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Stationary and axially symmetric spacetimes play an important role in astrophysics, particularly in the
theory of neutron stars and black holes. The static vacuum subclass of these spacetimes is known as Weyl’s
class, and contains the Schwarzschild spacetime as its most prominent example. This paper is going to
study the space of Killing tensor fields of valence 3 for spacetimes of Weyl’s class. Killing tensor fields play
a crucial role in physics since they are in correspondence to invariants of the geodesic motion (i.e. constants
of the motion). It will be proven that in static and axially symmetric vacuum spacetimes the space of Killing
tensor fields of valence 3 is generated by Killing vector fields and quadratic Killing tensor fields. Using this
result, it will be proven that for the family of Zipoy-Voorhees metrics, valence-3 Killing tensor fields are
always generated by Killing vector fields and the metric.
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I. INTRODUCTION

Consider a manifoldM with Lorentzian metric g, and its
cotangent space T�M endowed with its natural symplectic
form. A Killing tensor field K of valence d on M is a
symmetric ð0; dÞ-tensor such that

∇ðaKb1…bdÞ ¼ 0: ð1Þ
The Lorentzian metric provides an isomorphism between
T�M and TM, and we are therefore going to identify co-
and contravariant tensor fields as well as the corresponding
homomorphisms with mixed co- and contravariant indices.
Killing tensor fields are in 1-to-1 correspondence to

(first) integrals (or Hamiltonian invariants) polynomial in
the momenta p (or the velocities _γ) of the Hamiltonian
motion for the Hamiltonian function H ¼ gijpipj ¼
gð_γ; _γÞ. In the language of integrals, the Killing tensor
equation takes the form

fIK;Hg ¼ XHðIKÞ≡ 0 ð2Þ
where f·; ·g denotes the usual Poisson bracket on T�M,
and where XHðIKÞ is the derivative of the function
IK ¼ Kð_γ;…; _γÞ in the direction of the Hamiltonian vector
field XH.Two integrals are said to be in involution if they
commute with respect to the Poisson bracket.
Studying the existence of polynomial integrals is inter-

esting from at least two perspectives. Firstly, the existence
of integrals can help in answering natural questions
about the behavior of trajectories, i.e. the behavior of free
falling particles in physically motivated Hamiltonian sys-
tems (e.g. by the famous Liouville-Arnold theorem one can
integrate the system by quadratures under certain additional
assumptions).

Secondly, asking for the existence of integrals is a natural
geometric requirement. Metrics meeting this requirement
may lead to physically interesting examples, as for example
in the case of the Kerr metric possessing the Carter constant
[1,2], an integral quadratic in momenta in addition to
energy and axial symmetry. Integrals polynomial in the
momenta are of particular interest since they represent a
generalization of constants of the motion that emerge from
the action of one-parameter groups of diffeomorphisms.
According to [3], the example of Kerr-de Sitter spacetimes
is at present the only known example of integrable space-
times with an additional integral of higher-than-linear
degree, among the class of stationary and axially symmetric
spacetimes.
Static and axially symmetric vacuum (StAV) spacetimes

form Weyl’s class; they are special cases of stationary and
axially symmetric vacuum (SAV) spacetimes [4,5].
Recently, some attention has been drawn to the Zipoy-
Voorhees family, which belongs to this class [6,7].
Numerical studies [4,8–10] suggested integrability for
some StAV metrics, while later studies provided contra-
dicting evidence [11–13]. Note that while these studies
considered fixed values of the parameter δ of the Zipoy-
Voorhees metric, in this paper we are going to consider
arbitrary δ in the case of the Zipoy-Voorhees metric.
Therefore the result for the Zipoy-Voorhees family is in
line with the evidence contradicting integrability of the
family.
The methods used in this paper are not restricted to the

concrete setting of Weyl’s class. It is therefore likely that
the methods are suitable for other examples of parametrized
metrics in two dimensions. It seems probable that such
examples include 2-dimensional ones with potential, since
this is closest to the case studied here. The study of integrals
in 2-dimensional manifolds is a classical problem in*andreas.vollmer@uni‑jena.de
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differential geometry and goes at least back to Darboux and
Koenigs [14]. For instance, some nonexistence results have
been obtained on the 2-torus for cubic and quartic integrals
in [15–17], while for higher degrees almost nothing is
known. On the 2-sphere, however, some integrable exam-
ples are known. For instance, a new integrable system has
been presented, with the additional integral being of cubic
degree, by Dullin and Matveev [18].
The procedure taken in this paper is a new approach to

the question of existence of integrals. It combines two
major previous lines of action:

(i) It is inspired by ideas from prolongation-projection
methods well-known in the theory of overdeter-
mined partial differential equation (PDE) systems.
However, it does not follow the algorithmic pro-
cedure used in [11].

(ii) It follows ideas outlined in [19], but takes a some-
how converse track that could be described as
“bottom-up” in contrast to the “top-down” approach
taken in [19]. The advantage of this direction of
reasoning is that it avoids solving the leading-degree
Poisson equation. Instead, our approach rather
begins with solving simple geometric orthogonality
relations.

A. Static and axially symmetric vacuum spacetimes

Stationary and axially symmetric vacuum spacetimes
possess two commuting Killing vector fields, one being
spacelike and the other being timelike. Such spacetimes can
be brought into the following standard form [5] by the aid
of suitable coordinate transformations. The coordinates are
called Lewis-Papapetrou coordinates [8,10].

g ¼ e2Uðe−2γðdx2 þ dy2Þ þ R2dϕ2Þ
− e−2Uðdt − ωdϕÞ2 ð3Þ

We will restrict our attention to vacuum spacetimes and
therefore require the Ricci tensor of g to be identically zero.
This is a fair assumption for the movement of test particles
around astrophysical objects as long as electromagnetic
fields are ignored. For SAV spacetimes, Ricci flatness is
encoded in a set of equations which are called the Ernst
equations. In the static case, we require ω ¼ 0. Then, the
Ernst equations read as follows:

RyUy þ RxUx þ RUyy þ RUxx ¼ 0

ΔR ¼ Rxx þ Ryy ¼ 0

2RU2
x − 2Ryγy þ 2Rxγx þ Rxx − Ryy − 2RU2

y ¼ 0

2RUxUy þ Ryγx þ Rxγy þ Rxy ¼ 0:

The equations break up into two sets of two equations
each, which we shall refer to as primary and secondary
equations. The primary equations give restrictions on

U and R. Provided R is nonconstant, ΔR ¼ 0 allows
setting R ¼ x > 0 by a change of coordinates [5]. If R
is constant, this change of coordinates is impossible, but
one can show that Δγ ¼ 0 holds and the metric is flat. In
case of nonconstant R, the secondary equations enable us to
express derivatives of γ in terms of derivatives of U,
allowing us to eliminate them, and finally γ, from the
equations. We obtain the relations:

Uyy ¼ −Uxx −
1

x
Ux γx ¼ −xU2

x þ xU2
y

R ¼ x γy ¼ −2xUxUy: ð4Þ
By definition, stationarity and axial symmetry can be

described by the global symmetry group h ¼ R × S1. The
action of h is Hamiltonian and we denote the moment map
by μ. h acts freely, and we may pass to the symplectic
quotient Qred ¼ μ−1ð0Þ=h, which inherits a symplectic
form from the initial spacetime (with an additional com-
pactness assumption, this is the Marsden-Weinstein quo-
tient, see e.g. [20]). In Lewis-Papapetrou coordinates, h
acts along coordinate directions and we will be able to
identify the reduced coordinates easily. The 4-dimensional
problem then is reformulated as a 2-dimensional problem
with metric gred, and the Hamiltonian H ¼ T þ V splits
into a kinetic term T ¼ Hred ¼ gijredpipj along with a
potential V, which is polynomial in pϕ and pt. As a
consequence, we distinguish Hamiltonian integrals that
commute with H, from metric integrals that commute with
T only. Note that the highest-degree component with
respect to ðpx; pyÞ of a Hamiltonian integral is metric
(i.e. commutes with T). The metric and the potential on the
reduced space read

gred ¼ e2Uðe−2γðdx2 þ dy2ÞÞ ð5aÞ

V ¼ R−2e−2Up2
ϕ − e2Up2

t : ð5bÞ

B. Main results

We consider integrals of the general form

Iðx; yÞ ¼
X3
i¼0

Xi

j¼0

X3−i
k¼0

ai;j;kðx; yÞpj
xp

i−j
y pk

ϕp
3−i−k
t : ð6Þ

Such integrals are in involution with the pϕ andpt. Since
the Hamiltonian defined by Eq. (5) does not mix momenta
px; py with pϕ; pt, the components of (6) of odd and
even parity in ðpx; pyÞ can be considered separately. We
prove reducibility of degree-3 integrals in spacetimes of
Weyl’s class.
Definition 1: Let I be a polynomial integral of degree d.

We say that I is reducible (by one degree) if there are
polynomial integrals I1;…; Im of degree at most d − 1 such
that I is a linear combination of products of the integrals Ii.

ANDREAS VOLLMER PHYSICAL REVIEW D 92, 084036 (2015)

084036-2



We say that I is totally reducible if there is a representation
of this form such that the Ii are integrals linear in momenta
or the Hamiltonian.
For spacetimes in Weyl’s class, we prove reducibility of

degree-3 integrals by one degree. In addition, total reduc-
ibility of degree-3 integrals is shown for the family of
Zipoy-Voorhees spacetimes (a subfamily of Weyl’s class).
Theorem 1: LetM be a spacetime in Weyl’s class. Then

any integral (6) of third degree on M is reducible.
Reducibility of a degree-3 polynomial integral means

that these integrals can be written via products of lower-
degree integrals. In the language of Killing tensors, this
means that any valence-3 Killing tensor field can be written
via symmetrized products of Killing vector fields and
quadratic Killing fields.
For a concrete example, consider the Zipoy-Voorhees

class of spacetimes. Their metrics are static and axially
symmetric, and parametrized by a parameter δ ≥ 0 [6].
Therefore, this family forms a subset of Weyl’s class.

g¼
�
xþ1

x−1

�
δ
��

x2−1

x2−y2

�
δ2−1

dx2þ
�
x2−1

x2−y2

�
δ2 x2−y2

1−y2
dy2

þðx2−1Þð1−y2Þdz2
�
−
�
x−1

xþ1

�
δ

dt2: ð7Þ

The resulting metric for δ ¼ 0 is flat. The value δ ¼ 1 gives
the Schwarzschild metric (that admits one additional
quadratic integral). We allow arbitrary δ ≥ 0.
Proposition 1: Let MZV be a Zipoy-Voorhees metric

with parameter δ > 0, δ ≠ 1. Let I be an integral (6) of third
degree onMZV. Then I is totally reducible, i.e. generated by
linear integrals (i.e. Killing vector fields) and the
Hamiltonian (i.e. the metric).

II. METHOD

The basic procedure is as follows:
(i) Reduce the 4-dimensional problem without potential

to finding integrals on a 2-dimensional Hamiltonian
manifold with potential (symplectic reduction).

(ii) The existence of integrals is encoded in equations
that emerge from the Poisson equation fH; IKg ¼ 0
as coefficients with respect to momenta. Splitting
according to the degree in momenta ðpx; pyÞ yields
three polynomials in pϕ and pt. If we decompose
these polynomials further with respect to momenta,
we obtain three blocks of equations.

(iii) Use the equations obtained from zeroth degree in
momenta ðpx; pyÞ and solve them as far as possible,
obtaining one function α to parametrize the integral
(this is the case without an additional integral
present. If there is an additional linear integral,
Lemma 3 applies).

(iv) From the block obtained from the degree-2 poly-
nomial, extract two integrability conditions for α.

(v) The remaining system of equations is an over-
determined system of PDE involving the metric
which is described by one function U in two
variables. We consider derivatives of U as being
new, independent unknowns. By taking derivatives
(prolongation), and then eliminating higher deriva-
tives of U (projection), we end up with an ordinary
differential equation.

(vi) For the remaining ordinary differential equation
(ODE) we show that its only solution corresponds
to flat space. This allows us to conclude that degree-
3 integrals are always reducible.

The computer algebra computations for this paper have
been performed using Maple 18 (™ Waterloo Maple Inc.).
Equation (2) is the condition for a function I to be an

integral. Since we take I to be polynomial in momenta of
degree d, (2) is a polynomial in momenta of degree dþ 1.
We are going to consider the system of PDE obtained from
the coefficients of (2) with respect to momenta. Symplectic
reduction with respect to the symmetry group (stationarity,
axial symmetry) suggests to regard pϕ and pt as param-
eters. We distinguish the equations of the PDE system by
the momenta monomials to which they appeared as a
coefficient. For Weyl’s class, the equations can then be
arranged in a treelike [4] structure. We write down the
Hamiltonian in the following form:

H ¼ T þ Vϕϕp2
ϕ þ Vttp2

t|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼V

ð8Þ

where T ≡Hred is the reduced Hamiltonian, i.e. a homo-
geneous polynomial in px, py, and where Vab are the
smooth coefficient functions of papb (a; b ∈ fϕ; tg). The
integral I can be decomposed accordingly. We denote

I ¼ IðdÞ þ Iðd-1Þϕ pϕþ Iðd-1Þt pt|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Iðd-1Þ

þ Iðd-2Þϕϕ p2
ϕþ Iðd-2Þtϕ ptpϕþ Iðd-2Þtt p2

t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Iðd-2Þ

þ � � �þ Ið0Þtt…tpd
t ; ð9Þ

where each IðkÞ is of degree k in the momenta px; py. We
require the metric to be nonflat such that we can choose
coordinates with R ¼ x. In this case we have three blocks of
equations coming from the respective polynomials [this is
step (ii) of the above list]. We can extract the equations
from the polynomials which are obtained by splitting (2)
according to the degree with respect to ðpx; pyÞ:

fT; Ið3Þg ¼ 0 degree 4 ð10aÞ

fT; Ið1Þg þ fV; Ið3Þg ¼ 0 degree 2 ð10bÞ

fV; Ið1Þg ¼ 0 degree 0: ð10cÞ
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The equations of even parity in ðpx; pyÞ split off from
this system and form a separate, decoupled system.
Equation (10a) is the condition that must hold for an
integral Ið3Þ on the reduced manifold with Hamiltonian
T ¼ Hred. However, only some of these integrals ascent to
integrals upstairs on the initial manifold. This is due to the
restrictions (10b) and (10c). For a better understanding of
these equations (or the equations obtained from them as
coefficients with respect to momenta), we will characterize
them as defining equations for Ið3Þ and Ið1Þ. But first let us
split the system further by considering coefficients with
respect to ðpt; pϕÞ. The polynomial (10a) does not split
since it is already of degree 4 in momenta ðpx; pyÞ. The
polynomial (10b) splits into three parts:

fT; Ið1Þϕϕg þ fVϕϕ; Ið3Þg ¼ 0

0 ¼ fT; Ið1Þtϕ g
fT; Ið1Þtt g þ fVtt; Ið3Þg ¼ 0:

We write the equations in this form to hint at the fact that
the equations can be divided into two groups that can be
treated separately. This will become clear when we include

(10c). The second of the equations says that Ið1Þtϕ is a metric
integral on the reduced space. In fact, we will see that it
even has to be an integral on the initial spacetime, and
therefore is not of interest for our considerations. The
polynomial (10c) splits into five parts:

fVϕϕ; Ið1Þϕϕg ¼ 0

0 ¼ fVϕϕ; Ið1Þtϕ g
fVtt; Ið1Þϕϕg þ fVϕϕ; Ið1Þtt g ¼ 0

0 ¼ fVtt; Ið1Þtϕ g
fVtt; Ið1Þtt g ¼ 0:

The second and fourth of these relations tell us that Ið1Þtϕ is an
integral not only on the reduced, but also on the initial
space. We can isolate this subsystem from the remaining
one and solve it separately (this procedure is possible in
general for Weyl’s class). This can easily be done and is
equivalent to finding Killing vector fields of the spacetime
under consideration.
The remaining equations from (10c) can be interpreted in

a nice way as scalar product relations for the components of
Ið1Þ. For instance,

fVϕϕ; Ið1Þϕϕg ¼ Vϕϕ
x bϕϕ1 þ Vϕϕ

y bϕϕ2 ¼ e2U−2γh∇Vϕϕ; bϕϕi
¼ hdVϕϕ; bϕϕi

where Ið1Þϕϕ ¼ bϕϕ1 px þ bϕϕ2 py and where ∇Vϕϕ denotes the
gradient vector corresponding to the differential dVϕϕ. The
polynomial (10c) therefore gives rise to a set of scalar
product relations:

h∇Vϕϕ; bϕϕi ¼ 0

h∇Vtt; bϕϕi þ h∇Vϕϕ; btti ¼ 0

h∇Vtt; btti ¼ 0:

This allows us to solve (10c) directly for bϕϕ and btt,

bϕϕ ¼ α1∇⊥Vϕϕ; btt ¼ α2∇⊥Vtt

where we introduce the shorthand notation ∇⊥f ¼
e2U−2γð−fy; fxÞ for a function f, i.e. ∇⊥f is the vector
field rotated by π=2 compared to ∇f. Defining the angle Ψ
between ∇Vtt and ∇Vϕϕ,

cosΨ ¼ h∇Vtt;∇Vϕϕi
∥∇Vϕϕ∥∥∇Vtt∥

;

the second of the three scalar product relations can be
brought into the form

ðα2 − α1Þ sinΨ ¼ 0: ð11Þ
This is step (iii) in the list given at the beginning of this
section. We summarize.
Lemma 1: Either the metric potentials are such that

∇Vϕϕ and ∇Vtt are parallel, or the parameter functions α1
and α2 are equal.
We now turn to an interpretation of (10b). Consider

fV; Ið3Þg and denote Ið3Þ ¼ Iijkpipjpk. Then,

fV; Ið3Þg ¼ 3ðVxIxijpipj þ VyIyijpipjÞ
¼ 3ðVkIkijpipjÞ;

and analogously for fVϕϕ; Ið3Þg and fVtt; Ið3Þg. With this in
mind, we interpret (10b) as defining equations for the
tensor field Kð3Þð∇V; ·; ·Þ. There are two more equations
than components of Kð3Þ and this allows us to find
independent expressions for Kð3Þð∇Vϕϕ; ·; ·Þ as well as
Kð3Þð∇Vtt; ·; ·Þ. Then, if dVtt and dVϕϕ are linearly inde-
pendent, we can determine Kð3Þ in terms of derivatives of
the function α ¼ α1 ¼ α2. We have the following obvious
identities:

Kð3Þð∇Vϕϕ;∇Vϕϕ;∇VttÞ ¼ Kð3Þð∇Vtt;∇Vϕϕ;∇VϕϕÞ
ð12aÞ

Kð3Þð∇Vϕϕ;∇Vtt;∇VttÞ ¼ Kð3Þð∇Vtt;∇Vϕϕ;∇VttÞ:
ð12bÞ
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We proceed as follows:
(1) Determine Kð3Þ in terms of α and its derivatives,

if sinΨ ≠ 0.
(2) Determine derivatives of α using the symmetry in the

arguments of Kð3Þ. Then derive an integrability
condition for α.

(3) Combine the integrability condition with (10a) and
the Ernst equations. Show that the system does not
have any solutions, using algebraic manipulations as
well as prolongation-projection arguments for the
system.

First, however, consider the case sinΨ ¼ 0. In order to do
this, we begin with a closer look at Killing vectors.

A. Killing vector fields

Assuming there is an additional linear integral on the
4-dimensional spacetime, we characterize the existence of
linear integrals in terms of the rank of the 2 × 3-matrix
whose columns are given by gradients of the potential
components Vϕϕ, Vtϕ and Vtt:

M ¼ ðdVϕϕ; dVtt; dVtϕÞ:
Since the rank of M is the dimension of the linear space
spanned by dVϕϕ, dVtt, dVtϕ, it is a geometric object and
independent of the choice of coordinates.
If dVtϕ ¼ 0, M might be replaced by the 2 × 2-matrix

ðdVϕϕ; dVttÞ, which will also be denoted by M. Then,
instead of the rank of the matrix, the determinant may be
used with the obvious correspondences. In case there is an
additional linear integral present in a nonflat SAV space-
time (i.e. in addition to pϕ and pt), the rank ofM cannot be
full. More precisely:
Lemma 2:

(a) Let ðM; gÞ be in the SAV class.
(1) If there is an additional linear integral (Killing vector

field), then the rank of M is 1, or the spacetime
is flat.

(2) Let rkðMÞ ¼ 1. Then py is a linear integral (Killing
vector field) when using Lewis-Papapetrou coordi-
nates with R ¼ x.

(b) Let ðM; gÞ be in Weyl’s class.
(1) Let rkðMÞ ≤ 1 be constant. Then there is an addi-

tional linear integral on M. In case rkðMÞ ¼ 1 this
vector field corresponds to py in Lewis-Papapetrou
coordinates with R ¼ x; in case rkðMÞ ¼ 0 the
spacetime is flat.

(2) If there is an additional linear integral, it is given by
py in Lewis-Papapetrou coordinates with R ¼ x, if
M is nonflat.

Proof.—Part (a). For linear integrals we only have two
polynomials after taking coefficients with respect to
ðpx; pyÞ [they are similar to the polynomials of degree 0
and 2 in (10)]. Let us denote the components of the
ðpx; pyÞ-linear part of the integral as

Ið1Þ ¼ b1px þ b2py; b ¼ ðb1; b2Þ: ð13Þ

The zeroth order equations read

h∇Vϕϕ;bi ¼ 0; h∇Vtϕ;bi ¼ 0; h∇Vtt;bi ¼ 0: ð14Þ

We conclude that the following relations must hold:

h∇Vϕϕ;∇⊥Vtϕi ¼ 0;

h∇Vϕϕ;∇⊥Vtti ¼ 0;

h∇Vtϕ;∇⊥Vtti ¼ 0. ð15Þ

This means, the potential gradients are pointing all in the
same direction, i.e. they are pairwise linearly dependent.
Hence, the rank of the potential gradient matrix is 1,
provided the spacetime is nonflat. In the flat case we may
have Lewis-Papapetrou coordinates with the parameter R
constant, making it impossible to choose R ¼ x. We
therefore exclude the flat case from our considerations.
This concludes the proof of claim one and establishes a
necessary criterion for the existence of Killing vector fields
in everywhere nonflat spacetimes.
Now, since the rank of the potential gradient matrixM is

1, all rows as well as all columns have to be linearly
dependent. This again gives us relations (15), meaning that
∇Vϕϕ, ∇Vtϕ and ∇Vtt are pairwise linearly dependent.
First, let us assume ω ≠ 0. We consider

h∇Vϕϕ;∇⊥Vtϕi ¼ 0:

This equation amounts to the requirement

xωxUy − ð1þ xUxÞωy ¼ 0

or the relation

�
ωx

ωy

�
¼ κ

�
1þ xUx

xUy

�

with a scalar function κ to be determined. Inserting this into
the requirement

h∇Vϕϕ;∇⊥Vtti ¼ 0

yields the relation

Uyx2e4U ¼ 0

and forces U to be a function of x only. Turning back to the
relations for ω, we see that ωy ¼ 0, so ω also is a function
of x only.
Recalling the convention R ¼ x, the metric depends on x

only, if γ only depends on x, or if it is constant. We infer the
secondary Ernst equations,
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4x2e4UU2
x − ω2

x − 4xe4Uγx ¼ 0;

γyxe4U ¼ 0:

Consider the latter equation. It means γy ¼ 0, so we are
done. Since the metric does not depend on y, py must be an
integral, and therefore provides a Killing vector field.
Now, assume ω ¼ 0. Then h∇Vϕϕ;∇⊥Vtϕi ¼ 0 trivially

and we have to go a slightly different way of reasoning. We
consider

h∇Vϕϕ;∇⊥Vtti ¼ 0:

It follows that

x2e4UUy ¼ 0;

which means Uy ¼ 0 (on the entire neighborhood). Con-
clude U ¼ UðxÞ, and then γ ¼ γðxÞ. Thus, the metric is a
function of x only and py is a linear integral. This concludes
the proof of part (a).
For part (b) let us first remark that if an additional linear

integral exists in Weyl’s class, it must be a multiple of py, or
the metric is flat. Two cases need to be checked: firstly, if
there is exactly one additional linear integral, it is a multiple
of py. Secondly, if there are two (independent) additional
linear integrals, there are three (say bðkÞ; k ¼ 1; 2; 3).
Looking at the equations h∇Vij; bðkÞi ¼ 0, this forces all
gradients ∇Vij to be zero (or, equivalently, dVij ¼ 0).
Hence, V is constant. Thus U and ω are constant, in
contradiction to the assumption R ¼ x. Therefore, the
metric is flat.
With this remark, the first claim of part (b) follows

immediately from part (a), keeping in mind that rank 0
corresponds to flat space. The second claim of part (b)
follows immediately from the second statement of
part (a). ■

III. PROOF OF THE MAIN THEOREM

For the proof we will without loss of generality assume
constant rank for the matrixM. If the spacetimeM is not of
constant rkM, we may still consider the subsets of points in
M with constant rank 0, 1, or 2. We may then work with the
sets of their inner points ignoring the remaining points of
M, which amount only to a null set with respect to the
measure induced by the volume form on M. Proving the
theorem on a dense set is sufficient because if a degree-3
polynomial integral is identical to a linear combination of
products of H, pϕ and pt on an open subset, this is true
everywhere.
The proof will be completed in two steps. First we

consider spacetimes with rkM ¼ 1, then the case
rkM ¼ 2. As we have seen, the rank-1 case is the case
when there is one additional Killing vector field. Rank 2 is

the case if no additional Killing vector field exists (assum-
ing nonflatness).
Lemma 3: If rkM ¼ 1, then any third-degree integral is

reducible by at least one degree.
Proof.—By the hypothesis, there is the linear integral py

in Lewis-Papapetrou coordinates with R ¼ x. Consider (10b)

fVϕϕ; Fð3Þg þ fT; Fð1Þ
ϕϕg ¼ 0

fVtϕ; Fð3Þg þ fT; Fð1Þ
tϕ g ¼ 0

fVtt; Fð3Þg þ fT; Fð1Þ
tt g ¼ 0:

Each Fð1Þ is a multiple of py, so

Fð1Þ
ϕϕ ¼ h1py; Fð1Þ

tϕ ¼ h2py; Fð1Þ
tt ¼ h3py:

This means that the equations in (10b) are of the form

fVϕϕ; Fð3Þg þ fT; h1gpy ¼ 0

fVtϕ; Fð3Þg þ fT; h2gpy ¼ 0

fVtt; Fð3Þg þ fT; h3gpy ¼ 0:

The leading order term Fð3Þ hence is of the form

Fð3Þ ¼ pxðð…ÞpyÞ þ fp3
y ≕ Fpy

where the leading px is because the potential gradients
(or, equivalently, the differentials dVab) have only px-
components. The final contribution fp3

y accounts for the
fact that (10b) only specifies components with at least
one px.
Now consider (10a),

fT; Fð3Þg ¼ fT; Fpyg ¼ fT; Fgpy¼! 0:

This means fT; Fg ¼ 0, so F is a quadratic integral on the
reduced space. It follows that it can be extended to an
integral on the initial spacetime, because of the fact that

fVϕϕ; Fð3Þg ¼ fVϕϕ; Fpyg ¼ fVϕϕ; Fgpy

and so on, so we have from (10b) the equations

fVϕϕ; Fg þ fT; h1g ¼ 0

fVtϕ; Fg þ fT; h2g ¼ 0

fVtt; Fg þ fT; h3g ¼ 0

which makes ~F ¼ F þ h1p2
ϕ þ h2pϕpt þ h3p2

t a quadratic
integral on the initial spacetime (see Remark 1 below). Note
that ~F might still be reducible, but can be nonreducible
as well. ■
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Remark 1: An even-parity quadratic integral I ¼
Ið2Þ þ Ið0Þϕϕp

2
ϕ þ Ið0Þtϕ ptpϕ þ Ið0Þtt p2

t satisfies the polynomial
equations

fT; Ið2Þg ¼ 0 ð16aÞ

fVϕϕ; Ið2Þg þ fT; Ið0Þϕϕg ¼ 0 ð16bÞ

fVtϕ; Ið2Þg þ fT; Ið0Þtϕ g ¼ 0 ð16cÞ

fVtt; Ið2Þg þ fT; Ið0Þtt g ¼ 0: ð16dÞ

Proof.—Decompose fH; Ig ¼ 0 by setting each com-
ponent homogeneous in ðpx; pyÞ zero. The first equation is
the component of degree 3, the other three equations are
components of degree 1. ■

We now turn to the case when there is no additional
linear integral in involution with the others. From now on,
we will always assume to work in Weyl’s class.
Keeping in mind the considerations of the previous

sections, we see that this case requires rkM ¼ 2.
Rank 2 requires∇Vϕϕ and∇Vtt to be linearly independent.
Then, recalling Eq. (11), the scaling functions α1 and α2 are
equal for Weyl’s class. For simplicity we therefore intro-
duce the new function α ¼ α1 ¼ α2 [step (iii) in the list of
Sec. II], so

bϕϕ ¼ α∇⊥Vϕϕ; btt ¼ α∇⊥Vtt:

Lemma 4: Derivatives of α are determined by differ-
ential equations of the form

αx ¼ Aα

αy ¼ Bα

where A and B are algebraic expressions determined by Vtt
x ,

Vtt
y , V

ϕϕ
x and Vϕϕ

y , which do not contain any higher-than-
second derivatives of components of the potential V.
Proof.—We use the relations (12), i.e. we use the six

equations from (10b) and combine them in a straightfor-
ward way to find expressions for the coefficients a0 through
to a3 of IT ¼ P

iaip
d−i
x pi

y. In this way, we find two
different expressions for a1, and two for a2, corresponding
to the above identities. The expressions are polynomials in
derivatives of the potential V, i.e. they are determined by
Vtt
x , Vtt

y , V
ϕϕ
x and Vϕϕ

y and do not contain derivatives of
order higher than 2. The coefficients of the ai are just
integer multiples of ν ¼ h∇Vtt;∇⊥Vϕϕi, which is nonzero
because we required ∇Vtt and ∇Vϕϕ to be linearly
independent.
We can then eliminate a1 and a2 and deduce two

equations which have the following form:

h∇Vtt;∇⊥Vϕϕiαx ¼ ð…Þα
h∇Vtt;∇⊥Vϕϕiαy ¼ ð…Þα:

The expressions abbreviated by ð…Þ are polynomials in
derivatives of V of at most second order. Dividing by the
nonzero coefficient of the α-derivatives yields the required
result. ■

The integrability condition for α is a necessary require-
ment for the existence of nonreducible Killing tensor fields
[step (iv) in the list of Sec. II]:
Lemma 5: Let rkM ¼ 2 and ω ¼ 0, but

∇Vϕϕ;∇Vtt ≠ 0. If there is a Killing tensor field of valence
3, then either α ¼ 0 or Ay − Bx ¼ 0.
We note that in case α ¼ 0 the integral F3 ¼

Fð3Þ þ Fð1Þ ¼ 0, so the lemma actually provides a neces-
sary criterion for the existence of nontrivial Killing tensor
fields of valence 3.
Proof of Lemma 5.—Compute

ðαxÞy − ðαyÞx ¼ Ayαþ Aαy − Bxα − Bαx

¼ ðAy − BxÞαþ ðAB − BAÞα
¼ ðAy − BxÞα:

■

We give an example where this idea provides informa-
tion on the reducibility of linear integrals:
Example 1: The Zipoy-Voorhees family of metrics is a

family in Weyl’s class that is parametrized by a non-
negative number δ.
We can use the method as described above, but we take

H in a modified form, namely

H ¼ p2
x

2Ω1

þ p2
x

2Ω1

þ Vϕϕp2
ϕ þ Vttp2

t :

The Zipoy-Voorhees metric satisfies, in prolate spheroidal
coordinates:

Ω1 ¼
1

2

�
x2 − 1

x2 − y2

�
δ2
�
xþ 1

x − 1

�
δ x2 − y2

x2 − 1

Ω2 ¼
1

2

�
x2 − 1

x2 − y2

�
δ2
�
xþ 1

x − 1

�
δ x2 − y2

1 − y2

Vϕ ¼
��

xþ 1

x − 1

�
δ

ðx2 − 1Þð1 − y2Þ
�

−1

Vt ¼ −
�
xþ 1

x − 1

�
δ

:

Taking an approach similar to Lemma 5, we first
check that detM ≠ 0. We find the following:
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detM ¼ 0

⇔ δ2y2
x8 − 4x6y2 þ 6y4x4 − 4y6x2 þ y8

ðx − 1Þ2ðx2 − 1Þ4ð−1þ y2Þ6ðxþ 1Þ2 ¼ 0

which obviously is not true for generic x; y, if δ ≠ 0. Then
we compute the necessary criterion as in Lemma 5. Using
computer algebra (Maple 18), we find

Ay − Bx ¼! 0

⇔
ðx − yÞ4ðxþ yÞ4ð−3δx2 þ 4δ2xþ 2x − 3δÞδ2y

ðx2 − 1Þ8ðy2 − 1Þ6 ¼! 0

which is not true for generic x; y since δ > 0. We therefore
must conclude α ¼ 0, which means the integral of degree 3
is zero.
We now turn to step (v) in the list at the beginning of

Sec, II:
Lemma 6: A polynomial equation of degree N > 0 for

a function fðx; yÞ with coefficients that depend on x only is
independent of y, so f ¼ fðxÞ.
Proof.—Denote the equation by

P
N
n¼0anðxÞfnðx;yÞ¼0.

If we can factor out fðx; yÞ, then f ¼ 0 and is independent
of both x and y. Otherwise, we take one derivative with
respect to y and obtain

P
N
n¼1 anðxÞnfn−1fy ¼ 0. Then

either fy ¼ 0 or we divide by fy and proceed similarly. At
some point, we either get fy ¼ 0 or we end up with aN ¼ 0,
which contradicts the hypothesis that the polynomial
equation be of degree N. Thus we have fy ¼ 0 and f is
a function of x only. ■

Lemma 7: Let Ux ¼ UxðxÞ be a function of x only. Let
the StAV spacetime have a nonreducible third-degree
integral. Then Uy ¼ 0.
Proof.—The proof has two parts: (1) show that Uy has to

be constant. (2) Show that the constant is zero. For the first
part, consider the p3

1p2-component of (10a). Use the Ernst
equation to substitute derivatives Uyy. In this way, obtain
the equation:

10x3U4
y þ 156x2xð1þ xUxÞU2

y þ 36x2UxUxx − 126x3U4
x

− 126xU2
x þ 18xUxx − 18Ux − 252x2U3

x ¼ 0: ð17Þ

This is a polynomial equation of degree 4 for Uy, and all
coefficients are functions of x only. By Lemma 6, this
means Uyy ¼ 0, so Uy ¼ const ≕ c.
For the second part of the proof, we insert this result into

the p4
1-component of (10a). If we substitute Uxx with the

help of the Ernst equation, we find

6Uxð1þ xUxÞð1þ 2xUxÞ ¼ 0:

Hence, there are 3 cases: Ux ¼ 0, Ux ¼ − 1
x and Ux ¼ − 1

2x.
We treat them separately:

(i) If Ux ¼ 0, use again the p3
1p2-component which

reads

10x3c6 ¼ 0;

so c ¼ 0.
(ii) For Ux ¼ − 1

x we have the same equation, so
again c ¼ 0.

(iii) The case Ux ¼ − 1
2x is slightly more involved. The

p3
1p2-component reads

c2ð9 − 312x2c2 þ 80x4c4Þ
8x

¼ 0:

Now, either c ¼ 0 directly, or 9–312x2c2 þ 80x4c4.
In the latter case, xc ¼ const and hence c ¼ 0. ■

Lemma 8: Using Lewis-Papapetrou coordinates with
R ¼ x, assume the potential function U to be

e2U ¼ kU
2yþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 4y2 þ 4cyþ c2

p
x2

;

with kU; c ∈ R:

This provides a parametrization of flat space.
Proof.—Determine the function γ from the secondary

Ernst equations and find

e2γ ¼ 2kγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 4y2 þ 4cyþ c2

q
e2U; kγ ∈ R:

Then compute the Riemann curvature tensor for the metric

g ¼ e2Uðe−2γðdx2 þ dy2Þ þ x2dϕ2Þ − e−2Udt2

and find that it vanishes identically. Thus, the potential
function U defines a flat metric, which of course is
StAV. ■

Lemma 9: Let rkM¼2 and ω¼0, but ∇Vϕϕ;∇Vtt≠0.
Assume α ≠ 0. Then there is no nontrivial Killing tensor of
valence 3.
Proof.—We assume there was such a Killing tensor.

Then, by the necessary criterion (Lemma 5), Ay − Bx ¼ 0.
In addition, consider (10a), and the Ernst equations. Since
we chose Lewis-Papapetrou coordinates with R ¼ x, we
have Uy ≠ 0.
Consider (10a) in combination with the necessary cri-

terion from Lemma 5, plus the Ernst equations. The Ernst
equations are to be invoked mainly in order to substitute d2U

dy2 .

We take derivatives with respect to x and y of (10a). Then,
we have 18 equations [(10a) plus the necessary criterion
Ay − Bx ¼ 0 from Lemma 5]. Using the Ernst equations, we
have only the following unknown functions:

Uxxxx; Uxxxy; Uxxx; Uxxy; Uxx; Uxy; Ux; Uy; U; γ:

Use the x-derivative of the p3
1p2-component to substitute

Uxxxy, and the x-derivative of the p2
1p

2
2-component to
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substitute Uxxxx in terms of lower order derivatives. The
quantity Uxxy can be substituted for via the x-derivative of
the integrability criterion, but only if

ð1þ 2xUxÞðxU2
x − 3xU2

y þUxÞ ≠ 0: ð18Þ

In this case, we can proceed as follows: substitute Uxxx by
the x-derivative of the p4

1-component, and use this compo-
nent to substitute Uxx. Finally, substitute Uxy using the
integrability condition.
With all these substitutions at hand, we now have only

equations in the unknowns Ux, and Uy left. For instance,
the derivative with respect to y of the p4

1-component of
(10a) reads

xU2
xð1þ 2xUxÞð1þ xUxÞ2ðxU2

x þUx þ xU2
yÞ3 ¼ 0:

Therefore, either Ux ¼ 0 or Ux ¼ − 1
x or Ux ¼ − 1

2x, or
xU2

x þ Ux þ xU2
y ¼ 0. The three cases mentioned first are

covered by Lemma 7, and obviously in contradiction to the
hypothesis Uy ≠ 0.
We are left with the forth case. Solve the equation and

obtain

U2
y ¼ −

1

x
Uxð1þ xUxÞ: ð19Þ

Then substitute this into the p4
1-component of (10a) and

obtain an expression for Uxx, and from the integrability
condition we obtain an expression for Uxy.

1 The other
components of (10a) are then satisfied trivially. At this
point, it is a good idea to go back to the expressions for U2

y

and Uxy. Combining both, we find the equation

d
dx

Uy ¼ −4xU3
y

which is an ODE for Uy and can be solved in a
straightforward way. The solution is

Uy ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4x2 − f1ðyÞÞ
p :

Use this to replace U2
y in (19):

f1ðyÞ ¼ −
xð1þ 4xUx þ 4x2U2

xÞ
Uxð1þ xUxÞ

:

Solve this for Ux. There are two branches of possible
solutions:

Ux ¼
1

2

−4x2 − f1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2f1 þ f21

p
xð4x2 þ f1Þ

:

We can use the integrability criterion to find an explicit
form for f1. First, obtain two differential equations:

ðf1Þy � 4
ffiffiffiffiffi
f1

p
¼ 0:

Up to the sign of the integration constant, both have the
same solution

f1 ¼ ð2yþ cÞ2 ¼ 4y2 þ 4cyþ c2:

Using again the equation for U2
y in terms of Ux and

integrating, one finds

U ¼ 1

2
lnð2yþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 4y2 þ 4ycþ c2

q
Þ þ f2ðxÞ

with f2 first being an unspecified integration “constant.”
Checking if this solution is compatible with the expression
for Ux found above, ðf2Þx can take two possible values:
either ðf2Þx ¼ − 1

x, or

df2
dx

¼ ðf2ÞxðxÞ

¼ −4x
ð2yþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ ð2yþ cÞ2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ ð2yþ cÞ2

p :

Now, consider the Ernst equation Ux þ xUyy þ xUxx ¼ 0.
For the first solution for ðf2Þx, this implies x ¼ 0, so this is
no valid solution. Therefore, conclude

U ¼ 1

2
lnð2yþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 4y2 þ 4ycþ c2

q
Þ − lnðxÞ þ c2

with an additional integration constant c2 ∈ R. By Lemma
8, the metric is flat and therefore all Killing tensor fields are
reducible. This concludes step (vi) in the list of Sec. II.
To complete the proof, we still have to account for the

case when (18) is not satisfied. In this case, either Ux ¼ − 1
x

(this is covered by Lemma 7) or

Uxð1þ xUxÞ − 3xU2
y ¼ 0:

We solve for U2
y:

U2
y ¼

Uxð1þ xUxÞ
3x

:

From the p4
1-component and the integrability criterion, we

can also get another expression for U2
y:

1One might want to check that both expressions are compat-
ible, which is true.
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U2
y ¼

3Uxð1þ xUxÞ
x

:

The only way to allow both solutions to be true is ifUx ¼ 0

or Ux ¼ − 1
x. Both cases are covered by Lemma 7. ■

We have considered odd-parity third-degree integrals in
a StAV spacetime. Let us now summarize the results and
merge them into one theorem:
Proof of theorem 1.—If M is flat on a neighborhood,

then it is totally reducible there [21]. Thus assume thatM is
nonflat. First, consider only odd-parity integrals:
Claim: Let M be nonflat with ω ¼ 0, ∇Vϕϕ ≠ 0, and

∇Vtt ≠ 0. Let F be a third-degree integral of odd parity in
M. Then F is reducible by at least one degree.
Proof of the claim.—First, let us consider the case when

there is an additional Killing vector field. As we have seen
in Lemma 3, this means that the odd-parity third-degree
integral is reducible by the (linear) integral py. So, the
assertion is proven in this case.
Second, if there is no additional Killing vector field,

proposition 9 tells us (provided α ≠ 0) that there is no odd-
parity third-degree integral. In the case α ¼ 0, we have
F ¼ 0. Thus, the assertion is proven. ■

Now, consider the even-parity contributions. The quad-

ratic contributions Fð2Þ
ϕ and Fð2Þ

t must obey the equation

fT; Fð2Þ
k g ¼ 0

as well as equations of the form

fT; Fð0Þ
abkg þ fVab; Fð2Þ

k g ¼ 0;

where a; b; k ∈ fϕ; tg.
These, however, are precisely equations (16) for quad-

ratic integrals with leading term Fð2Þ
ϕ or Fð2Þ

t , respectively.
This means that

paðFð2Þ
a þ Fð0Þ

aϕϕp
2
ϕ þ Fð0Þ

atϕptpϕ þ Fð0Þ
attp2

t Þ;

a ¼ ϕ; t, are quadratic integrals and therefore, the even-
parity contributions to the degree-3 integral F are reducible
by pϕ and pt, respectively. Hence, also the entire integral F
(consisting of the parts with degree from 3 down to 0) is
reducible by one degree. ■

A. Zipoy-Voorhees

Consider again the Zipoy-Voorhees class. We already
considered third-degree odd-parity integrals in such space-
times. Let us now consider even-parity components and
assume without loss of generality δ ≠ 0. We use for the
Hamiltonian H the representation

H ¼ Ω1p2
x þ Ω2p2

y þ Vϕp2
ϕ þ Vtp2

t ð20Þ

and denote the integral by

F ¼ a0p2
x þ a1pxpy þ a2p2

y þ b0p2
ϕ þ b1pϕpt þ b2p2

t :

From each polynomial of degree 1 after split with respect
to px; py (cf. Remark 1), we obtain integrability conditions
for b0 and b2. Automatically, b1 ¼ const is no longer of
interest.
Combining the Bertrand-Darboux relations and equa-

tions obtained from the degree-3 polynomial after splitting
with respect to ðpx; pyÞ, we can solve for derivatives of a0,
a1 and a2, and derive integrability conditions for them.
From the integrability conditions, we can deduce that a1 ¼
0 and that (at least if δ ≠ 1)

ðy2 − 1Þa2 þ ðx2 − 1Þa0 ¼ 0:

From the Bertrand-Darboux equations for b0, b2, we can
now deduce dða0Þ in terms of a0 and solve the system of
differential equations, obtaining

a0 ¼ c1ðy2 − x2Þ1−δ2ðxþ 1Þδ2þδ−1ðx − 1Þδ2−δ−1:

Then, we can immediately compute a2:

a2 ¼ −c1
�
x2 − 1

x2 − y2

�
δ2
�
xþ 1

x − 1

�
δ x2 − y2

y2 − 1
:

Finally, from the equations obtained from the degree-1
polynomial after split with respect to px; py, we obtain the
derivatives of b0, b2, and by integration

b0 ¼ −c1ðy2 − 1Þðx2 − 1Þ
�
xþ 1

x − 1

�
δ

þ c2

b2 ¼ −c1
�
x − 1

xþ 1

�
δ

þ c3:

Comparing this result to the Hamiltonian shows that

F ¼ c1H þ c2p2
ϕ þ c3pϕpt þ c4p2

t :

This means that every quadratic integral is reducible,
provided δ ≠ 1 (in case δ ¼ 1, we obtain the Schwarzschild
metric, which is integrable with the additional integral in
involution being given by a quadratic integral. This
quadratic integral, however, is reducible by linear integrals
that are not in involution). Together with Theorem 1, this
proves the assertion. ■

IV. CONCLUSION

In this paper we gave a proof for the reducibility of
valence-3 Killing tensor fields in static and axially
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symmetric vacuum spacetimes (Weyl’s class). We saw that
using prolongation-projection is an efficient way to decide
on the existence of integrals in SAV metrics even if the
metric is not given specifically. We plan to extend the result
for degree 3 to the fully stationary SAV case. Though
computationally more challenging, we are not aware of
major conceptual problems with this. As for generalizations
beyond the SAV context, the line of reasoning made here is
in principle not specific to the SAV class of spacetimes,

and an analogous approach might work for other classes of
spacetimes, too.
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