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The scattering cross sections of the unpolarized electromagnetic and gravitational waves are shown to be
equal for the extreme Reissner-Nordström black hole using N ¼ 2 supergravity. The conversion cross
sections between the unpolarized electromagnetic and gravitational waves are also shown to coincide. The
gravitational and electromagnetic scattering cross sections are computed numerically for Reissner-
Nordström black holes for several charge-to-mass ratios and the coincidence between the two scattering
cross sections for the extremal case is confirmed.
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I. INTRODUCTION

At the center of our galaxy, an intense compact radio
source, Sagittarius A*, is associated with a supermassive
black hole of mass M ∼ 4.31 × 106M⊙ [1]. It is thought
that most galaxies have a supermassive core, with a close
link between the properties of the black hole and the galaxy
itself. Each galaxy also plays host to myriad black holes
formed by stellar collapse. Clearly, black holes are a
fundamental constituent of the universe, whose exotic
properties are still being understood.
According to the no-hair conjecture, when a black hole

in electrovacuum is perturbed, it settles back into a
Kerr-Newman configuration characterized by just three
numbers: mass M, angular momentum J and electric
charge Q [2]. Observations suggest astrophysical black
holes have significant angular momentum [3]; it is not
known whether they are also endowed with charge though a
Schwinger process would rapidly decrease the charge
unless M ≳ 105M⊙ [4]. In the extremal limit ðJ=MÞ2 þ
Q2 → M2 (with natural units G ¼ c ¼ 1), the surface
gravity of the horizon, and thus the Hawking temperature,
approaches zero. Extremal black holes may be regarded as
solitons of Einstein-Maxwell theory [5].
In this paper we consider planar electromagnetic and

gravitational waves interacting with Reissner-Nordström
(RN) black holes, with J ¼ 0, 0 ≤ Q ≤ M. A wave
impinging upon a black hole will be partially absorbed
and scattered, and the polarized flux will bear the imprint of
the black hole. For example, strong-field scattering near the
black hole light-ring generates a distinctive “spiral scatter-
ing” interference, with a “glory” on-axis [6]. When the

black hole possesses charge, the electromagnetic and
gravitational perturbations are mixed together: an incident
electromagnetic wave will generate a gravitational wave,
and vice versa [7]. Furthermore, the helicity of the incident
wave is not conserved, leading to novel signatures [8].
Numerical investigations have revealed curious coinci-

dences between electromagnetic and gravitational scatter-
ing properties in the extremal limit Q → M. First, the
resonant (i.e. quasinormal mode) frequencies of gravita-
tional waves with a multipole index l coincide with those
of electromagnetic waves with a multipole index l − 1 [9].
Second, the absorption cross sections for gravitational and
electromagnetic waves are equal [10]. Third, as shown here
for the first time, the unpolarized (or circularly polarized)
electromagnetic and gravitational scattering cross sections
are equal (see Fig. 1, lower panel), and the electromagnetic-
gravitational conversion cross sections are also equal.
These properties all hint at an underlying symmetry.

Remarkably, the symmetry may be revealed through the
methods of N ¼ 2 supergravity: a (partial) realization of
Einstein’s dream of unifying electromagnetism and gravity
[11]. Supergravity, as the gauge theory of supersymmetry,
pairs together bosonic and fermionic fields. In the N ¼ 2
model, the electromagnetic (s ¼ 1) and gravitational
(s ¼ 2) fields are joined by gravitino fields (s ¼ 3=2).
The extremal RN black hole is a Bogomol’nyi-Prasad-
Sommerfeld (BPS) state in N ¼ 2 supergravity, and thus it
possesses an unbroken supersymmetry [5]. This supersym-
metry has previously been shown to be responsible for the
equality in quasinormal frequencies [12]. It also leads to
some relations among partial-wave scattering amplitudes
[13]. These relations have been used to explain the equality
in the gravitational and electromagnetic absorption cross
sections mentioned above. Here, with a novel analysis that
applies supersymmetry transformations directly to plane-
wave solutions, we show that supersymmetry accounts for
all the additional coincidences noted above.
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II. ANALYSIS

Majumdar-Papapetrou geometries take the form [14]

ds2 ¼ u−2dt2 − u2ðdx2 þ dy2 þ dz2Þ; ð1Þ

where ds2 ¼ gμνdxμdxν, Aμ ¼ ðu−1; 0; 0; 0Þ, and we adopt
the signature (þ, −, −, −). With this ansatz, the Einstein-
Maxwell equations reduce to Laplace’s equation ∇2u ¼ 0
and ∂u=∂t ¼ 0 on a flat background. The fundamental
solution, u ¼ 1þM=ρ with ρ2 ¼ x2 þ y2 þ z2, is recog-
nized as the extremal RN spacetime in isotropic
coordinates.
In N ¼ 2 supergravity, the gravitational and electromag-

netic fields are paired with gravitino fields represented by

two Majorana spinors, ψ ðIÞ
μ (I ¼ 1, 2). The Lagrangian

LSuGraðgμν; Aμ;ψ
ðIÞ
μ Þ reduces to the standard Einstein-

Maxwell Lagrangian LEMðgμν; AμÞ when ψ ðIÞ
μ ¼ 0. Thus,

RN black holes are solutions in N ¼ 2 supergravity.
The Lagrangian LSuGra is invariant, up to a total

divergence, under certain gauge transformations that mix

gμν, Aμ and ψ ðIÞ
μ (N ¼ 2 local supersymmetry). Since the

extreme RN spacetime preserves some of the supersym-
metry, one may generate electrovacuum solutions that are
small perturbations of this spacetime from N ¼ 2 super-
gravity solutions with small gravitino perturbations by
applying supersymmetry transformations.
The local supersymmetry transformation for the suitably

normalized metric perturbation hμν and the electromagnetic
field Aμ can be given as follows, up to a common constant
factor [11]:

FIG. 1 (color online). Scattering cross section for scalar (s ¼ 0), electromagnetic (s ¼ 1), and gravitational (s ¼ 2) radiation for
Schwarzschild black holes (top), Reissner-Nordström with q≡ jQj=M ¼ 0.8 (middle), and extreme Reissner-
Nordström black holes (bottom). Here, Mω ¼ 3.0.

CRISPINO et al. PHYSICAL REVIEW D 92, 084056 (2015)

084056-2



δAμ ¼ ϵð1ÞTγ0ψ ð2Þ
μ − ϵð2ÞTγ0ψ ð1Þ

μ ; ð2Þ

δhμν ¼
1ffiffiffi
2

p ðϵð1ÞTγ0γðμψ ð1Þ
νÞ þ ϵð2ÞTγ0γðνψ

ð2Þ
μÞ Þ; ð3Þ

where ϵðIÞ (I ¼ 1, 2) are Majorana spinors and T denotes
the transpose. The γ-matrices satisfy fγA; γBg≡
γAγB þ γBγA ¼ −2ηAB, where ηAB is the flat Lorentzian
metric. We choose the γ-matrices to be real, noting that γ0 is
then antisymmetric whereas γA (A ¼ 1, 2, 3) are symmetric.
We define γμ ¼ γAeAμ, where the vectors e

μ
A (A ¼ 0, 1, 2, 3)

form a local Lorentz frame at each spacetime point. The
supersymmetry transformation of the gravitino fields can

be given in terms of the field ψμ ≔ ψ ð1Þ
μ þ iψ ð2Þ

μ and the
gauge function ϵ ≔ ϵð1Þ þ iϵð2Þ as follows [5] with Fμν ¼
∂μAν − ∂νAμ on a background solution with ψ ðIÞ

μ ¼ 0:

δψμ ¼ Dμϵþ
i
4
Fαβγ

αγβγμϵ; ð4Þ

where Dμ is the covariant derivative for spinors.
In Majumdar-Papapetrou spacetimes there are Killing

spinors ϵ satisfying δψμ ¼ 0 in Eq. (4). Any spinor
ϵ ¼ u−1=2ϵc, where ϵc is constant, is a Killing spinor if
iγ0ϵc ¼ −ϵc. This condition can be written in the real form
as ϵð2Þ ¼ −γ0ϵð1Þ. Thus, the spinor ϵð1Þ can be chosen so
that it is any real constant spinor at spatial infinity.
The existence of a Killing spinor implies that N ¼ 2

supergravity theory linearized about the extreme RN
spacetime is supersymmetric. Therefore, we can map
gravitino scattering solutions to photon-graviton scattering

solutions by supersymmetry. More specifically, if ψ ðIÞ
μ give

a gravitino scattering solution, then from Eqs. (2) and (3)
and the relation ϵð2Þ ¼ −γ0ϵð1Þ we find that, if ϵ ¼ ϵð1Þ þ
iϵð2Þ is a Killing spinor, then the following fields will give a
photon-graviton scattering solution:

Aμ ¼ ϵð1ÞTðψ ð1Þ
μ þ γ0ψ ð2Þ

μ Þ; ð5Þ

hμν ¼
1ffiffiffi
2

p ðϵð1ÞTγ0γðμψ ð1Þ
νÞ − ϵð1ÞTγðμψ

ð2Þ
νÞ Þ: ð6Þ

Since we are only interested in linearized field equations,

we can treat ψ ðIÞ
μ and ϵðIÞ as ordinary functions of spacetime

rather than fermionic operators or Grassmann numbers.
In order to discuss gravitino scattering solutions we first

should consider gravitino plane-wave solutions in flat
spacetime. The noninteracting gravitino fields ψ ðIÞ

μ satisfy

γ½μ∂νψ
ðIÞ
λ� ¼ 0 in flat space [15]. These equations are

invariant under the following gauge transformations:

ψ ðIÞ
μ ↦ ψ ðIÞ

μ þ ∂μη
ðIÞ, where ηðIÞ are any Majorana spinors.

Let us consider a gravitino plane wave incident from

z ¼ ∞. Under the gauge condition γμψ ðIÞ
μ ¼ 0 the general

solutions to these field equations are indeed plane waves

and take the form ψ ðIÞ
μ ¼ ψ ðI;cÞ

μ e−ikðtþzÞ, where ψ ðI;cÞ
μ are

constant spinor-vectors. The gauge invariance mentioned

above can be used to gauge away the components ψ ðIÞ
0 and

ψ ðIÞ
3 (see, e.g., Refs. [11,16]). Then we find γ0γ3ψ ðIÞ

μ ¼ ψ ðIÞ
μ ,

μ ¼ 1, 2 and ψ ðIÞ
2 ¼ γ1γ2ψ ðIÞ

1 . From now on we let ψ ðIÞ
μ be a

scattering solution in the extreme RN background which
becomes a plane wave as described above in the
limit z → ∞.
For z → ∞ the components with μ ¼ 1 and 2 of the

electromagnetic plane wave in Eq. (5) may be nonzero and
are given by

A1 ≈ ϵð1ÞTðψ ð1Þ
1 þ γ0ψ ð2Þ

1 Þ; ð7Þ

A2 ≈ ϵð1ÞTγ1γ2ðψ ð1Þ
1 þ γ0ψ ð2Þ

1 Þ; ð8Þ

where we have used the relation ψ ðIÞ
2 ≈ γ1γ2ψ ðIÞ

1 . We also
find that, for z → ∞, the hμν given by Eq. (6) is nonzero
only if μ or ν is either 1 or 2. It can also be shown that the
hμ0 and hμ3 are of pure-gauge form, and hence can be
disregarded in considering the flux of gravitational wave
coming in from z ¼ ∞. Hence, the only relevant compo-
nents of the gravitational plane wave described by Eq. (6)
are found for large z as

h22 ≈ −h11 ≈
1ffiffiffi
2

p ϵð1ÞTγ0γ1ðψ ð1Þ
1 − γ0ψ ð2Þ

1 Þ; ð9Þ

h12 ≈ −
1ffiffiffi
2

p ϵð1ÞTγ0γ2ðψ ð1Þ
1 − γ0ψ ð2Þ

1 Þ: ð10Þ

We note that these expressions and Eqs. (7) and (8) become

exact in the limit z → ∞, where ψ ðIÞ
μ gives a plane wave.

Now, we shall find gravitino plane-wave solutions that
give linearly polarized incident electromagnetic plane
waves through Eq. (5) but no incident gravitational plane
waves through Eq. (6). We first note that the 4-dimensional
space of constant real spinors consists of four 1-dimen-
sional eigenspaces of the commuting real symmetric
matrices iγ5γ3 and γ2, each with eigenvalues �1, where

γ5 ≔ −iγ0γ1γ2γ3. We choose the scattering solution ψ ðIÞ
μ

such that ψ ð1Þ
1 þ γ0ψ ð2Þ

1 is an eigenspinor of iγ5γ3 and γ2

with eigenvalues þ1 in the limit z → ∞ where ψ ðIÞ
μ is an

incoming plane wave. Since ψ ðIÞ
1 ≈ γ0γ3ψ ðIÞ

1 for z → ∞, we

have ψ ð1Þ
1 − γ0ψ ð2Þ

1 ≈ γ0γ3ðψ ð1Þ
1 þ γ0ψ ð2Þ

1 Þ. Thus, ψ ð1Þ
1 −

γ0ψ ð2Þ
1 is an eigenspinor of iγ5γ3 with eigenvalue −1 for

large z. Define ϵþ� to be unit real spinors satisfying
iγ5γ3ϵþ� ¼ ϵþ� and γ2ϵþ� ¼ �ϵþ�. Then, we find from
Eqs. (7)–(8) and Eqs. (9)–(10) that the incident
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electromagnetic wave is linearly polarized in the 1st
direction if ϵð1Þ ¼ ϵþþ and in the 2nd direction if ϵð1Þ ¼
ϵþ−. In either case there will be no incident gravita-
tional wave.
Let us now discuss the differential scattering and con-

version cross sections for unpolarized incident electromag-
netic waves [17]. Far away from the origin a scattered
solution can locally be approximated by a plane wave times
1=r. Now, choose a rotated coordinate system characterized
by the orthonormal vectors eî, î ¼ 1̂, 2̂, 3̂, such that the unit
vector in the 3rd direction in the old coordinate system, e3,
is expressed as e3 ¼ n1̂e1̂ þ n2̂e2̂ þ n3̂e3̂. After a suitable
gauge transformation, the electromagnetic and gravitational
plane waves in Eqs. (5) and (6), respectively, propagating in
the negative 3̂-direction are given by replacing the coor-
dinates 1, 2 and 3 by 1̂, 2̂ and 3̂ in Eqs. (7)–(8) and Eqs. (9)–
(10). Hence the differential scattering cross section in the
negative 3̂-direction is

dσ
dΩ

����
A→A

¼ C
X
�

lim
r→∞

r2ðjA1̂j2 þ jA2̂j2Þ

¼ C lim
r→∞

r2ðψ ð1Þ†
1̂

− ψ ð2Þ†
1̂

γ0Þ

× ðΣþ þ γ2̂γ1̂Σþγ1̂γ2̂Þðψ ð1Þ
1̂

þ γ0ψ ð2Þ
1̂
Þ; ð11Þ

where C is a constant and Σþ ¼ ϵþþϵTþþ þ
ϵþ−ϵ

Tþ− ≈ ð1þ iγ5γ3Þ=2. By substituting this formula into
Eq. (11) and using γ3 ¼ n1̂γ

1̂ þ n2̂γ
2̂ þ n3̂γ

3̂, we find

dσ
dΩ

����
A→A

¼ C lim
r→∞

r2ðψ ð1Þ†
1̂

− ψ ð2Þ†
1̂

γ0Þ

× ð1þ in3̂γ5γ
3̂Þðψ ð1Þ

1̂
þ γ0ψ ð2Þ

1̂
Þ: ð12Þ

The matrices γ0 and γ0γ3̂ anticommute. From this and the

fact that ψ ðIÞ
1̂

in the large-r limit in the negative 3̂-direction

is an eigenspinor of γ0γ3̂ with eigenvalue þ1, we conclude

that γ0ψ ðIÞ
1̂

is an eigenspinor of γ0γ3̂ with eigenvalue −1 in

this limit. Hence ψ ðIÞ
1̂

and γ0ψ ðJÞ
1̂

become orthogonal in this
limit. Therefore,

lim
r→∞

r2ðψ ð1Þ†
1̂

− ψ ð2Þ†
1̂

γ0Þðψ ð1Þ
1̂

þ γ0ψ ð2Þ
1̂
Þ

¼ lim
r→∞

r2ðψ ð1Þ†
1̂

ψ ð1Þ
1̂

þ ψ ð2Þ†
1̂

ψ ð2Þ
1̂
Þ: ð13Þ

Similarly, since γ5γ3̂ anticommutes with γ0γ3̂, we find that

ψ ðIÞ
1̂

and γ5γ
3̂ψ ðJÞ

1̂
become orthogonal in this limit. Hence

lim
r→∞

r2ðψ ð1Þ†
1̂

− ψ ð2Þ†
1̂

γ0Þγ5γ3̂ðψ ð1Þ†
1̂

þ γ0ψ ð2Þ†
1̂

Þ

¼ lim
r→∞

r2ðψ ð2Þ†
1̂

γ5ψ
ð1Þ
1̂

− ψ ð1Þ†
1̂

γ5ψ
ð2Þ
1̂
Þ; ð14Þ

where we have used the fact that ψ ðIÞ
1̂

become eigenspinors

of γ0γ3̂ with eigenvalue þ1 in this limit. By substituting
Eqs. (13) and (14) into Eq. (12) we obtain

dσ
dΩ

����
A→A

¼ Aþ n3̂B; ð15Þ

where

A ≔ C lim
r→∞

r2ðψ ð1Þ†
1̂

ψ ð1Þ
1̂

þ ψ ð2Þ†
1̂

ψ ð2Þ
1̂
Þ; ð16Þ

B ≔ iC lim
r→∞

r2ðψ ð2Þ†
1̂

γ5ψ
ð1Þ
1̂

− ψ ð1Þ†
1̂

γ5ψ
ð2Þ
1̂
Þ: ð17Þ

The differential cross section in the same direction for the
conversion from (unpolarized) electromagnetic wave to
gravitational wave can be found similarly, using Eqs. (9)
and (10), as

dσ
dΩ

����
A→h

¼ C
X
�

lim
r→∞

r2ðjh1̂ 1̂j2 þ jh2̂ 2̂j2 þ 2jh1̂ 2̂j2Þ

¼ C lim
r→∞

r2ðψ ð1Þ†
1̂

þ ψ ð2Þ†
1̂

γ0Þ

× ð1þ in3̂γ5γ
3̂Þðψ ð1Þ

1̂
− γ0ψ ð2Þ

1̂
Þ

¼ A − n3̂B: ð18Þ

Next, we let ϵð1Þ ¼ ϵ−�, where ϵ−� are real unit spinors
satisfying iγ5γ3ϵ−� ¼ −ϵ−� and γ2ϵ−� ¼ �ϵ−�. Then, we
find from Eqs. (7)–(8) and Eqs. (9)–(10) that the solutions
given by Eqs. (5) and (6) are such that there is a linearly-
polarized incident gravitational wave with the same flux as
above coming in from z ¼ ∞with the “þ” polarization (the
“x” polarization) if ϵð1Þ ¼ ϵ−þ (ϵð1Þ ¼ ϵ−−). In either case
there will be no incident electromagnetic wave. We can
express the unpolarized differential scattering cross section
in the negative 3̂-direction as:

dσ
dΩ

����
h→h

¼ C
X
�

lim
r→∞

r2ðjh1̂ 1̂j2 þ jh2̂ 2̂j2 þ 2jh1̂ 2̂j2Þ

¼ Aþ n3̂B; ð19Þ

where the summation is over ϵ−�. We have used
ϵ−þϵT−þ þ ϵ−−ϵ

T
−− ≈ ð1 − iγ5γ3Þ=2. We similarly find the

differential conversion cross section from gravitational to
electromagnetic waves in the negative 3̂-direction as
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dσ
dΩ

����
h→A

¼ C
X
�

lim
r→∞

r2ðjA1̂j2 þ jA2̂j2Þ ¼ A − n3̂B: ð20Þ

By comparing Eqs. (15) and (19) we see that the
scattering cross sections for the gravitational and electro-
magnetic waves are equal. We also find, by comparing
Eqs. (18) and (20), that the conversion cross sections from
electromagnetic to gravitational waves and from gravita-
tional to electromagnetic waves are equal.

III. NUMERICAL RESULTS

We now show that equality of scattering cross sections is
supported by new numerical results, obtained via a rather
different formalism: partial-wave solutions constructed
from multipolar sums. For this purpose, we compute the
scattering cross section of incident gravitational plane
waves by RN black holes and compare it with the
electromagnetic counterpart [8].
The multipoles of the electromagnetic and gravitational

perturbations are given by [18]:

FP
l ¼ φP

lþ cosψ − φP
l− sinψ ;

GP
l ¼ φP

lþ sinψ þ φP
l− cosψ ; ð21Þ

where the functions φP
l� obey the equations

d2

dr2�
φP
l� þ ðω2 − VP

l�ÞφP
l� ¼ 0: ð22Þ

Here, P ¼ � denotes parity (even [polar] or odd [axial]), r�
is the tortoise coordinate, given by d=dr� ≡ fðrÞd=dr with
fðrÞ ¼ 1 − 2M=rþQ2=r2 in the standard coordinate sys-
tem, and

sinð2ψÞ¼−2PQ
½ðl−1Þðlþ2Þ�1=2

Ω
; jψ j< π

4
; ð23Þ

with Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4Q2ðl − 1Þðlþ 2Þ

p
.

The effective potentials, VP
l�, can be found, for example,

in Ref. [19], with plots in Ref. [20]. As a general behavior,
VP
l� are zero at the event horizon, rþ, and at infinity.

Therefore, it is possible to write:

φP
l�ðr�Þ ∼

� e−iωr� þ AP
�;ωle

iωr� ; ðr� → ∞Þ;
BP
�;ωle

−iωr� ; ðr� → −∞Þ: ð24Þ

The gravitational scattering cross section for RN black
holes can be written as:

dσ
dΩ

����
h→h

¼ jF j2 þ jGj2; ð25Þ

F ¼ π

iω

X
P¼�1

X∞
l¼2

Zlð1ÞZlðcos θÞ½e2iδPl ðωÞ − 1�; ð26Þ

G ¼ π

iω

X
P¼�1

X∞
l¼2

Pð−1ÞlZlð1ÞZlð− cos θÞ½e2iδPl ðωÞ − 1�;

ð27Þ

where Zl ≡s¼−2 Ym¼2
l ð·Þ are the spin-weighted spherical

harmonics [21], and the phase shifts are given by

e2iδ
P
l ðωÞ ¼ ð−1Þlþ1ðAP

−;ωlcos
2ψ þ AP

þ;ωlsin
2ψÞ: ð28Þ

The F and G are the helicity-preserving and the helicity-
reversing amplitudes, respectively. We note that G is
associated with the difference of phase shifts from distinct
parities and, therefore, is zero whenever δþl ðωÞ ¼ δ−l ðωÞ.
This is the case, e.g., for electromagnetic radiation around a
Schwarzschild (Q ¼ 0) black hole, but not for a Reissner-
Nordström black hole. Observational consequences of this
“helicity-nonconservation” were explored in Ref. [8].
Figure 1 shows numerically computed scattering cross

sections for waves of spin 0, 1, and 2 for black holes with
q ¼ Q=M ¼ 0, 0.8, 1 and Mω ¼ 3.0. The cross sections
for Schwarzschild black holes are broadly similar across
the range θ ≲ 100°, but differ at large angles. For q ¼ 0.8,
results for s ¼ 1, 2 are very close for θ ≲ 100°, but differ
significantly from the scalar case. For extremal RN black
holes (q ¼ 1), we see excellent numerical confirmation that
the electromagnetic and gravitational scattering cross
sections are equal (lower panel).

IV. SUMMARY AND DISCUSSION

In this paper we studied the scattering properties of the
unpolarized gravitational and electromagnetic waves from
the Reissner-Nordström black hole. In particular, we
showed that the differential scattering cross sections for
these two bosonic fields become equal when the black hole
is extremal, and we verified this result using the partial-
wave approach with a numerical method. We also
showed that the conversion cross sections between the
electromagnetic and gravitational waves coincide in the
extremal limit.
To expose the symmetry that underlies such coinciden-

ces, we used N ¼ 2 supergravity to map the gravitino
scattering solutions to the electromagnetic and gravitational
scattering solutions. It is clear that a similar mapping exists
on any supersymmetric background spacetime with a well-
posed scattering problem. Thus, it will surely be interesting
to investigate similar coincidences in the scattering of
bosonic fields on other supersymmetric backgrounds, using
the mapping we have applied here.
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