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Firstly, we present a reformulation of the standard canonical approach to spherically symmetric systems
in which the radial gauge is imposed. This is done via the gauge unfixing technique, which serves as the
exposition in the context of the radial gauge. Secondly, we apply the same techniques to the full theory,
without assuming spherical symmetry, resulting in a reduced phase space description of general relativity.
The canonical structure of the theory is analyzed.
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I. INTRODUCTION

General relativity viewed from the canonical perspec-
tive is a theory governed by constraints. The constraints
are first class [1] and, therefore, generate gauge trans-
formations. These transformations, being the canonical
realization of the general principle of relativity, represent
not only the invariance of the physical content of the
theory with respect to changes of coordinates, but are also
intricately related to the dynamics of the theory. In fact,
general relativity is a fully constrained theory, meaning
that the Hamiltonian consists only of constraints, which is
the central issue in the so-called problem of time. One of
the approaches introduced in the literature to deal with the
constraints is the procedure of deparametrization [2,3].
Usually, the procedure makes use of some carefully
tailored matter content of the theory to define physical
coordinates and, therefore, fixes the freedom in the choice
of coordinates. A recent application of deparamterization
was discussed in [4], where it has been used in two ways.
Firstly, the presence of nonrotating dust was exploited.
Deparametrization with respect to it endowed the theory
with a preferred notion of time. Such a construction had
been known in the literature [3]. The new input of [4] was
to deparametrize the remaining gauge freedom, of spatial
diffeomorphisms, with the use of certain geometrical
quantities. The construction was based on the introduction
of an observer: a point in the spatial manifold and a
preferred frame which represented the spatial directions as
described by the observer. It resulted in a construction of
observables invariant with respect to spatial diffeomor-
phisms (preserving the observer). Moreover, the paper
contained a derivation of the Poisson algebra of the
observables and some remarks on the possibility of using
that construction for solving the diffeomorphism con-
straint and, hence, obtaining a reduction of the phase

space of general relativity. Such a reduction is completed
in the current paper.
A related construction of observables has recently been

of interest [5–7], partially in the context of the AdS/CFT
correspondence. The main difference with the construction
presented in [4] and underlying the current phase space
reduction is that in those works, the Hamiltonian constraint
is also being gauge-fixed geometrically. By the virtue
of the additional gauge condition, the geodesics involved
in specifying the observables are spacetime geodesics, as
opposed to spatial geodesics in [4].

II. MOTIVATION

The construction of the observables in [4] can be viewed
as expressing the canonical fields in a certain, carefully
chosen, geometrical coordinate system. It is a system of
coordinates centered in a point which represents the
location of the observer. Points of the spatial manifold
are then labeled by their proper distance from the observer
and the angles which describe the direction in which a
given point is located with respect to the observer. The
usage of the proper distance from the observer is a very
peculiar feature of the construction, and it is transferred to
the reduced variables suggested by [4]. Namely, it implies a
special role played by the surfaces of constant radial
distance from the observer. It turns out that the internal
geometry of those surfaces (the components of the metric
tensor tangent to them) and the tangential components of
the momentum of the metric are the variables which suffice
(together with fields describing the matter content of the
theory, in case they are present) for the description of the
geometry. On one hand, this fact enables the reduction of
the description of the system to those variables. On the
other hand, it seems naturally suited for describing physical
systems whose configurations favor a system of concentric
structures. Such a situation takes place in the case of
spherically symmetric configurations. There the concentric
surfaces become spheres, and their internal geometry can
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be described by a single function related to the area of a
given sphere.
The current paper presents a derivation of the reduced

phase space, which stems from the insights of [4]. The
derivation follows a route of gauge fixing, and since
spherical coordinates similar to the ones used here have
been used many times in the literature, we chose to call the
choice of the gauge we are using the radial gauge (see, e.g.,
[8]). It leads to reduced variables that have Dirac brackets
identical with the corresponding Poisson brackets of the
observables constructed in [4]. The derivation concerning
the full theory is preceded by one performed in the context
of spherical symmetry. This serves two purposes. Firstly, it
exposes various features of the radial gauge and of the
methods that are employed in the current paper, e.g., in the
spherically symmetric setting, a certain physical choice is
more transparent and the nonlocalities which appear in the
Hamiltonian are easier to understand. Secondly, the pecu-
liar feature of the reduced variables of the full theory
opened a new possibility for a quantization of the theory.
After a translation to connection type of variables and a
quantization relying on loop quantum gravity techniques,
the geometry becomes effectively 2þ 1 dimensional,
which is a significant simplification. Because of the
peculiar feature of the radial gauge, the quantum theory
obtained in this way can readily accommodate a quantum
definition of spherically symmetric configurations. In fact,
there is more then one definition possessing different
advantageous properties. A detailed discussion of the
quantization of the reduced phase space obtained in the
current paper, together with the identification of the spheri-
cally symmetric sector of the theory is presented in a
companion paper [9] and summarized in [10].

III. SPHERICALLY SYMMETRIC
MIDISUPERSPACE

In this section, we will apply the radial gauge to the
spherically symmetric midisuperspace treatment of general
relativity. On one hand, this serves as an introductory
exercise to better understand this gauge in the context of
full general relativity and to compare our results to previous
work in the context of midisuperspaces. On the other hand,
we use the resulting Hamiltonian as an ingredient in one of
the definitions of spherical symmetry in the companion
paper [9] (see also [10]), since it preserves the respective
quantum states as an operator on the full Hilbert space.

A. Canonical structure

We start following the treatment of the Arnowitt-Deser-
Misner (ADM) [11] formalism for spherical symmetry
performed in [12]. The coupling of nonrotating dust is
discussed in [13] (and references therein). We will briefly
recall the main steps here.

The gravitational part of the action we will work with is1

SGR½q� ¼
χ

16π

Z
dtd3σN

ffiffiffiffiffiffiffiffiffiffi
det q

p
ðKijKij − ðKi

iÞ2 þ ð3ÞRÞ:
ð1Þ

The spherically symmetric midisuperspace sector of the
ADM formulation of general relativity can be obtained by
restricting the spatial line element to

ds2 ¼ Λ2ðr; tÞdr2 þ R2ðr; tÞdΩ2; ð2Þ

while the restriction affects the lapse function Nðr; tÞ and
the shift vector field ~Nðr; tÞ by restricting the shift to only
having a radial component Nrðr; tÞ. Both of them are, of
course, only functions of r and t in the symmetric context.
The canonical analysis performed in the given variables
leads to the following Poisson brackets

fRðrÞ; PRðr̄Þg ¼ δðr − r̄Þ; fΛðrÞ; PΛðr̄Þg ¼ δðr − r̄Þ;
ð3Þ

where the momenta are defined by

PR ¼ −
χΛ
N

ð _R − NrR0Þ − χR
N

ð _Λ − ðΛNrÞ0Þ;

PΛ ¼ −
χR
N

ð _R − NrR0Þ; ð4Þ

where a prime denotes a radial derivative and a dot, a
derivative in time. The spatial diffeomorphism constraint
retains only its radial component and reads

C½ ~N� ¼
Z

∞

0

drNrðPRR0 − ΛP0
Λ þ CmattÞ; ð5Þ

whereas the Hamiltonian constraint is given by

H½N� ¼
Z

∞

0

drNh

¼
Z

∞

0

drN

�
1

χ

�
ΛP2

Λ

2R2
−
PRPΛ

R

�
þ χ

�
RR00

Λ
−
RR0Λ0

Λ2
þ R02

2Λ
−
Λ
2

�
þ hmatt

�
; ð6Þ

where Cmatt and hmatt are contributions from matter fields
(in case they are present in the theory).

1Notice that to restore the units convention G ¼ 1 ¼ c used in
[12], one should put χ ¼ 1 and to restore the units convention
commonly used in quantum gravity literature, namely,
8πG ¼ 1 ¼ c, one should put χ ¼ 8π. Note also that the latter
convention will be used throughout Sec. IV.
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The addition of nonrotating dust to the theory introduces
terms into both of the above constraints; however, after
deparametrizing with respect to the dust field (following the
prescriptions discussed in [3]), the vector constraint regains
the above form, while the Hamiltonian constraint is
replaced by a true Hamiltonian equal to

H½1� ¼
Z

∞

0

drh: ð7Þ

B. Mass functional

As it was noted in [12], in spherical symmetry, it is
possible to give a local definition of a mass functional. One
can check by explicit calculation that the expression

m ≔
1

2

�
P2
Λ

R
þ R

�
1 −

R02

Λ2

��
ð8Þ

has weakly vanishing Poisson brackets with the vacuum
vector and Hamiltonian constraints. Moreover, its spatial
derivative vanishes on the constraint surface, and therefore,
the functional is in fact a constant throughout space and
time. The reason why this functional represents the mass
becomes apparent once asymptotic conditions and possible
boundary terms are taken into account (this is discussed in
Appendix B) or when the Schwarzschild solution is
investigated (see Appendix C).

C. Gauge (un)fixing—measuring distance from zero

The next step is to implement the radial gauge. We
choose

ΛðrÞ ¼ 1; ð9Þ

since it corresponds to choosing the radial coordinate r to
measure the proper distance. In this section, we will discuss
a construction which corresponds to having r measuring
the distance from the center of symmetry (or zero). In
Sec. III D, we will discuss an alternative construction in
which the distance will be measured “from infinity”.
A technique equivalent to employing the Dirac bracket

[with respect to the gauge fixing (9) and the spatial
diffeomorphism constraint], is to use gauge unfixing
[14,15]. This amounts, in the first step, to modify the
momentum PΛ in all constraints except for C by powers of
C in such a way that it Poisson commutes with the gauge
fixing condition on the gauge fixing surface, thus having
equal Dirac and Poisson brackets. In a second step, one can
interpret C as a gauge fixing for (9) and drop it. Since (9) is
Poisson commuting with the remaining constraints (in this
case, only the Hamiltonian constraint) after PΛ has been
modified as described above inside the other constraints,
(9) becomes a first class constraint. As said before, this is
classically equivalent to employing the Dirac bracket or

using (9) to gauge fix C2. In this paper however, we will
not drop C from the list of constraints, but merely use
techniques developed in the context of gauge unfixing [15]
to express the Hamiltonian in terms of the reduced
variables, see Eqs. (15) and (17) (in other words, to
compute a gauge invariant extension thereof3).
There are two main reasons for which we choose to use

the gauge unfixing method. Firstly, it can be seen as a
method of directly finding the Hamiltonian preserving the
gauge, which in some cases (e.g., the nonsymmetric case in
this manuscript) leads to a more straightforward way of
obtaining such a Hamiltonian. Secondly, it provides a clear
phase space picture of the process of implementing the
gauge fixing (see Fig. 1). However, as has been said before,
the gauge unfixing method is equivalent to the standard
Dirac procedure of implementing the gauge fixing. This can
be best seen in Secs. III E and IV D, where the standard
approach of solving the constraints in a given gauge is
discussed. Also, the shift vectors discussed in Appendix A
are closely related to the shift vectors needed to invert the

FIG. 1 (color online). The picture illustrates schematically the
gauge unfixing procedure. Γ is a phase space in which the theory
is defined. The lined, red (for colors, see online) surface C is the
constraint surface on which the lines represent gauge orbits. The
vertical, blue surface G is the surface on which the gauge fixing
condition is satisfied. The thick black line D ¼ C∩G denotes the
points in Γ that we are most interested in. The procedure of gauge
unfixing provides us with an extension of the Hamiltonian off C
such that the Hamiltonian vector field of the extended Hamil-
tonian is tangent to both C and G, and therefore also toD. In fact,
gauge unfixing defines dynamics (equivalent to the one taking
place in C) on all of G; however, it is the restriction to D which
allows for a simple link between the two.

2Changing the constraint structure, however, might be advanta-
geous in the quantum theory, which was the original motivation
for introducing gauge unfixing in [14].

3Practically, this means adding a power series in the vector
constraint to PΛ and inserting the resulting expression in the
Hamiltonian. In the case of general relativity (coupled to matter
fields), the series for PΛ terminates after the first term, and one
obtains a manageable expression for the Hamiltonian.
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Dirac matrix if one chooses to use the Dirac bracket
approach.
Consider an expression linear in PΛ, that is, the field

smeared with a phase-space-independent function μ. Our
goal is to find a function M

μ
ðr̄Þ such that, denotingZ

∞

0

gdrPΛðrÞμðrÞ ¼
Z

∞

0

drPΛðrÞμðrÞ − C½M
μ
� ð10Þ

the tilded expression satisfies�
ΛðrÞ;

Z
∞

0

gdrPΛðrÞμðrÞ
�

¼ 0 ð11Þ

on the gauge fixing surface ΛðrÞ ¼ 1. This condition yields
the equation

∂rM
μ
ðrÞ ¼ μðrÞ: ð12Þ

SinceM
μ
, being a smearing field of the vector constraint in the

spherically symmetric context, has to vanish at zero,4 we have

M
μ
ðr̄Þ ¼

Z
r̄

0

d ¯̄rμð ¯̄rÞ: ð13Þ

It will be convenient to have an expression for ~PΛðr̄Þ,
which we can obtain from the above procedure, choosing
μð ¯̄rÞ ¼ δðr̄ − ¯̄rÞ. It follows that

~PΛðr̄Þ ¼ PΛðr̄Þ −
Z

∞

r̄
d ¯̄rCrð ¯̄rÞ: ð14Þ

Notice that on the gauge fixing surface

~PΛðr̄Þ ¼ PΛðr̄Þ −
Z

∞

r̄
d ¯̄rðPRR0 − P0

Λ þ CmattÞð ¯̄rÞ ð15aÞ

¼ PΛðr̄Þ −
Z

∞

r̄
d ¯̄rðPRR0 þ CmattÞð ¯̄rÞ − PΛðr̄Þ

ð15bÞ

¼ −
Z

∞

r̄
d ¯̄rðPRR0 þ CmattÞð ¯̄rÞ; ð15cÞ

where we used the fact that PΛðrÞ → 0 when r → ∞.5 It is
not surprising that PΛ drops out from ~PΛðr̄Þ, since by the
virtue of (11) on the gauge fixing slice

δ ~PΛ

δPΛ
¼ 0: ð16Þ

We are now ready to gauge (un)fix our model. This is
done by setting ΛðrÞ ¼ 1 and using the expression (15c) in
the Hamiltonian. The Hamiltonian turns out to be

H½N�jgauge-fix ¼
Z

∞

0

drN

�
1

2χR2

�Z
∞

r
dr̄ðPRR0 þ CmattÞðr̄Þ

�
2

þ PR

χR

Z
∞

r
dr̄ðPRR0 þ CmattÞðr̄Þ

þ χ

�
RR00 þ R02

2
−
1

2

�
þ hmatt

�
: ð17Þ

It is instructive to look at the procedure of gauge fixing applied above from the perspective of the unreduced phase space. As
it is argued in Appendix A 1, employing the radial gauge amounts to fixing the shift vector to be

Nr
HðrÞ ¼

1

χ

Z
r

0

dr̄Nðr̄Þ
�
PR

R
ðr̄Þ − PΛ

R2
ðr̄Þ þ 1

2R2
ðr̄Þ
Z

∞

r̄
d ¯̄rCrð ¯̄rÞ

�
: ð18Þ

In case one couples the model to nonrotating dust and deparametrizes the Hamiltonian constraint with respect to the
proper dust time, one obtains the true Hamiltonian in the form

Htruejgauge-fix ¼
Z

∞

0

dr

�
1

2χR2

�Z
∞

r
dr̄ðPRR0Þðr̄Þ

�
2

þ PR

χR

Z
∞

r
dr̄ðPRR0Þðr̄Þ þ χ

�
RR00 þ R02

2
−
1

2

��
: ð19Þ

To sumup,wehave solved the spatial diffeomorphismconstraint via thegauge unfixing procedure, using thegaugeΛðrÞ ¼ 1.
The reduced phase space turns out to be coordinatized byRðrÞ andPRðrÞ, subject to the Hamiltonian constraint (17). Since the
Hamiltonian constraint Poisson commutes with the gauge fixing condition due to the addition of spatial diffeomorphism
constraints, the Dirac and Poisson brackets are equivalent, and the dynamics can be readily computed using either one.

4This is the case for regular spacetimes. See Appendix C for a discussion of an example of a more general setting.
5This condition is satisfied for spacetimes which are asymptotically flat. See Appendix B for a more detailed discussion of

asymptotical flatness. Note, that in the case of the construction from Appendix C, this condition is not satisfied; however, in the
construction presented there, it is also not necessary.
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Having obtained the reduced phase space, let us compute
the equations of motion for the variables in it. For the sake
of conciseness, let us spell them out for the case depar-
ametrized with the use of nonrotating dust (with no
additional matter) and using the convention χ ¼ 1. They
turn out to be

_RðrÞ ¼ −
FðrÞ
RðrÞ þ R0ðrÞ

Z
r

0

dr̄

�
PRðr̄Þ
Rðr̄Þ −

Fðr̄Þ
R2ðr̄Þ

�
; ð20aÞ

_PRðrÞ ¼ −R00ðrÞ þ P2
RðrÞ
RðrÞ − 2

PRðrÞFðrÞ
R2ðrÞ þ F2ðrÞ

R3ðrÞ

þ PR
0ðrÞ

Z
r

0

dr̄

�
PRðr̄Þ
Rðr̄Þ −

Fðr̄Þ
R2ðr̄Þ

�
; ð20bÞ

where FðrÞ ¼ −
R
∞
r dr̄ðPRR0Þðr̄Þ is the expression (15c)

of ~PΛ in terms of the reduced variables. These equations
are hard to solve in general; however, we can readily
identify the trivial solution. Putting PRðrÞ ¼ 0 con-
stantly in time, we find

_RðrÞ ¼ 0; ð21aÞ

0 ¼ R00ðrÞ; ð21bÞ

which has a unique solution RðrÞ ¼ r [since by con-
struction Rð0Þ ¼ 0 and R0ð0Þ ¼ 1], which is a relation
characteristic for flat spacetime. Note that the
Hamiltonian vanishes for this solution. As has been
demonstrated in [3,16,17], the Hamiltonian is equal to
the momentum of the nonrotating dust field we used for
deparametrization. That momentum, in turn, is propor-
tional to the rest mass density of the dust. Therefore, the
vanishing of all of those quantities represents a limit in

which the dust is not present in the theory, and the
spacetime is just the Minkowski spacetime.

D. Gauge (un)fixing—measuring distance from infinity

In this section, we will present a gauge fixing procedure
closely related to the one presented in Sec. III C. The
difference here is that we want our gauge fixing to
correspond to a setting r measuring the proper distance
“from infinity”.
The gauge fixing condition we use in this section is

ΛðrÞ ¼ 1; ð22Þ

like it was previously. Finding a gauge invariant extension
of PΛ [see Eq. (10)] amounts to solving the equation [see
Eq. (12)]

∂rM
μ
ðrÞ ¼ μðrÞ: ð23Þ

Instead of integrating it from zero, as we did in the previous
section, here we will use the fact that the shift vectors we
consider vanish at infinity, which leads to

M
μ
ðr̄Þ ¼ −

Z
∞

r̄
d ¯̄rμð ¯̄rÞ: ð24Þ

This formula leads to the following expression for PΛ as a
function of the reduced phase space variables [compare
with Eq. (15c)]

~PΛðr̄Þ ¼
Z

r̄

0

d ¯̄rðPRR0 þ CmattÞð ¯̄rÞ; ð25Þ

where vanishing of PΛ at zero has been used. The
Hamiltonian of the reduced phase space is [compare with
Eq. (19)]

H½N�jgauge-fix ¼
Z

∞

0

drN

�
1

2χR2

�Z
r

0

dr̄ðPRR0 þCmattÞðr̄Þ
�

2

−
PR

χR

Z
r

0

dr̄ðPRR0 þCmattÞðr̄Þþ χ

�
RR00 þR02

2
−
1

2

�
þhmatt

�
:

ð26Þ

It corresponds to fixing the shift vector to be (derivation is presented in Appendix A 2)

Nr
HðrÞ ¼ −

1

χ

Z
∞

r
dr̄N

�
PR

R
ðr̄Þ − PΛ

R2
ðr̄Þ − 1

2R2
ðr̄Þ
Z

r̄

0

d ¯̄rCrð ¯̄rÞ
�
: ð27Þ

E. Where should we measure from?

In this section, we will compare the two alternative
variants of implementing the radial gauge, discussing the
differences and highlighting the advantages.

The difference between the twoways of “measuring” lies
in the domains over which certain quantities are integrated.
We use the terminology “measuring from zero” because the
expression for PΛðrÞ spelled out in Eq. (15c) generates
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transformations of the fields in the reduced phase space in
the domain from r to ∞. This is what is expected if r
measures the distance from zero, since then a variation of
the metric at a given r should affect the phase space
variables in the radial gauge in points lying further than r.
This fact becomes straightforward when translated to the
language of the observables defined in [4], since the
variation of the metric at a given point affects the radial
geodesics used in the definition of the coordinates needed
for the observables only after they cross the perturbation.
Hence, it is the “measuring from zero” choice which
corresponds more closely to the construction of observables
from [4]. On the other hand, “measuring from infinity”
might be more natural in some settings. Firstly, as we will
see in Sec. IV C, the option which was suggested in the last
section of [4] for a solution of the vector constraint
corresponds to (25). Secondly, it naturally accommodates
the Schwarzschild solution as discussed in Appendix C.
It should be noted that the two expressions for PΛ are

closely related. The vector constraint in the radial gauge can
be rewritten in the form

P0
ΛðrÞ ¼ ðPRR0 þ CmattÞðrÞ: ð28Þ

Integrating it from 0 to ∞, using the fact that PΛð0Þ ¼ 0
and assuming6 limr→∞PΛðrÞ ¼ 0, the following condition
is obtained Z

∞

0

drðPRR0 þ CmattÞðrÞ ¼ 0: ð29Þ

This means, that if asymtoptical flatness (in the sense of
Appendix B) is assumed, this condition needs to be
satisfied throughout the evolution of the system.
However, in such a case, the left-hand side of (29)
Poisson commutes with the Hamiltonian, and therefore,
it can be viewed as a restriction on the initial data consistent
with the dynamics.
The condition (29) renders the two expressions for PΛ

numerically equivalent (they necessarily sum up to zero).
However, they are distinct when viewed as functionals on
the reduced phase space of the theory since they generate
diffeomorphisms of the canonical data in different domains.

F. Summary of the spherically symmetric setting

In the context of canonical spherically symmetric general
relativity, we have presented derivations of two reduced
phase spaces. Each is parametrized by two functions, RðrÞ
and PRðrÞ, of which the first describes the area (given by
4πR2) of a sphere located at the proper distance r from the
center of symmetry, while the latter is its conjugate

momentum. Their dynamics is governed by the
Hamiltonian constraint (17) or (26) [in case we additionally
deparametrize with the use of nonrotating dust, by the true
Hamiltonian (19), or its analogue], yielding equations of
motion spelled out in (20) or their analogue. The reduced
phase spaces support asymptotically flat spacetimes (see
Sec. B 1 of Appendix B, for details), and the initial data is
subject to the condition (29). One of the two phase spaces
may be modified such that the Schwarzschild solution can
be readily identified, for details, see Appendix C.

IV. FULL THEORY

A. Canonical structure and gauge fixing

We will now turn to the full theory and rederive the main
results of [4] via gauge fixing. This way of derivation is
complementary to the explicit construction of the observ-
ables as performed in [4] and leads, as is clear by general
arguments [15], to the same observable algebra. It was the
basic idea of [4] to define a physical coordinate system by
specifying a point σ0 in a spatial slice Σ of the spacetime
manifold and using the exponential map from the tangent
space Tσ0Σ to Σ to define such coordinates. Since the
exponential map relies on radial geodesics, such a choice of
coordinates can be referred to as the radial gauge. The basic
concept of using such a radial gauge is, of course, not new;
however, the detailed description of the observables and
their Poisson algebra has only been worked out recently
in [4].
In order to define local (Gauß) coordinates ðxIÞ,

I ¼ 1; 2; 3, we need to choose three linearly independent
vectors in Tσ0Σ which transform properly under spatial
diffeomorphisms. This can be accomplished as follows: at
σ0, fix a frame e0iI, where in, general, e0iIe0

j
Jδ

IJ ≠ qij and
i; j;… are spatial tensor indices on Σ in some general
coordinate system. Given qij, we now construct the frame

eaI with eiIe
j
Jδ

IJ ¼ qij as

eiI ¼
X3
J¼1

MIJe0iJ; ð30Þ

where MIJ is a lower triangular matrix.7 Now, given an
infinitesimal diffeomorphism acting on qij, we have
qij → qij þ LNqij. The frame eiI constructed as above
could a priori transform as eiI → LNeiI þ LI

JeiJ for some
antisymmetric matrix LIJ. However, it follows from (30)
that LIJ ¼ 0, meaning that the frame eiI transforms exclu-
sively under the same spatial diffeomorphism that qij
transforms under. From this, it follows that the map xI ↦
expðxIeiIÞ is spatially diffeomorphism invariant for spatial
diffeomorphisms Ψ satisfying

6It is a consequence of the asymptotical flatness conditions
discussed in Appendix B. It is is not true, however, in the
generalized setting of Appendix C.

7In fact, eiI is the result of the Gram-Schmidt orthonormaliza-
tion process performed on e0iI with respect to qij.

BODENDORFER, LEWANDOWSKI, AND ŚWIEŻEWSKI PHYSICAL REVIEW D 92, 084041 (2015)

084041-6



Ψðσ0Þ ¼ σ0; Ψ0ðσ0Þ ¼ M ð31Þ
for some lower triangular matrix M. In coordinates, the
second condition translates to ∂INJðσ0Þ ¼ eiI∂iðNjeJj Þðσ0Þ
on the vector field Ni generating Ψ. Such diffeomorphisms
will be later referred to by Diffobs as they where coined in
[4]. These coordinates have only a finite range in general;
however, they are always defined in a neighborhood of σ0,
and their range is maximal in case of spherical symmetry
(up to nontrivial topology). In what follows, we assume
they are defined globally.
Given the Cartesian “Gauß” coordinates ðxIÞ, we can

introduce spherical coordinates ðyaÞ ¼ ðr; θÞ. r then labels
the geodesic distance from σ0, and θ collectively denotes
the two coordinates on surfaces of constant r. We will
denote the two angular coordinates contained in θ as
A;B;…, and a ¼ r; A, following the notation of [4].
Tensor indices can now also be written in terms of these
coordinates. For a general tensor density T of weight ω and
general coordinates ðziÞ, we can write both

TIJ…
KL… ¼

���� ∂ðz1; z2; z3Þ∂ðx1; x2; x3Þ
����ω ∂xI∂zi

∂xJ
∂zj � � �

∂zk
∂xK

∂zl
∂xL � � �T

ij���
kl���;

ð32aÞ

Tab���
cd��� ¼

���� ∂ðz1; z2; z3Þ∂ðr; θ1; θ2Þ
����ω ∂ya∂zi

∂yb
∂zj � � �

∂zk
∂yc

∂zl
∂yd � � �T

ij���
kl���:

ð32bÞ

Wewill call the two introduced coordinate systems adapted
to the metric qij. Note that although both ðxIÞ and ðyaÞ
depend on the metric qij, the relation between them
(xI ¼ rnI , where nI is a unit vector field depending only
on θ) is independent of the metric.
We will work within the ADM formulation [11] of

general relativity coupled to matter fields, that is with
canonical brackets

fqijðσÞ; pklðσ̄Þg ¼ δðσ; σ̄ÞδkðiδljÞ;
fϕαðσÞ; πα0 ðσ̄Þg ¼ δðσ; σ̄Þδα0α : ð33Þ

i; j;… are spatial tensor indices on Σ, and α, α0 label
schematically the different matter field species. We restrict
here to scalar fields for concreteness.
Basically, one would now like to introduce the gauge

qra ¼ δra, where r, a are coordinates adapted to qab, in
order to use the coordinates a ¼ r, A as the physical
spherical coordinates described earlier. However, this
gauge condition does not impose any restriction on qij,
since any metric satisfies this property when expressed in
its adapted coordinates. We therefore specify a reference
metric q

̬
ij on Σ. This metric induces the spherical a

̬
and the

Cartesian I
̬
adapted coordinates via the above procedure.

By construction, we have q
̬
r
̬
a
̬ ðσÞ ¼ δr̬ a̬ . It will now be

crucial to observe that given a second metric qij on Σ,
which in the coordinates adapted to q

̬
ij reads qr̬ a̬ ¼ δr̬ a̬ ,

we have q
a
̬
b
̬ dya

̬

dyb
̬

¼ q
̬
a
̬
b
̬ dya

̬

dyb
̬

þ q̂A
̬
B
̬ dyA

̬

dyB
̬

for some

q̂A
̬
B
̬ . In simple terms, q

a
̬
b
̬ and q

̬
a
̬
b
̬ differ only in the A

̬
B
̬

components, if and only if, they induce the same adapted
coordinate system [4]. Moreover, if qr̬ a̬ ¼ δr̬ a̬ , then the
coordinates adapted to qij and q

̬
ij coincide.

Using the coordinates adapted to q
̬
ij, we can impose the

gauge condition qr̬ a̬ ðσÞ ¼ δr̬ a̬ for the spatial diffeomor-
phism constraint. Since the “check” and “hat” were
introduced only for clarity of the argument in the previous
paragraph, we will now stick to the “checked” coordinates
dropping the notation with the “check”. To proceed with
the gauge fixing, we need to show that the Poisson bracket
of the gauge fixing condition with the vector constraint,
namely,

fqraðσÞ; C½ ~N�g ¼ 2Nðr;aÞðσÞ ð34Þ

is invertible on the constraint surface. This problem has
already been solved in [4], where the equation

2∇ðrNaÞ ¼ ωra ð35Þ

for arbitrary (symmetric) ωra has been solved for the
vector field Na generating an element of Diffobs. The
solution reads

~Nðr; θÞ ¼
�
1

2
ω̄KJð0ÞhJLrnK

	
∂L þ 1

2

�Z
r

0

dr̄ωrrðr̄; θÞ
	
∂r

þ
�Z

r

0

dr̄qBAðr̄; θÞ
�
ωrAðr̄; θÞ −

1

2
∂A

�Z
r̄

0

d ¯̄rωrrð ¯̄r; θÞ
��	

∂B; ð36Þ

where nI is a unit vector field such that xI ¼ rnI, hIJ ¼ δIJ − nInJ, and ω̄KJ is built from the elements of ωKJ in the
following way8

8The bar in ω̄, being a notation inherited from [4], denotes a certain operation on ω, unlike in r̄ and σ̄, where it is used to denote a point
different than r or σ, respectively.
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264 ω̄11 ω̄12 ω̄13

ω̄21 ω̄22 ω̄23

ω̄31 ω̄32 ω̄33

375 ¼

264 ω11 0 0

ω21 þ ω12 ω22 0

ω31 þ ω13 ω32 þ ω23 ω33

375:
ð37Þ

In the following, it will be convenient to rewrite this
solution as9

Na
½ω�ðσÞ ¼

Z
Σ
d3σ̄D−1abðσ; σ̄Þωrbðσ̄Þ ð38Þ

with D−1abðσ; σ̄Þ satisfyingZ
Σ
d3σ̄Dabðσ; σ̄ÞD−1bcðσ̄; ¯̄σÞ ¼ δcaδðσ; ¯̄σÞ: ð39Þ

One more useful notation we introduce is the smeared
gauge fixing condition, namely, for a field νa

qra½νa� ≔
Z
Σ
d3σqraðσÞνaðσÞ: ð40Þ

Note that with the notation we introduced, we can rewrite
(34) in the form

fqra½νa�; C½ ~N�g ¼
Z
Σ
d3σ

Z
Σ
d3σ̄νaðσÞDabðσ; σ̄ÞNbðσ̄Þ

≕ D½ν; ~N�: ð41Þ

The Dirac matrix reads��
C½ ~M�
qra½μa�

�
; ðC½ ~N�; qrb½νb� Þ

�

¼
�
C½L ~M

~N� −D½ν; ~M�
D½μ; ~N� 0

�
ð42Þ

and can be easily inverted on the constraint surface

C½ ~Nobs� ¼ 0 ¼ qra − δra by using (39). The Dirac
bracket between two phase space functions F and G
now reads

fF;GgDB ¼ fF;Gg −
Z
Σ
d3σ

Z
Σ
d3σ̄fF;CaðσÞgD−1abðσ; σ̄Þfqrbðσ̄Þ; Gg

−
Z
Σ
d3σ

Z
Σ
d3σ̄fF; qraðσÞgD−1abðσ; σ̄ÞfCbðσ̄Þ; Gg: ð43Þ

Let us now compute the Dirac brackets between the elementary phase space coordinates qAB; pAB; qra; pra to test if we
recover the same algebra as the corresponding observables formed in [4] (see also remarks on that algebra discussed in
[18]). First, the bracket

fqABðσÞ; pCDðσ̄ÞgDB ¼ fqABðσÞ; pCDðσ̄Þg ¼ δðσ; σ̄ÞδCðAδDBÞ ð44Þ

follows directly. Next, we compute

fqra½νa�; FgDB ¼ fqra½νa�; Fg −
Z
Σ
d3σ

Z
Σ
d3σ̄fqra½νa�; CcðσÞgD−1cbðσ; σ̄Þfqrbðσ̄Þ; Fg

¼ fqra½νa�; Fg −
Z
Σ
d3σ

Z
Σ
d3σ̄

Z
Σ
d3 ¯̄σνað ¯̄σÞDacð ¯̄σ; σÞD−1cbðσ; σ̄Þfqrbðσ̄Þ; Fg

¼ fqra½νa�; Fg − fqra½νa�; Fg ¼ 0 ð45Þ
for an arbitrary F, which exemplifies that it is consistent to impose qra ¼ δra before computing the Dirac bracket. This
corresponds to the identity Qraðr; θÞ ¼ δra for the diffeomorphism invariant observables of [4]. The most interesting
Poisson brackets involve pra. For F independent of prb, we compute (for clarity, we consider pra smeared with a field κa)

fF; pra½κa�gDB ¼ fF; pra½κa�g −
Z
Σ
d3σ

Z
Σ
d3σ̄fF;CbðσÞgD−1bcðσ; σ̄Þfqrcðσ̄Þ; pra½κa�g

¼ fF; pra½κa�g −
Z
Σ
d3σ

Z
Σ
d3σ̄fF;CbðσÞgD−1bcðσ; σ̄Þκcðσ̄Þ

¼ fF; pra½κa�g − L~N½κ�
F: ð46Þ

9Note, that the integrals in Eqs. (38)–(46) are not really geometrically defined, as the notation may suggest. In fact, they are defined as
integrals in the “checked” coordinates mentioned above.
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Also, this Dirac bracket agrees with the observable algebra
from [4]. Finally, the bracket fpra½κa�; prb½λb�gDB follows
analogously.

B. Gauge (un)fixing in the full theory—measuring
distance from zero

Complicated Dirac brackets such as (46) are an obstacle
to quantization. While the reduced phase space is already
coordinatized by the canonical pair qAB, pAB, as well as the
matter fields, the Hamiltonian still contains pra as a
problematic part. Therefore, one either needs a representa-
tion of the Dirac algebra containing pra, or we need to
express pra classically in terms of the remaining variables
by adding constraints. A means to do this is the formalism
of gauge unfixing [14,15] implemented above in the
spherically symmetric case. Here, it boils down to comput-
ing a gauge invariant extension of a phase space function
canonically conjugate to the variable being gauge fixed,
namely pra, with respect to the gauge flow of the gauge
fixing condition qra − δra ¼ 0, by adding terms propor-
tional to the Diffobs spatial diffeomorphism constraint.
Let us consider a phase space independent, symmetric

smearing tensor μab, which will later be limited to have
only some nonvanishing components. We are interested in

gZ
pabμab ¼

Z
pabμab − C½M→

μ
�; ð47Þ

where the vector constraint C contains both the gravita-
tional part and possibly, a contribution from some matter
content of the theory (denoted below by Cmatt). The vector

field ~M
μ
should be chosen such that the condition

�
qra;

gZ
pabμab

�
¼ 0 ð48Þ

holds on the gauge fixing surface. This condition translates to

μra ¼ 2M
μ

ðr; aÞ; ð49Þ

which is an equation of the type (35) and therefore, we can
readily spell out its solution

~M
μ
ðr; θÞ ¼

�
1

2
μ̄KJð0ÞhJLrnK

	
∂L þ 1

2

�Z
r

0

dr̄μrrðr̄; θÞ
	
∂r þ

�Z
r

0

dr̄qBAðr̄; θÞ
�
μrAðr̄; θÞ −

1

2
∂A

�Z
r̄

0

d ¯̄rμrrð ¯̄r; θÞ
��	

∂B:

ð50Þ

For the time being, let us consider only fields μ which are
vanishing at zero. For such fields, the first term in the above
solution does not contribute. Considering first μ to be
such that

μrAðr; θÞ ¼ δðr; r0Þδðθ; θ0ÞqAA0
ðr; θÞ; ð51Þ

we obtain

~M
μ
ðr; θÞ ¼ Θðr − r0Þδðθ; θ0Þ∂A0

: ð52Þ

When implemented in (47), the above vector fields give

~pr
A0
ðr0; θ0Þ ¼

Z
∞

r0

dr

�
D
0

BpB
A0
ðr; θ0Þ −

1

2
Cmatt
A0

ðr; θ0Þ
�

þ lim
r→∞

pr
A0
ðr; θ0Þ; ð53Þ

where a notation from [4] has been employed, namely, D
denotes the derivative covariant with respect to the
tangential metric qAB, and the zero above the symbol
means the derivative is, with respect to the θ0, variable.
Until the end of Sec. IV B, we will drop the last term from

the above formula, assuming it is zero. As will be
discussed later (see Sec. IV D and Appendix B 2), this
is problematic.10 However, for the sake of clarity of
exposition, we adopt this assumption for the time being.
Note that under that assumption, the expression on the
right-hand side does not depend on pra, which is con-
sistent with the condition (48).
Secondly, let us consider μ to be such that only the

μrrðr; θÞ ¼ δðr; r0Þδðθ; θ0Þ ð54Þ

component is nonvanishing. It gives

~M
μ
ðr; θÞ ¼ 1

2
Θðr − r0Þδðθ; θ0Þ∂r

−
1

2
Θðr − r0Þ

Z
r

r0

dr̄qABðr̄; θÞð∂Aδðθ; θ0ÞÞ∂B;

ð55Þ

which leads to the following form of (47)

10In fact, to be mathematically precise, the limit on the right-
hand side of Eq. (53) should be written in front of both terms
together, because only together, they have a finite limit.
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~pr
rðr0; θ0Þ ¼ −

1

2

Z
∞

r0

drððpABqAB;rÞðr; θ0Þ þ Cmatt
r ðr; θ0ÞÞ

þ
Z

∞

r0

drD
0

A

�
qABðr; θ0Þ

Z
∞

r
dr̄

�
D
0

CpC
Bðr̄; θ0Þ −

1

2
Cmatt
B ðr̄; θ0Þ

��
; ð56Þ

where an assumption analogues to the one simplifying Eq. (53) was adopted. Note, that expressions (53) and (56) realize
our aim; namely, they provide expressions for radial components of the momentum pab in terms of the reduced variables:
the purely angular components of the metric and its momentum and possibly, the matter fields.
The only part of ~pr

a we have not addressed yet is its behavior at zero. However, since pij is a tensor density, the
components pr

a vanish at zero. Therefore, we choose ~pr
a to also vanish at zero (since it has to do so on the constraint

surface anyway). One might worry that in this way, we disregarded the first term in (50), but we will see later that such a
choice is dynamically consistent. Actually, to guarantee that indeed ~pr

a given by (53) and (56) vanishes at zero, we need to
impose conditions on the canonical data analogous to the condition (29), namelyZ

∞

0

dr

�
D
0

BpB
A0
ðr; θ0Þ −

1

2
Cmatt
A0

ðr; θ0Þ
�

¼ 0; ð57aÞ

−
1

2

Z
∞

0

drððpABqAB;rÞðr; θ0Þ þ Cmatt
r ðr; θ0ÞÞ

þ
Z

∞

0

drD
0

A

�
qABðr; θ0Þ

Z
∞

r
dr̄

�
D
0

CpC
Bðr̄; θ0Þ −

1

2
Cmatt
B ðr̄; θ0Þ

��
¼ 0: ð57bÞ

Fortunately, also in the current case, these conditions turn out to be preserved by the dynamics, and hence, are just
restrictions of the initial data.Knowing ~pr

a, we are now ready to spell out the Hamiltonian for the reduced phase space. It is

H½N�jgauge-fix ¼
Z

drd2θN

�
2ffiffiffiffiffiffiffiffiffiffi
det q

p G −
ffiffiffiffiffiffiffiffiffiffi
det q

p
2

ð3ÞRþ hmatt

�
; ð58Þ

where 8>><>>:
G ¼ 1

2
ð ~pr

rÞ2 þ 2qAB ~pr
A ~pr

B − qABpAB ~pr
r þ ðqACqBD − 1

2
qABqCDÞpABpCD;

ð3ÞR ¼ ð2ÞR − qABqAB;rr − 3
4
qAB;rqAB;r − 1

4
ðqABqAB;rÞ2;

det q ¼ qθθqϕϕ − ðqθϕÞ2:
ð59Þ

The shift vector that corresponds to this Hamiltonian is
presented in Appendix A 3.

C. Gauge (un)fixing in the full theory—measuring
distance from infinity

Also in the full theory case, an alternative implementa-
tion of the radial gauge can be considered. The vector
constraint in the radial gauge has the form

∂rpr
A ¼ −DBpB

A þ 1

2
Cmatt
A ; ð60aÞ

∂rpr
r ¼

1

2
qAB;rpAB − ∂ApA

r þ
1

2
Cmatt
r : ð60bÞ

The expressions for the ~pr
a present in (53) and (56)

correspond to integrating the above equations from infinity.
As it was pointed out in [4], the components pr

a of the
momentum have to vanish at zero due to its tensor density
character. Therefore, we can integrate the above equations
to obtain (we use the tilde to underline that it is an
expression for some of the components of the momentum
in terms of the variables of the reduced phase space)

~pr
A0
ðr0; θ0Þ ¼

Z
r0

0

dr

�
−D

0

BpB
A0
ðr; θ0Þ þ

1

2
Cmatt
A0

ðr; θ0Þ
�

ð61Þ

and
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~pr
rðr0; θ0Þ ¼

1

2

Z
r0

0

drððpABqAB;rÞðr; θ0Þ þ Cmatt
r ðr; θ0ÞÞ

þ
Z

r0

0

drD
0

A

�
qABðr; θ0Þ

Z
r

0

dr̄

�
D
0

CpC
Bðr̄; θ0Þ −

1

2
Cmatt
B ðr̄; θ0Þ

��
: ð62Þ

The Hamiltonian governing the dynamics of the reduced
phase space is again given by Eqs. (58) and (59); however,
the expressions for ~pr

a should now be taken from the above
two formulas. This Hamiltonian corresponds to fixing the
shift vector field to the one presented in Appendix A 4.

D. Where should we measure from in the full theory?

In this section, we will compare the two implementations
of the radial gauge without assuming spherical symmetry,
discussing their problems and advantages.
Taking into account the asymptotic behavior of the fields

discussed in Appendix B 2, we see that the derivation
presented in Sec. IV B runs into problems. In particular,
(53) and (56) are not well-defined because the integrands
are, in general, not integrable at infinity. Those expressions
can be viewed as solutions of the vector constraint

∂rpr
A ¼ −DBpB

A þ 1

2
Cmatt
A ; ð63aÞ

∂rpr
r ¼

1

2
qAB;rpAB − ∂ApA

r þ
1

2
Cmatt
r : ð63bÞ

Applying the asymptotics from Appendix B 2, we see that
DBpB

A can, in general, be finite for r going to infinity and
hence, it is not integrable in this limit. There are at least two
possible ways to deal with this problem. Firstly, one can try
to impose a more stringent falloff behavior of the momen-
tum field. This is problematic because of the necessity of
such an imposition to be dynamically consistent, i.e.,
preserved by the Hamiltonian. Secondly, one can try to
replace the equations for pr

a with equations for pra. It leads
to the following form

∂rprA þ qABqBC;rprC ¼ −DBpBA þ 1

2
qABCmatt

B ; ð64aÞ

∂rprr ¼ 1

2
qAB;rpAB − ∂AprA þ 1

2
Cmatt
r :

ð64bÞ

The right-hand side of the first equation is integrable in r at
infinity; however, the differential operator on the left-hand
side is much more complicated. For practical purposes, this
operator would need to be explicitly inverted, so that the
dependence of the solution on the reduced phase space
variables is known. These problems are the drawbacks of
the “measuring from zero” implementation of the radial

gauge. For some applications of the presented construction,
it may be an advantage of this implementation that, as
shown in Appendix A 3, it can be guaranteed that the shift
vector ~NH belongs to the generators of Diffobs. Moreover,
the problems at infinity may be cured by fixing the
canonical data at some finite boundary and implementing
the construction in the bounded region only.
The implementation of the radial gauge coined “meas-

uring from infinity” is favorable for a few reasons. Firstly,
unlike the other implementation, this one is in agreement
with the asymptotic flatness requirements as spelled out in
Appendix B. Secondly, it is the one which allows for a
natural description of a Schwarzschild black hole (see
Appendix C). Note also, that this solution was the one
already suggested in [4].

E. Summary of the case without spherical symmetry

In this section, we have derived two reduced phase
spaces for general relativity. Each of them is parametrized
by a one parameter (r is the parameter) family of intrinsic
geometries of the surfaces of a constant radial distance from
the center, described by qAB, and their momenta pAB

(possibly also by matter fields, in case they are present
in the theory). Their evolution is generated by the
Hamiltonian constraint (58) [where ~pr

a are given by
(53) and (56) or in the other case, by (61) and (62)].
Details concerning imposing asymptotical flatness in those
reduced phase spaces are described in Appendix B 2.

V. CONCLUSION AND OUTLOOK

In this paper, we have used the radial gauge to construct
reduced phase spaces for general relativity with and with-
out assuming spherical symmetry.
The spherically symmetric setting allows for a straight-

forward treatment, since the tensorial structure is consid-
erably simpler (e.g., intrinsic geometry is described by just
two functions, the shift vector is a single function). A
drawback of the construction is that it results in a nonlocal
Hamiltonian, leading to nonlocal equations of motion. On
the other hand, the construction for the spherically sym-
metric case exposes various nontrivial features of the idea
and therefore may serve as a toy model for the full case.
More importantly, it suits very well a certain quantization
scheme (discussed in [9] and [10]), where it plays an
important role in the definition(s) of the spherically
symmetric sector of the theory. This is of particular interest,
since up to date, the treatments of the simplest (spherically
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symmetric) collapse scenarios, including quantum gravity
effects, have only been performed in midisuperspace
models.
The reduction of the nonsymmetric case leads to the

same kind of nonlocalities in the Hamiltonian. However,
the reduced data still possess a clear geometrical interpre-
tation and allows for a quantization of the system.
Furthermore, the splitting of the description into surfaces
of a constant radial distance from the center and the radial
direction is reflected in the quantum theory in a remarkable
simplification. The geometry is effectively described by a
one parameter family of 2þ 1 dimensional geometries,
opening the possibility of formulating computable models
of quantum dynamics.
There are a few ways in which the presented formalism

can be developed further or applied:
(1) The reduced phase spaces suit well a quantization

using the loop quantum gravity techniques. Analysis
of the symmetric and nonsymmetric cases leads to a
definition of a reduction to spherical symmetry on
the quantum level. In fact, different definitions of
spherical symmetry can be given, retaining different
sets of degrees of freedom of the full theory. For the
details, we refer the reader to [9] and [10].

(2) An advantage of the spherically symmetric setting is
that radial geodesics spanned from the central point
never cross each other. Generically, this does not
happen if space is not symmetric. Therefore, in
general, the construction we introduced in the non-
symmetric case will break down due to the formation
of caustics of the radial geodesics. We excluded this
by demanding that the coordinate system we use is
global. In general, this issue may also be addressed
by modifying our construction, so that we require
the radial gauge condition to hold only in some
neighborhood of the central point. To be able to
consistently perform this modification, one would
need a (delicate) introduction of a boundary up to
which the gauge condition holds.

(3) An interesting question to ask is whether the current
construction can be generalized to incorporate spa-
tially compact settings. It seems that at least the
spherically symmetric case is open for such a
generalization, since the point antipodal to the center
of symmetry will again be a center of spherical
symmetry.

We leave the development of the ideas presented in the
second and third points for future research.
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APPENDIX A: SHIFT VECTOR FIELDS
CORRESPONDING TO THE CHOSEN GAUGES

Our aim in this appendix is to compute the specific shift
vector fields, we call them ~NH, which, when included in the
Hamiltonian, correspond to the radial gauge in the variants
presented above.

1. Spherically symmetric case—Measuring distance
from zero

The Hamiltonian given by (17) is the Hamiltonian of the
reduced phase space obtained after fixing the gauge in the
variant in which we “measure from zero”. The question we
address in this section is: What is the shift vector field
defined in the context of the unreduced phase space such
that the Hamiltonian from that phase space (including the
vector constraint smeared with the shift we seek) preserves
the gauge we chose? In other words, we want to find ~NH
such that

H½N�jgauge-fix ¼ H½N� þ C½ ~NH�: ðA1Þ
This can be easily done by substituting (14) instead of (15c)
into the Hamiltonian constraint and separating the appro-
priate terms. After a few manipulations, we can read off

Nr
HðrÞ ¼

1

χ

Z
r

0

dr̄N

�
PR

R
ðr̄Þ − PΛ

R2
ðr̄Þ

þ 1

2R2
ðr̄Þ
Z

∞

r̄
d ¯̄rCrð ¯̄rÞ

�
: ðA2Þ

Note, that this shift vanishes at zero as it should for regular
spacetimes in the context of spherical symmetry.

2. Spherically symmetric case—Measuring distance
from infinity

The shift vector which corresponds to the Hamiltonian
given by (26) can be obtained in the same manner yielding

Nr
HðrÞ ¼ −

1

χ

Z
∞

r
dr̄N

�
PR

R
ðr̄Þ − PΛ

R2
ðr̄Þ

−
1

2R2
ðr̄Þ
Z

r̄

0

d ¯̄rCrð ¯̄rÞ
�
: ðA3Þ

Note that the above shift is not automatically vanishing at
zero. This fact will be exploited in Appendix C.

3. Full theory case—Measuring from zero

In this section, we will discuss the shift vector field
which corresponds to fixing the radial gauge in the context
of the full theory. The strategy is the same as we used in the
context of spherical symmetry. As a starting point, we use
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~pr
aðr0; θ0Þ ¼ pr

aðr0; θ0Þ − C½ ~M
aðr0;θ0Þ

�; ðA4Þ

where 8>><>>:
~M

A0ðr0;θ0Þ
ðr; θÞ ¼ Θðr − r0Þδðθ; θ0Þ∂A0

;

~M
rðr0;θ0Þ

ðr; θÞ ¼ 1
2
Θðr − r0Þδðθ; θ0Þ∂r − 1

2
Θðr − r0Þ

R
r
r0
dr̄qABðr̄; θÞð∂Aδðθ; θ0ÞÞ∂B;

ðA5Þ

in the definition (58) of the Hamiltonian. Then separating the Hamiltonian constraint part and extracting the vector
constraint part, we can read off the relevant shift vector field ~NH, such that

H½N�jgauge-fix ¼ H½N� þ C½ ~NH�: ðA6Þ

It turns out that

Nr
Hðr; θÞ ¼

1

2

Z
r

0

dr0

�
Nffiffiffiffiffiffiffiffiffiffi
det q

p
�
−prr þ qABpAB þ 1

2
tr

��
ðr0; θÞ; ðA7aÞ

NA
Hðr; θÞ ¼

Z
r

0

dr0

�
qAB

Nffiffiffiffiffiffiffiffiffiffi
det q

p ð−4pr
B þ 2tBÞ

�
ðr0; θÞ ðA7bÞ

−
1

2

Z
r

0

dr0qABðr0; θÞ∂B

Z
r0

0

dr̄

�
Nffiffiffiffiffiffiffiffiffiffi
det q

p
�
−prr þ qCDpCD þ 1

2
tr

��
ðr̄; θÞ; ðA7cÞ

where we used the shorthand notation

taðr0; θ0Þ ≔ C½ ~M
aðr0;θ0Þ

�: ðA8Þ

A thing to notice is that the above field is almost of the
kind spelled out in (36) if one identifies

ωrr ¼
Nffiffiffiffiffiffiffiffiffiffi
det q

p
�
−prr þ qABpAB þ 1

2
tr

�
; ðA9aÞ

ωrA ¼ Nffiffiffiffiffiffiffiffiffiffi
det q

p ð−4pr
A þ 2tAÞ: ðA9bÞ

As it was pointed out in [4], the radial gauge we are
using does not fix the spatial diffeomorphism gauge
completely. In fact, it fixes diffeomorphisms called
Diffobs, leaving a finite (six) dimensional, residual
diffeomorphism freedom. Therefore, it may be desirable
to stay within the Diffobs class when reducing the phase
space. The part missing from (A7) is the contribution
from ω at zero [compare with equation (36)]. However,
it turns out that we can consistently fix that problem.
Notice, that the required contribution from ω at zero
vanishes when we are in a point of the constraint
surface in which

lim
r→0

�
Nffiffiffiffiffiffiffiffiffiffi
det q

p ð−prr þ qABpABÞ
�

¼ 0: ðA10Þ

Let us postpone the discussion of the meaning of that
condition for now, to notice that the Poisson bracket of
it with the gauge fixed Hamiltonian is again propor-
tional to such a term. This means that if we require our
initial data to satisfy that condition, the evolution we
have formulated will preserve it. To understand the
geometrical meaning of the condition we just imposed,
let us rewrite it in terms of the extrinsic curvature

lim
r→0

�
N

2
ffiffiffiffiffiffiffiffiffiffi
det q

p ð−prr þ qABpABÞ
�

¼ ðNKrrÞð0Þ: ðA11Þ

Requiring that it vanishes is equivalent to requiring

ðNKIJÞð0Þ ¼ 0 ∀ I;J; ðA12Þ

but that means

−
1

2
_qIJð0Þ þ ∂ðINH

JÞð0Þ ¼ 0: ðA13Þ

Since we know that in the coordinates I we have
qIJð0Þ ¼ δIJ constantly in time, we obtain a condition
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∂ðINH
JÞð0Þ ¼ 0: ðA14Þ

This condition can easily be interpreted in the light of
[4]. It just means that from the initial data allowed by
the construction without the condition (A10), we chose
such that no relative deformations of the directions
associated with the central observer take place as the

system evolves, or equivalently, such that the central

point (and its infinitesimal neighborhood) is flatly

embedded in the spacetime generated by the evolution.
The remaining task is to express the condition (A10) in

the reduced phase space variables. In the reduced phase

space, we have

prrðr0; θ0Þ ¼ −
1

2

Z
∞

r0

drððpABqAB;rÞðr; θ0Þ þ Cmatt
r ðr; θ0ÞÞ

þ
Z

∞

r0

drD
0

A

�
qABðr; θ0Þ

Z
∞

r
dr̄

�
D
0

CpC
Bðr̄; θ0Þ −

1

2
Cmatt
B ðr̄; θ0Þ

��
; ðA15Þ

so we can rewrite the limit

lim
r→0

�
Nffiffiffiffiffiffiffiffiffiffi
detq

p ð−prr þpABqABÞ
�
¼ Nð0Þlim

r→0

pABqAB þ 1
2

R∞
r ðpABqAB;r þCmatt

r Þ− R∞r dr̄DAðqABðr̄Þ
R∞
r̄ ðDCpC

B − 1
2
Cmatt
B ÞÞffiffiffiffiffiffiffiffiffiffi

detq
p :

ðA16Þ
Both the nominator and the denominator vanish as r → 0, so using the L’Hôpital’s rule, we get

lim
r→0

�
Nffiffiffiffiffiffiffiffiffiffi
det q

p ð−prr þ pABqABÞ
�
¼H ¼ Nð0Þlim

r→0

ðpABqABÞ;r − 1
2
pABqAB;r − 1

2
Cmatt
r þDAðqAB

R∞
r ðDCpC

B − 1
2
Cmatt
B ÞÞ

ð ffiffiffiffiffiffiffiffiffiffi
det q

p Þ;r
:

ðA17Þ
Now we need to look at each of the terms separately

pABqAB ∼ r2 so ðpABqABÞ;r ∼ r; ðA18aÞ

pABqAB;r ∼ r; ðA18bÞ

Cmatt
r ∼ r2; ðA18cÞ

DCpC
B −

1

2
Cmatt
B ∼ r3 so DA

�
qAB

Z
∞

r

�
DCpC

B −
1

2
Cmatt
B

��
∼ r2; ðA18dÞ

ffiffiffiffiffiffiffiffiffiffi
det q

p
∼ r2soð

ffiffiffiffiffiffiffiffiffiffi
det q

p
Þ;r ∼ r; ðA18eÞ

therefore, using the L’Hôpital’s rule again, we get

lim
r→0

�
Nffiffiffiffiffiffiffiffiffiffi
det q

p ð−prr þ pABqABÞ
�
¼HHNð0Þlim

r→0

ðpABqABÞ;rr − 1
2
ðpABqAB;rÞ;r

ð ffiffiffiffiffiffiffiffiffiffi
det q

p Þ;rr
ðA19Þ

and the right-hand side is an expression involving only the
reduced phase space variables.

4. Full theory case—Measuring from infinity

In this section, we present the shift vector ~NH which
corresponds to the Hamiltonian from Sec. IV C. Rewriting
the expressions from (61) and (62) in the form

~pr
a ¼ pr

a − C½ ~M
a
�; ðA20Þ

we can express the reduced Hamiltonian as

~H ¼ H þ C½ ~NH�; ðA21Þ

with

BODENDORFER, LEWANDOWSKI, AND ŚWIEŻEWSKI PHYSICAL REVIEW D 92, 084041 (2015)

084041-14



Nr
Hðr; θÞ ¼ −

1

2

Z
∞

r
dr0

�
Nffiffiffiffiffiffiffiffiffiffi
det q

p
�
−prr þ qABpAB þ 1

2
tr

��
ðr0; θÞ; ðA22aÞ

NA
Hðr; θÞ ¼ −

Z
∞

r
dr0

�
qAB

Nffiffiffiffiffiffiffiffiffiffi
det q

p ð−4pr
B þ 2tBÞ

�
ðr0; θÞ ðA22bÞ

−
1

2

Z
∞

r
dr0qABðr0; θÞ∂B

Z
∞

r0

dr̄

�
Nffiffiffiffiffiffiffiffiffiffi
det q

p
�
−prr þ qCDpCD þ 1

2
tr

��
ðr̄; θÞ; ðA22cÞ

where ta are terms proportional to the vector constraint.
This shift vector vanishes at infinity; however, its behavior
at zero is more obscure.

APPENDIX B: ASYMPTOTIC CONDITIONS ON
CANONICAL DATA

In this appendix, we will discuss the falloffs of the
canonical fields for which the treatment presented in the
main part of the paper is well-defined. We will restrict
the discussion to the gravitational sector of the phase space,
since it is the nontrivial one. Our analysis will be based on
the treatment of that since the beginning of theasymptotical
flatness presented in [19]. We demand that there exist
asymptotically Minkowskian coordinates ðxiÞ (addition-

ally, we define a coordinate ρ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xixjδij

q
and also, ni ≔ xi

ρ )

in which the fields behave as

qijðxkÞ ¼ δij þ
1

ρ
sijðnkÞ þO∞ðρ−1−ϵÞ; ðB1Þ

pijðxkÞ ¼ 1

ρ2
tijðnkÞ þO∞ðρ−2−ϵÞ; ðB2Þ

where, as the notation suggests, sij and tij are functions of
the angles only, and they satisfy the so-called parity
properties

sijðnkÞ ¼ sijð−nkÞ; ðB3Þ

tijðnkÞ ¼ −tijð−nkÞ; ðB4Þ

while by O∞ðρ−nÞ, we denote terms which vanish at
infinity as ρ−n, their first derivatives vanish as ρ−ðnþ1Þ,
and so on. The asymptotical behavior of the lapse and shift
is then

NðxkÞ ¼ kðnkÞ þO∞ðρ−ϵÞ; ðB5Þ

NIðxiÞ ¼ kiðnkÞ þO∞ðρ−ϵÞ; ðB6Þ

where

kðnkÞ ¼ −kð−nkÞ; ðB7Þ

kiðnkÞ ¼ −kið−nkÞ: ðB8Þ

For such fields, one can check that all the integrals in the
canonical theory are convergent “at infinity” and function-
ally differentiable. As was argued in [19], dropping the
parity properties of the lapse and shift gives rise to the
ADM four momentum. Here, we loosen the parity property
of the lapse only; therefore, the asymptotics of lapse
functions we consider are

NðxkÞ ¼ 1þ kðnkÞ þO∞ðρ−ϵÞ: ðB9Þ

1. Spherically symmetric case

The translation of the asymptotic conditions spelled out
in the preceding paragraph to the variables used in spherical
symmetry was carried out in [12]. It gave

ΛðρÞ ¼ 1þm
ρ
þO∞ðρ−1−ϵÞ; ðB10aÞ

RðρÞ ¼ ρþO∞ðρ−ϵÞ; ðB10bÞ

PΛðρÞ ¼ O∞ðρ−ϵÞ; ðB10cÞ

PRðρÞ ¼ O∞ðρ−1−ϵÞ; ðB10dÞ

NðρÞ ¼ 1þO∞ðρ−ϵÞ; ðB10eÞ

NrðρÞ ¼ O∞ðρ−ϵÞ; ðB10fÞ

where it is easy to check that the formula (8) for the mass
functional, yields m in the limit of large ρ when the above
asymptotics are employed. This justifies the usage of the
same symbol in the definition of the functional and in the
asymptotic considerations. It should be noted that the shift
may be allowed to be finite at infinity, since it corresponds
to an asymptotically odd shift in agreement with (B8).
Such conditions require a boundary term to be added to

the Hamiltonian constraint to secure its functional differ-
entiability. That boundary term is the ADM energy that in
this context is given by
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E ¼ lim
ρ→∞

1

2
ρ

�
Λ2 þ R2

ρ2
−
2RR0

ρ

�
¼ lim

ρ→∞

1

2
ρðΛ2 − 1Þ ¼ m:

ðB11Þ

Note that since the beginning of the discussion of
asymptotical flatness, we used the variable ρ to denote
the radial coordinate denoted by r in the original papers
([12,19]). This is because in the current paper, the label r is
reserved for a specific radial coordinate, namely, the one
that measures the proper spatial distance. Since in our
analysis we want to use the variable r, we need to transform
the conditions (B10). What is the relation between r and ρ?
Making use of the fact that Λ is a density and knowing on
one hand that it satisfies (B10a) and on the other that it is
equal to 1 as a function of r, we find the condition

ΛðρÞdρ ¼ 1 · dr: ðB12Þ

After integrating this condition and finding the leading
terms in the expansion of ρ as a function of r, we find

ρðrÞ ¼ r −m log rþ cþO∞ðr−ϵÞ; ðB13Þ

where c is a constant whose role is to fix the specific value
of ρ at a given r. For simplicity, we choose it to be zero in
the following: Using this relation in (B10) yields the
asymptotic conditions on the fields, which we use in the
current paper,

ΛðrÞ ¼ 1; ðB14aÞ

RðrÞ ¼ r −m log rþO∞ðr−ϵÞ; ðB14bÞ

PΛðrÞ ¼ O∞ðr−ϵÞ; ðB14cÞ

PRðrÞ ¼ O∞ðr−1−ϵÞ; ðB14dÞ

NðrÞ ¼ 1þO∞ðr−ϵÞ; ðB14eÞ

NrðrÞ ¼ O∞ðr−ϵÞ: ðB14fÞ

Note, that condition (B14a) is satisfied not only in the limit
of large r, but for all its values.
Having defined the asymptotic behavior of the fields,

we should address the problem of boundary terms. It turns
out that the vacuum Hamiltonian and vector constraints
are both well-defined (meaning integrable at infinity).
However, to ensure the functional differentiability of the
Hamiltonian constraint, we have to add a boundary term
analogous to (B11) with

E ¼ lim
r→∞

1

2
r

�
1þ R2

r2
−
2RR0

r

�
¼ m: ðB15Þ

2. Full theory case

In this section, we will specify the asymptotic behavior
of the fields used in Sec. IV. It amounts to a translation of
the conditions we are using into the variables we work with.
We start by rephrasing the condition (B1) in spherical

coordinates such that xi ¼ ρniðθÞ (note that those coor-
dinates differ from the ones we want to use eventually by a
rescaling of the radial coordinate). It reads, in particular,

qρρ ¼ 1þ 1

ρ
ninjsij þO∞ðρ−1−ϵÞ; ðB16aÞ

qAB ¼ ρ2ηAB þ ρni;An
j
;Bsij þO∞ðρ1−ϵÞ; ðB16bÞ

where ηAB is the metric of a unit sphere. To switch to the
variables we want to use, we need to find r such that
qrr ¼ 1. In order to do that, we compare lengths of intervals
of radial geodesics and obtain the relationZ

1 · dr ¼
Z ffiffiffiffiffiffiffi

qρρ
p

dρ; ðB17Þ

which leads to

r ¼ ρþ 1

2
ninjsij log ρþ cþO∞ðρ−ϵÞ: ðB18Þ

Like in the previous section, the role of the c is just to fix
the relative values of r and ρ, so we choose it to be zero in
what follows (it can be restored easily). Moreover, since the
angular variables coincide, we can use nI instead of ni from
now on. Inversion of (B18) gives

ρ ¼ r −
1

2
nInJsIJ log rþO∞ðr−ϵÞ: ðB19Þ

The asymptotics of the metric can now be given explicitly

qra ¼ δra; ðB20aÞ

qAB ¼ ðr2 − nInJsIJr log rÞηAB þ rnI;An
J
;BsIJ þO∞ðr1−ϵÞ:

ðB20bÞ

Transforming the momentum is more involved, because it
is a tensor density. Using the notation ΩðθÞ ≔ 1

r2 detð∂x
I

∂yaÞ
and fAI ðθÞ ≔ r ∂yA

∂xI , we find

pr
r ¼ ΩðθÞnIðθÞnJðθÞtIJðθÞ þO∞ðr−ϵÞ; ðB21aÞ

pr
A ¼ rΩðθÞnIðθÞnJ;AðθÞtIJðθÞ þO∞ðr1−ϵÞ; ðB21bÞ

pA
B ¼ ΩðθÞfAI ðθÞnJ;BðθÞtIJðθÞ þO∞ðr−ϵÞ: ðB21cÞ

The fact that the leading terms in the last and second to last
lines are not vanishing for large r is the source of the
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problems with the “measuring from zero” implementation
of the radial gauge discussed in Sec. IV D. In the “meas-
uring from infinity” implementation, however, such con-
ditions render all the integrals well-defined.
Having the asymptotics of the metric at hand, we can

compute the ADM energy. We obtain

E ¼ −
1

8π
lim
r→∞

�Z
2K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqABÞ

p
d2θ

−
Z

2

K
°
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðq° ABÞ

q
d2θ

�
ðB22aÞ

¼ 1

8π

Z �
nInJ −

1

2
ηABnI;An

J
;B

�
sIJ detðηÞd2θ; ðB22bÞ

where in the first line 2K is (the trace of) the extrinsic
curvature of the surfaces of constant r as embedded in the
spatial slice Σ, while the ° symbol denotes a flat contribution
which needs to be subtracted for the final result to be finite
[20,21] (see also [22] for a discussion in similar coordinates).

APPENDIX C: GENERALIZATION OF THE
RADIAL GAUGE TO SPHERICALLY

SYMMETRIC SPACETIMES SINGULAR
AT ZERO

Although the “measuring from infinity” variant of the
reduced phase space construction with the asymptotical
behavior of the fields described above seems well suited for
a treatment of Schwarzschild black holes, in fact, it is
somewhat problematic. The Schwarzschild solution is
expressed in variables of [12] by11

ΛðρÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

ρ

q ; RðρÞ ¼ ρ;

PΛðρÞ ¼ 0 ¼ PRðρÞ: ðC1Þ

To find expressions for the canonical fields in the radial
gauge, we use again the condition (B12). Integrating it (for
concreteness, we choose r to measure the proper distance
from the horizon), we find

rðρÞ ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
ρ

s
þm log

 
ρ

m
− 1þ ρ

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
ρ

s !
:

ðC2Þ
To identify the Schwarzschild solution, we should now
invert this function, finding ρðrÞ. Then

ΛðrÞ ¼ 1; RðrÞ ¼ ρðrÞ; ðC3Þ

would be the Schwarzschild solution in the radial gauge.
Unfortunately, inverting that function explicitly is very
hard.12 It can be checked that the inverse function fulfills
the asymptotic behavior spelled out in (B14b), but using it
to describe the Schwarzschild solution is highly imprac-
tical. Therefore, it is desirable to modify the construction
slightly in order to accommodate the Schwarzschild sol-
ution more easily.
Being guided by that aim, let us recall that

Schwarzschild metric expressed in Gullstrand-Painlevé
coordinates has the form

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 2

ffiffiffiffiffiffiffi
2M
r

r
dtdrþ dr2 þ r2dΩ2:

ðC4Þ

The idea of using those coordinates in the context of the
canonical analysis of spherically symmetric general rela-
tivity is not new (see, e.g., [24–26] and references therein).
They are particularly useful for us, since we see that on
t ¼ const surfaces the variable r measures the proper
(spatial) distance. Note however, that the shift vector read
off from the above form of the metric is

NrðrÞ ¼
ffiffiffiffiffiffiffi
2M
r

r
; ðC5Þ

which means it does not vanish as r goes to zero, contrary
to the case for regular spacetimes considered in Sec. III.
It does vanish, however, when r goes to infinity. It is this
behavior of the shift that we will incorporate in the present
modification of the radial gauge construction. Because of
this behavior, we will work in a setting similar to the
“measuring from infinity” variant presented in Sec. III D.
From the form of the metric presented in (C4), we can

see that for the Schwarzschild spacetime

ΛðrÞ ¼ 1; _ΛðrÞ ¼ 0; ðC6Þ

RðrÞ ¼ r; _RðrÞ ¼ 0; ðC7Þ

NðrÞ ¼ 1; NrðrÞ ¼
ffiffiffiffiffiffiffi
2M
r

r
: ðC8Þ

Using the definitions of canonical momenta spelled out in
(4) (with the convention χ ¼ 1), we obtain

11Note that in Eq. (58) of [12], only the leading orders of the
Schwarzschild solution are given. Hence, they satisfy the Ham-
iltonian constraint only in the limit of large ρ (or jrj in the
notation of [12]).

12The problem can be reduced to inverting the function x ¼
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
þ yÞey for yðxÞ, which is a modified defining problem

of the Lambert W function (see [23]).
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PRðrÞ ¼
1

2

ffiffiffiffiffiffiffi
2M
r

r
; PΛðrÞ ¼

ffiffiffiffiffiffiffiffiffi
2Mr

p
: ðC9Þ

Inspecting Eq. (26), we see that the reduced Hamiltonian constraint vanishes for the above data. The shift vector
preserving the gauge expressed in (27) is equal to the one read off from the Schwarzschild metric, as written down in (C5).
Finally, computing the equations of motion (with the χ ¼ 1 convention)

1

N
_RðrÞ ¼ −

FðrÞ
RðrÞ − R0ðrÞ

Z
∞

r
dr̄

�
PRðr̄Þ
Rðr̄Þ −

Fðr̄Þ
R2ðr̄Þ

�
; ðC10aÞ

1

N
_PRðrÞ ¼ −R00ðrÞ þ P2

RðrÞ
RðrÞ − 2

PRðrÞFðrÞ
R2ðrÞ þ F2ðrÞ

R3ðrÞ − P0
RðrÞ

Z
∞

r
dr̄

�
PRðr̄Þ
Rðr̄Þ −

Fðr̄Þ
R2ðr̄Þ

�
; ðC10bÞ

one can verify they are satisfied, leading to the con-
clusion that a Schwarzschild spacetime is indeed a solution
of the equations of motion of the reduced phase space
presented in this appendix.
An apparent problem, which arises in this treatment, is

that the fields in Eqs. (C6)–(C9) do not satisfy the falloff
conditions spelled out in Appendix B. This change of
asymptotics of the fields can be understood as stemming
from a different choice of slicing in the corresponding
spacetime. The falloff behavior of the fields in the current
context can be obtained by inspecting what sort of
variations of the canonical variables are allowed in order
to maintain the well-definiteness and functional differ-
entiability of the constraints. It yields the asymptotic
behavior which needs to be employed in the phase space
presented in this appendix (and propagating in a clear-cut
way to the asymtpotic behavior of the corresponding
reduced phase space), namely,

ΛðrÞ ¼ 1; ðC11aÞ

RðrÞ ¼ rþO∞ðr−ϵÞ; ðC11bÞ

PΛðrÞ ¼
ffiffiffiffiffiffiffiffiffi
2mr

p
þO∞ðr12−ϵÞ; ðC11cÞ

PRðrÞ ¼
1

2

ffiffiffiffiffiffiffi
2m
r

r
þO∞ðr−1

2
−ϵÞ; ðC11dÞ

NðrÞ ¼ 1þO∞ðr−ϵÞ; ðC11eÞ

NrðrÞ ¼
ffiffiffiffiffiffiffi
2m
r

r
þO∞ðr−1

2
−ϵÞ: ðC11fÞ

Additionally, a boundary term equal to the Schwarzschild
mass needs to be added to the vector constraint to ensure its
functional differentiability, replacing a boundary term for
the Hamiltonian constraint present in the previous asymp-
totic analysis.
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