timelike component of the vector, and it transforms
the spatial part of ξaS because the spatial vectors
change under parallel transport. As a result, the
outcome of the transport is

~ξQ ¼
�
δij þ

1

2
h∞i

j

�
ðxjB − xjAÞ

∂
∂Xi :

(iv) Q to P: The affine transport takes place along a
straight line in a flat spacetime region, and so its net
effect is to add the corresponding displacement
vector along the line. The final result at P gives
the inhomogeneous piece of the general solution

~Δξ ¼ ~ξP ¼ 1

2
h∞i

jðxjB − xjAÞ
∂
∂Xi : ð4:3Þ

2. Homogeneous solution and the
generalized holonomy

It is not too difficult to see that the holonomy of parallel
transport is the identity map,

Λa
b ¼ δab; ð4:4Þ

for the curve shown in Fig. 1 even though the spacetime has
nontrivial curvature. It follows from the fact that the parallel
transport is trivial in the flat regions of spacetime and that it
is identical on the two worldlines of the two different
observers. Consequently, the inhomogeneous solution is
the only relevant part of the generalized holonomy.

3. Relation to the memory effect and the observer
dependence of angular momentum

In this example, the generalized holonomy is directly
related to the change in proper distance between the two
observers that arises from the solution to the equation of
geodesic deviation (the usual physical effect of the
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gravitational-wave memory). This leads to an observer
dependence in the angular momentum which is given by
δJαβ ¼ 2Δξ½αPβ�, from Eqs. (3.12) and (4.4). Using the
result (4.3), this corresponds to an observer dependence of
the spatial angular momentum of − 1

2
εijkh∞j

lδxlpk, where
pk is the spatial momentum and δx ¼ xB − xA. This is
precisely the result (1.11) found in Sec. I B.

B. Generalized holonomy for a gravitational wave at
large radius

For a gravitational wave propagating radially outward
from a pointlike source, the computation of the generalized
holonomy is very similar to that of the plane wave, but the
expressions are somewhat lengthier. The linearized metric
of this spacetime has the same form as that of Eq. (1.4), but
the function hαβðt − zÞ gets replaced by an outgoing wave
solution in spherical polar coordinates. The most common
form of this metric is given in a Lorentz gauge—see, e.g.,
Eqs. (8.13a)–(8.13c) of Ref. [22]—which is often
expressed as a sum of terms proportional to mass and
current multipoles and the time derivatives of the multi-
poles. To compute the generalized holonomy, only the
leading-order terms in a series in 1=r will be needed. In
addition, it will be most useful to express the metric
perturbation in a TT gauge rather than a Lorentz gauge.

1. Transverse-traceless metric perturbation

The quickest way to compute the TT metric perturbation
is to compute the Riemann tensor and use the fact that the
TT metric perturbation is related to the gauge-invariant
Riemann tensor (at linear order in the metric perturbation)
via the relation

R0i0j ¼ ḧTTij ; ð4:5Þ

where the pair of dots over hTTij indicates taking two time
derivatives. The metric perturbation can be found by
integrating Eq. (4.5) twice with respect to time. In coor-
dinates ðu; r; θ;φÞ where u ¼ t − r, and starting from
Eqs. (8.13a)–(8.13c) of Ref. [22], the result is

hTTij ¼ 1

r

X∞
l¼2

�
1

l!
½4nði I

ðlÞ
jÞAl−1

nAl−1 − 2I
ðlÞ

ijAl−2
nAl−2

− ðδij þ ninjÞI
ðlÞ

Al
nAl � þ 4l

ðlþ 1Þ! n
q

× ½nðiεjÞpq S
ðlÞ

pAl−1
nAl−1 − εpqði S

ðlÞ
jÞpAl−2

nAl−2 �
�

þOð1=r2Þ: ð4:6Þ

Here IAl
¼ IAl

ðuÞ is an l-pole mass moment, and SAl
¼

SAl
ðuÞ is an l-pole current moment, which are symmetric

trace-free (STF) tensorswithl indices (the subscriptAl is one

notation used to represent l spatial indices). The notation ðlÞ
above the symbols for the moments means the lth derivative
with respect to u. The vector ni is a unit radial vector (i.e.,
xi=r), and nAl is the tensor product of l radial unit vectors.

2. Multipoles and coordinate change after the burst

As in the example of the plane wave, it will be assumed
that before a retarded time u≡ t − r ¼ 0 all the multipoles
vanish; they are dynamical between 0 and uf; and after the
retarded time uf, the spacetime is again Minkowski, but
some of the multipoles and their time derivatives can have
nonzero constant values which correspond to the gravita-
tional-wave memory. Interestingly, only certain multipoles
can go to constant values and still have the spacetime be
Minkowski (and, hence, stationary). Specifically, the lth
time derivative of the mass-multipole STF tensors IAl

can
take nonzero values, whereas the equivalent time deriva-
tives of the current multipoles SAl

cannot asymptote to a
nonzero value and still be Minkowski space. This seems to
be closely related to the fact that there is no magnetic-type
memory from physically realistic sources [27].
First, consider just the mass multipoles, and assume that

the lth time derivatives go to constant values. A short
calculation can show that the generator of linearized gauge
transformations below can remove the constant time
derivatives of the mass multipoles after the burst of waves:

Ξ0 ¼
X∞
l¼2

lþ 2

lðl!Þ I
ðlÞ

Al
nAl ; ð4:7aÞ

Ξi ¼ −
X∞
l¼2

1

l!

�
1

l − 1
I
ðlÞ

iAl−1
nAl−1 þ 1

2
I
ðlÞ

Al
nAlni

−
ðlþ 2Þ

2r
ð I
ðl−1Þ

iAl−1
nAl−1 − I

ðl−1Þ
Al
nAlniÞ

�
: ð4:7bÞ

For the current multipoles, the only linearized gauge
generator that can be constructed from the lth time
derivative of SAl

, the radial vectors ni, and the antisym-
metric tensor εipq would be proportional to the following:

ΞðSÞ
i ¼

X∞
l¼2

εipq S
ðlÞ

pAl−1
nAl−1nq: ð4:8Þ

A second quick calculation will show that this trans-
formation does not make the spacetime flat. As a result,
we will require that the multipoles satisfy the conditions

I
ðlÞ

Al
¼ const and S

ðlÞ
Al

¼ 0; ð4:9Þ

when u > uf.
With the metric determined by Eq. (4.6), subject to the

condition (4.9), the gauge transformation (4.7) is sufficient
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to define Minkowski coordinates after the pulse of waves
via the relation

yα ¼ xα þ Ξα: ð4:10Þ

This also provides the necessary information to compute
the generalized holonomy. As in the previous plane-
wave example, we will split the calculation into the
inhomogeneous and homogeneous parts, which are treated
in the next subparts, respectively.

3. Calculation of the inhomogeneous solution

(i) P toR: This is identical to the equivalent calculation
involving the gravitational plane wave: the vector
after affine transport is ξαR ¼ ðδtÞuα, where ~u ¼ ∂t.
As before, it is helpful to transform to the flat
coordinates yα after the pulse, defined by Eqs. (4.10)
and (4.7). This introduces two new terms into the
result: ξα

0
R ¼ ðδt − Ξ00

RÞuα
0 − Ξα0

R;00δt. Here we use
primes to denote tensor components in the Min-
kowski coordinates, xα

0 ¼ yα.
(ii) R to S: In the flat Minkowski space after the

burst, the affine transport gives ξα
0

S ¼ ðδt − Ξ00
RÞuα

0 −
Ξα0
R;00δtþ δα

0
i0δyi

0
. Changing back to the xα coor-

dinates alters the spatial part of the vector
so that ξαS ¼ uαðδtþ δΞ0Þ þ δΞα

;0δtþ Ξα
S ;iδx

i þ
δαiðδxi þ δΞiÞ. Here δΞα ¼ Ξα

S − Ξα
R has been

defined.
(iii) S toQ: Transporting back through the burst changes

the spatial part of the vector to ξαQ¼δΞ0uαþ
δΞα

;0δtþ 1
2
ðΞα

S ;i−ΞS
i
;αÞδxiþδαiðδxiþδΞiÞ, where

the change occurred from the parallel transport of
the affine frame back to the original point and where
the fact that hαi ¼ Ξα

;i þ Ξi
;α was used to simplify

the change in the spatial part of the vector.
(iv) Q to P: Along this flat geodesic in the Minkowski

space prior to the burst, the affine transport adds the
displacement vector δxi to the result of ξαQ. Thus, the
complete inhomogeneous solution is

Δξα ¼ δΞ0uα þ δΞα
;0δt

þ 1

2
ðΞα

S ;i − ΞS
i
;αÞδxi þ δαiδΞi: ð4:11Þ

We will discuss the relationship between the terms that
appear in ΔξaP and the gravitational-wave memory in more
detail below.

4. Homogeneous solution and the generalized holonomy

The calculation of the homogeneous part of the solution
is simpler than that of the inhomogeneous portion above.
The first set of nontrivial terms comes from the parallel
transport along the worldline extending from P to R and

from the coordinate change at R. For an arbitrary initial
condition ξαð0Þ, this vector will be modified by an amount

− 1
2
ðΞα

R;β − ΞR
β
;αÞξβð0Þ. There will be a similar contribution

with the opposite sign involving quantities at the point S
from the parallel transport along the worldline from S to Q
and the coordinate change at S. Thus, the part of the
holonomy that differs from the identity is given by
1
2
ðΞα

;β − Ξβ
;αÞSRξβð0Þ, where the subscript SR implies it

is the difference of the values at the quantities at the
coordinate points S and R, transported back to P.
From the expression for Ξα in the gauge transformation

(4.7), it is possible to show that the generalized hol-
onomy has a homogeneous piece in the form of a local
infinitesimal Lorentz transformation that scales as 1=r
and an inhomogeneous part that contains terms indepen-
dent of δx and δt that are zeroth order in 1=r (and also
terms that go as 1=r, which we will not show), in
addition to terms that scale as δx=r and δt=r. For the
inhomogeneous part, these terms will be labeled by Δξαð1Þ,
Δξαðδx=rÞ, and Δξαðδt=rÞ. The zeroth-order terms come from

−δΞα, whereas the terms of order δt=r and δx=r come
from the terms δΞα

;0δt and 1
2
ðΞα

S ;i − ΞS
i
;αÞδxi, respec-

tively. These terms are

Δξ0ð1Þ ¼
X∞
l¼2

lþ 2

lðl!Þ ðI
ðlÞ

Al
nAlÞSR; ð4:12aÞ

Δξð1Þi ¼ −
X∞
l¼2

1

l!

�
1

l − 1
ðI
ðlÞ

iAl−1
nAl−1ÞSR

þ 1

2
ðI
ðlÞ

Al
nAlniÞSR

�
; ð4:12bÞ

Δξðδt=rÞi ¼ −δt
X∞
l¼2

lþ 2

2ðl!Þ ½ðI
ðlÞ

iAl−1
nAl−1=rÞSR

− ðI
ðlÞ

Al
nAlni=rÞSR�; ð4:12cÞ

Δξ0ðδx=rÞ ¼ −
δxi

rS

X∞
l¼2

lþ 2

l!
½ðI
ðlÞ

iAl−1
nAl−1ÞS

− ðI
ðlÞ

Al
nAlniÞS�; ð4:12dÞ

Δξðδx=rÞi ¼ 2δxj

rS

X∞
l¼2

1

l!
ðn½i I

ðlÞ
j�Al−1

nAl−1ÞS: ð4:12eÞ

In the expression above, the subscript SRmeans to take the
difference of the quantity within parentheses evaluated at
the values of the coordinate points S and R.
The local infinitesimal Lorentz transformation, which

will be denoted as ωαβ ¼ ω½αβ� is strictly of order 1=r and
can be written as
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ωi0 ¼
X∞
l¼2

lþ 2

l!
½ðI
ðlÞ

iAl−1
nAl−1=rÞSR − ðI

ðlÞ
Al
nAlni=rÞSR�

þOð1=r2Þ; ð4:13aÞ

ωij ¼
X∞
l¼2

2

l!
ðn½i I

ðlÞ
j�Al−1

nAl−1=rÞSR þOð1=r2Þ: ð4:13bÞ

5. Relation to the memory effect and the observer
dependence of angular momentum

The relation between the generalized holonomy and the
physical effects associated with the gravitational-wave
memory is somewhat more involved than it was for a
gravitational plane wave. The term δΞi is a measure of the
change in distance between the observers that occurs from
the memory. In addition, the part δΞ0 gives information
about the difference in proper time measured by the two
observers that is a result of the memory of the gravitational-
wave burst. The other term 1

2
ðΞα

S ;i − ΞS
i
;αÞδxi takes into

account a boosting and rotation of the spatial displacement
vector along the other observer’s worldline from the wave’s
memory, and the part δΞα

;0δt represents a relative change in
the tangent to the observers’ worldlines from the memory.
Because the inhomogeneous solution has a zeroth-

order piece in 1=r, the center of mass and the angular
momentum will have an observer dependence with a
magnitude of order P0Δξið1ÞþPiΔξ0ð1Þ and ϵijkΔξ

j
ð1ÞP

k,

respectively, where Pa is the 4-momentum of the source.
For separations for which δx is of order r, then the terms
Δξaðδx=rÞ will also have leading-order contributions to the

observer dependence of the center of mass and of the
angular momentum of the form P0Δξiðδx=rÞ þ PiΔξ0ðδx=rÞ
and ϵijkΔξ

j
ðδx=rÞP

k, respectively. Similarly, for times δt of

order the light-travel time to the source (i.e., of order r),
then there will be additional observer dependence from
terms of the form P0Δξiðδt=rÞ and ϵijkΔξ

j
ðδt=rÞP

k.
Equations (2.4) and (2.8) imply that the angular momen-

tum tensor Jab will have terms proportional to r at large
radii; specifically, it is the orbital-like part of the angular
momentum 2y½aPb� ¼ −2rn½aPb� that has this scaling.
When the angular momentum transforms by Eq. (3.16),
the 1=r parts of the holonomy will induce a change in the
angular momentum that is of order unity in a series in 1=r.
These terms will have the form δJab ¼ 2ðωa

cy½cPb� −
ωa

cy½bPc�Þ. The lowest-order part of the 4-momentum will
still be unambiguous, and any observer dependence will be
a relative 1=r effect.

V. CONCLUSIONS

In this paper, we noted that bursts of gravitational waves
cause spatially separated observers to disagree on their
changes in displacement and therefore to disagree on their

measured special-relativistic angular momenta of a source.
This observer dependence of the angular momentum is
related to the gravitational-wave memory of the pulse of
waves. We derived this phenomenon first in a simple
context of linearized plane waves and later in a more
systematic and covariant framework.
We defined a procedure by which observers could

measure a type of special-relativistic linear and angular
momentum at their locations, from the spacetime geometry
in their vicinity. The procedure gives the correct result
when the spacetime is linear and stationary, and the
measurement takes place near future null infinity. We
estimated the errors in the procedure when the spacetime
is nonlinear, dynamical, or the source is not isolated.
To compare angular momentum at different spacetime

points, we defined a transport equation, the affine transport,
which is a slight generalization of parallel transport. The
transport around a closed curve, the generalized holonomy,
consists of a Poincaré transformation, rather than a Lorentz
transformation as for a normal holonomy. The generalized
holonomy contains an inhomogeneous displacement term.
The extent to which the generalized holonomy is nontrivial
is a measure of how much spacetime curvature prevents
different observers from arriving at a consistent definition
of the linear and angular momentum.
For two freely falling observers, who encounter a burst of

gravitational waves, we showed that there are four inde-
pendent observables that can be nontrivial when the burst
has departed and that can be considered to be types
of gravitational-wave memory. There is the usual displace-
ment memory, a residual relative boost, a relative rotation,
and a difference in elapsed proper time between the two
observers. These four observables are all encoded in the
generalized holonomy around a suitably defined closed loop
in spacetime. Thus, we clarified and generalized the often-
noted close relation between gravitational-wave memory
and observer dependence of angular momentum.
Finally, we performed explicit computations in two differ-

ent specific contexts that illustrate the relationships between
generalized holonomy, observer dependence of angular
momentum, and gravitational-wave memory. The first con-
text was a plane gravitational wave with memory passing
through flat spacetime, and the second was an outgoing
linearized gravitational wave near future null infinity.
The plane wave only showed the displacement memory
effect, but the multipolar gravitational wave displayed all
four of the physical observables associated with thememory.
Although our goal was to provide physical insight into the

nature of the BMS group, the generalized holonomy tool
does not quite achieve this goal; in Appendix B, we show
that the generalized holonomy can be nontrivial for certain
spacelike curves in the Schwarzschild spacetime, even as the
curves tend to spatial infinity. Hence, observers along this
curve would find their measured angular momentum to be
observer dependent, even though angular momentum iswell
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defined in Schwarzschild (as the BMS group has a preferred
Poincaré subgroup in stationary spacetimes). Thus, our
prescription for assessing observer dependence in angular
momentum not only captures BMS/memory ambiguities in
angular momentum but also reflects other, more trivial
effects of spacetime curvature on angular momentum
measurements. Finding a method to isolate just the BMS
ambiguities is a topic we will investigate in future work.
Because the affine transport law defines away to compare

other vectors in addition to the angular momentum at
different spacetime points, it could find application to other
problems. For example, if a burst of gravitational waves
passes through a post-Newtonian spacetime, the momenta
and angular momenta of the particles that enter into the post-
Newtonian equations of motion could differ before and after
the burst. The affine transport may be useful for deriving a
prescription for matching the post-Newtonian spacetimes
before and after the bursts, in a manner that allows one to
compute the motion of an N-body system.
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APPENDIX A: ANGULAR MOMENTUM
TRANSPORT LAWS

In the body of this paper, we introduced a method of
transporting a pair of tensors ðPa; JabÞ along a curve from
one point to another in a curved spacetime. In this
Appendix, we show that the transport method is equivalent
to solving the following simple set of differential equations
along the curve:

ka∇aPb ¼ 0; ka∇aJbc ¼ −2P½bkc�: ðA1Þ
The equivalence between the two methods was pointed out
to us by Justin Vines [28].
Suppose we have a curve xα ¼ xαðλÞ that joins at point P

at λ ¼ 0 to another point Q at λ ¼ 1. We introduce an
orthonormal basis of vectors ~eα̂ atQ and extend it along the
curve by parallel transport.We decompose the 4-momentum
and angular momentum on this basis as

Pa ¼ Pα̂eaα̂; Jab ¼ Jα̂ β̂eaα̂e
b
β̂
: ðA2Þ

The transport equations (A1), when written in terms of this
basis, become

d
dλ

Pα̂ ¼ 0; ðA3aÞ
d
dλ

Jα̂ β̂ ¼ −Pα̂kβ̂ þ Pβ̂kα̂: ðA3bÞ

The first of these gives Pα̂ðλÞ ¼ Pα̂
0 ¼ constant. We now

make the ansatz for the angular momentum solution

Jα̂ β̂ðλÞ ¼ Jα̂ β̂0 þ Pα̂
0χ

β̂ðλÞ − Pβ̂
0χ

χ̂ðλÞ; ðA4Þ

for some vector χα̂ðλÞ, where Jα̂ β̂0 is the initial value of Jα̂ β̂

at λ ¼ 0. Using this ansatz we see that the differential
equation (A3b) will be satisfied if χα̂ vanishes at P and
satisfies

d
dλ

χα̂ ¼ −kα̂: ðA5Þ

This differential equation coincides with the differential
equation (3.1) that defines the generalized parallel trans-
port, for the case α ¼ −1, the same case as was found in the
body of the paper. By comparing with Eq. (3.2), we find

χα̂ðQÞ ¼ −Δξα̂: ðA6Þ

Substituting this result into the ansatz (A4) gives an
expression for the angular momentum at Q which agrees
with Eq. (3.12), establishing the result.

APPENDIX B: GENERALIZED HOLONOMY
OF A SPACELIKE CURVE IN THE
SCHWARZSCHILD SPACETIME

In this Appendix, we compute the generalized holonomy
of certain curves in the Schwarzschild spacetime and show
that the generalized holonomy does not become the identity
in the limit when the curves asymptote to future null
infinity. As discussed in the body of the paper, this property
implies that we cannot use the generalized holonomy as a
tool to diagnose whether a given spacetime admits a well-
defined angular momentum (since in stationary spacetimes
the BMS group has a preferred Poincaré subgroup and so
normal angular momentum is well defined).
The specific curve we consider is shown in Fig. 2.

Letting M denote the mass of the spacetime and r ≫ M be

FIG. 2. Curve used to compute the generalized holonomy in the
Schwarzschild spacetime of massM at large radii. The lengths of
the four segments that compose the curve, δr1, δr2, δx1, and δx2,
are all of order r, where r ≫ M is the closest distance to the
source along the segment labeled by δx1. This curve has a
nontrivial generalized holonomy as r goes to spatial infinity, even
though the Schwarzschild spacetime has a well-defined angular
momentum.
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the distance to the closest point along the segment labeled
by δx1, we will assume that the lengths of the four sides of
the curve, δx1, δr1, δx2, and δr2, are all of order r (or,
equivalently, the area enclosed by the curve is of order r2).
The curvature at the loop will scale as M=r3. Because the
holonomy associated with parallel transport scales as the
curvature times the area, when the vector transported has
magnitude of order r (such as the displacement vector ya),
the vector will undergo changes of order M. Similarly,
because the inhomogeneous part of the generalized hol-
onomy scales as curvature times the area to the three-halves
power, the vector Δξa will also be of order M. Even as r
approaches spatial infinity, this estimate suggests that there

will be nontrivial generalized holonomy and observer
dependence in the angular momentum.
We did, in fact, compute the exact generalized holonomy

in the case in which δr1 and δr2 are radial curves, and δx1
and δx2 are two coordinate lines between the end points of
these two curves, respectively. The precise answer, while
not particularly insightful, does indeed scale asM as r goes
to spatial infinity. We conclude that the generalized
holonomy is not specifically linked to BMS ambiguities
in angular momentum and is more generally a diagnostic
of when spacetime curvature prevents observers from
consistently measuring and comparing a type of special-
relativistic angular momentum.
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