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We study a static, spherically symmetric and asymptotic flat spacetime, assuming the hypersurface
orthogonal Einstein-aether theory with an ultraviolet modification motivated by the Hořava-Lifshitz theory,
which is composed of the z ¼ 2 Lifshitz scaling terms such as scalar combinations of a three-Ricci
curvature and the acceleration of the aether field. For the case with the quartic term of the acceleration of the
aether field, we obtain a two-parameter family of black hole solutions, which possess a regular universal
horizon. Whereas, if a three-Ricci curvature squared term is joined in ultraviolet modification, we find a
solution with a thunderbolt singularity such that the universal horizon turns out to be a spacelike singularity.
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I. INTRODUCTION

Spacetime singularity is unavoidable in general relativity
[1], which means the breakdown of our standard theory of
gravity in the ultraviolet region. Establishing the funda-
mental gravitational theory beyond general relativity is one
of the most intriguing question of physics. One may expect
that this difficulty can be resolved by considering the
quantum effect of gravity. However, unfortunately, the
perturbative quantization approach of general relativity
loses the renormalizability unlike the other fundamental
interactions. In other words, there appear infinite numbers
of divergent Feynman diagrams, and thus, the infinite
counterterms are required to regularize the gravitational
quantum effects. Hence one way to quantize gravity is the
nonperturbative approach such as the loop quantum gravity
[2] or the dynamical triangulation [3].
Another way is to find a new renormalizable gravita-

tional theory. String theory [4] can be such a candidate, but
it has not been completed. Recently, Hořava proposed a
gravitational theory with Lifshitz scaling [5], which is
anisotropic scaling between space and time, i.e., t → b−zt,
xi → b−1xi. This scaling defines a scaling dimension
½t� ¼ −z with ½xi� ¼ −1, which is restored to the ordinary
mass dimension when z ¼ 1. It is found that if we set z to
the number of the spatial dimension, the dimension of the
gravitational constant becomes zero, which means the
gravitational force acquires renormalizability at least at a
power-counting level. This gravitational theory is called
Hořava-Lifshitz (HL) theory whose action includes higher
spatial curvature terms up to cubic order as counterterms of
renormalization.
Although there is a need for further investigation to

confirm whether HL theory is truly renormalizable or not
[6], strong gravitational phenomena, such as cosmological
singularity avoidance [7] and the black hole solution [8],

have been studied by several authors. In particular, study
regarding the spacetime structure is a particularly intriguing
frontier. Since the spacetime in HL theory loses local
Lorentz symmetry due to Lifshitz scaling, the causal
structure is drastically changed. If there is Lifshitz scaling
with z ≠ 1, the dispersion relation of the signal particle is
modified as ω2 ∼ k2z, and then the sound speed is given by
c ∼ kz−1. In consequence, the sound speed almost diverges
if the particle is in an extremely high energetic state. One
may consider that it is impossible to define the casual
horizon due to such an instantaneously propagating par-
ticle. However, this is not the case. In the context of the
Einstein-aether (æ-) theory [9] which has some equivalence
to the infrared limit of HL theory [10], there still exists a
causal horizon for such an extreme energetic particle.
Although æ- theory itself is a toy model as a Lorentz
violating gravitational theory, it is found that the HL theory
is reduced to æ- theory in infrared limit if the aether is
restricted to be hypersurface orthogonal. In other words, the
aether uμ is constrained to a gradient of some scalar field φ
as uμ ∝ ∇μφ.
If we set φ to time variable t, the HL action in Arnowitt-

Deser-Misner (ADM) formalism is restored. Therefore φ
is called a “khronon.” In this theory, the spacetime is
expressed by a series of three-dimensional spacelike hyper-
surface φ ¼ constant, denoted by Σφ. Particles with infinite
propagating sound speed travel along to Σφ. Then, if there
is a spacetime structure such that Σφ parallels to a timelike
Killing vector ξμ, namely u · ξ ¼ 0, any particles cannot
escape from this surface at least in a spherically symmetric
spacetime. Therefore, this surface is a static limit for such
energetic particles and it is called the universal horizon
[11,12]. The properties of the universal horizon have been
so far investigated on the following subjects: a static and
spherically symmetric exact solution in æ- theory with the
universal horizon [13,14], the existence of the universal
horizon [15–17], a charged black hole solution [18,19],
thermodynamical aspects [13,20,21], a ray trajectory in a
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black hole spacetime [22], and a formation via gravitational
collapse [23,24].
Then one might ask whether the universal horizon exists

even if the Lifshitz scaling terms such as higher spatial
curvatures are present. In this paper, we consider the
backreaction to the black hole solution in æ- theory by
the Lifshitz scaling terms. In other words, we investigate
the black hole solution and properties of the universal
horizon with the Lifshitz scaling terms, which is the
ultraviolet modification of gravity. As a first step to clarify
the effect of gravitational Lifshitz scaling, we consider only
the z ¼ 2 scaling terms.
This paper is organized as follows: In Sec. II, the action

we considered is shown. We include the z ¼ 2 Lifshitz
scaling terms such as the quadratic spatial curvature to
the action of æ- theory with hypersurface orthogonal aether
and give the basic equations. The propagating degree of
freedoms in this theory, i.e., the graviton and the scalar
graviton, are also discussed. After giving the setup of our
static, spherically symmetric system in Sec. III, we classify
numerical solutions depending on the coupling constants
of the Lifshitz scaling terms in Sec. IV. We then discuss
the properties of a black hole solution and a thunderbolt
singularity in Sec. V. Section VI is devoted to conclusions
of this paper.

II. Æ- THEORY WITH LIFSHITZ SCALING

A. Nonprojectable HL gravity vs the æ- theory
with Lifshitz scaling

In order to see the behavior of the black hole solution
with the backreaction from Lifshitz scaling for z ≠ 1, we
consider nonprojectable HL gravity theory. In [25], its most
general action is given as

IHL ¼
Z

dtd3xN
ffiffiffiffiffi
g3

p ðLK þ LPÞ ð2:1Þ

with

LK ≔ αðKijKij − λK2Þ
LP ≔ −ðVz¼1 þ Vz¼2 þ Vz¼3Þ; ð2:2Þ

where N, g3;ij, and Kij are a lapse function, 3-metric, and
an extrinsic curvature, respectively, and the potentials are
defined by

Vz¼1 ≔ γ0Rþ γ1ΦiΦi

Vz¼2 ≔ γ3ðΦiΦiÞ2 þ � � � þ γ6ðΦiΦiÞRþ � � � þ γ10R2

Vz¼3 ≔ γ11ðΦiΦiÞ3 þ � � � þ γ36RijDiDjR: ð2:3Þ

α, λ and γn (n ¼ 0; 1; 3 � � � ; 36) are the coupling
constants. The potential terms include not only the

higher-order terms of the spatial curvatures Rij,
R ≔ Ri

i but also the nonlinear terms of the gradient
of a lapse function Φi ≔ Di lnN. Vz¼2 and Vz¼3

consist of eight and 26 independent terms,
respectively [25].
The IR limit of nonprojectable HL gravity theory is

equivalent to the æ- theory with a hypersurface orthogon-
ality condition [10], from which a spacetime is foliated
by three-dimensional spacelike hypersurface Σφ. Then the
aether field uμ is described by a gradient of a khronon
field φ as

uμ ≔
∇μφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ð∇αφÞð∇αφÞ
p : ð2:4Þ

Since the lapse function N in the HL gravity theory is
related to this khronon field φ in the æ- theory as
N ¼ exp½φ�, the aether field corresponds to the gradient
of a lapse function Φi in the low-energy IR limit.
Hence, we study the æ- theory with additional Lifshitz

scaling terms in order to discuss black hole solutions in
the nonprojectable HL gravity. Although the singular
behavior on the Killing horizon can be avoided by
adopting the Painleve-Gullstrand coordinate, it must be
singular at the universal horizon where the aether becomes
normal to the timelike Killing vector. On the universal
horizon, the khronon field φ diverges; in other words,
there is no continuous time coordinate beyond this
horizon in the (3þ 1) decomposition. We then reformu-
late the theory in covariant manner rather than the ADM
(3þ 1) decomposition. It is of great use to avoid coor-
dinate singularities.
In this paper, as a first step, we restrict the ultraviolet

modification terms only to simple scalar terms with z ¼ 2

scaling such as R2 instead of considering all possible
terms. The reason why only scalar terms are included is
that those terms give the k4 dependence in the dispersion
relation of the scalar graviton. Then one expects that the
property of the horizon for the scalar graviton that is
generally singular in æ- theory will be drastically altered.
It would be an appropriate term to see the backreaction
effect by the Lifshitz scaling.

B. The action and disformal transformation

We consider the Einstein-aether gravity theory with
z ¼ 2 Lifshitz scaling terms, the action of which is
given by

I ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½LðIRÞ þ LðUVÞ�

LðIRÞ ¼ R −Mμν
αβð∇μuαÞð∇νuβÞ;

LðUVÞ ¼ −m−2
pl ðβ1 _u4 þ β2 _u2Rþ g2R2Þ; ð2:5Þ
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where R is a four-dimensional Ricci scalar curvature,G is a
gravitational constant,1 mpl ≔ 1=

ffiffiffiffi
G

p
is a Planck mass,

which may correspond to a typical Lorentz violating scale,
and the aether field uμ is a dynamical unit timelike vector
field. Mμν

αβ is defined by

Mμν
αβ ≔ c13δμβδνα þ c2δμαδνβ − c14uμuνgαβ; ð2:6Þ

where c13 ≔ c1 þ c3, c14 ≔ c1 þ c4 with fcig (i ¼ 1 − 4)
being the coupling constants in the æ- theory.
The æ- theory given by LðIRÞ with a hypersurface

orthogonality condition is equivalent to the IR limit of
nonprojectable HL gravity theory [10]. The relation
between both coupling constants is given by

α ¼ 1 − c13
16πG

; λ ¼ 1 − c2
1 − c13

;

γ0
α
¼ −

1

1 − c13
;

γ1
α
¼ −

c14
1 − c13

: ð2:7Þ

A covariantized three-dimensional Ricci scalar curvature
R is given by

R ¼ R − ð∇αuβÞð∇βuαÞ þ ð∇αuαÞ2
þ 2∇α½ _uα − uαð∇βuβÞ�; ð2:8Þ

where _uμ ≔ uα∇αuμ is an acceleration of the aether
corresponding to Φi, and _u2 ≔ _uμ _uμ.
LðUVÞ is introduced as an ultraviolet modification moti-

vated by HL theory with z ¼ 2, which is composed of the
scalar combination of R and _u2. The coupling constants in
the z ¼ 2 Lifshitz scaling are rewritten as

β1 ≔ 16πγ3; β2 ≔ 16πγ6; g2 ≔ 16πγ10: ð2:9Þ

We ignore the other coupling constants, i.e., γ4 ¼ γ5 ¼
γ6 ¼ γ7 ¼ γ8 ¼ γ9 ¼ 0.
Performing quadratic order perturbation of the action

(2.5) around Minkowski spacetime, we find two types of
the propagating degree of freedom. One is a usual helicity-2
polarization that corresponds to the graviton. The other is
helicity-0 polarization what we refer to as a scalar graviton.
The dispersion relations are given by

ω2
G ¼ 1

1 − c13
k2; ð2:10Þ

ω2
S ¼

ðc13 þ c2Þð2 − c14Þ
c14ð1 − c13Þð2þ c13 þ 3c2Þ

k2

þ 8ðc13 þ c2Þg2
2þ c13 þ 3c2

�
k2

mpl

�
2

: ð2:11Þ

Note that the infrared portions that are proportional to k2

correspond to æ- theory’s one [26].
As is the case of the æ- theory [27], we find an invariance

in the above model under the following disformal
transformation:

ĝμν ¼ gμν þ ð1 − σÞuμuν; ûμ ¼ σ−1=2uμ; ð2:12Þ

where σ > 0. This transformation can be simplified by
introducing three metric on the spacetime hypersurface Σφ,
which is defined by

γμν ≔ gμν þ uμuν: ð2:13Þ

The disformal transformation (2.12) is rewritten as

γ̂μν ¼ γμν; ûμ ¼ σ−1=2uμ: ð2:14Þ

This transformation (2.14) means a rescaling of timelike
separation between two spacelike hypersurfaces by fixing
three-dimensional space. Under the transformation, the
action is invariant if each coupling constant changes as

ĉ13 − 1 ¼ σðc13 − 1Þ;
ĉ13 þ ĉ2 ¼ σðc13 þ c2Þ;

ĉ14 ¼ c14; ĝ2 ¼ g2;

β̂1 ¼ β1; β̂2 ¼ β2: ð2:15Þ

Remarkably, the coefficients proportional to k2 in (2.10)–
(2.11) are changed to σ−1 times after the transformation,
whereas k4 terms are invariant. This means the propagating
speeds of each gravitons in infrared limit are scaled as σ−1=2

but that of the graviton in ultraviolet limit is unchanged.
This property holds even if all possible higher-curvature
terms motivated by HL theory are considered (see
Appendix B).

C. The basic equations

To derive the basic equations, we start by taking the
variation of action (2.5) with respect to gμν and uμ, i.e.,

δI ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½Eμν · δgμν þ 2Æμ · δuμ�;
ð2:16Þ

where,

1Note that the Newton gravitational constant GN is different
from the gravitational constant G that appeared in the action.
Taking the weak field limit, we find their relation (3.11).
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Eμν ≔ EðIRÞ
μν −m−2

pl ½g2Eðg2Þ
μν þ β1E

ðβ1Þ
μν þ β2E

ðβ2Þ
μν �; ð2:17Þ

Æμ ≔ ÆðIRÞ
μ −m−2

pl ½g2Æðg2Þ
μ þ β1Æ

ðβ1Þ
μ þ β2Æ

ðβ2Þ
μ �: ð2:18Þ

The infrared portions, EðIRÞ
μν and ÆðIRÞ

μ , are defined by2

EðIRÞ
μν ≔ Gμν − c14 _uμ _uν þ

1

2
Jαβð∇αuβÞgμν

þ∇α½JðμαuνÞ − JðμνÞuα − JαðμuνÞ�; ð2:19Þ

ÆðIRÞ
μ ≔ ∇αJαμ þ c14 _uαð∇μuαÞ; ð2:20Þ

where Gμν ≔ Rμν − 1
2
Rgμν is the Einstein tensor and

Jμν ≔ Mμα
νβð∇αuβÞ

¼ c13∇νuμ þ c2ð∇αuαÞδμν − c14uμ _uν: ð2:21Þ

The ultraviolet portions, Eðg2Þ
μν , Eðβ1Þ

μν , Eðβ2Þ
μν ,Æðg2Þ

μ ,Æðβ1Þ
μ , and

Æðβ2Þ
μ , are obtained as

1

2
Eðg2Þ
μν ¼ RRμν −

1

4
R2gμν þ ð∇2RÞgμν

þ∇αðaαRÞgμν −∇ðμ∇νÞR

þ∇α½uμuνð∇αRÞ − uαð∇ðμuνÞÞR − uðμð∇νÞuαÞR
þ ð∇αuðμÞuνÞR − 2uαuðμð∇νÞRÞ�; ð2:22Þ

Eðβ1Þ
μν ≔ −

1

2
_u4gμν − 2_u2 _uμ _uν

þ∇α½4_u2uαuðμ _uνÞ − 2_u2 _uαuμuν�; ð2:23Þ

Eðβ2Þ
μν ≔ −

1

2
_u2Rgμν −R _uμ _uν þ _u2Rμν −∇ðμ∇νÞ _u2

þ∇α½2Ruαuðμ _uνÞ −R _uαuμuν þ∇αð _u2γμνÞ
− _u2uαð∇ · uÞgμν þ∇βð _u2uαuβÞgμν þ _u2uα∇ðμuνÞ
þ _u2uðμ∇νÞuα − _u2ð∇αuðμÞuνÞ − 2∇ðμðuνÞ _u2uαÞ�;

ð2:24Þ

1

2
Æðg2Þ

μ ≔ ð∇α∇μuα −∇μ∇αuαÞRþ ð∇αuαÞð∇μRÞ
− ð∇μuαÞð∇αRÞ; ð2:25Þ

Æðβ1Þ
μ ≔ 2_u2 _uαð∇μuαÞ − 2∇αð _u2 _uμuαÞ; ð2:26Þ

Æðβ2Þ
μ ≔ R _uαð∇μuαÞ −∇βð _uμuβRÞ þ _u2ð∇α∇μuαÞ

−∇αð _u2∇μuαÞ þ∇α∇μð _u2uαÞ þ∇μð _u2∇ · uÞ
− _u2∇μð∇ · uÞ −∇μ∇αð _u2uαÞ: ð2:27Þ

Note that Eμν ¼ 0 andÆμ ¼ 0 are not the basic equations,
because the constraint of the aether field has not been
taken into account. To find the basic equations, we
usually have to introduce a Lagrange multiplier.
Instead of expressing the aether by uμ ¼ Uμ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UαUα

p
where Uμ is an arbitrary timelike vector field, we find the
basic equations from a variation of Uμ. Since a variation
of uμ is given by

δuμ ¼ −
1

2
uμuαuβðδgαβÞ þ

ðδμα þ uμuαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UγUγ

p ðδUαÞ; ð2:28Þ

we find the basic equations as

Eμν − ðÆαuαÞuμuν ¼ 0; ð2:29Þ

ðgμα þ uμuαÞÆα ¼ 0; ð2:30Þ

uαuα ¼ −1: ð2:31Þ

Here, we rewrite the basic equations in terms of the aether
field uμ with the normalization condition (2.31).
If the aether field is hypersurface orthogonal as we have

assumed here, we can take a variation with respect to the
khronon field φ instead of Uμ. Since the aether field uμ is
given by Eq. (2.4), the variation of φ is found by using the
relation

δuμ ¼
�
uðαδμβÞ þ

1

2
uμuαuβ

�
ðδgαβÞ

þ ðgμα þ uμuαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβð∇αφÞð∇βφÞ

q ∇αðδφÞ: ð2:32Þ

The resultant basic equations are

Eμν þ uμuνðÆαuαÞ þ 2ÆðμuνÞ ¼ 0; ð2:33Þ
2The round and square brackets in the tensoral index are

symmetrization and anti-symmetrization symbols, respectively,
i.e., AðμνÞ ≔ 1

2
ðAμν þ AνμÞ and A½μν� ≔ 1

2
ðAμν − AνμÞ.
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and

∇μ

� ðgμν þ uμuνÞÆνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇αφÞð∇αφÞ

p �
¼ 0; ð2:34Þ

with the definition (2.4).
In the case of the hypersurface orthogonal aether field,

although the basic equations are given by Eqs. (2.33)–
(2.34) with (2.4), these equations contain higher-derivative
terms of the khronon field φ. If spacetime is static and
spherically symmetric, however, we may find simpler
equations, which are the original basic equations (2.29)–
(2.31). It is because the hypersurface orthogonality of the
aether is automatically satisfied for spherically symmetric
spacetime, and then the original basic equations are
reduced to the basic equations with hypersurface ortho-
gonality.3 Although those equations are equivalent,
Eqs. (2.29)–(2.31) are written in terms of the aether field
uμ, so those are the second-order differential equations of
uμ. For this reason, we adopt (2.29)–(2.31) as the basic
equations in the rest of this paper.

III. SPHERICALLY SYMMETRIC
BLACK HOLE: SETUP

We discuss a static and spherically symmetric spacetime
with asymptotic flatness. In order to avoid a coordinate
singularity at horizon, we adopt the following metric ansatz
like the Eddington-Finkelstein type:

ds2 ¼ −TðrÞdv2 þ 2BðrÞdvdrþ r2dΩ2; ð3:1Þ

where v is an ingoing null coordinate and B ≥ 0.
The aether field in this coordinate system is assumed
to be

uμ ¼ ðaðrÞ; bðrÞ; 0; 0Þ; ð3:2Þ

where the function bðrÞ is fixed by the normalization
condition (2.31) as

bðrÞ ¼ aðrÞ2TðrÞ − 1

2aðrÞBðrÞ : ð3:3Þ

In this spacetime, there exists a timelike Killing vector
ξμ ≔ ð1; 0; 0; 0Þ associated with the time translational
invariance.

Since the basic equations (2.29)–(2.31) in this ansatz
take a quite complicated form, we omit to show it explicitly.
Instead, the structure of the basic equation is illustrated.
Substituting (3.1) into the basic equation (2.29)–(2.30), we
find there are five nontrivial and independent sets of
equations: ðv; vÞ, ðv; rÞ, ðr; rÞ and ðθ; θÞ components of
(2.29) and sμ projection of (2.30), where sμ is a “radial”
spacelike unit vector perpendicular to uμ. From the dis-
cussion in [29], we find the following two constraint
equations:

Cv ¼ 0; Cr ¼ 0; ð3:4Þ

where Cμ is defined by

Cμ ≔ Erμ − 2ðÆαuαÞuruμ − urÆμ: ð3:5Þ

These equations include one fewer r derivative than the rest
of the portion of the basic equations, and they are
automatically preserved by solving the other equations
with respect to r-evolution if (3.4) are satisfied on an
“initial” constant r-surface. The rest of the equations,
namely ðv; vÞ and ðθ; θÞ components of (2.29) and sμ

component of (2.30), give the evolution equations with
respect to TðrÞ, BðrÞ, and aðrÞ.

A. Asymptotic behavior

Since we assume an asymptotic flatness, the asymptotic
values of the variables are given by

TðrÞ → 1; BðrÞ → 1;

aðrÞ → 1; bðrÞ → 0: ð3:6Þ

In order to investigate the asymptotic behavior of the
solution, we perform an asymptotic expansion around
Minkowski spacetime, that is, the functions TðrÞ, BðrÞ,
and aðrÞ are expanded as a series of 1=r as

TðrÞ ¼ 1þ T1

r
þ T2

r2
þ T3

r3
þ T4

r4
þ � � � ;

BðrÞ ¼ 1þ B1

r
þ B2

r2
þ B3

r3
þ B4

r4
þ � � � ;

aðrÞ ¼ 1þ a1
r
þ a2

r2
þ a3

r3
þ a4

r4
þ � � � : ð3:7Þ

Substituting these series into the basic equations, and
solving them order by order, we find the expansion
coefficients as

3The equality of these sets of equations holds if the spacetime
is regular everywhere. This can be proven by considering the
volume integral of (2.34) and using Gauss’s theorem [28].

BLACK HOLES AND SINGULARITIES WITH LIFSHITZ … PHYSICAL REVIEW D 92, 084049 (2015)

084049-5



T1 ¼ arbitrary; T2 ¼ 0; T3 ¼
c14T3

1

48
;

T4 ¼
fð4c14 þ 19Þc14 − 54c13gT4

1 þ 192m−2
pl ðc14g2 − β2ÞT2

1 þ 48ðc14 − 2c13Þð4a2 − 3T2
1Þa2

192ð2 − c14Þ
;

B1 ¼ 0; B2 ¼
c14T2

1

16
; B3 ¼ −

c14T3
1

12
;

B4 ¼
3c14ðc214 þ 14c14 − 36c13 þ 4ÞT4

1 þ 256m−2
pl ð2c14 − 1Þðc14g2 − β2ÞT2

1 þ 192ð1 − c13Þc14a2ð4a2 − 3T2
1Þ

512ðc14 − 2Þ ;

a1 ¼ −
T1

2
; a2 ¼ arbitrary; a3 ¼ −

�
c14 − 6

96
T3
1 þ T1a2

�
;

a4 ¼
1

1920ðc14 − 2Þc123
½½5c2f5c14ð2c14 − 1Þ þ 24g þ 18c14ðc14 − 2Þ þ c13f32c214 þ 11c14 þ 30ð4 − 9c2Þg − 270c213�T4

1

þ 48½½ð2 − c14Þc14 þ 10c2ðc14 − 5Þ þ c13f30c123 þ c14ðc14 þ 8Þ − 50g�a2 þ 20c123m−2
pl ðc14g2 − β2Þ�T2

1�

þ
�
1þ c13 − c14

2 − c14

�
a22:

The asymptotic behavior of the function bðrÞ is
given by

bðrÞ ¼ b2
r2

þ b4
r4

þ � � � ; ð3:8Þ

with

b2 ¼ a2 −
3T2

1

8
;

b4 ¼
c14ð3c123 þ 2c2 þ 2Þð3T2

1 − 8a2ÞT2
1

640
: ð3:9Þ

The important point is every order of these functions, at
least up to the eighth order, is described only by two
arbitrary coefficients, T1 and a2 as in the case of the æ-
theory [30]. Additionally, the effect of the g2 and β2
terms, that is, the contribution from the fourth spatial
derivative terms first appears in the fourth order
coefficients T4, B4 and a4. β1 appears after the fifth-
order coefficients, which we have not shown here
because they are so lengthy.
The free parameter T1 is accosted with a black holes

mass. From the discussion in [31–33], the black hole mass
M as a Noether charge with respect to time translational
symmetry is given by

M ¼ −
T1

2G

�
1 −

c14
2

�
¼ −

T1

2GN
; ð3:10Þ

where

GN ≔ G

�
1 −

c14
2

�
−1

ð3:11Þ

is the observed Newton constant.4

The parameter a2 can be fixed from the analyticity of a
black hole horizon for the scalar graviton in the infrared
limit, but it becomes a free parameter when we include the
z ¼ 2 Lifshitz scaling terms as will be discussed later. This
free parameter a2 may characterize the distribution of an
aether cloud around a black hole.

B. Black hole horizons

In the æ- theory or the HL gravity theory, the metric
horizon, which is the r-constant null surface of (3.1), is not
generally an event horizon. As shown in Eqs. (2.10)–(2.11),
the sound speeds of the graviton and the scalar graviton
depend on the coupling constants. As a result, without
tuning of the couplings, they generally differ from unity.
The metric horizon only means a static limit for a
propagating mode with the sound speed being unity. For
this reason, we first reconsider the horizons of the aether
black hole.

1. Horizons in the infrared limit

First, we consider the low-energy infrared limit of the
graviton and scalar graviton. Since the relevant parts in
(2.10)–(2.11) are k2 terms, the sound speed of the graviton
cG and that of the scalar graviton cS in the infrared limit are
given by

4We shall refer to Mpl ≔ 1=
ffiffiffiffiffiffiffi
GN

p
as an observed Planck mass

that is related to the observed Newton constant GN. Note that the
Planck mass mpl ≔ 1=

ffiffiffiffi
G

p
that appeared in (2.5) is rather related

to the Lorentz violating scale.
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c2G ∼
1

1 − c13
;

c2S ∼
ðc13 þ c2Þð2 − c14Þ

c14ð1 − c13Þð2þ c13 þ 3c2Þ
: ð3:12Þ

Note that under the transformation (2.14), each sound
speed is changed as

ĉ2G ¼ σ−1c2G; and ĉ2S ¼ σ−1c2S: ð3:13Þ
Therefore, if we set σ ¼ c2G or c2S, we find a frame in which
either the sound speed of the graviton or that of the scalar
graviton is unity. Thus, we can adjust the horizon for the
graviton or that of the scalar graviton to the metric horizon
by an appropriate disformal transformation. Explicitly, by
performing the following disformal transformations,

g½g�μν ≔ gμν þ ð1 − c2GÞuμuν; ð3:14Þ
g½s�μν ≔ gμν þ ð1 − c2SÞuμuν; ð3:15Þ

the graviton horizon or the scalar-graviton horizon is
located on the r-constant null surfaces of the effective
metrics (3.14)–(3.15), respectively. In the Eddington-
Finkelstein ansatz (3.1), the r-constant null surfaces of
the graviton and the scalar graviton are given by

TGðrÞ ¼ 0; TSðrÞ ¼ 0; ð3:16Þ
respectively, where

TG ≔ −g½g�vv ¼ T − ð1 − c2GÞ
�
1þ a2T

2a

�
2

; ð3:17Þ

TS ≔ −g½s�vv ¼ T − ð1 − c2SÞ
�
1þ a2T

2a

�
2

; ð3:18Þ

respectively. In Appendix A, we present the transformation
of Eddington-Finkelstein type metric (3.1) under the
disformal transformation (2.14).

2. Horizons in the ultraviolet region

In turn, we focus on the propagation of the graviton
and the scalar graviton in the high-energy limit. Although
the sound speed of the graviton is the same as that in the
infrared limit, the sound speed of the scalar graviton in the
high-energy limit turns to be

c2S ∼
8ðc13 þ c2Þg2
2þ c13 þ 3c2

�
k
mpl

�
2

; ð3:19Þ

which depends on the three momentum k. Thus, the sound
speed can increase to infinitely high in an ultimately excited
state. In this situation, the r-constant null surface given by
Eq. (3.15) is no longer an event horizon. An event horizon
of a black hole must be the surface whose outside region is
causally disconnected from the inside for any propagation

modes even with an infinite sound speed. Otherwise, an
inside singularity is exposed.
The above case can be resolved to consider the special

aether configuration. The ultimately excited scalar graviton
should propagate along the three-dimensional spacelike
hypersurface. In other words, any future directed signal
must not propagate against the direction which φ decreases.
Thus, such an excitation mode must be trapped inside a
surface where the hypersurface Σφ is parallel to the timelike
Killing vector ξμ, namely, u · ξ vanishes. This is the concept
of the universal horizon that is regarded as a real black hole
horizon in Lorentz violating spacetime [11].

IV. SPHERICALLY SYMMETRIC
BLACK HOLE: SOLUTIONS

To find a black hole solution with the z ¼ 2 Lifshitz
scaling terms, we solve the basic equations numerically.
Our strategy is as follows: (i) To impose the boundary
conditions near the asymptotically flat region by applying
(3.8), that is, to give initial values of the variables TðrÞ,
BðrÞ, and aðrÞ and their derivatives at infinity; and (ii) to
integrate from an appropriate distant spatial point toward
the center of a spherical object.

A. Black hole solution in the infrared limit:
The case of g2 ¼ β1 ¼ β2 ¼ 0

First, we show the result for the case of the æ- theory,
i.e., g2 ¼ β1 ¼ β2 ¼ 0. It gives a black hole solution in the
low-energy infrared limit. The numerical black hole sol-
ution is shown in Fig. 1, which was already found in [30],
for the coupling constants c13¼0.100, c2¼−6.135×10−4,
c14 ¼ 0.100. In this solution, the black hole mass is chosen
as GNM ¼ 0.5. Note that our unit is fixed by setting T1 ¼
−1, so that the normalization length is rM ≔ 2GNM ¼ 1.
Since the scalar-graviton sound speed is set to unity, the

scalar-graviton horizon coincides with the metric horizon:
TðrSHÞ ¼ 0. We find rSH ¼ 1.010 ¼ 2.02GNM, which is a
little larger than the Schwarzschild radius.
The graviton horizon is located inside that of the scalar

graviton, i.e., rGH ¼ 0.998 < rSH. It is because the graviton
sound speed is faster than the scalar graviton one. The most
outer universal horizon is formed inside these two horizons,
i.e., rUH ¼ 0.720 < rGH; rSH. Additionally, more than one
inner universal horizon is formed due to the rapid oscil-
latory behavior of the function UðrÞ near the central
singularity. This means this solution has a causally dis-
connected region for low-energy particles even if the
particle with z ≠ 1 Lifshitz scaling is taken into account.5

5Note that an instantaneous propagating mode appears when
the interaction between the khronon and matter field is taken into
account even if the higher spatial derivative terms in action are
absent [12,34]. In our discussion, however, we focus only on the
gravitational part of the theory whose action is given by (2.5)
without LðUVÞ.
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In this sense, this solution is regarded as a black hole in the
low-energy infrared limit.
The important point of this solution is that a physical

singularity generally appears on the scalar-graviton horizon
(¼ the metric horizon in the present case), if we do not
tune the parameter a2. In order to regularize the scalar-
graviton horizon, we must choose an appropriate value
for the parameter a2 as a boundary condition, which is
a2 ¼ 1.112 × 10−3. Then, the function B½æ�, which is the
coefficient of 1=TS in the evolution equation of BðrÞ, must
vanish on the scalar-graviton horizon r ¼ rSH. We present
the detailed analysis of the regularity on the horizons in
Appendix C. As a result, for a regular æ-black hole
solution, there remains only one free parameter T1, which
is associated with the black hole mass, just as is the case of
the Schwarzschild solution in general relativity.

B. Black hole solutions with Lifshitz scaling:
The case of β1 ≠ 0 and g2 ¼ β2 ¼ 0

When the higher-order aether correction _u4 is taken into
account, i.e., β1 ≠ 0, the solution turns to depend on a2 as
well as T1 unlike æ-black holes. Therefore, one may
consider that the ultraviolet correction _u4 does cure the
singular behavior on the scalar-graviton horizon appearing
for the infrared-limit theory. In fact, if we assume only the
_u4 term (g2 ¼ β2 ¼ 0), we find that there is no singular
behavior on any horizon in general. A detailed discussion is
developed in Appendix C.
In this subsection, we consider the case of β1 ≠ 0 with

g2 ¼ β2 ¼ 0. There are five types of black hole solutions,

which are classified in two-dimensional parameter space,
namely, in ða2; β1Þ plane. Note that we use the unit of
T1 ¼ −1. We give a classification of these solutions in
Table I; the phase diagram of these solutions is shown
in Fig. 2.

(a)

(b)

FIG. 2 (color online). The phase diagram of the solution in the
ða2; β1Þ parameter plane, where the coupling constants are chosen
as the same as Fig. 1. The red dashed line that is β1 ¼ 0 indicates
the case of æ- theory. The æ-black hole with a regular scalar-
graviton horizon is shown by the red circle. The genuine black hole
solutions that possess the universal horizon are discovered in
regions II(i) and II(ii). (a) The phase diagram of the solutions,
(b) The enlarged phase diagram near the æ- black hole.

FIG. 1 (color online). Black hole in the æ- theory [30]. The
coupling constants are set to c13 ¼ 0.100, c2 ¼ −6.135 × 10−4,
c14 ¼ 0.100. We tune the parameter as a2 ¼ 1.112 × 10−3, which
gives a regular scalar-graviton horizon. The graviton sound speed
and the scalar-graviton one are c2G ¼ 1.111 and c2S ¼ 1.000. The
black hole mass is normalized as GNM ¼ 0.5. The blue, red,
and green curves indicate the functions TðrÞ, BðrÞ, and aðrÞ,
respectively. The scalar-graviton horizon is given by rSH ¼
1.010. The dashed purple curve indicates TG, from which we
find the graviton horizon as rGH ¼ 0.998. The dashed brown
curve indicates UðrÞ ≔ u · ξ, the zero point of which gives the
position of the universal horizons. The outermost universal
horizon radius is rUH ¼ 0.720.

TABLE I. The classification of the solution for the case of β1 ≠
0 with β2 ¼ g2 ¼ 0. Regions I–IV correspond to the areas shown
in Fig. 2. rSH, rGH, and rUH are the positions of the scalar-graviton
horizon, the graviton horizon, and the universal horizon, respec-
tively. Δ means that the solution describes a black hole for
gravitons and scalar gravitons, but may become naked for high-
energetic Lifshitz scaling test particles with z > 1.

Solution Region Horizons Singularity BH

iBH (i) I(i) rGH < rSH & no rUH r ¼ 0 Δ
iBH (ii) I(ii) rGH < rSH & no rUH 0 < r < rGH Δ
uBH (i) II(i) rUH < rGH < rSH r ¼ 0 ○

uBH (ii) II(ii) rUH < rGH < rSH 0 < r < rUH ○

iTS III No horizons r ¼ rSH ×
tNS IV No horizons r ¼ 0 ×
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We explain each solution in due order:
(1) iBH (i) (an infrared black hole with a central

singularity): If β1 and a2 are set to be in the light
blue colored region in Fig. 2 [region I(i)], we find a
kind of black hole that possesses the graviton
horizons. The typical numerical example is shown
in Fig. 3(a). There are graviton and scalar-graviton
horizons. In the present case, the dispersion
relations of graviton and scalar graviton are given
by ω2 ∼ k2, which means these horizons coincide

with æ- theory’s ones. Hence the gravitons and
scalar gravitons cannot escape from the inside of
these horizons. For low-energy particles, they also
play a role of horizon too. In this sense, one may
regard this solution as a type of black hole, which we
call an infrared black hole (iBH).
The spacetime and aether field are regular except

at the center. However, since there exists no univer-
sal horizon, this solution has no causally discon-
nected region. The universal horizon turns out to be
a genuine causal boundary due to the Lifshitz scaling
with z ≠ 1. Therefore, the singularity at the center
is exposed if nongravitational propagating modes
with the z > 1 Lifshitz scaling are taken into
account. Thus, we conclude that this solution does
not describe a true black hole in the strict sense but a
type of naked singularity even if the graviton
horizons exist.
To clarify this situation, we depict the spacetime

structure. Note that the Carter-Penrose diagram
itself does not describe the causal structure of the
solution due to the lack of Lorentz invariance.
However, since it would be useful to understand
the spacetime structure, we show it for this solution.
In Fig. 3(b), we illustrate the Carter-Penrose diagram
for this solution, in which null rays propagate on
the �45° direction. The metric (and scalar-graviton)
horizon, which is one of the horizons in the Carter-
Penrose diagram, is a horizon for the z ¼ 1 Lorentz
invariant particles or for the low-energetic infrared
particles. For the z > 1 Lifshitz scaling high-
energetic particles, however, it is no longer horizon,
but the spacelike universal horizon will take
its place.

(2) iBH (ii) (an infrared black hole with a singular
spherical shell): This solution can be found in the
deep blue colored region in Fig. 2 [region I(ii)].
Although graviton and scalar-graviton horizons are
formed, a singularity appears at r ¼ rss > 0. As
mentioned in (1), this singularity is not causally
disconnected from infinity due to the absence of the
universal horizon. Therefore, although this solution
behaves as a black hole for gravitons and scalar
gravitons as well as Lorentz invariant z ¼ 1 par-
ticles, it turns out to be a naked singularity for high-
energetic particles with the z > 1 Lifshitz scaling. In
this sense, we also classify this solution as iBH.
The difference from case (1) is that the singularity

shapes a spherical shell rather than a spacetime point
with infinitesimal volume in iBH (i). In this paper,
we refer to it as a singular shell.
To see the cause of this singularity, we focus on

the structure of the evolution equation. We find
that the evolution equation of BðrÞ that is a linear-
order differential equation with respect to r (see

(a)

(b)

FIG. 3 (color online). The typical example of iBH (i) [region I
(i)]. In the top figure (a), We choose ða2; β1=m2

plÞ ¼
ð−1.000; 1.000Þ. The remaining coupling constants and the
boundary conditions are set to the same values as those of Fig. 1.
The blue, red, and green curves indicate the functions TðrÞ, BðrÞ,
and aðrÞ, respectively. The dashed purple and dashed brown
curves indicate TG and UðrÞ ≔ u · ξ. The graviton horizon is
found at rGH ¼ 1.030, while the scalar-graviton horizon exists at
rSH ¼ 1.120. Since UðrÞ does not vanish, there is no universal
horizon, namely, no causal boundary. In the bottom figure (b), the
dashed curves indicates r ¼ constant surface, especially; the
blue, purple, and brown curves represent the scalar-graviton
horizons, the graviton horizons, and the universal horizons,
respectively. The spacetime singularities are represented by the
wavy curves. The future (past) null infinity, the future (past)
timelike infinity, and the spacelike infinity are indicated by Iþ

(I−), iþ (i−), and i0, respectively. The ultimately excited particle
with z > 1 Lifshitz scaling propagates along the φ ¼ constant
surface, which is indicated by the solid green curves.
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Appendix C) turns out to be singular at r ¼ rss.
More specifically, the divergence of B0ðrÞ results in
this type of singularity. The typical numerical
example and the Carter-Penrose diagram are shown
in Figs. 4(a)–4(b), respectively.

(3) uBH (i) (an ultimate black hole with a central
singularity): The black hole solution that possesses
the graviton, scalar-graviton, and universal horizon
and no singularity except the center is found in the
light orange colored region in Fig. 2 [region II(i)].
Since the central singularity is hidden by the
universal horizon, this type of solution is a real
black hole. Any particles with the z > 1 Lifshitz
scaling as well as the Lorentz invariant z ¼ 1
particles cannot escape from the inside of the
universal horizon. We then call it an ultimate black
hole (uBH).

We show the typical example in Fig. 5(a). This
solution isvery similar to theæ-blackhole illustrated in
Fig. 1 except for the oscillatory behavior ofUðrÞ near
the central singularity. Moreover, we also show the
Carter-Penrose diagram of this solution in Fig. 5(b).

(4) uBH (ii) (an ultimate black hole with a singular
spherical shell): When a2 and β1 are in the deep
orange colored region in Fig. 2 [region II(ii)], we
find the solution with graviton, scalar-graviton, and
universal horizon; however, there is a singular shell
inside the universal horizon. Since the singular shell
is covered by the universal horizon, any information
from the singularity can never be leaked into the
outside. Thus, we can regard this type of solution as
a real black hole. Then we also classify this solution
as an ultimate black hole (uBH).

(a)

(b)

FIG. 4 (color online). The typical example of iBH (ii) [region I
(ii)]. In the top figure (a), we choose ða2; β1=m2

plÞ ¼ ð0; 1.000Þ.
The remaining coupling constants and the boundary conditions
are set to the same values as those of Fig. 1. The blue, red, and
green curves indicate the functions TðrÞ, BðrÞ, and aðrÞ,
respectively. The dashed purple and dashed brown curves
indicate the TG and UðrÞ. The graviton horizon is found at
rGH ¼ 0.949, while the metric horizon exists at rSH ¼ 0.970. The
singularity appears at rss ¼ 0.792, which gives the radius of the
singular shell. In the bottom figure (b), the conformal structure is
depicted. The meaning of the curves and symbols in this figure is
the same as that of Fig. 3(b).

(a)

(b)

FIG. 5 (color online). The typical example of uBH (i) [region II
(i)]. In the top figure (a), we choose ða2; β1=m2

plÞ ¼ ð0.200;
1.000Þ. The remaining coupling constants and the boundary
conditions are set to the same values as those of Fig. 1. The blue,
red, and green curves indicate the functions TðrÞ, BðrÞ, and aðrÞ,
respectively. The dashed purple and dashed brown curves
indicate TG and UðrÞ. The graviton and the scalar-graviton
horizons are found at rGH ¼ 0.882 and rSH ¼ 0.896, while the
universal horizon exists at rUH ¼ 0.320. Since there is a universal
horizon and a central singularity, this solution is referred to as a
black hole solution. In the bottom figure (b), the conformal
structure is depicted. The meaning of the curves and symbols in
this figure is the same as that of Fig. 3(b).

YOSUKE MISONOH AND KEI-ICHI MAEDA PHYSICAL REVIEW D 92, 084049 (2015)

084049-10



The typical example and the Carter-Penrose dia-
gram of this solution are shown in Figs. 6(a)–6(b),
respectively.

(5) iTS (an infrared thunderbolt singularity): For the
solutions in the light green colored region in Fig. 2
(region III), a singularity always appears at the null
Killing horizon of the scalar graviton. On the
singular shell, the function aðrÞ, namely, the v
component of the aether field diverges if we set
a2 to be a larger value than a critical one. Further-
more, it is found that the critical value of a2 (∼0.377)
that induces the aðrÞ divergence seems to be
universal under any choice of β1 as shown in
Fig. 2. We present one typical example and the
corresponding Carter-Penrose diagram in Fig. 7.
Near the spherical shell with the radius

rSH ¼ 0.865, the quadratic scalar of three-
dimensional Ricci tensor RμνRμν diverges. Hence,
it is a physical singularity.
One may wonder why such a singular behavior

occurred on the scalar-graviton horizon. More spe-
cifically, from Appendix C, we know that the basic
equations possess no dependence on the negative
power of TS, unlike the æ- case. Therefore, the
scalar-graviton horizon where TS ¼ 0 should be
regular in general. To see in detail, we expand the
evolution equation of aðrÞ around rSH. From our
numerical analysis in Fig. 7, we find a−1ðrSH þ ϵÞ ∼
δ and a0ðrSH þ ϵÞ ∼ δ−2, where ϵ ≪ 1 and δ ≪ 1. In
Fig. 7, we check the divergence numerically at least
for ϵ≳ 1.000 × 10−3 and δ≳ 4.132 × 10−3. Near
the singularity, where TSðrSH þ ϵÞ ≔ Δϵ ≪ 1, the
dominant term in the evolution equation of aðrÞ is
given by

a00ðrÞ ∼ T 0
SðrSHÞ3

BðrSHÞ2Δϵ
a5: ð4:1Þ

Thus, we find that aðrÞ shows singular behavior
when Δ → 0, where the limit gives the scalar-
graviton horizon, since this singularity is due to
the aether field rather than the spacetime metric.
This singularity seems to be closely analogous to

the thunderbolt singularity. The thunderbolt singu-
larity is proposed in the context of quantum black
hole evaporation. In [35], the thunderbolt singularity
is first invented in semiclassical analysis of (1þ 1)-
dimensional dilaton-coupled gravity with scalar
field [36], which is a renormalizable theory of
quantum gravity. Furthermore, this type of singu-
larity is also discovered in (1þ 1)-dimensional
quantum field theory via complete quantized
analysis [37].
In such a situation, a null singularity appears on

the event horizon. Although a causally disconnected
region is not formed because of the existence of a
singularity, this singularity itself is not detected by
any outside observer. As a result, it is not a naked
singularity. They call it a thunderbolt singularity.
In our case, the singularity of the aether field

appearing on a Killing horizon is null. Hence, it
behaves similarly to a thunderbolt singularity for
Lorentz invariant z ¼ 1 particles. We call it an
infrared thunderbolt singularity (iTS). The thunder-
bolt is composed of the singular aether field.

(6) tNS (a timelike naked singularity without horizon):
The singular shell without any horizon is found in
the light red colored region in Fig. 2 (region IV),
namely, β1 < 0. Since the singularity is timelike and
there is no horizon, this type of solution completely
exposes its singularity. Note that singularity is

(a)

(b)

FIG. 6 (color online). The typical example of uBH (ii) [region
II(ii)]. In the top figure (a), we choose ða2; β1=m2

plÞ ¼ ð0.117;
1.000Þ. The remaining coupling constants and the boundary
conditions are set to the same values as those of Fig. 1. The blue,
red, and green curves indicate the functions TðrÞ, BðrÞ, and aðrÞ,
respectively. The dashed purple and dashed brown curves
indicate TG and UðrÞ. The graviton and scalar-graviton horizons
are found at rGH ¼ 0.972 and rSH ¼ 0.983, while the universal
horizon exists at rUH ¼ 0.524. The singularity appears at
rss ¼ 0.392, which gives the radius of the singular shell. In
the bottom figure (b), the conformal structure is depicted. The
meaning of the curves and symbols in this figure is the same as
that of Fig. 3(b).
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originated from the divergence of the evolution
equation BðrÞ as is the case in iBH (ii) and uBH (ii).
We show the typical example in Fig. 8.

C. Ultimate thunderbolt singularity (uTS):
The case of g2 ≠ 0 and β1 ¼ β2 ¼ 0

Next, we consider only the spatial higher-curvature
correction term R2 to take into account the backreaction
effect of the Lifshitz scaling in the high-energy limit. That
is the case of g2 ≠ 0 and β1 ¼ β2 ¼ 0. From the discussion
in Sec. III B, the graviton horizon does not change and its
position is still at rGH where TGðrGHÞ ¼ 0. On the other
hand, the scalar-graviton horizon is shifted from the Killing

(a)

(b)

FIG. 8 (color online). The typical example of tNS (region IV).
In the top figure (a), we choose ða2;β1=m2

plÞ¼ð−1.000;−1.000Þ.
The remaining coupling constants and the boundary conditions
are set to the same values as those of Fig. 1. The blue, red, and
green curves indicate the functions TðrÞ, BðrÞ, and aðrÞ,
respectively. The dashed purple and dashed brown curves
indicate the TG and UðrÞ. Note that this solution shows singular
behavior at rss ¼ 1.804. In the bottom figure (b), the conformal
structure is depicted. The meaning of the curves and symbols in
this figure is the same as that of Fig. 3(b).

(a)

(b)

(c)

FIG. 7 (color online). The typical example of iTS (region III).
In the top figure (a) and the middle figure (b), we choose
ða2; β1=m2

plÞ ¼ ð0.500; 1.000Þ. The remaining coupling constants
and the boundary conditions are set to the same values as those of
Fig. 1. In the top figure (a), the blue, red, and green curves
indicate the functions TðrÞ, BðrÞ, and aðrÞ, respectively. The
dashed purple and dashed brown curves indicate the TG and
UðrÞ. Near the spherical shell with the radius rSH ¼ 0.865, the
quadratic scalar of three-dimensional Ricci tensor RμνRμν

diverges rather than the four-dimensional Kretchmann invariant
RμνRμν, which is denoted by the solid dark green curve and dot-
dashed black curve in the middle figure (b), respectively. In the
bottom figure (c), the conformal structure is depicted. The
meaning of the curves and symbols in this figure is same as
that of Fig. 3(b).
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horizon to the universal horizon because of the k4 term in
the sound speed (3.19).
We first assume g2 < 0. In Fig. 9(a), one numerical

solution is shown for g2 ¼ −1. The setting of the coupling
constants and the boundary conditions is the same as that of
Fig. 1 except g2 ¼ −1. Notably, we find that a singular
behavior on the metric horizon found for untuned arbitrary
value of a2 in the æ-gravity theory vanishes. The metric
horizon turns out to be regular for any value of a2. Instead,
a singular behavior is found inside the metric horizon. The
ðv; rÞ component of the metric, BðrÞ, vanishes there. The
aether field uμ aligns perpendicular to the timelike Killing
vector ξμ near the singular point, which corresponds to the
universal horizon with u · ξ ¼ 0.
We calculate the four-dimensional Kretchmann

invariant RμνρσRμνρσ and the quadratic scalar of the
three-dimensional Ricci tensor RμνRμν, which are shown
in Fig. 9(b). Near the singular point, those two scalar
functions diverge. Thus, this singular point is a physical
singularity rather than a coordinate singularity. So we find
that the universal horizon becomes singular. Additionally,
the structure of this spacetime is depicted in Fig. 9(c).
What causes this type of singularity? In order to clarify

this question, we first show the relation between g2 and the
radii of the graviton horizon rGH, the metric horizon rKH,
and the singular universal horizon rUH in Fig. 10. We also
give the detailed data of the singular universal horizon
radius rUH near g2 ¼ 0 in Table II. From these results, we
find that the universal horizon radii change smoothly from
the g2 ¼ 0 case to g2 ≠ 0 cases.
One may wonder whether it can be regular if we tune

the free parameter a2 just as the scalar-graviton horizon
in the æ-gravity theory. To see this, we perform the
expansion of the basic equations around the universal
horizon. Focusing on the coefficients of the highest
r-derivative terms, T 000ðrÞ, B000ðrÞ, and a000ðrÞ terms in
the ðθ; θÞ component of the Einstein equation, we find all
of them have vanished at the universal horizon (see
Appendix C). This result does not depend on the value
of a2. This fact means that the singularity on the universal
horizon cannot be remedied by tuning the free parameter
a2, unlike the æ- case, while there is no singular behavior
on the scalar-graviton horizon rSH in the infrared limit
where TS vanishes.
Hence, it is not quite unnatural to consider that the

singular behavior that appears on the scalar-graviton radius
with TS ¼ 0 in the infrared limit is shifted to the universal
horizon when we include the higher-curvature term from
the Lifshitz scaling. Namely, the dispersion relation of the
scalar graviton with nonzero g2 gives the infinite sound
speed of the scalar graviton. A similar situation is found for
the exact solution with c14 ¼ 0 in the æ-gravity theory [13],
for which the sound speed of the scalar graviton (3.12)
becomes infinite and the scalar-graviton horizon coincides
with the universal horizon. In this case, however, this

singularity can be removed by choosing an appropriate
value of a2.
We turn our attention to the physical interpretation of this

solution. Recall that the universal horizon is defined by the

(a)

(b)

(c)

FIG. 9 (color online). The spherically symmetric solution with
higher spatial curvature correction. The setting of the coupling
constants and the boundary conditions is the same as that of Fig. 1
except g2=m2

pl ¼ −1.000. In the top figure (a), the blue, red, and
green curves indicate the functions TðrÞ, BðrÞ, and aðrÞ, respec-
tively. The dashed purple and dashed brown curves indicate the TG
andUðrÞ. The graviton horizon is found at rGH ¼ 1.248, while the
metric horizon exists at rKH ¼ 1.250. The calculation has been
broken down at rUH ¼ 1.157 where UðrÞ approaches zero. In the
middle figure (b), the dotted gray and dotted black curves indicate
lnðRμνρσRμνρσÞ and lnðRμνRμνÞ, respectively. In the bottom figure
(c), the conformal structure is depicted. The meaning of the curves
and symbols in this figure is the same as that of Fig. 3(b).
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surface where u · ξ ¼ 0, i.e., a static limit for the ultimately
excited dispersive particle with z ≠ 1 Lifshitz scaling. In
other words, only the particle that possesses infinite energy
can stay on the surface, and any future-directed signal on
the surface cannot go outward even if the particle is
spacelike with infinite energy. Namely, the information
on the universal horizon must not be leaked outside of the
horizon. Although this solution cannot be regarded as a
black hole solution whose spacetime singularity is isolated
by an event horizon, the cosmic censorship hypothesis is
not violated on this account.
This singularity is very similar to the thunderbolt

singularity if we replace a null event horizon with a
spacelike universal horizon. The universal horizon is a
real horizon for the z > 1 Lifshitz scaling particles. So the
singular universal horizon cannot be detected by any
outside observers. Although there is no causally discon-
nected region, it is not a naked singularity. We then call it an

ultimate thunderbolt singularity (uTS). We may speculate
that the appearance of the thunderbolt singularity on the
universal horizon via R2 term indicates quantum gravita-
tional loop correction in the Lorentz violating system as in
quantization of the Lorentz invariant system with a
thunderbolt singularity.
Besides, one may wonder about solutions for the positive

value of g2. In fact, this case is less interesting. Namely, all
black hole horizons that exist in the case of g2 ¼ 0
completely disappear. The property of the solution is quite
unphysical, i.e., the functions TðrÞ and BðrÞ show positive
divergence at smaller radius r ∼Oð10GNMÞ, while the
function aðrÞ drops to zero without forming any horizon. In
other words, there does not exist any type of black hole
discussed before (see Fig. 11).

D. Solutions with z ¼ 2 Lifshitz scaling terms:
The case of g2 ≠ 0 and β1, β2 ≠ 0

If we have only the _u4 term, we find uBH for an
appropriate value of a2. The universal horizon is not
singular. On the other hand, when we have only the R2

term, the universal horizon becomes singular, giving a
thunderbolt singularity uTS. One may wonder what hap-
pens if both z ¼ 2 Lifshitz scaling terms, _u4 and R2, exist
(g2 ≠ 0 and β1 ≠ 0). Since R2 and _u2R give the highest
derivative terms in the equation of motion, namely, T 00ðrÞ,
B00ðrÞ, and a000ðrÞ, the uTS spacetime with jβ1j ≪ jg2j is not
so different from the original one. On the other hand, if jβ1j
is not so small compared with jg2j, the spacetime tends to
generate a singularity caused by the aether field. More
specifically, a singular spherical shell appears before
forming the thunderbolt singularity on the universal hori-
zon. Thus, we can only find iBH (ii) and tNS spacetime in
this situation.

FIG. 10 (color online). The relation between several horizon
radii and g2. The coupling constants and the boundary conditions
are the same as Figs. 1 and 9 except for g2. The purple, blue, and
brown star marks indicate the graviton horizon radius rGH, the
scalar-graviton horizon radius rSH, and the universal horizon
radius rUH in the æ-gravity theory, respectively. The purple, blue,
and brown round circles indicate the graviton horizon radius rGH,
the metric horizon radius rKH, and the radius of the singular
universal horizon rUH. Numerically the position of rUH is
evaluated at the point of UðrÞ ¼ −0.025, because UðrÞ ¼ 0 is
singular.

TABLE II. The detailed value of rUH for near g2 ¼ 0. The
coupling constants and the boundary conditions are the same as
Fig. 10 except for g2. The values of rUH are evaluated at the point
where UðrÞ ¼ −0.025.

g2=m2
pl rUH g2=m2

pl rUH

0 0.7200 −5.00 × 10−4 0.7944
−1.00 × 10−4 0.7783 −6.00 × 10−4 0.7962
−2.00 × 10−4 0.7854 −7.00 × 10−4 0.7977
−3.00 × 10−4 0.7893 −8.00 × 10−4 0.7990
−4.00 × 10−4 0.7922 −9.00 × 10−4 0.8002

FIG. 11 (color online). The typical example of the solution with
positive g2. We set a2 ¼ 1.123 × 10−3 and g2=m2

pl ¼ 1.000. The
remaining coupling constants and the boundary conditions are set
to the same values as those of Fig. 9. The blue, red, and green
curves indicate the functions TðrÞ, BðrÞ, and aðrÞ, respectively.
The dashed purple and dashed brown curves indicate the TG and
UðrÞ. The function aðrÞ drops to zero, while TðrÞ and BðrÞ
diverge for smaller radius r.
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Finally, we mention the case of β2 ≠ 0. Although we
have shown that there must not exist a regular universal
horizon in this case (see Appendix C), any horizons cannot
be found as far as our numerical analysis. In other words,
the spacetime produces a singular spherical shell before
forming any horizon, namely, tNS solution.

V. PROPERTIES OF SOLUTIONS

We discuss the properties of obtained black hole and
thunderbolt singularity solutions from several view points.

A. Distribution of the aether field

In our solutions, there are two free parameters,M and a2.
The mass is a conserved quantity, which characterizes the
solution.Although the different value ofa2 gives the different
solution, a2 may not correspond to any conserved quantity. In
order to understand the physical meaning of a2, we consider
the energy density distribution of the aether field.
We define the effective energy density and pressures of

the aether field by

ρæ ≔ T ½æ�
μν uμuν;

P½r�
æ ≔ T ½æ�

μν sμsν;

P½⊥�
æ ≔

1

2
T ½æ�
μν ðgμν þ uμuν − sμsνÞ: ð5:1Þ

When we calculate ρæ, P½r�
æ , P½⊥�

æ we use the Einstein
equations:

8πGT ½æ�
μν ¼ Gμν: ð5:2Þ

It makes it easy to evaluate T ½æ�
μν once we obtain the

solutions.

First, we show ρæ, P
½r�
æ , and P½⊥�

æ for the æ-black hole in
Fig. 12 as a reference. In the æ-black hole, all aether
quantities are always negative. Additionally, the following

quantity Eæ is introduced in order to examine the strong
energy condition:

Eæ ≔
�
T ½æ�
μν −

1

2
T ½æ�gμν

�
uμuν

¼ 1

2
ð3ρæ − P½r�

æ − 2P½⊥�
æ Þ: ð5:3Þ

It is also negative definite, which means that the strong
energy condition is broken.

We then show ρæ, P
½r�
æ , P½⊥�

æ , and Eæ for each solution in
Figs. 13–14.

FIG. 12 (color online). The distributions of the aether cloud for
the æ-black hole. The solid cyan, dashed magenta, dotted yellow,
and dot-dashed black curve indicate ρæ, P½r�

æ , P½⊥�
æ , and Eæ,

respectively. The coupling constants and the boundary conditions
are set to the same values as those of Fig. 1.

(a)

(b)

(c)

FIG. 13 (color online). The distributions of the aether cloud for
the solutions that are found in β1 ≠ 0, β2 ¼ g2 ¼ 0. We illustrate
the typical example of iBH (i) [the top figure (a)], the uBH
(i) [the middle figure (b)], and the iTS [the bottom figure (c)]
instead of showing all kinds of the solutions. The solid cyan,
dashed magenta, dotted yellow, and dot-dashed black curve

indicate ρæ, P½r�
æ , P½⊥�

æ , and Eæ, respectively. The coupling
constants and the boundary conditions for (a)–(c) are set to
the same values as those of Figs. 3, 5, and 7, respectively.
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When we add the z ¼ 2 Lifshitz scaling terms, the
distribution of the aether field is drastically changed. For
the case of β1 ≠ 0, β2 ¼ g2 ¼ 0 (for iBH, uBH, and iTS
spacetime), the localized aether cloud is formed, i.e., ρæ
and P½r�

æ are localized near the graviton and the scalar-
graviton horizons. We may speculate that the positivity of
the aether density and radial pressure relax a singular
behavior at the scalar-graviton horizon, which exists in æ-
theory with general value of a2. Note that the strong
energy condition is satisfied for some finite radial region.
Furthermore, referring to Fig. 2 and the aether distribution
Figs. 13(a)–(c), for the larger value of a2, the more dense
aether cloud forms. As a result, the iTS spacetime emerges
in the large a2 region due to the gravitational collapse of
the aether cloud.
For the case of g2 ≠ 0, β1 ¼ β2 ¼ 0 (for uTS spacetime),

the distribution is different. Referring to Fig. 14, although
the radial pressure is positive, the energy density becomes
negative. The strong energy condition is broken in the
whole spacetime. Note that the radial pressure diverges
where the shell singularity appears.

B. Preferable black holes

Although black hole thermodynamics in æ-gravity
theory has been discussed in the last decade, complete
understanding has not yet been achieved. Hence, in this
section, we only discuss which solution is more preferable
from the viewpoint of the thermodynamical stability.
In the previous section, we find two-parameter black

hole solutions: One free parameter is a black hole mass M,
which is used to normalize the variables, and the other free
parameter is a2. However, we have only one Noether
charge with respect to time translational symmetry, which
is the black hole massM given by (3.10). As we showed in
the previous subsection, the parameter a2 describes the
distribution of the aether field, but does not provide a
conserved quantity. It just describes a cloud of the aether

field around a black hole or a thunderbolt singularity. a2
describes a different configuration of the aether cloud.
Hence, fixing a black hole mass M and changing a2, we

may find the most preferable configuration of the aether
field, which gives a stable solution. To find such a solution,
we adopt the viewpoint of thermodynamical stability, i.e.,
we assume that the maximum entropy determines the stable
configuration.
However, the definition of the black hole entropy is

unclear due to the unavailability of Wald’s Noether charge
method on the black hole horizons in æ- theory and its
extension. In addition, according to [38], the black hole
entropy is modified by the higher-curvature terms. Namely,
it is given by the integration of the functional derivative of
the action with respect to four-dimensional Riemann tensor
denoted by Eμνρσ over the bifurcation surface B. In our
case,

Eμνρσ ¼ ð1 − β2 _u2 − 2g2RÞgμρgνσ: ð5:4Þ

Unfortunately, this modification factor (1 − β2 _u2 − 2g2R)
diverges near the universal horizon due to the singular
behavior of the three curvature R.
Hence, here we consider only the case without the

higher-curvature correction terms (g2 ¼ β2 ¼ 0). Then
we simply assume the black hole entropy is given by
the area of the horizon AðrHÞ, where rH is one of horizon
radii.6 If we found a more appropriate definition of the
black hole entropy, our result would be changed.
Here, we adopt the universal horizon to evaluate the

black hole entropy:

SuBH ≔
AðrUHÞ
4GN

¼ πr2UH
GN

: ð5:5Þ

In Fig. 15, we show the radii of the universal horizon rUH
with respect to a2 for uBH spacetime. The property of the
universal horizon is summarized as follows: Each universal
horizon radius is a convex upward function with respect to
a2 except for the right edge. The maximum value of black
hole entropy for each value of β1 is given at the top of the
convex, which is denoted by rUHðmaxÞ. At the end of the
convex function that is called a turning point denoted by
a2ðturnÞ, the function sharply bounces and turns out to
increase until the regular universal horizon disappears.
Beyond this point, we find iTS solution. Remarkably, the
value of a2 at the turning point and the right edge of these
plots are invariant with respect to β1, which are given by

FIG. 14 (color online). The distributions of the aether cloud for
the uTS spacetime. The solid cyan, dashed magenta, dotted

yellow, and dot-dashed black curve indicate ρæ, P
½r�
æ , P½⊥�

æ , and
Eæ, respectively. The coupling constants and the boundary
conditions are set to the same values as those of Fig. 9.

6According to [38], the black hole entropy is modified by the
higher curvature. Namely, it is given by the integration of the
functional derivative of the action with respect to the four-
dimensional Riemann tensor over the bifurcation surface B.
When the _u4 term is considered, the entropy should be the same
as æ- theory’s one. This is because _u4 never produces any
additional term by the functional derivative.
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a2ðturnÞ ¼ 0.373 and a2ðendÞ ¼ 0.377, respectively. Note that
a2ðendÞ corresponds to the border between uBH and iTS
spacetimes.
We give the detailed data of the thermal quantities with

the maximum entropy and at the turning point for each
value of β1 in Table III.
When we take the maximum value of the universal

horizon radii with respect to a2, we may find the most
preferable black hole solution for a given mass M. This is
because such a maximum point may give a stable solution
from the viewpoint of the black hole thermodynamics.
Then we find a series of the most preferable black hole

solutions in terms ofM. In Fig. 16, we plot the horizon radii
of such a black hole vs the gravitational mass M for
β1=m2

pl ¼ 1. Additionally, that of the æ-black hole, namely,
β1 ¼ β2 ¼ g2 ¼ 0 case, are also shown as a reference. For
all horizons (the graviton, scalar-graviton, and universal
horizons) of the æ-black hole, their radii seem to increase
linearly in terms of the massM, which is the same as that of
the Schwarzschild solution.
Whereas, for our uBH, the universal horizon radius

increases with a higher power-law function of M than the

linear one in the small mass region, and it approaches a
linear function for large values of M. The uBH universal
horizon radius is smaller than æ-black holes’s one for
M > Mcrit ¼ 1.497mpl. We refer to Mcrit as a critical mass.
Note that the universal horizon radius seems to vanish for
small value ofM, but it is not clear whether it vanishes at a
finite mass Mminð> 0Þ, or at M ¼ 0.
One may wonder whether our uBH solution will recover

the æ-black hole or not when β1 approaches zero. To see
this, we give the detailed data of rUHðmaxÞ and correspond-
ing a2ðmaxÞ near β1 ¼ 0 in Table IV. From this table, we find
that the value of a2ðmaxÞ gradually decreases as β1 → 0;
whereas, the maximum value of the universal horizon
radius increases in such a limit. Thus, we can conclude
that the uBH solution cannot be smoothly connected to the
æ-black hole.

FIG. 16 (color online). The mass dependence of the horizon
radii for the most preferable black hole solutions with β1=m2

pl ¼ 1
are indicated by solid curves. a2 is fixed so that the maximum
universal horizon radii are obtained. The remaining coupling
constants and the boundary conditions are set to the same values
as those of Fig. 1. The brown, purple, and blue curves indicate the
radii of the universal horizon, the graviton horizon, and the scalar-
graviton horizon, respectively. The radius of the uBH universal
horizon turns out to be greater than that of the æ-black hole in
M > Mcrit ¼ 1.497mpl region.

TABLE IV. The detailed values of rUH and corresponding a2 of
the most preferable uBH solutions for β1 ≪ 1. The case of β1 ¼
0 corresponds to the æ-black hole. The coupling constants and the
boundary conditions are set to the same values as those of Fig. 1.

β1=m2
pl a2ðmaxÞ rUHðmaxÞ

0 1.112 × 10−3 0.720
0.001 0.229 1.001
0.005 0.248 0.949
0.010 0.259 0.916
0.050 0.281 0.799
0.100 0.288 0.727

TABLE III. The detailed data of the universal horizon radii at
the maximum point and at the turning point for each value of β1.

β1=m2
pl a2ðmaxÞ rUHðmaxÞ a2ðturnÞ rUHðturnÞ

0.250 0.296 0.607 0.373 0.345
0.500 0.301 0.499 0.373 0.262
1.000 0.304 0.380 0.373 0.178
2.000 0.307 0.259 0.373 0.103

FIG. 15 (color online). The radii of the universal horizons rUH
with respect to a2 for uBH spacetime. The solid red, dotted
orange, dashed green, and dot-dashed blue curve indicate for
β1=m2

pl ¼ 0.250, 0.500, 1.000, and 2.000 case, respectively. The
remaining coupling constants and the boundary conditions are set
to the same values as those of Fig. 1. The points that give the
largest value of rUH for each β1 are indicated by the circle plot on
each curve. The turning point where the curve has the sharp edge
is given by a2ðturnÞ ¼ 0.373 for every β1.
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C. Smarr’s formula and black hole temperature

Concerning the black hole first law in æ- theory, it is
found that the aether field prevents the black hole mass-
entropy relation on the Killing horizon [31] via the Noether
charge method [38,39] from establishing. Notwithstanding,
Smarr’s formula in æ- theory has been proposed only in
static and spherically symmetric configuration [13], which
is established by applying Gauss’s law to the aether field
equation. It is found that the aether portion of the basic
equation can be reduced to Maxwell-like form in static and
spherically symmetric spacetime:

∇αF αμ ¼ 0; ð5:6Þ
where F μν is given by

F μν ≔ 2qu½μsν�; ð5:7Þ

q ≔
�
c14
2

− c13

�
ð _u · sÞðu · ξÞ þ ð1 − c13Þκ

þ c123
2

ð∇ · uÞðs · ξÞ; ð5:8Þ

sμ is a spacelike unit vector perpendicular to uμ and a
surface gravity κ which is given by ξα∇αξ

μ ¼ κξμ is
equivalent to the following form due to a spacetime
symmetry:

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇αξβÞð∇αξβÞ

r
: ð5:9Þ

Note that the structure of (5.6) is similar to Maxwell’s
equation; thus, we can perform the flux integration.
According to Gauss’s law, the integration of F μν over
Br, which is a two sphere at radius r, must produce the
same value for any r. Considering the integration over
spatial infinity B∞ and Br, we obtain

M ¼ qðrÞ AðrÞ
4πGN

; ð5:10Þ

where AðrÞ ≔ 4πr2 is a surface area of Br. Note that this
relation is held for any r. When we evaluate the rhs of
Eq. (5.10), we find Smarr’s formula:

M ¼ T ðæÞ
uBHSuBH; ð5:11Þ

where T ðæÞ
uBH ¼ qðrUHÞ=π is a black hole temperature.

Turning our attention to the case of including higher-
curvature and aether effects, although the Maxwell-like
aether equation is not found, we may obtain the relation
between the black hole mass and the entropy (or the area of
the universal horizon) by evaluating the deviation from the
æ-black hole’s one. Note that our thermodynamical analy-
sis is limited to the black hole solution only with the β1

term. If we consider the surface gravity or black hole
temperature on the singular horizon, these quantities must
diverge. Thus, we do not discuss the solutions without a
regular universal horizon.
We presume the mass-entropy relation as follows:

M ¼ T ðz¼2Þ
uBH SuBH; ð5:12Þ

where T ðz¼2Þ
uBH ≔ T ðæÞ

uBH þ δT ðz¼2Þ
uBH . δT ðz¼2Þ

uBH is introduced as
the correction by the z ¼ 2 Lifshitz scaling term from the
æ-black hole temperature.
In Fig. 17, we show the mass-temperature relation of the

most preferable black hole solutions defined in the previous
subsection. We also show æ- case [13] as a reference. From
this plot, we find that the æ-black hole temperature seems
to be inversely proportional to the black hole mass M,
which is the same as the Schwarzschild black hole in
general relativity (GR); whereas, that of our uBH solution
is clearly far from the inverseM law. More specifically, the
black hole temperature of uBH turns out to be lower than
that of the æ- case for the range ofM > Mcrit, whereMcrit is
the critical mass defined in the previous subsection. In
Table V, we show the values ofMcrit and corresponding rUH
in terms of β1.
From Fig. 17, the temperatures of the uBH solutions

seem to obey the inverse M law in large M region,
while they may decrease exponentially in small M
region. To examine this behavior, we assume that the
mass-temperature relation is given by the following
functional form:

FIG. 17 (color online). The mass-temperature on the universal
horizon for the most preferable black hole solutions. The solid
red, dotted orange, dashed green, and dot-dashed blue curves
indicate the temperatures T ðz¼2Þ

uBH for β1=m2
pl ¼ 0.250, 0.500,

1.000, and 2.00, respectively. The values of a2 for each case
are fixed so that the maximum universal horizon radii are
obtained. The remaining coupling constants and the boundary
conditions are set to the same values as those of Fig. 1. The æ-
case is also shown as a reference, which is indicated by the two-
dot chain black line. The critical masses for each β1 are indicated
by the colored dot.
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T ðz¼2Þ
uBH ≈ μðeν=ðM−MminÞ − 1Þ

∼

(
μeν=ðM−MminÞ for M −Mmin ≪ ν

μν=ðM −MminÞ for M −Mmin ≫ ν;
;

ð5:13Þ

where μ, ν, and Mmin are some fitting parameters. Since
the universal horizon radius is related to the black hole
mass as (5.12), the universal horizon should disappear

when M ¼ Mmin, where T ðz¼2Þ
uBH diverges.

The curves in Fig. 17 are approximately reproduced by
the above functional form (5.13) if we choose the fitting
parameters given in Table VI. In our numerical result, it is
found that Mmin is extremely small, or possibly vanishes.
Moreover, it is notable that the values of μν seem to be
universal for β1 > 0, namely, all asymptotic behaviors in

the largeM region, which is denoted by T ðz¼2Þ
uBH (M ≫ mpl),

are the same, but differ from those of the æ-black hole.

VI. CONCLUSION AND DISCUSSION

Without Lorentz symmetry, the Killing horizon is no
longer the event horizon in the static and spherically
symmetric spacetime due to the presence of the super-
luminal propagating modes. However, in the context of the

æ- theory or infrared limit of the nonprojectable HL gravity,
a black hole solution can still be constructed by considering
the universal horizon, which is a static limit for an
instantaneously propagating particle. In this paper, we
have studied the backreaction to the black hole solution
in æ- theory by the Lifshitz scaling terms. We have
analyzed the ultraviolet modification of the æ-black holes
including the simple scalar terms with z ¼ 2 Lifshitz
scaling, specifically, the quadratic term of spacial curvature
associated with the hypersurface orthogonal aether field
(R2), the quartic term of the aether acceleration ( _u4), and
the product of the spacial curvature and the quadratic term
of the aether acceleration ( _u2R).
Only for the case with the _u4 term (β1 ≠ 0 and

β2 ¼ g2 ¼ 0), we have succeeded in finding a black hole
solution with regular universal horizon, which is referred to
as uBH. In contrast to the æ- case, the black hole solutions
are obtained without tuning the boundary parameter of the
aether field a2. In other words, uBH solutions exist in a
finite range in the ðβ1; a2Þ parameter plane (see Fig. 2). If
we select the parameter a2 beyond this range, a singular
shell appears before forming a universal horizon. Whereas,
considering _u2R and/or R2 terms (β2 ≠ 0 and/or g2 ≠ 0),
any black hole solution with regular universal horizon
cannot be constructed due to the divergence of the basic
equations on the universal horizon (see Appendix C).
However, including only the R2 term with negative g2,
we have found the solution with a thunderbolt singularity
(uTS), whose universal horizon is still singular but the
singularity is not observed by any outside observers.
Although this solution cannot be regarded as a black hole,
the cosmic censorship hypothesis is not violated. Since the
thunderbolt singularity has been discovered in the context of
the quantum gravity in lower dimension, the emergence of
this solution is not so strange since the z ¼ 2Lifshitz scaling
terms are regarded as quantum gravitational corrections.
We then studied several properties of our solutions

including spacetime structures with their Carter-Penrose
diagrams. To investigate the physical meaning of a2, we
have shown the effective energy momentum tensor of the

aether field T ½æ�
μν , i.e., the effective energy density and

pressure. From these results, the parameter a2 seems
closely related to the distribution of the spherical aether
cloud. Namely, a large value of a2 configures a dense aether
cloud and eventually induces a collapse of the aether field,
which results in a formation of a timelike singular shell
(tNS). Moreover, we may speculate that regularity on the
(infrared limit of) scalar-graviton horizon is recovered due
to the localization of the aether field near the horizon,
which does not appear in the æ-case.
Finally, we have explored the thermodynamical aspect of

the uBH solution. Since the maximum universal horizon
radius is obtained by choosing an appropriate value of a2
for a given mass M, the parameter a2 may be fixed so that
the area of the black hole, which may be regarded as the

TABLE V. The critical masses and corresponding universal
horizon radii in terms of β1.

β1=m2
pl Mcrit=mpl rUH=mpl

1.000 1.497 2.134
0.900 1.420 2.029
0.800 1.339 1.913
0.700 1.253 1.789
0.600 1.160 1.656
0.500 1.059 1.512
0.400 0.947 1.352
0.300 0.820 1.171
0.200 0.670 0.956
0.100 0.473 0.676

TABLE VI. The fitting parameters in T ðz¼2Þ
uBH and the asymptotic

behaviors in the largeM region for each value of β1. The coupling
constants and the boundary conditions are set to the same values
as those of Fig. 17. We also show the temperature of the æ-black

hole T ðæÞ
uBH as a reference in the bottom line.

β1=m2
pl μmpl ν=mpl Mmin=mpl T ðz¼2Þ

uBH (M ≫ mpl)

0.250 0.136 0.649 6.561 × 10−7 0.088=M
0.500 0.096 0.919 9.261 × 10−7 0.088=M
1.000 0.068 1.299 9.468 × 10−7 0.088=M
2.000 0.048 1.837 9.998 × 10−7 0.088=M
0 N/A N/A N/A T ðæÞ

uBH ¼ 0.151=M
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black hole entropy, becomes maximum. This solution may
provide the most preferable black hole because it can be
thermodynamically stable. Additionally, Smarr’s formula
and the black hole temperature are also examined.When we
speculate the mass-temperature relation as (5.12), it is found
that the temperature does not obey the inverseM law at least
for smallM, unlike æ-case. It increases exponentially asM
approaches to Mmin, for which the horizon area vanishes.
Although there are several coupling constants in the

action we consider (2.5), we have manipulated only ultra-
violet coupling constants, i.e., β1, β2, and g2 from z ¼ 2
Lifshitz scaling terms. The coupling constants c13, c2, and
c14 are all fixed so that the æ-black hole is restored in
infrared limit. However, we emphasize that the existence of
the other types of black hole solution should not be
excluded in this theory with the different values of the
coupling constants c1 − c4. For example, nonblack hole
solution in æ- theory (a static and spherically symmetric
solution with Killing horizon but without a universal
horizon found in [30]) may turn out to form a causal
boundary due to the Lifshitz scaling terms.
Turning our attention to a more energetic region, it is

obvious that the z ¼ 3 Lifshitz scaling terms that are
required by power-counting renormalizability of gravity
turn out to be dominant rather than z ¼ 2 terms. Namely,
our analysis in this paper should correspond to the
intermediate region between the energy scale described
in æ- theory and such an ultimately high energy scale. If we
consider more ultraviolet modification terms in action, we
may obtain the additional intriguing spacetime such as a
singularity-free solution that is discovered in the context the
early Universe in HL theory.
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APPENDIX A: THE DISFORMAL
TRANSFORMATION IN A STATIC AND

SPHERICALLY SYMMETRIC SPACETIME WITH
ASYMPTOTIC FLATNESS

In this section, we show the transformation law in
Eddington-Finkelstein-like ansatz (3.1) under the disformal
transformation. We also confirm that the spacetime

properties, i.e., time independence, spherical symmetry,
and asymptotic flatness, are held.
The disformal transformation we consider is

ĝμν ¼ gμν þ ð1 − σÞuμuν; ûμ ¼ σ−1=2uμ; ðA1Þ

where the original metric gμν and aether uμ are given by
(3.1). Then each component of ĝμν and ûμ is given by

dŝ2¼−T̂ðrÞdv2þ2B̂ðrÞdvdrþ f̂ðrÞdr2þ r2dΩ2; ðA2Þ

ûμ ¼ ðâðrÞ; b̂ðrÞ; 0; 0Þ; ðA3Þ
where

T̂ðrÞ ≔ TðrÞ − ð1 − σÞ
�
1þ aðrÞ2TðrÞ

2aðrÞ
�
2

; ðA4Þ

B̂ðrÞ ≔ 1

2
BðrÞ½1þ σ − ð1 − σÞaðrÞ2TðrÞ�; ðA5Þ

f̂ðrÞ ≔ ð1 − σÞaðrÞ2BðrÞ2; ðA6Þ

âðrÞ ≔ σ−1=2aðrÞ; ðA7Þ

b̂ðrÞ ≔ aðrÞ2TðrÞ − 1

2σ1=2aðrÞBðrÞ : ðA8Þ

From these forms, we find that the time independence and
spherical symmetry are held after transformation. Hence,
the horizon radius for the propagating degree of freedom
whose sound speed is unity in this frame is given by a null
surface T̂ðrÞ ¼ 0.
Note that the ðr; rÞ component of the metric ĝrr ¼ f̂ðrÞ is

generated, unlike in the original Eddington-Finkelstein-
type ansatz. It is not quite unnatural considering the
geometrical meaning of the disformal transformation.
More specifically, the transformation can be interpreted
as a rescaling of timelike separation between two spacelike
hypersurfaces with fixed three-dimensional space. Then the
light cone whose opening angle is 90° in original ðg; uÞ
frame is distorted after disformal transformation. Hence,
the null coordinate v in original ðg; uÞ frame is no longer
null in ðĝ; ûÞ frame.
We then introduce new coordinate system ðv�; rÞ in

which v� becomes a null coordinate. v� is defined by

dv� ¼ σ1=2

2
64dv − B̂ðrÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂ðrÞ2 þ T̂ðrÞf̂ðrÞ

q
T̂ðrÞ dr

3
75

¼ σ1=2
�
dvþ 2ð1 − σ1=2ÞaðrÞ2BðrÞ

1þ σ1=2 − ð1 − σ1=2ÞaðrÞ2TðrÞ dr
�
:

ðA9Þ
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Then the metric and the aether field are transformed into

dŝ2 ¼ −T̂�ðrÞdv�2 þ 2B̂�ðrÞdv�drþ r2dΩ2;

ûμ ¼ ðâ�ðrÞ; b̂�ðrÞ; 0; 0Þ; ðA10Þ

where

T̂�ðrÞ ¼ σ−1TðrÞ þ ð1 − σ−1Þ
�
1þ aðrÞ2TðrÞ

2aðrÞ
�
2

; ðA11Þ

B̂�ðrÞ ¼ BðrÞ; ðA12Þ

â�ðrÞ ¼ 2σ1=2aðrÞ
1þ σ1=2 − ð1 − σ1=2ÞaðrÞ2TðrÞ ; ðA13Þ

b̂�ðrÞ ¼ aðrÞ2TðrÞ − 1

2σ1=2aðrÞBðrÞ : ðA14Þ

Since the Eddington-Finkelstein-type metric is restored,
i.e., the ðr; rÞ component of the metric has vanished, we can
regard v� as a null coordinate in ðĝ; ûÞ frame.
We now focus on the asymptotic property. Substituting

(3.8), we find

T̂�ðrÞ ¼ 1þ T1

r
þOðr−2Þ; ðA15Þ

B̂�ðrÞ ¼ 1þOðr−2Þ; ðA16Þ

â�ðrÞ ¼ 1þ ð1 − σ1=2ÞT1

2σ1=2r
þOðr−2Þ; ðA17Þ

b̂�ðrÞ ¼ Oðr−2Þ: ðA18Þ

Thus, it is found that the asymptotic flatness is held even if
the disformal transformation is performed. Additionally,
the mass of the spherical object, i.e., Noether charge with
respect to time translational symmetry, is also invariant
under the disformal transformation.

APPENDIX B: THE INVARIANCE OF SPATIAL
CURVATURE UNDER DISFORMAL

TRANSFORMATION

As we mentioned, the action of æ- theory has an
invariance except for each coupling constant. In this
section, we show the transformation law in detail. For
convenience, we define a new tensoral quantity Xα

βγ as a
change of Christoffel symbol,

Γ̂α
βγ ¼ Γα

βγ þ Xα
βγ;

Xα
βγ ≔ ð1 − σÞ½σ−1uαKβγ − _uαuβuγ�; ðB1Þ

where Kμν ≔ γðμα∇αuνÞ is an extrinsic curvature associated
with the aether. Note that Kμν ¼ Kνμ is imposed by the

hypersurface orthogonality of the aether. Then the covariant
derivative of the aether is given by

∇̂αûβ ¼ σ1=2½∇αuβ − ð1 − σ−1ÞKαβ�; ðB2Þ

and we find the aether is invariant,

_̂uμ ¼ ûα∇̂αûμ ¼ _uμ: ðB3Þ

Thus, the c13, c2, and c14 terms in the action (2.5) are
transformed into

ð∇̂αûβÞð∇̂βûαÞ ¼ σ−1ð∇αuβÞð∇βuαÞ;
ð∇̂ · ûÞ2 ¼ σ−1ð∇ · uÞ2;

_̂u2 ¼ _u2: ðB4Þ

The four-dimensional Riemann tensor Rα
μβν is transformed

into

R̂α
μβν ¼ Rα

μβν þ∇βXα
μν −∇νXα

μβ

þ Xα
γβXγ

μν − Xα
γμXγ

νβ; ðB5Þ

and thus, we find the transformation law of Ricci scalar R
as follows:

R̂ ¼ R − ð1 − σ−1Þ½ð∇αuβÞð∇βuαÞ − ð∇ · uÞ2�
þ ðtotal derivative termÞ: ðB6Þ

Since the total derivative term in the action can be
integrated out, we abbreviate it.
We turn our attention to the transformation law of the

spatial three-curvature Rμν. From the Gauss-Codazzi rela-
tion, the spatial curvature can be expressed in terms of gμν
and uμ:

Rμν ¼ γβμγ
δ
νγ

γ
αRα

βγδ þKμαKα
ν −KKμν: ðB7Þ

Since the three metric γμν is invariant, we have only to
consider the terms associated with Xα

βγ in (B5) to see the
transformation of the first term. Then

γβμγ
δ
νγ

γ
α∇γXα

βδ ¼ −ð1 − σ−1ÞKKμν;

γβμγ
δ
νγ

γ
α∇δXα

βγ ¼ −ð1 − σ−1ÞKμαKα
ν;

γβμγ
δ
νγ

γ
αXα

ηγXη
βδ ¼ 0;

γβμγ
δ
νγ

γ
αXα

ηδXη
βγ ¼ 0: ðB8Þ

The last two terms on the rhs of (B7) are transformed into

K̂μαK̂
α
ν ¼ σ−1KμαKα

ν;

K̂K̂μν ¼ σ−1KKμν: ðB9Þ

BLACK HOLES AND SINGULARITIES WITH LIFSHITZ … PHYSICAL REVIEW D 92, 084049 (2015)

084049-21



Thus, we can find that Rμν is invariant under the trans-
formation and obtain (2.15).
Since Rμν and _uμ are invariant under the disformal

transformation which is a rescaling of timelike separation
between two spacelike hypersurfaces, we expect that its
spatial covariant derivatives are also invariant. In order to
confirm this, we examine the transformation law of a purely
spatial tensoral quantity Zμν��� so that Ẑμν��� ¼ Zμν��� and
uαZαν��� ¼ uαZμα ¼ � � � ¼ 0. Then

D̂μẐνρ��� ¼ γ̂μ
αγ̂ν

βγ̂ρ
γ � � � ∇̂αẐβγ���

¼ γμ
αγν

βγρ
γ � � � ½∇αZβγ��� þ Xδ

αβZδγ���
þ Xδ

αγZβδ��� þ � � ��;
¼ DμZνρ: ðB10Þ

The terms proportional to Xα
βγ in the second line have

vanished due to the spatial property of Zμν���. Thus, we
conclude that all of the spatial higher derivative terms
derived by nonprojectable HL gravity are invariant under
disformal transformation.

APPENDIX C: THE REGULARITY CONDITIONS
OF HORIZON

We illustrate the detail of the regularity on the black
hole horizons with/without z ≠ 1 Lifshitz scaling terms.
In order to investigate the behavior near horizon, we
focus on the highest r-derivative terms in the basic
equations.

1. Einstein-aether case: β1 ¼ β2 ¼ g2 ¼ 0

In this case, the set of the evolution equations, ðv; vÞ and
ðθ; θÞ components of (2.29) and sμ component of (2.30),
can be simplified into the following form:

T 00 ¼ T 00½T; T 0; B; a; a0�; ðC1Þ

B0 ¼ B0½T; T 0; B; a; a0�; ðC2Þ

a00 ¼ a00½T; T 0; B; a; a0�: ðC3Þ

To see the cause of singular behavior on the scalar-graviton
horizon, we expand (C1)–(C3) around rSH ¼ 0. We then
find

T 00ðrÞ ¼ T ½æ�ðrSHÞ
TSðrÞ

þ
X3
n¼0

T ½n�ðrSHÞ½TSðrÞ�n; ðC4Þ

B0ðrÞ ¼ B½æ�ðrSHÞ
TSðrÞ

þ
X1
n¼0

B½n�ðrSHÞ½TSðrÞ�n; ðC5Þ

a00ðrÞ ¼ a½æ�ðrSHÞ
TSðrÞ

þ
X2
n¼0

a½n�ðrSHÞ½TSðrÞ�n; ðC6Þ

where TSðrÞ ¼ TS
0ðrSHÞðr − rSHÞ and T ½æ�, B½æ�, a½æ�, T ½n�,

B½n�, and a½n� are functionals with respect to T 0ðrSHÞ,
BðrSHÞ, aðrSHÞ, and a0ðrSHÞ. Obviously, the irregularity
on the scalar-graviton horizon is due to the coefficient of
TSðrÞ−1 terms. As a result, for regularity, all of T ½æ�, B½æ�,
and a½æ� must vanish; otherwise, the evolution equations
diverge at r ¼ rSH. Although the explicit form of the
coefficients of TSðrÞ−1 terms is quite complicated for
general setting of the coupling constants c13, c2, and
c14, it can be reduced to slightly simplified form consid-
ering the disformal transformation (2.12). By the disformal
transformation with σ ¼ c2S, we can set the sound speed of
the scalar graviton to be unity without loss of generality. In
this frame, the scalar-graviton horizon coincides with the
metric horizon, i.e., TSðrSHÞ ¼ TðrSHÞ ¼ 0.
Transforming into the c2S ¼ 1 frame reduces the three-

dimensional parameter space of coupling constants (c13, c2,
c14) into the two-dimensional one. In other words, one of
these coupling constants is expressed by the other two.
More explicitly, for example, we can eliminate c2 from the
evolution equations as follows: Performing simple calcu-
lation, we find c2S ¼ 1 for any c13 and c14, if we set

c2 ¼
−2c13 þ 2c14 − c213c14
2 − 4c14 þ 3c13c14

: ðC7Þ

In this frame, we finally obtain the explicit forms of T ½æ�,
B½æ�, and a½æ� as

T ½æ� ¼ −
�
2c13 − 2c14 þ c13c14 − 2ð1 − c13Þc14T 0ðrSHÞa2ðrSHÞrSH

2c14ð1 − c13ÞBðrSHÞa2ðrSHÞrSH

�
B½æ�; ðC8Þ

B½æ� ¼
�

c14BðrSHÞ
8rðc14 − 2Þð2 − 4c14 þ 3c13c14Þa4ðrSHÞ

�X6
n¼0

B½æ;n�anðrSHÞ; ðC9Þ

a½æ� ¼
�ð2 − c13Þð2 − c14ÞaðrSHÞ − 2ð1 − c13Þc14a0ðrSHÞrSH

2c14ð1 − c13ÞBðrSHÞrSH

�
B½æ�; ðC10Þ
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where

B½æ;0� ≔ ½4c13 − 4ð1þ c13 − c213Þc14 þ ð4 − 3c13Þc214�a0ðrSHÞr2SH;
B½æ;1� ≔ 8ð1 − c13Þ2c14a0ðrSHÞrSH;
B½æ;2� ≔ −4ð1 − c13Þð2 − 2c14 þ c13c14Þ;
B½æ;3� ≔ 2½−8þ 4c13 þ 4ð2 − c13Þ2c14 − ð4 − 3c13Þc214�T 0ðrSHÞa0ðrSHÞr2SH;
B½æ;4� ≔ 8ð1 − c13Þ2c14T 0ðrSHÞrSH;
B½æ;5� ≔ 0;

B½æ;6� ≔ ½4c13 − 4ð1þ c13 − c213Þc14 þ ð4 − 3c13Þc214�T 02ðrSHÞr2SH: ðC11Þ

Thus, we conclude that B½æ� ¼ 0 should be imposed for
regularity of the scalar-graviton horizon.
As for the regularity on the universal horizon, we also

expand the basic equations for T, B, and a around the
universal horizon rUH, where ðu · ξÞðrUHÞ ¼ 0. We then
find there is no term with negative power of
UðrÞ ≔ U0ðrUHÞðr − rUHÞ. This means that the universal
horizon is always regular, if it exists, unlike the scalar-
graviton horizon.

2. The case with the _u4 term: β1 ≠ 0 and g2 ¼ β2 ¼ 0

The set of the evolution equations can be decomposed
into TðrÞ, BðrÞ, and aðrÞ equations similar to the Einstein-
aether case (C1)–(C3), i.e., the linear-order differential
equation for BðrÞ and the second-order differential equa-
tions for TðrÞ and aðrÞ. The expanded equations around
rSH ¼ 0 are given by

T 00ðrÞ ¼
X
n≥0

Tðβ1Þ
½n� ðrSHÞ½TSðrÞ�n; ðC12Þ

B0ðrÞ ¼
X
n≥0

Bðβ1Þ
½n� ðrSHÞ½TSðrÞ�n; ðC13Þ

a00ðrÞ ¼
X
n≥0

aðβ1Þ½n� ðrSHÞ½TSðrÞ�n; ðC14Þ

where TSðrÞ ¼ T 0
SðrSHÞðr − rSHÞ and Tðβ1Þ

½n� , B
ðβ1Þ
½n� , and a

ðβ1Þ
½n�

are functionals with respect to T 0ðrSHÞ, BðrSHÞ, aðrSHÞ, and
a0ðrSHÞ. Since all of these equations have no terms with
negative power of TSðrÞ in the expansion near the scalar-
graviton horizon, it is always regular without tuning a2.
Similarly, it can be confirmed that the universal horizon is
always regular in the same way. Namely, the black hole
solutions turn to depend on the mass parameter T1 as well
as the extra parameter a2. Actually we find the black hole
solutions in a certain range of a2 in Sec. IV B.

3. The case with the R2 and/or _u2R
term: g2 ≠ 0 and/or β2 ≠ 0

In this case we find that T 000ðrÞ, B000ðrÞ, and a000ðrÞ, which
are the highest r derivatives in the equations, appear only in
the ðθ; θÞ component of (2.29). This means that the
evolution equations cannot be separated into TðrÞ, BðrÞ,
and aðrÞ equations unlike the Einstein-aether only with
the _u4 term. Therefore, we just focus on the coefficients of
T 000ðrÞ, B000ðrÞ, and a000ðrÞ terms in the ðθ; θÞ component
of (2.29). To see the behavior near the universal horizon
where u · ξ ¼ 0, we express these terms using UðrÞ ≔
U0ðrUHÞðr − rUHÞ instead of TðrÞ ≔ T 0ðrSHÞðr − rSHÞ:

0 ≈ ΘTT 000ðrÞ þ ΘBB000ðrÞ þ Θaa000ðrÞ; ðC15Þ

where ΘT , ΘB, and Θa are the functionals that are given by

ΘT ≔
aðrUHÞU2ðrÞ½2g2UðrÞ − β2rUHU0ðrUHÞ�

r3UHB
4ðrUHÞ

;

ΘB ≔
4g2U4ðrÞ

r3UHB
5ðrUHÞ

;

and

Θa≔−
2U2ðrÞ½1þaðrUHÞUðrÞ�½2g2UðrÞ−β2rUHU0ðrUHÞ�

r3UHa
2ðrUHÞB4ðrUHÞ

:

Clearly, it is impossible to avoid the divergence of this
equation on the universal horizon because all of the
coefficients ΘT , ΘB, and Θa must not vanish simultane-
ously at rUH for regularity. Therefore, we conclude that the
universal horizon is always singular. As a result, the
thunderbolt singularity appears if theR2 and/or _u2R terms
are joined.
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