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We reanalyze the behavior of Friedmann-Lemaître-Robertson-Walker cosmologies in the recently
proposed quasidilaton massive-gravity model, and discover that the background dynamics present hitherto
unreported features that require unexpected fine-tuning of the additional fundamental parameters of the theory
for an observationally consistent background cosmology. We also identify new allowed regions in the
parameter space and exclude some of the previously considered ones. The evolution of the mass of
gravitationalwaves reveals nontrivial behavior, exhibiting amass-squared thatmaybenegative in the past, and
that presently, while positive, is larger than the square of the Hubble parameter, H2

0. These properties of the
gravity-wave mass have the potential to lead to observational tests of the theory. While quasidilaton massive
gravity is known to have issues with stability at short distances, the current analysis is a first step toward the
investigation of themore stable extended quasidilatonmassive-gravity theory,with someexpectation that both
the fine-tuning of parameters and the interesting behavior of the gravity-wave mass will persist.

DOI: 10.1103/PhysRevD.92.084033 PACS numbers: 98.80.-k, 95.36.+x, 04.50.Kd

I. INTRODUCTION

The standard cosmological model, ΛCDM, describes the
acceleration of the Universe by properly adjusting the
cosmological constant Λ. While this simple model is
consistent with current observational data, other models
provide alternative explanations of this acceleration. For
example, some models attribute the acceleration to the
presence of a dynamical component known as dark energy
[1–3], and others to a modification of the gravitational laws
on cosmological distances [4–8]. The questions will be to
what extent it is possible to discriminate among the
different models from observations, and whether any of
the models are better at fitting the data than what is
currently the most parsimonious explanation, Λ.
The next generation of experiments (such as EUCLID [9]

or DESI [10]) will provide an unprecedented amount of
observational data. However, there is now a wide range
of candidate theories. For instance, differentmodifications of
general relativity (GR) primarily in the infrared have been
considered by many authors (see [11] for a recent review),
and probably still others have yet to be proposed. Ultimately,
the predictions of each candidate model must be confronted
with data. This includes not just cosmological data but data
on all scales where the models make calculable predictions
that can be tested observationally or experimentally.

Within one interesting class of theories, the current
acceleration era is associated to the presence of a mass
term for the graviton (for a historical overview, motivations
and an updated description of different proposed massive
gravity theories, see [12,13]). Here we consider a particular
modification of general relativity known as quasidilaton
massive gravity (QDMG), which we summarize in Sec. II.
This theory was proposed in [14], as an extension of the de
Rham-Gabadadze-Tolley (dRGT) theory of massive gravity
[15,16], and contains an additional scalar degree of freedom:
the quasidilaton. The main motivation for such an extension
is the absence of isotropic and homogeneous cosmological
background solutions in dRGT [17]. Indeed, it has been
shown that QDMG has solutions with spatially flat
Friedmann-Lemaître-Robertson-Walker background met-
rics [14]. Moreover, it has been found that (even in the
absence of a cosmological constant) there are solutions for
which at late times the metric approaches a de Sitter metric,
providing a plausible (self-accelerating) explanation of the
accelerated expansion of the Universe [14,18,19]. The
quasidilaton theory has three parameters more than ΛCDM.
In this paper we perform a careful analysis of the

background cosmological evolution, taking into account
the main goal of describing the observed expansion history
of the Universe. While other authors have made prelimi-
nary investigations [18,19] of the background evolution in
QDMG, a more detailed reexamination reveals important
new insights. The allowed set of parameters split into two
disconnected regions characterized by “low” and “high”
values of a dimensionless parameter of the theory, ω (which
multiplies the kinetic term of the quasidilaton). In the
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region with low values of ω, while viable background
solutions exist for a wide range of values of the Lagrangian
parameter nominally called the graviton mass mg, with
mg ∼OðH0Þ, a careful fine-tuning of the dimensionless
constants α3 and α4 is required. The permitted values of α3,
α4 and mg thus describe a very thin two-dimensional
surface mgðα3; α4Þ in the fα3; α4; mgg parameter space.
In the other region, the parameter mg is constrained to be
much smaller than H0, and the larger it is, the narrower the
two-dimensional surface of allowed α3 and α4.
The paper is organized as follows. After summarizing the

theory QDMG in Sec. II, in Sec. III we present the
dynamical equations. In Sec. IV we analyze the existence
of viable de Sitter fixed-point attractors. By exploring the
four-dimensional parameter space of the theory, in Sec. V,
we assess the viability of a self-accelerating explanation of
the current expansion of the Universe. An important
outcome of our analysis is that, in order to reproduce an
expansion history consistent with data, the graviton mass
parameter must also be fine-tuned to a value that depends
on other parameters of the model.
In Sec. VI we study the evolution of the mass of

gravitational wavesMGW for the allowed set of parameters.
We find the current value of MGW to be generically larger
than the current Hubble constant H0 even when we set the
graviton mass parametermg ≪ H0. In the past [for example
at redshifts relevant for the cosmic microwave background
(CMB)] MGW can be either real or imaginary. For a
conservative choice of 0 < mg ≤ H0, jMGWðtÞj < HðtÞ
in the past, with jMGWj≲ 10−2H at last scattering.
While this precludes the development of a catastrophic
instability whenMGW is imaginary, nevertheless potentially
there could be observable cosmological signatures. These
merit further investigation [20–22].

II. THEORY OF QUASIDILATON
MASSIVE GRAVITY

We consider the action for the quasidilaton theory [14]:

S ¼ SEH þ Sσ

¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p h
R −

ω

M2
Pl

∂μσ∂μσ

þ 2m2
gðL2 þ α3L3 þ α4L4Þ

i
; ð1Þ

where MPl is the Planck mass and, in addition to the
Einstein-Hilbert action SEH, a contribution Sσ characterizes
the quasidilaton scalar field σ. In addition to the quasidi-
laton kinetic term, Sσ includes three interaction terms:
Here

L2 ≡ 1

2
ð½K�2 − ½K2�Þ; ð2Þ

L3 ≡ 1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ; ð3Þ

L4 ≡ 1

24
ð½K�4 − 6½K�2½K2� þ 3½K2�2

þ 8½K�½K3� − 6½K4�Þ; ð4Þ
with square brackets denoting a trace, and

Kμ
ν ≡ δμν − eσ=MPl

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ν
: ð5Þ

The nondynamical “fiducial metric” is built from four
Stückelberg fields ϕa (a ¼ 0;…; 3),

fμν ≡ ηab∂μϕ
a∂νϕ

b: ð6Þ

In the space of Stückelberg fields, the theory enjoys the
Poincare symmetry [14]

ϕa → ϕa þ ca; ϕa → Λa
bϕ

b; ð7Þ

and in addition, there is a global symmetry given by

σ → σ þ σ0; ϕa → e−σ0=MPlϕa; ð8Þ

with σ0 being an arbitrary constant.
The addition of Sσ to the action introduces four new

parameters: the dimensionless kinetic coupling ω, the
graviton mass parameter mg, and the coupling constants
α3 and α4. As shown below, the cosmological solution
depends sensitively on the values of these parameters.

III. THE BACKGROUND COSMOLOGICAL
EQUATIONS

We consider a spatially flat Friedmann-Lemaître-
Robertson-Walker ansatz, for which

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2δijdxidxj; ð9Þ

ϕ0 ¼ ϕ0ðtÞ; ð10Þ

ϕi ¼ xi; ð11Þ

σ ¼ σ̄ðtÞ: ð12Þ

The fiducial metric fμν reduces to

f00 ¼ −nðtÞ2; fij ¼ δij; ð13Þ

where

nðtÞ2 ≡ ð _ϕ0Þ2: ð14Þ

The minisuperspace action for the background metric and
fields can now be written as
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S=V ¼ M2
Pl

Z
dt

�
−3

a3

N

�
_a
a

�
2

þ a3
w
MPl

_σ2

2N

þNa3m2
gðL2 þ α3L3 þ α4L4Þ

�
; ð15Þ

where

L2 ¼ 3ðX − 1Þð−2þ Xð1þ rÞÞ; ð16Þ

L3 ¼ −ðX − 1Þ2ð−4þ Xð1þ 3rÞÞ; ð17Þ

L4 ¼ ðX − 1Þ3ð−1þ rXÞ; ð18Þ

and we have defined

X ≡ eσ̄=MPl

a
; ð19Þ

r≡ n
N
a: ð20Þ

Varying the action with respect to ϕ0ðtÞ leads to

∂t

	 _ϕ0

n
a4G2ðXÞ



¼ ∂t½a4G2ðXÞ� ¼ 0; ð21Þ

where G2ðXÞ ¼ Xð1 − XÞJðXÞ, with

JðXÞ≡ 3þ 3ð1 − XÞα3 þ ð1 − XÞ2α4: ð22Þ

We use time reparametrization freedom to set N ¼ 1.
In summary, the independent background equations are

the following:
(i) the constraint equation (21), or its integral

G2ðXÞ ¼
C
a4

; ð23Þ

(ii) the Friedman equation,

3H2 ¼ ω

2

�
_σ

MPl

�
2

þ 3m2
gG1ðXÞ þ

ρm þ ρr
M2

Pl

; ð24Þ

where

G1ðXÞ≡X−1

3
½α3ðX−1Þ2−3ðX−1ÞþJðXÞ� ð25Þ

and we have included the contributions of matter and
radiation;

(iii) the conservation of the stress-energy tensor obtained
from Sσ,

ðσ̈ þ 3H _σÞω _σ þ 3MPlm2
gð _σ − rHMPlÞXG0

1ðXÞ ¼ 0;

ð26Þ

where a prime means derivative with respect to X;
(iv) the conservation of the stress-energy tensors of

matter _ρm ¼ −3Hρm and of radiation _ρr ¼ −4Hρr.
[Note that using the constraint equation (21) one can
show that the equation obtained by taking the variation
of Sσ with respect to σ is not an independent equation.]

IV. DE SITTER FIXED-POINT ANALYSIS

We start by investigating the future background
evolution of the quasidilaton massive gravity model. The
ΛCDM concordance model predicts the Universe will
approach a de Sitter phase in the future. Though we do
not know the future of the Universe, we require our
model to reproduce this prediction, consistent with recent
practice [18,19].
We rewrite Eq. (24) in terms of the relative energy

densities

1 ¼ ΩDE þ Ωm þ Ωr; ð27Þ

where

ΩDE ¼ ΩΛ þΩσ; ð28Þ

and

Ωm ¼ ρm
3M2

PlH
2
; ð29Þ

Ωr ¼
ρr

3M2
PlH

2
; ð30Þ

ΩΛ ¼ m2
g

H2
G1ðXÞ; ð31Þ

Ωσ ¼
ω

6H2

�
_σ

MPl

�
2

: ð32Þ

Employing Eq. (21) and assuming that X ≠ 0 we obtain

_σ ¼ MPlH

�
1 −

4G2ðXÞ
XG0

2ðXÞ
�
: ð33Þ

Equation (23) implies that as a → ∞, X → constant.
Therefore the set of variables fΩm;Ωr; X;ΩΛg will
approach constants in the asymptotic future. We study
the dynamical stability of the system by means of the
following equations:

dΩr

dN
¼ −2Ωr

�
2þ

_H
H2

�
; ð34Þ
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dΩΛ

dN
¼ −2ΩΛ

�
2
G2G0

1

G1G0
2
þ

_H
H2

�
ð35Þ

dX
dN

¼ −4
G2

G0
2
; ð36Þ

where N ¼ ln a is the number of e-foldings. _H
H2 can be

obtained by differentiating the first Friedmann equation (24)
to obtain

_H
H2

¼
9Ωm þ 12Ωr þ 12 G2

G2
0 ½G1

0
G1

ΩΛ þ ω
6

d
dX ð1 − 4 G2

XG2
0Þ2�

ω½1 − 4 G2

XG2
0�2 − 6

:

ð37Þ

As noted above, we focus on de Sitter fixed points, and
require that these critical points are attractors. The de Sitter
critical points relative to the system (34)–(36) are given in
Table I, where

X� ≡ 1þ 3

2

α3
α4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23
4α24

−
3

α4

s
: ð38Þ

To assess the stability we compute the matrix form of the
perturbation equations linearized around each of the fixed
points. Then the linear asymptotic stability of each fixed
point can be studied by analyzing the signs of the
eigenvalues of that matrix. If the sign of the real part of
every eigenvalues is negative, then the critical point is an
attractor. The results are shown in the last column of
Table I.
This analysis indicates there are three possible late-time

de Sitter fixed points, A, B and C. For each, constraints on
the parameters α3 and α4 are obtained by requiring that
H2 > 0 and X ≥ 0. For the point A we obtain α3 > 0 and
0 < α4 < 2α23=3; for B, α3 < −3 and −3 − 3α3 ≤ α4 ≤
2α23=3; for C, α4 < −6 − 4α3. Noticing that one must insist
that X ≥ 0, we found different constraints than [18,19].
Consider more closely the fixed point B. Given the α3

and α4 constraints for B, we obtain 0 < X− < Xþ < 1. The
constraint equation (23) implies that in the asymptotic
future G2ðXÞ ¼ 0. Moreover (23) requires that G2 should
be unbounded either above or below in order to have a past
history. G2 is a polynomial in X, so this is impossible if
0 < X− < 1 [23] as it is. Thus B cannot be a well-defined

fixed point. Recalling that X ≥ 0, a similar argument can be
applied to the point C.
The allowed fα3; α4g parameter region for A entails that

1 < X− < Xþ. Therefore A is the only well-defined de
Sitter fixed point for the QDMG theory. We emphasize that
our findings now differ from those of [18,19], in that we
exclude the points B;C.

V. COSMOLOGICAL EVOLUTION AND
PARAMETER FIXING

The aim of this section is to study the evolution of the
relevant background quantities in agreement with the
results of the previous section and with the observed
cosmological history. That depends on the initial condi-
tions, on the expansion history and on the fixed point A. By
means of this analysis we constrain the four parameters of
quasidilaton massive gravity: fmg;ω; α3;α4g.
Given that we are dealing with the background energy

density evolution, we can consider neutrinos to be relativ-
istic, since the value of Ωr is not negligible only in the
radiation era when neutrinos were indeed relativistic. The
spectrum of the CMB today is precisely measured, so we
accurately determine Ωγ;0. For relativistic neutrinos, Ων;0 is
proportional to Ωγ;0. Therefore we assume Ωr;0 is known
and we fix it by Ωr;0 ¼ Ωγ;0 þΩν;0 ¼ 0.0000851.
To be definite we also fix ΩDE;0 ¼ 0.72, close to the best

fit value [24]. That corresponds in ΛCDM to zeq ≈ 3300.
We stress that this choice will not qualitatively affect our

TABLE I. De Sitter fixed points.

F. P. Ωr ΩΛ X Ωm Ωσ Existence Stability Eigenvalues

A 0 1 − ω=6 Xþ 0 ω=6 0 < ω < 6, 0 ≤ Xþ, Xþ ∈ R Attractor −4, −4, −3
B 0 1 − ω=6 X− 0 ω=6 0 < ω < 6, 0 ≤ X−, X− ∈ R Attractor −4, −4, −3
C 0 1 − 3ω=2 0 0 3ω=2 0 < ω < 2=3 Attractor −4, −4, −3

0 1 2 3 4 5 6 7

–10

0

10

20

30

X

G
2
(X

)

G2(X)
G2(X0)

FIG. 1 (color online). The blue line shows the G2ðXÞ function,
while the red points are theG2ðX0Þ ¼ C values for fmg ¼ 0.4H0;
ω ¼ 0.01; α3 ¼ 0.75; α4 ¼ 0.345g.
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conclusions on the quasidilaton massive gravity back-
ground evolution.
To fix the initial conditions we require ΩDE;0 ¼ Ωσ;0þ

ΩΛ;0, where Ωσ;0 and ΩΛ;0 are given by (31)–(32). In this
way we obtain a ninth order polynomial that has no
analytical solutions. In Fig. 1 we plot the G2ðXÞ function
for fmg ¼ 0.4H0;ω ¼ 0.01; α3 ¼ 0.75; α4 ¼ 0.345g. The
red points represent the values of X0 and G2ðX0Þ where the
initial conditions are satisfied. From Eq. (23) we obtain
C ¼ G2ðX0Þ. Finally, notice that G2 is unbounded as
X → ∞; this implies that for our model the correct past
evolution of the background is allowed only if X0 > Xþ.
The dark energy equation-of-state parameter wDE;0 is

constrained by observations. To compute w for the QDMG
model we first define the total effective equation-of-state
parameter

weff ¼ −1 −
2

3

_H
H2

; ð39Þ

and consequently

wDE ¼ weff − wmΩm − wrΩr

ΩΛ þΩσ
: ð40Þ

We must require that −1.2 < wDE;0 < −0.9 in agreement
with the current limits [25].
The quasidilaton massive-gravity model shows a par-

ticular feature: ΩDE scales as matter at early times [18].
Indeed, from the analysis abovewe have α4 > 0 andC > 0.
At early times G2 ∼ α4X4 ¼ C=a4. Therefore we find [26]

ΩDEH2 ≃ΩΛH2 ≃m2
g

�
C
α4

�
3=4 α3 þ α4

3
a−3: ð41Þ

It follows that, for redshifts z≳ 10, ΩDE would contribute
to the effective matter energy density. Therefore ΩDE
should be negligible in the radiation era in order

to have a viable expansion history. We demand that
ΩDEðzeqÞ < 0.01.
In order to identify the allowed ranges of the four

parameters of QDMG, the main computational obstacle
is to find the solutions of the initial condition, namely
ΩDE;0 ¼ 0.72. In principle ΩDE;0 ¼ 0.72 could have from 1
to 9 allowed solutions for each value of the QDMG
parameters. However, after enforcing all the observational
conditions, we find that there is never more than one viable
solution. We identify two disconnected allowed regions in
the four-dimensional space of parameters; one shows just
low-ω values (hereafter REG1) and the other one high-ω
values (hereafter REG2).
In Figs. 2–3 we present the constraints for the (REG1)

parameter space. After marginalizing over α3 − α4 we find
that ω is constrained to 0 < ω≲ 1.2 as we report in Fig. 2.
On the other hand, marginalizing over ω, the contour plot
reported in Fig. 3 shows that the α3 − α4 values are tightly
related to the m2

g=H2
0 value (black bold numbers). Once we

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

mg
2 H0

2

FIG. 2. (REG1): m2
g=H2

0 − ω constraints after marginalizing
over α3 − α4.

0 5 10 15 20
0
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15

20

α3

α
4

0.0001

0.0005

0.001

0.01 0.0050.1 0.05
0.5

1.0

FIG. 3 (color online). (REG1): α3 − α4 constraints for different
m2

g=H2
0 values (black bold numbers). We marginalized over ω.

The blue line corresponds to the boundary of the region
α4 < 2α23=3, which is the existence condition we obtained from
the fixed-point analysis.

0.002 0.004 0.006 0.008 0.010

5.0

5.5

6.0

mg
2 / H0

2

FIG. 4. (REG2): m2
g=H2

0 − ω constraints after marginalizing
over α3 − α4.
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know two of the three fmg; α3; α4g parameters, the other
one is determined to a good approximation. In other words
the quasidilaton massive-gravity theory presents a fine-
tuning of the parameters.
Repeating the procedure for (REG2) we find a different

behavior. In Fig. 4 we see that m2
g=H2

0 ≲ 0.008 while the ω
allowed interval depends onmg and it becomes larger asmg

decreases. The α3 − α4 region is again mg dependent;
however the dependence now is different than for (REG1)
as we show in Fig. 5. For (REG2) ifm2

g=H2
0 ∼ 0.1 thenω ∼ 6

andα4 becomes effectively a function ofα3, sowe find a fine-
tuning of two parameters. On the other hand if the graviton
mass is small, i.e. m2

g=H2
0 ≲ 0.001, the other parameters are

no longer strongly constrained.
Notice that we find different results than [18,19]. In

particular they allowed ω to be negative and they
obtain ω≲ 0.3.
In our analysis we did not compute the whole expansion

history for each point in the four-dimensional parameter
space for practical computational reasons. As an illustrative
example, we choose two sets of allowed parameters for
(REG1) and (REG2) and we plot the evolution of the
energy densities in Fig. 6. As expected, the two panels are
consistent with the observed expansion history.

The parameter fine-tuning we found practically reduces
from four to three the effective parameters of the quasidi-
laton massive gravity theory. We expect that studying the
perturbations will further constrain the theory. Some of
those perturbations will be unstable.

VI. GRAVITY WAVES

In this section we focus on the evolution of the mass of
the gravitational waves. We consider tensor perturbations
around the background metric solutions,

δgij ¼ a2hTTij ¼ a2
Z

d3k

ð2πÞ3=2 h
TT
ij;~k

expði~k · ~xÞ þ cc; ð42Þ

with δijhTTij ¼ 0, and ∂jhTTij ¼ 0. After a straightforward
calculation, one gets the quadratic Lagrangian for hTT

ij;~k

LGW ¼ M2
Pl

8
a3
	
j _hTTij j2 −

�
k2

a2
þM2

GW

�
jhTT

ij;~k
j2


; ð43Þ

where the mass of the gravitational waves MGW is given
by [27]
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FIG. 5 (color online). (REG2): α3 − α4 constraints for differentm2
g=H2

0 values (black bold numbers). We marginalized overω. The blue
line corresponds to the boundary of the region α4 < 2α23=3, which is the existence condition we obtained from the fixed-point analysis.
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M2
GW ¼ m2

gXð3þ 3α3 þ α4 − ð1þ 2α3 þ α4Þð1þ rÞX
þ ðα3 þ α4ÞrX2Þ: ð44Þ

We start by computing the ratio M2
GW=H

2 at redshift
z ¼ 1100, relevant for CMB, for the two disconnected
regions (REG1) and (REG2) defined in the previous
section. An exploration of the values computed reveals
there is a minimum and maximumM2

GW=H
2 for each of the

regions. The results are presented in Table II. We see that a
real mass as large as MGW ∼ 10−2H can be obtained, even
for our conservative choice mg ≤ H0. For both parameter
regions (REG1) and (REG2), we note the mass can be
imaginary. However, the maximum absolute values turn out
to be much smaller than the Hubble rate, preventing the
development of a full instability. It is worth noting that so
far signatures in the CMB due to a nonvanishingMGW have
been studied assuming this mass is always real [20–22].
Our results suggest that one should explore also the
possibility of having cosmological gravitational waves
with a small but imaginary mass at the relevant redshifts
for CMB.
In Fig. 7 we plotted the evolution of the ratio M2

GW=H
2

for the parameters given in Table II. We notice that at low
redshifts (and in particular at z ¼ 0) the mass becomes
positive, and is larger than H0, despite the fact that
mg ≤ H0. In order to assess the generality of this result
we computed the ratio M2

GW=H
2
0 at z ¼ 0 varying the

parameters in the two disconnected allowed regions of the
four-dimensional space, and we obtained its maximum and
minimum value. The results are shown in Table III. We see

FIG. 6 (color online). Upper panel: expansion history for
fm2

g=H2
0 ¼ 0.05;ω ¼ 0.9484; α3 ¼ 7.059; α4 ¼ 10.63g. Lower

panel: expansion history for fm2
g=H2

0 ¼ 0.0005;ω ¼ 5.4211;
α3 ¼ 10.797; α4 ¼ 17.680g.

TABLE II. Maximum and minimum values of M2
GW=H

2 at
z ¼ 1100 and the corresponding values of the parameters
fmg;ω; α3; α4g. For completeness, the value of X at z ¼ 0 is
also presented.

z ¼ 1100

(REG1) (REG2)

Maximum Minimum Maximum Minimum

M2
GW=H

2 2.5 × 10−4 −9.2 × 10−5 1.5 × 10−5 −8.5 × 10−6

m2
g=H2

0
1 1 10−4 8.45 × 10−3

ω 1.03 0.32 5.99 5.95
α3 6.60 6.80 5.83 3.56
α4 19.61 19.87 20 8.44
X0 1.82 1.85 1.73 1.94

0 2 4 6
0
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40

Log10(1+z)
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G

W
2

/H
2

1 2 3 4 5 6

–0.0002

–0.0001

0.0000

0.0001

0.0002 z = 1100

z = 3300

z = 0

z = 1 (REG1)
(REG2)

FIG. 7 (color online). Evolution of the mass-squared of the
gravitational waves in units of the Hubble rate for the set of
parameters given in Table II. Solid (dashed) lines correspond to
the values of parameters for which we found the maximum
(minimum) value of M2

GW=H
2 at z ¼ 1100.

TABLE III. Maximum and minimum values of M2
GW=H

2
0

at z ¼ 0, the corresponding values of the parameters
fmg;ω; α3; α4g, and the value of X at z ¼ 0.

(REG1) (REG2)

z ¼ 0 Maximum Minimum Maximum Minimum

M2
GW=H

2
0

25 2.5 18 5
m2

g=H2
0

1 10−4 10−4 10−4

ω 0.08 0.08 6 5.05
α3 0.86 3.46 5.83 1.70
α4 0.48 0.55 20 0.49
X0 4.67 19.59 1.73 10.99
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that MGW is larger than H0, even for values of
mg ∼ 10−2H0, and it is up to a factor of ∼5 larger than
H0 for mg ≤ H0. The existence of a minimum value of
MGW that is larger than H0 is remarkable, since this
represents a motivated observational threshold. That is, if
one could constrain MGW to be smaller than H0 one would
be able to rule out a self-accelerating explanation of the
current acceleration of the Universe within the QDMG
theory. It would be interesting to see whether an analogous
result holds for other theories that also aim to provide a self-
accelerating explanation. Unfortunately, current experi-
ments are still far from probing MGW ∼H0 [29].
Moreover, the upper limits one can obtain are in general
model dependent, since they are based on assumptions
involving different scales of the theory. This represents a
challenge for both theory and observations, and highlights
the ongoing importance of working out predictions within
the framework of specific models of modified gravity.

VII. CONCLUSIONS

The combination of general relativity and the standard
model of particle physics is a demonstrably and remark-
ably successful description of the world on scales up to and
including the Solar System. On larger scales, there is a
need either to modify the theory of gravity or to introduce
new forms of dark matter and dark energy. The most
parsimonious solution would be to identify candidates for
the latter in the standard model, and such candidates may
exist for dark matter (see for example [30,31]) and evade
existing constraints [32], although the phenomenological
successes of MOND (see for example [33]) cannot be
entirely dismissed as an indication of the need to modify
gravity on galactic scales. For the observed cosmic
acceleration, the situation is even less clear. A cosmologi-
cal constant is the canonical explanation, but despite
decades of attempts has as yet no clear explanation in
the standard model. The need for observational probes of
possible dark energy and modified gravity explanations is
thus paramount.
One possibility would be to develop some general

phenomenological classification of possible deviations of
gravity from GR. The parametrized post-Newtonian
approach is one such program, in the context of almost-
Schwarzschild backgrounds. Such generic approaches have
also been attempted in the cosmological context (e.g.
[34,35]). However, in the context of a highly nonlinear
theory such as GR, the observational consequences of small
theoretical departures from GR can be quite ideosyncratic.
While phenomenological parametrization of observables
may be convenient, and even useful, they may not capture
(or may capture poorly) the specific phenomena or behav-
ior that result from actual models. Careful examination of
specific individual models can therefore be both instructive
and essential.

In this paper, we have studied the (homogeneous)
cosmological solutions of quasidilaton massive-gravity.
A study of the linear perturbations around the asymptotic
self-accelerated cosmological solution of this theory (which
corresponds to a De Sitter background metric) has been
done in [36,37]. These studies have revealed that the kinetic
term of one of the scalar perturbations becomes negative for
short wavelengths, indicating that the theory may have a
ghost instability that shows up at short distances. This is
indeed the case at linear level. Several authors [38,39]
have therefore extended the theory by allowing for a new
coupling, which can be properly adjusted to make the scalar
sector stable at linear level. This extended quasidilaton
massive-gravity theory (EQDMG) has been considered by
other authors [28,40,41].
Although this current reconsideration of the background

cosmological solutions of QDMG was performed as a first
step for a full analysis of the EQDMG, it revealed important
attributes of the QDMG cosmology, which we expect to
carry over qualitatively or in detail to EQDMG. The first is
that observationally viable QDMG cosmologies require
fine-tuning of parameters. In particular, the allowed values
of the graviton mass parameter, mg is a tightly constrained
function of the coupling constants α3 and α4, with only a
very narrow tolerance around a central value mgðα3; α4Þ.
This fine-tuning, and the precise value of mgðα3;α4Þ, is
dictated by observational constraints on the dark energy
properties [42].
The second observation is that some small (but possibly

non-negligible) fraction of what manifests as ΩDE (i.e.
p=ρ≃ −1) today was Ωm (i.e. p=ρ≃ 0) in the past. The
transition from one equation of state to the other was sudden
and probably not well captured by a linear parametrization
of wðzÞ. The expected difference between Ωm at high
redshift (as measured in the CMB) and at low redshift
(as measured, say in large scale structure) could be the
source of recently noted tensions in different determinations
of Ωm [43,44]. While the details of these behaviors of
the background cosmology are likely to be altered in
EQDMG, it is plausible that the qualitative features are
robust.
We have also analyzed the phenomenology of the

graviton. The governing equations for the graviton mass
MGW (which is not equal to the graviton mass parameter
mg) are the same in QDMG and EQDMG. We therefore
expect to gain useful insights for the extended model
provided that the background solutions do not depend
sensitively on the new parameter ασ of the extended
theory. We find that the graviton mass-squared typically
is negative at redshifts well above z ¼ 1, indicating an
instability. This includes redshifts z≃ 103–104 where
such physics may well imprint itself on the CMB. At
any given time jM2

GWj ≪ H2, so we do not expect the
instability to lead to many e-foldings of growth.
Nevertheless, if this persists in EQDMG, it may be
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another opportunity to see evidence of modified gravity in
CMB observations.
Regarding vector perturbations, according to

Eqs. (4.16)–(4.17) of [28], the square of the speed of
propagation, c2V , can be recast as c2V ¼ κV=M2

GW, where
the absence of ghost instability is guaranteed provided
κV > 0 [47]. Notice in particular that when M2

GW becomes
negative, the absence of ghost instability implies that c2V
becomes also negative. Therefore, we expect that a detailed
analysis of the perturbations will further reduce the region of
allowed parameters.
In a future work, we will therefore extend our analysis to

the EQDMG theory, taking into account the constraints

from the study of the perturbations, anticipating hopefully
that these observable effects will indeed persist.
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