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Strong gravitational lensing by Kiselev black hole
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We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded
by quintessence (Kiselev black hole). We work for the special case of Kiselev black hole where we

take the state parameter w, = —%. For the detailed derivation and analysis of the bending angle

q
involved in the deflection of light, we discuss three special cases of Kiselev black hole: nonextreme,
extreme, and naked singularity. We also calculate the approximate bending angle and compare it with
the exact bending angle. We found the relation of bending angles in the decreasing order as: naked
singularity, extreme Kiselev black hole, nonextreme Kiselev black hole, and Schwarzschild black hole.

In the weak field approximation, we compute the position and total magnification of relativistic images

as well.
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I. INTRODUCTION

Gravitational lensing (GL) signifies the deflection of
electromagnetic waves. Light propagates in empty space
along a straight line. The well-known theory of general
relativity (GR) predicts that light will be bent if an object
with a certain gravitational field is interposed in the light
path. In literature, GL has been used to study highly
redshifted galaxies, quasars, supermassive black holes,
exoplanets, dark matter candidates, primordial gravita-
tional wave signatures, etc. [1]. In 1801, Soldner was the
first person who calculated the bending angle of light by
using Newtonian Mechanics [2]. In 1911, Einstein
derived the same Soldner’s result by using the equiv-
alence principle and Minkowski metric, unaffected by
gravity [3]. This marks the beginning of our modern
understanding of GL. In 1915, Einstein derived the new
solar light deflection angle that was double from the
previous value due to the effect of the spacetime
curvature [4]. Eddington in 1919, confirmed the pre-
diction of Einstein during the solar eclipse [5]. In 1937,
Zwicky estimated the gravitational lens effect can be
observed [6]. In 1979, Walsh, Weymann, and Carswell
used Zwicky’s work and discovered the first example of
GL in which they obtained the first multiple images of a
binary quasar (QSO 0957 + 561) [7].

In 1959, Darwin calculated the light deflection
angle due to a strong gravitational field using the
Schwarzschild metric [8]. Another significant work
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involved the deflection angle and intensities for the
images formed due to the Schwarzschild black hole in
terms of elliptic integrals of the first kind [9].
Considering the Schwarzschild black hole for the strong
GL, Virbhadra and Ellis obtained the lens equation and
introduced a method to calculate the bending angle.
They also studied the lensing problem for the galactic
supermassive black hole numerically [10]. While study-
ing GL with the Schwarzschild black hole in the strong
field limit, the bending angle was also evaluated analo-
gous to the weak field limit. Besides the weak field
limit of relativistic images, magnifications and critical
curves formulas were also formulated [11]. Bozza treated
the strong lensing phenomenon by a spherically
symmetric black hole, where an infinite sequence of
higher order images are formed [12] and later on
extended for a spinning black hole [13]. One of the
first important studies about a cosmological constant
relativistic bending angle was done by Rindler and Ishak
where they showed that for a Schwartzschild de Sitter
geometry, the cosmological constant does not contribute
to the bending angle [14]. Another important application
of relativistic bending angle techniques were used to
determine a limit in tge cosmological constant by using
the bending of light through galaxies and clusters of
galaxies [15].

About two decades ago, a very important astronomical
observation (using Supernovae type Ia) suggested that the
Universe is in a state of an accelerated expansion [16,17].
This study was a revolution in physics and the dark energy
was named to be responsible for this accelerating scenario.
Cosmologists proposed different models in order to explain
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this strange behavior of the Universe such as the ACMD
model (with a state parameter of w = —1) or dynamic
scalar fields [18,19]. The former uses the old idea of a
cosmological constant introduced by Einstein several years
ago but in a completely different Way.1 However, this model
has some problems like the so-called “cosmological con-
stant problem” where the value of the cosmological
constant differs about 10'*° orders of magnitude from
the empirical value [20]. The second candidate for dark
energy is a dynamic scalar field such as quintessence,
phantoms, k-essence, etc. [21-23]. Generally, a quintes-
sence model has a state parameter w(z) = p(t)/p(t), where
p(1) is the pressure and p(¢) is the energy density that varies
with time depending on the energy potential V(®) and
scalar field ®. In addition, it is important to mention that the
quintessence field is minimally coupled to gravity and the
potential energy decreases as the field increases. This
model is the simplest case without having theoretical
problems like Laplacian instabilities or ghosts. For a more
detailed review of the quintessence, see [24-26].

One important solution related to the quintessence model
was discovered by Kiselev [27]. The former solution
physically describes a spherically symmetric and static
exterior spacetime filled with a quintessence field,
hence a nonvacuum solution. The Kiselev obtained the
Schwarzschild-like and Reissner-Nordstrom-de Sitter BH’s
solutions surrounded by the quintessence at the range of
state parameter —1 <w, < —%, the Universe will accel-
erate with the quintessence, where w, is the ratio of
pressure and energy density of quintessence. At
w, = —1, quintessence covers the cosmological constant
A term and corresponds to the case of dark energy, while
wy < — % in a static coordinates quintessential state, reveals
a de Sitter type outer horizon. In short, the solutions that
corresponds to -1 < w, < — % are asymptotically de Sitter.
In this paper, we study the gravitational lensing due to a
Kiselev black hole (KBH) where we choose the state
parameter w, = —%. Due to this value, the solution will
be a Schwarzschild-like (netural) black hole surrounded by
quintessence [27]. In this paper, we considered three
possibilities for KBH: two distinct horizons (nonextreme),
unique horizon (extreme black hole), and no horizon
(naked singularity). From the astrophysical point of view,
it is a hard task to distinguish between the signatures and
properties of black hole and naked singularities; however,
GL can provide distinguishing signatures [28].

The paper is structured as follows: In Sec. II, we study
the geodesics and effective potential for nonextreme and

'Einstein introduced a cosmological constant in his field
equation to obtain a static universe. After some observations
that suggested that the Universe is expanding, Einstein thought
that this constant was the worst mistake in his life. However,
nowadays, this constant has been taken into account but using
another physical interpretation related with dark energy.
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naked singularity. In Sec. III, we discuss critical variables
and equation of path for photons and calculate the relations
between closest approach r, and impact parameter b. In
Sec. IV, we derive the bending angle in terms of elliptical
integrals for both nonextreme KBH and naked singularity
for different values of quintessence parameter o (discussed
later) and then make a comparison with the bending angle
for a Schwarzschild black hole. In Sec. V, we study the
geodesics and effective potential for extreme KBH. In
Sec. VI, we discuss critical variables and the equation of
path for photons and calculate the relationship between the
closest approach and impact parameter for the extreme
lensing scenario. In Sec. VII, we calculate the bending
angle in terms of elliptical integrals for an extreme Kiselev
black hole (EKBH) at a fixed value of ¢ and compare it
with the Schwarzschild bending angle as a reference. In
Secs. VIII, IX, X, we use an alternative method for finding
the bending angle to study the relativistic images. Finally
we discuss our results in Sec. XI. We adopt the
units c = G = 1.

II. BASIC EQUATIONS FOR NULL GEODESICS
IN KISELEV SPACETIME

The equation of state parameter w,, for the quintessence
scalar field ® is given by

py 3P -V(D)
Wq—i_l op) ’ (1)
Pg 5P+ V(D)

S}

where p, and p, are the pressure and energy density of the
quintessence field defined in terms of the kinetic energy
G ®?) and potential energy V(®), respectively. Here, the
overdot represents the differentiation with respect to
cosmic time.

Based on the above point of view, the geometry of a
static spherically symmetric black hole surrounded by the
quintessence (or Kiselev spacetime) is given by [27]

1
ds®> = f(r)dt* — ——dr> — r*d0* — r’sin’d¢?,
4= 50
where
2M c
fr)=1-="——57. (2)

Here M is the mass of the black hole and ¢ is the
quintessence parameter (normalization factor) that is
related to the energy density as follows [27]:

o 3w,
Pq = _§r3(l+wq) ’ <3)

When w, approaches —1, the function f(r) for the metric
(2) reduces to
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flrn=1 —Z—M—orz,
r

4)

which is the Schwarzschild-de-Sitter black hole spacetime.
For this case, the lensing phenomenon has been studied
by Bakala and others [29-31]. In this paper, our focus is
on the special case w, = —%, which corresponds to the
Schwarzschild-like black hole surrounded by quintessence.
In this case the function f(r) becomes

f(r):l—2TM—0'r, <0<6<8LM>, (5)

which can also be written as

S =2 (r=r)(r=ry). (6)

The metric (2) becomes ill defined at r = 0, i.e., (ggy — )
which gives a curvature singularity. For f(r) = 0, we get
two fixed values of r, namely

_1+v1-8Mo

r r_
* 20

|- Vi—8Mo
= (7)
o

The region r = r_ corresponds to the black hole’s event
horizon while r = r, represents the cosmological event
horizon. Note that both r_ and r, are the two coordinate
singularities in the metric (2). The coordinate singularities
arise when 0 < ¢ < ;. However when ¢ > g7, both 7,
and r_ become imaginary, giving a naked singularity.
When o = 0, r_ becomes the Schwarzschild BH’s event
horizon r§, = 2M.

The Lagrangian for a photon traveling in Kiselev
spacetime is given by

2M . 1 .
_ 2 Y]
— r2sin20¢*.
Here dot represents the derivative with respect to A which is
an affine parameter. We will work in an isotropic gravi-

tational field, thus we can restrict the orbits of photons in
the equatorial plane (6 = %). Hence, Eq. (8) becomes

By using the Euler-Lagrange equations for null geodesics,
we get

dt E
t=—= s 10
A 1-M_or (10)

dp L
=_- 1
p=20_1 (i)
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where E is the energy per unit mass and L is the angular
momentum per unit mass. Using the null condition of the
4-velocity g,wu”u" =0 (where u,v =1t,r,0,¢) and u" =
% known as the 4-velocity, we get the equation of motion
for photons, that is

. 11

Here b is the impact parameter for photons of finite rest
mass [32], and it is the distance perpendicular from the
center of the black hole to the normal line on the ray of light
intersecting the observer at infinity [33].

The motion of geodesics is a force-free unaccelerated
motion. In the presence of a gravitational field, photons
experience gravitational force and this force comes due to
the effective potential. Here, the effective potential for
photons traveling in spacetime (2) is given by

2M L
———ar>, whereb:’—’. (12)
r E

Note that the effective potential has different values of ¢ for
nonextreme, extreme, and naked singularity of KBH, i.e.,
for nonextreme 0 < ¢ < SLM, for extreme ¢ = SLM, while for
naked singularity ¢ > ﬁ Here we discuss nonextreme and
naked singularity cases and the extreme case will be
discussed in Sec. V. When ¢ = 0 then Eq. (13) reduces

to Schwarzschild BH’s effective potential, i.e.,

——
0.04 [ JE— ]
=« 0 =0.06
= 0=0.140
r cee= O=
002 L 0.150
Vet 0.0
002
004 |
1 1 1
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FIG. 1 (color online). Effective potential V. of photons as a
function of distance r from black hole, setting M = 1. Top curve
for Schwarzschild black hole, middle two curves for nonextreme,
while bottom two curves for naked singularity of KBH.
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L2 M
VS = = (1 - —) (14)

r

In Fig. 1, the effective potential Vg is plotted to study
the behavior of photons near the considered spacetime (2)
for different values of quintessence parameter 0. We take
M =1 for plotting ¢ =4 =0.125 and the limits on ¢
become for the nonextreme case 0 < o < 0.125, for the
extreme case o = 0.125 (discussed later in Sec. V), and for
naked singularity ¢ > 0.125. Hence o = 0 corresponds to
the Schwarzschild black hole, 6 = 0.06 and 0.1 corre-
sponds to the nonextreme KBH. For these cases photons do
not cross the horizon while at ¢ = 0.14 and ¢ = 0.15
photons cross the horizon. In each curve there is no
minima. Therefore, there is no stable orbit for the photons,
only an unstable orbit exists in each case which corre-
sponds to the maximum value V...

III. CRITICAL VARIABLES AND THE EQUATION
OF PATH FOR PHOTONS FOR KBH

To find the radius of circular orbit of photons, we use the

condition % = 0 to obtain

1+V1-6Mo

o

Tet ( 15 )
Here r, is greater than the outer horizon r, while r._ lies
between the inner and outer horizons (r_ < r._ < r,). The
region of interest is between the horizons. Therefore, the
radius of an unstable circular orbit for a photon is r._ = ry,
also called the photon sphere. For the critical value of the

photon sphere, conditions imposed on ¢ are 0 < ¢ < ﬁ for
the nonextreme case and o > ﬁ for naked singularity.
In the limit 6 — 0 we get the radius of photon sphere rgs

3M for the Schwarzschild black hole. Now, we convert the
equation of motion (12) in terms of u = % We obtain the

equation of path for photons

(ﬂy ~ B(u) =0, (16)

d¢

where

For critical value of the closest approach, we put Z—Z =0[9].

Identifying this point of the closest approach as u = u,,
from Eq. (16), we have

1
ﬁ:u%—ZMug—auz. (18)

Substituting u, = rl from Eq. (15) in Eq. (18), we obtain
ps
the critical value of impact parameter for circular orbits

PHYSICAL REVIEW D 92, 084042 (2015)

.
by =/ —2 19
5¢ Tps — 2M — ar]%s ( )

The value of the impact parameter also imposes the same
limits on the quintessence parameter o, for both nonext-
reme and naked singularity of KBH as mentioned above.
For 6 =0, Eq. (19) gives the impact parameter b5, =
3v/3M for a Schwarzschild black hole. According to the
circular orbit condition [setting B(u) = 0] and solving
Eq. (17), we get one real root u#; and two other roots u,
and u3, (u3 > uy > uy) which are

_ro—2M— V(1 =8Mo)r2 +4Mr, — 12M?

up

4Mr, ’
1
Uy = —,
r()
_ ry—2M + /(1 —8Mo)r? + 4Mr, — 12M?
= 4Mr, '
(20)
Thus Eq. (17) becomes
B(u) =2M(u —uy)(u — uy)(u — uz). (21)

Substituting Eq. (21) in (16) yields

j—;—i\/ZM(u—ul)(u—uz)(u—us)- (22)

In Eq. (25), the positive sign (4) shows that the angle ¢
changes more than 7; that is the photon trajectory is bent
toward KBH and for the negative sign (—) the photon
trajectory is bent away from KBH. For a ray of light, both
r, and b are obviously different from each other. Using
Cardano’s method solving the cubic equation,

7+ 6b*r2 — bPr, + 2Mb* = 0, (23)

the relation between b and r,, is

l62b* + 3D
r() - 2 9

l1 » ( 263b° + 9ob* + 54Mb>
X COS [ COS -

60%b* + 18b*

9 cb?
N o2t + 3b2>] 3 (24)

At ¢ =0, it consistently reduces to the Schwarzschild
black hole lensing case [33],
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FIG. 2 (color online). Closest approach r, as a function of
impact parameter b (M = 1). We discuss here the relation
between the closest approach r, and impact parameter b for
KBH lensing cases—nonextreme and naked-singularity—and
compared it with a Schwarzschild black hole lensing case for
different values of o.

r —%cos lcos‘1 M
V3|3 b '

From Fig. 2, we observe that by increasing the value of b,
r, increases. In the region of the photon sphere 6 = [0, 0.1],
r, depends on b from the quintessence parameter o.
Moreover, as o increases, light moves closer to KBH
and the closest approach r, decreases. Therefore, ¢ = 0
corresponds to a Schwarzschild black hole (taken as a
reference) while 6 = 0.02 to ¢ = 0.1 correspond to the
nonextreme KBH. Beyond the photon sphere (region where
no horizon exists), i.e., o = 0.150, the light goes into the
KBH, whereas r, remains constant and naked singularity
occurs.

(25)

IV. BENDING ANGLE

Suppose that a light ray comes from infinity (say — o),
reaches the black hole at r,, and finally moves back to
infinity (say 4 oo) that is the observer. Due to this change,
the angular coordinate ¢ is two times from infinity to r,.
The light ray deflects from a straight line path at the
difference of # which results in the bending angle & [34]

> de
Q=72 —du —
& Adu u

If we substitute Eq. (22) into Eq. (26), we obtain

(26)

7 1

v du — 1.
V2M (1 — uy) (1 — ) (u — u3)

jo)
|

(27)
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If we write Eq. (27) in terms of complete elliptic integral2
and an incomplete elliptic integral3 we need to separate the
integration limits into two parts:

R /2 [ 7 1
a= du
uy \/ —u)(u —uy)(uz — u)

0 1
U \/(“1 —u)(u—uy)(uz — u)

Here the integrals can be recognized in terms of a first kind
of elliptical integral, where u; > u, > u; [35]. Hence

du} -z (28)

[2[F(Uy, k) F(W,k
M \/I/l3—lzll \/u3—u1
The integral variables can be defined as
/4
v ==
1 2 )
T — il [To = 2M = V(1 —=8Mo)r2 +4Mr, — 12M?
=si
? ro —6M — /(1 —8Mo)r2 + 4Mr, — 12M?
(30)

In the elliptical integral modulus k has a range 0 < |k|> < 1,
where

‘- 6M —r, + /(1 —8Mo)r2 + 4Mr, — 12M?
2¢/(1 —8Mo)r2 + 4Mr, — 12M?

(31)

Now F(5.k) = K(k) defines a complete elliptical integral
while F(W, k) is an incomplete elliptic integral. By sim-
plifying Eq. (29), an exact bending angle can be obtained:

o =4 i
V(1 =8Ma)r? + 4Mr, — 12M?
x [K(k) = F(V¥, k)] —

(32)

From the last expression, & can be deduced for nonextreme
KBH under 0 < 0 < ﬁ and for naked singularity KBH
under o > g For 6=0, Eq. (32),
Schwarzschild bending angle &5 [33].

Figure 3 shows that the maximum deflection of light will
occur at the critical value of the impact parameter b in

reduces to the

*The integral involving a rational function which contains
square roots of cubic or quartic polynomials. Generally, here a
definite cublc mtegrand that has a built-in command as

(m) f \/l —msin’6
If ¢ has the range —5 < ¢ < 5 then F(¢|m)

fO \/l —msin’@
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FIG. 3 (color online). Bending angle is a function of impact
parameter b. This is the case of nonextreme KBH lensing and its
maximum deflection value depends on the quintessence param-
eter 0 < ¢ < §(M = 1). Here the Schwarzschild case occurs at

o = 0 while 6 = 0.02 to 0.08 for the nonextreme case.

Eq. (17). Below b, there will be no deflection and above
by, we will get a continuous deflection (light circulates
around the black hole). Each single curve shows that by
increasing the value of b, the bending angle decreases at
different values of o. Nevertheless, originally when we
increases the value of o, the critical value of the closest
approach decreases since the light goes closer to the black
hole. Similarly, the value of b (near the photon sphere
where maximum deflection occurs) decreases and the
bending angle increases.

Figures 4 and 5 display the behavior of naked singularity.
In Fig. 4, for any curve at short distances, as b increases the
bending angle increases. In Fig. 5, for a long distance, as b
increases the bending angle remains constant. However,
when we observe the whole phenomena, we see that the

e
-

PR E S S S S S S RS
0 5 10 15 20

b

FIG. 4 (color online). Bending angle & as a function of b for

naked singularity. At M =1, 6 > ¢.
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FIG. 5 (color online).
singularity.

& as a function of b for a naked

bending angle also depends on 6. As ¢ increases, the
bending angle decreases for both short and long ranges
distances. Furthermore, when we compare the graph
(Figs. 4 and 5) of the naked singularity bending angle
with the nonextreme and extreme bending angles graphs
(Figs. 3 and 8), we observe that naked singularity behaves
opposite from nonextreme and extreme cases.

V. GRAVITATIONAL LENSING BY EXTREME
KISELEV BLACK HOLE

Extreme gravitational lensing is very amazing for some
important phenomena but it demands a great effort to be

0.04 [

FIG. 6 (color online). Effective potential V; is shown as a
function of distance r taking for extreme Kiselev lensing
phenomenon. Observe that there is no minima (have no stable
orbit) and only one maximum V., an unstable orbit that exists
which corresponds to V¢,,,. Schwarzschild’s effective potential is
taken as a reference (6 = 0).
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observed. In extreme gravitational lensing, where KBH is
used as a lens, we need to discuss the bending of photons
that pass very close to the lens and suffer a very large
deflection.

For the extreme Kiselev black hole (EKBH) we have
o = 1/8M, thus the function f(r) becomes

=1-=—— (33)

This is an EKBH case for which f(r) = 0 gives rf; = 4M

known as a degenerate solution (single horizon). This value

is twice the Schwarzschild black hole horizon, so it can be

written as r{; = 2r3. Repeating the same procedure of
1

Sec. I, for 6 = ¢;; we obtain the effective potential

L? 2ML* L*
Ve == ~—3 "o (34)

r? r SMr’

where the first term is related to the centrifugal potential.
The second term represents the relativistic correction due to
general relativity. The third term arises due to the fact that
EKBH geometry depends on a parameter ¢ = g7 Due to
the effect of this potential, we can see the behavior of a
photon surrounding by the EKBH.

VI. EQUATION OF PATH AND CRITICAL
VALUES FOR EKBH

Substituting ¢ = ﬁ in Eq. (12), we obtain the first order
nonlinear differential equation for path

(%)2 —_ B(u) = 0, (35)

W here
u u u .

In Eq. (36) we need to apply the circular orbit condition.
This condition gives a cubic equation that has one real root

u{ <0 and two distinct positive roots such that
u§ > us > 0. The roots are
o To—=2M—=2./(r; —3M)M
e AMrS ’
., 1
U, =—,
27
re —2M + 2+/(r5 —3M)M
ug = T 2M 2y (ro = SM)M (37)
4Mrs

Therefore, Eq. (36) can be rewritten as

BE(u) = 2M(u = ) (u = u5) (u = u§).  (38)

PHYSICAL REVIEW D 92, 084042 (2015)

If we replace again this equation into the equation of path,
Eq. (35), we obtain

du 1
— =4 . 39
@ A
In the limit u = 0 (r - o0), Eq. (35) gives
_¢
u=- -+ constant. (40)

For the critical value of the closest approach (radius of

photon sphere r,), applying the second circular orbit
du dB*(u) —
d¢ |u=}0 dep |u=%0 -
0 in Eq. (35), we get r{, =4M and r{ = 12M. Here,
re, = rf; gives a degenerate solution (with b = 0) whereas

ré. = rps gives the photon sphere. Now, by putting the value
of b§. into Eq. (35) and using the condition of circular orbit

B¢(u) = 0, we get the critical value of the impact param-

eter, which is b¢ = 6\@M . For EKBH the relation
between r, and b is

condition = 0, and then the condition

bV b* + 192M?
12M

[1 B { (b* +288b7 + 13824)}} b?
X COS | = COS - 3 - .
3 b2 (b* + 192M?): 24M

(41)

ré =

S—_

— o0=0
=== 0=0.125

FIG. 7 (color online). Closest approach r, as a function of the
impact parameter » for the EKBH. We see that by increasing the
value of the impact parameter b the closest approach r, increases.
Schwarzschild black hole case (6 = 0) is taken as reference while
for EKBH we take ¢ = 0.125 with M = 1.
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VII. BENDING ANGLE FOR EXTREME
KISELEV BLACK HOLE

The bending angle for the extreme Kiselev black hole
can be obtained by putting Eq. (39) into (26) where
r, — r¢. Doing this we obtain

du—m. (42)

1
2 1
&6 — 2/ o
0 /2M(u — u$)(u — u$)(u — uf)
We can decompose the limits and convert the integral

into complete and incomplete elliptical integral forms as
follows:

L
&e:,/i{ : du
M) \/u‘f—u u—us)(u§ —u)

—z. (43)

/wl—u (- u»(u@—u)‘”‘}

Both integrals can be recognized in terms of a first kind
of elliptical integral [35], where the integrand has the
condition u§ > u§ > u§. Thus we have

12 [2F(We, k) 2F(Ws, k¢
&e |: ( 1 ) ( = 2 e):| _ (44)
Vus—uj  \Jus—uj
Simplification of Eq. (44) gives
i 2r; { (W5.k) _ F(35, kg)}
at =4 —
V(e =3M)M |\Ju§ —uf  \Ju§ —us
(45)

For EKBH, elliptic integral parameters can be defined as

o —=2M —=2\/(r; —3M)M
2 w= sin‘l\/ro (rs ) :

re —6M —2.\/(ré —3M)M
(46)

=

|

Modulus k¢ has range 0 < [k¢|> < 1, where

o \/6M - rg +2y/(rg = 3M)M @)

4./(re =3M)M

Thus, the exact bending angle for EKBH lensing is given
by

2
& =2, 0 K (k) — F(U, k)] — 7, (48)
(ré —=3M)M
where F(5.k°) = K(k¢) defines the complete elliptical

integral and F(W¢, k¢) is an incomplete elliptical integral.
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FIG. 8 (color online). For extreme Kiselev black hole lensing,
the bending angle a¢ is a function of the impact parameter b
(setting M = 1). In this case, the bending angle also depends on
the value of the quintessence parameter o. In this figure, o =
0.125 is the value for the extreme case while ¢ = 0 is for the
Schwarzschild black hole bending angle taken as a reference.

Figure 8 shows that by increasing the value of b, the
bending angle decreases. The dashed curve shows
the bending angle for EKBH, while the solid curve shows
the bending angle for the Schwarzschild black hole. Both
curves display the same behavior since they have one
horizon. In EKBH lensing, the event horizon is twice the
Schwarzschild’s horizon (r};). However, the difference
between these two bending angles is that in the extreme
case, the bending angle is larger than the Schwarzschild
black hole bending angle because if we increase the value
of the quintessence parameter o, the bending angle will also
increase.

VIII. ALTERNATIVE APPROACH FOR FINDING
BENDING ANGLE

Gravitational lensing phenomena involves the study of
the null geodesic equations. When the solution of the
space-time geometry (2) extends, an event horizons exist at
r, and r_; see Eq. (7). Our main interest is in the region that
lies between the horizons, which is called the photon sphere
rps [EQ. (15)]. Therefore, the deflection will occur when a
ray of light passes through that region with the closest
approach r,. In order to compute the bending angle & we
need to compute the value of the impact parameter b. If we
divide Eq. (11) with (12) we obtain

d 1
= “9)
roo2 # _ rlz ( 21)4 or)
Now, for the closest approach r = r, and d{;} |, = 0, we

will have
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r
b(r,) = = : (50)
1 -2 _ or,
By substituting Eq. (50) in Eq. (49), we obtain
d 1
i = . (51

o JEP =2 = or,) - (1 -2~ or)

We adopt the procedure of [34], thus we will use the
following bending angle formula:

ood¢
=2 —dr —nr. 2
a l drdr b3 (52)

o

By using Eq. (51), the deflection angle for a light ray
becomes

(53)

The geometry of a lensing phenomenon is shown in Fig. 9.
This figure is commonly called the “lens diagram.” The
lens equation can be expressed as [10]

D
tan f = tan 6 — —= [tan(a — ) + tan 6], (54)
Dos

where Dj g is the distance from the lens to the source and
Dy is the distance from the observer to the source. We also
have

FIG.9. The lens diagram. The positions of observer (O), source
(S), lens (L), and image (I) are shown. The observer-lens,
observer-source, and lens-source distances are represented by
Doy, Dos and Dy g, respectively.
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b(r,) = Dgy sin0, (55)

where Dy, is the distance from the observer to the lens.
Angular positions of source and images are represented by
p and 0, respectively, while the deflection angle due to a
black hole is denoted by «a as it is shown in Fig. 9. Now, if
we convert the distance and the impact parameter in terms
of the Schwarzschild black hole radius, we find

r r
X=—\ , ==, b(r,) = 2Mb(X,).
oM oM (7o) (Xo)
DOL DOS DLS
d — i —_— ) - . 56
o oM DYV 57 oM (56)

From here, we will introduce a new quintessence parameter
06y, =2Mo in terms of the Schwarzschild radius. Using
Egs. (55) and (56) in Egs. (53), (50), (7), and (15)
respectively, we get

% X
a(Xo):2/ d -7,
% X\ G~ =0 X,) = (1-;=0/X)
(57)
X
b(X,) = ] = =d,; sin0), (58)
1 _X__GfX()
11N 1—T=30,
Xy=5—F—\/7—0¢ Xps =———
P
20f Oy 4 (%

(59)

where Xy denotes the distance from the horizons and X, is
the distance from the photon sphere. In order to find the
position of images, we need to solve Eq. (54) for the source
position S along with Eqs. (57) and (58).

Generally, for a circular symmetric lens, the magnifica-
tion is given by [10]
sin  dp|-!
sin @ do

(60)

Here, the tangential magnifications and the radial magni-
fications are respectively defined as

: -1 dB\ -1
o = <:E§> : MrE<d§> : (61)

By differentiating both sides of Eq. (54), we get [36]

() o (22 ()]
df \cos6 dys cos(a—0) do

(62)
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where 42 = dd—;’od;;”. By taking the derivative of Eq. (57)

with respect to X,, we obtain

-dX.
L 22X (M =g-=0,X,) = (1—5—0,X)]

o X()
(63)

da _/oo X(2X0—3—O'bﬂX3)
dXo_ X

Finally, by differentiating Eq. (51) with respect to 8 on both
sides and doing some simplifications we get

(64)
IX. WEAK FIELD LIMIT

We are going to take some approximations in this
section. If the source and the lens are aligned, then we
can approximate tan # & # and tan @ = 6. For the relativistic
images we can write Aa = 2nrx + Aa,, (wWhere n is an
integer) and 0 < Aa, < 1. Hence, we can replace tan(a—0)
by Aa, — 0. If the ray of light reaches the observer after it
turns around the black hole, the deflection angle o must be
very close to 2z. Therefore, Eq. (54) becomes

D dy,
f=0-"5Aq, =0-"LAaq,, (65)
DOS dos

and the impact parameter is b = d ;6.

Relativistic images are formed only if the ray of light
passes very close to the photon sphere. For the closest
approach X, it is convenient to write

X, =X, +e (0Lex). (66)
For a Schwarzschild black hole, the approximated deflec-
tion angle will be [11]
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2+43
E|l —T
18

an~ _zm[ (67)

Therefore, we shall also look for a similar approximation
[36]

a=—Aln(Be) — x, (68)
where A and B are positive numbers that we take from [36].

However, in our case these numbers will depend only on
o,. Therefore, we will have

d
A= lim [—(XO—XPS) th]

X,—X, bs
[exp{ (- (—lexa,f{ﬂ) }]

B = lim
(Xo _Xps>

X,,—»XpS

(69)

Now, by taking the value of X, from Eq. (66) and by
putting that expression into Eq. (58), we get the impact
parameter in terms of & as

Xps + €
\/1 — 5 0e(Xp + )

b(Xps +€) = (70)

If we use a Taylor expansion in € up to second order in
Eq. (70), we get the impact parameter as

b= C - Dé, (71)

where

(1 - vT=30,)

C:af\/—l +/1=30,+ 20, (2
|
o{-(2-2y1=-306;) +06,(8—-5y1—=306,—060,)} (73)

D= .
2(=1 41 =30, +26,)*\/-2 +2/1 =30, + 56, — 20,,/1 = 30,

Now we can find the value of & from Eq. (71) using

C—b
_ =0 74
¢ D (74)

Finally, If we substitute the value of ¢ [Eq. (74) into (68)],
we obtain the approximated bending angle expression

SN P R

X. RELATIVISTIC IMAGES

Virbhadra and Ellis defined “relativistic images” of a
gravitational lens as those images which occur due to light
deflections by angles & > 3z/2 [10]. Similarly, when
p =0 and & > 2z, the location of relativistic “Einstein
rings” are specified [37]. For a fixed value of 5, we can get
0 related to the positions of corresponding images. Thus,
we can do an approximation using a first order Taylor
expansion around a = 2nz for the position of the nth
relativistic image [36]
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9%62 _pnAan’ (76)
where 6 = 69 at « = 2nz and
do

=—— 77

P da a=2nx ( )

For the value of 6 we take Eq. (75), and we get
1 D =2
G—d—d{C—ﬁexp{X((x—&—ﬂ)H, (78)

0o — diO] [c - %exp{%z(Zn + 1)::}] o (19)

Taking derivatives in (79) and then substituting into (77),

we obtain
1 [2D -2
From Eq. (76), we have
Ag, w220 (81)
—Pn

Using Eqgs. (79) and (80) in (81), we get

A (dy,B? 2
Aa, o [{ oll) exp{A(2n + 1)7:}}6”

o))

Substituting Eq. (81) into (65) yields

(83)

Putting Eq. (82) into (83), we get
dydy (AB? 2

=11 —(2 1 0

p= |1+ B el S 1 o,

_Z_Z[%{E%C xp{ (2n+ )z }—1}]. (84)

In order to obtain the approximate position for the
relativistic images, we neglect the number 1 because

(d‘* 9 > 1) in this approximation. Therefore, we have
dos [2D

-2
= s [ e Ve

dlo] {C—%exp{%z@’“r 1)”}]- (85)
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Here in Eq. (85), if the source, lens, and image are perfectly
aligned then # = 0 and we can obtain the Einstein ring with
angular radius

1 D -2
o = " [C_ECXP{KQ’Q + l)ﬂH =609. (86)
(&)

The amplification of the nth relativistic image is given by

p dap
— 7
s (87)
Tangential magnification for relativistic images is
0,
He = ?
d 2D -
= |— —(2 1
ad. [ABzexp{ 1 (2n + )HH
1 -2
G 7 &Py (2n+ 1)z (88)

Radial magnification for relativistic images is

exp{%z(Zn + 1)7:}]. (89)

Thus, the total amplification of the nth relativistic images

can be calculated by combining both tangential magnifi-

cation Eq. (88) and radial magnification Eq. (89) in (87),
1 dy [ZD

which yields
2 (2n+1)
|ﬁ| dlsdol ABZ P A ! g

y [dil {c _ %exp{%z@n + 1);:}}]. (90)

Here, if the observer, lens, and source are aligned ( = 0),
the amplification will diverge. Therefore, the size of the
relativistic images will become very small and the bright-
ness will be low. For the total magnification of relativistic
images, the sum of the relativistic image is taken into
account

do, _
dg

dos
dls dol

2D
Hr =

AB?

Hn =

2 dy

=2 =——2X% 0 91
lﬂn |ﬁ| dls n=1 npn ( )
Now, by using the geometric series X° a" = 1% for

la| < 1, the total magnification of the relativistic images
will be
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2 dy 2D [D [ exp(=12z/A)
MR 8] 2y AB? B2 \1 = exp(—87/A)

XI. DISCUSSION

We have studied the GL scenario for nonextreme, naked
singularity and extreme cases for KBH. We discussed the
null geodesics for these three cases in order to study the
behavior of the scalar field. We observed that effective
potential and the null-geodesics trajectories depend on the
quintessence parameter. From Figs. 1 and 6, we found that
the potential does not have a minimum value so there is no
stable circular orbit for photons. Moreover there are only
unstable orbits for all cases. We also studied the behavior of
light in the lensing process of KBH. Figures. 2 and 7, we
ensured that as the value of impact parameter b is increased
the value of r, increases. We have worked with the
quintessence field, so due to the effect of quintessence
parameter o, the situation gets reversed i.e., closest approach
r, decreases by increasing the value of b and light goes
closer to the KBH. Moreover, when o reaches to 0.125, the
r, remains constant with respect to b. For this, we calculated
the equation of the path and the bending angle &. After that,
we converted this expression in terms of elliptic integrals.
The bending angle depends on the value of ¢. For each case,
o has different limits. We solved the elliptical integrals
numerically and studied their behavior via plots in Figs. 3-5,
and 8.

We also studied a GL phenomenon for nonextreme KBH
(0 < o < gi7). In this case, it can be seen from Fig. 3, that
as the value of the impact parameter increases, the bending
angle decreases. Nevertheless, for the whole process, for a
large value of o, light goes closer to the black hole and the
bending angle would be larger. Furthermore, when we
compared it with the Schwarzschild case, we observed that
@ is smaller than the bending angle for the nonext-
reme case.

For a GL phenomenon for EKBH, we have ¢ = ﬁ
From Fig. 8, we noticed that as the impact parameter b

PHYSICAL REVIEW D 92, 084042 (2015)

increases, the bending angle &° for EKBH decreases. When
we compared it with Schwarzschild black hole, we
observed that its behavior is similar to the Schwarzschild
black hole bending angle &° and nonextreme bending
angles, since EKBH has only one horizon which is twice
the Schwarzschild’s horizon. However, a° is greater than
the &°.

To study GL phenomena for naked singularity, we took
o> 8LM In this case, the behavior of the light is totally
different as there is no horizon and the value of the closest
approach r, will remain constant with respect to b. From
Fig. 4, it can be seen that as we increase the value of b, the
bending angle increases. However, from Figs. 4 and 5, one
can conclude that the bending angle is smaller for large o.
For the case of naked singularity, we found that the bending
angle is larger than the nonextreme, extreme, and
Schwarzschild cases. (The order of the bending angles is
naked singularity > extreme KBH > nonextreme KBH >
Schwarzschild black hole.) Additionally, the behavior of a
naked singularity bending angle is almost opposite both
nonextreme KBH and extreme KBH bending angles. We
calculated the bending angle by another approach in
Sec. VIII and we found that the results are similar for
both approaches. We have also calculated the approximated
bending angle by using the weak field limit. The expression
for the magnification of relativistic images are also derived.

One can generalize this analysis and comparison for the
Reissner-Nordstrom black hole surrounded by quintes-
sence matter and the study of relativistic images can also
be done more rigorously. This type of work might be
important for studying the highly redshifted galaxies,
quasars, supermassive black holes, exoplanets, dark matter
candidates and so on.
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