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The basic formulation describing quadratic mode coupling in rotating Newtonian stars is presented,
focusing on polar modes. Due to the Chandrasekhar-Friedman-Schutz mechanism, the f-mode
(fundamental oscillation) is driven unstable by the emission of gravitational waves. If the star falls
inside the so-called instability window, the mode’s amplitude grows exponentially, until it is halted
by nonlinear effects. Quadratic perturbations form three-mode networks inside the star, which evolve
as coupled oscillators, exchanging energy. Coupling of the unstable f-mode to other (stable) modes
can lead to a parametric resonance and the subsequent saturation of its amplitude, thus suppressing
the instability. The saturation point determines the amplitude of the gravitational-wave signal
obtained from an individual source, as well as the evolutionary path of the latter inside the instability
window.
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I. INTRODUCTION

With a mass of the order of the solar mass and a radius of
about 10 km, neutron stars constitute nature’s high-energy
laboratories, from which the behavior of matter at such
extreme conditions could be deduced. The neutron star
equation of state is yet to be determined and remains one of
the most significant questions in astrophysics. The seren-
dipitous discovery of the first pulsar by Hewish and Bell in
1967 signified the onset of neutron star astronomy, which
has provided some constraints for the masses, the radii, and
the rotation periods of neutron stars.
Nevertheless, these observations are not enough to infer

the equation of state. A method that could be used to further
probe neutron stars is asteroseismology, namely, the study of
stellar oscillations [1,2]. Especially after the realization that
stellar oscillations can be driven unstable by the emission of
gravitational radiation [3,4], the field of gravitational wave
asteroseismology was developed rapidly; detection of
gravitational waves from nonradial stellar oscillations could
provide information about the neutron star interior [5–9].
The Chandrasekhar-Friedman-Schutz (CFS) instability,

however, grows on long time scales and, to make things
worse, it is suppressed by viscosity [10,11]. For the f-
modes, which are the fundamental oscillations of the star
and the best gravitational wave emitters, this leaves only a
small portion of the parameter space, where the instability
is active. In the late 1990s, it was realized that another class
of oscillations, the r-modes, is unstable for a much larger
parameter range [12–16]. The r-modes are related to
horizontal motions of the fluid, much like Rossby waves
in the Earth’s atmosphere and oceans, and exist only in
rotating stars [17]. Moreover, they have shorter growth
times, compared to the f-modes. As a result, the r-mode
instability was considered as the most promising gravita-
tional wave source.

Consequent studies on the r-mode instability naturally
raised the question of the maximum amplitude that the
oscillation can attain, before it is halted by nonlinear
effects. Coupling of the unstable r-mode to other modes
of the star can work as an energy drain and saturate the
instability. The results of these studies were quite disap-
pointing, from a gravitational-wave-detection point of
view: the r-mode saturation amplitude is, in fact, quite
lower than expected, or, at least, hoped [18–21].
Determining the saturation amplitude of the unstable

r-mode is also important for neutron star evolution.
Whether the star is newborn or a member of a low-mass
x-ray binary system (LMXB), its evolution depends on the
value of the saturation amplitude [22,23]. When the star
enters the instability region, it loses angular momentum,
due to gravitational wave emission, which could possibly
explain the upper limit in the observed neutron star rota-
tional frequencies [14,24–27] (about 700 Hz [28]).
Even though the r-mode instability is active in a much

larger part of the parameter space, the f-mode instability
could still be significant, especially for newborn neutron
stars. Furthermore, the fact that the r-mode saturation
amplitude is not expected to be high renders the study
of the f-mode quite important: if the f-mode is not
saturated at such low amplitudes, then it could be a possible
gravitational wave source and, thus, provide much infor-
mation about the neutron star equation of state. Up until
now, the evolution of the f-mode instability in the non-
linear regime has been performed only via hydrodynamic
simulations [29–31]. However, since the growth time of the
instability is, in general, quite long, it is very hard for
nonlinear simulations to track the mode evolution for such
a long time.
Recent work [32] suggests that, should the f-mode

saturate at reasonably high amplitudes, the gravitational
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wave signal from a source in the Virgo cluster, undergoing
the f-mode instability, could be detectable by the Einstein
Telescope. A more promising source is related to supra-
massive configurations (exceeding the maximum mass of a
nonrotating star), which could be the outcome of a neutron
star merger. Such stars would be stable only for rotation
rates close to the Kepler limit (mass-shedding limit). The
f-mode instability is expected to grow really quickly in
these objects and the gravitational wave signal could even
reach the sensitivity of Advanced LIGO, with a quite
promising event rate [33].
As opposed to the r-mode, where the oscillation com-

prises horizontal fluid motions, the f-mode is dominated by
a radial component and large-scale density variations,
which makes it a more efficient gravitational wave emitter.
However, the so-called instability window is much smaller
for the f-mode. This is a region in the “temperature-
rotation rate” plane, where the instability is not suppressed
by viscous effects. By expanding a perturbation in its
multipole moments (described by the spherical harmonics
Ym
l ) we see that higher multipoles become unstable at lower

rotation rates. On the other hand, lower multipoles emit
gravitational waves more efficiently, but might not become
unstable at all. The instability window of the l ¼ m ¼ 2
f-mode is significant only for models with quite stiff
equations of state, whereas l ¼ m ¼ 3 and 4 f-modes
have larger windows, but might not grow very fast.
Applying the same methodology as for the r-mode, we

can determine the amplitude at which the f-mode insta-
bility is saturated by nonlinear effects. This work has been
divided into two parts. In the first part, included in the
present paper, we will present the theoretical framework of
the problem. Its application to various stellar models will be
presented in a subsequent paper.
The paper is organized as follows: in Sec. II we present

the formalism that gives rise to the various oscillation
modes in the star, using linear perturbations. We discuss
the method with which one can acquire the oscillation
spectrum in the nonrotating limit, and then we add rotation
in a perturbative way (slow-rotation approximation) and
present its main implications. In Sec. III we give a short
overview of the CFS instability and how it is manifested
in the f-mode. In Sec. IV we review the formalism
which describes quadratic perturbations and derive the
conditions under which coupled-mode networks can
arise. Furthermore, these networks are subjected to a
stability analysis, which determines whether saturation
can be achieved by the system or not. Derivations of
several formulas in this section are addressed in
Appendices. In Appendix A we derive the equations of
motion, including quadratic perturbations, whereas in
Appendix B we give the expression for the three-mode
coupling coefficient. Appendix C contains a study of a
coupled three-mode network, using the multiscale method,
as well as the details of the stability analysis mentioned

above. Finally, Section V concludes the paper with some
discussion.

II. THE OSCILLATION MODES—LINEAR
PERTURBATION SCHEME

Stellar oscillation modes can be divided in two general
categories: polar (or spheroidal) modes and axial (or
toroidal) modes. Expanding the displacement vector field
of an arbitrary perturbation in vector spherical harmonics,
we get

ξðr; θ;ϕÞ ¼
X
l

Xl
m¼−l

½Wm
l ðrÞYm

l ðθ;ϕÞer

þ Vm
l ðrÞ∇Ym

l ðθ;ϕÞþUm
l ðrÞer ×∇Ym

l ðθ;ϕÞ�;
ð2:1Þ

where ðr; θ;ϕÞ are the spherical polar coordinates,
ðer; eθ; eϕÞ is the orthonormal basis, and Ym

l are the
spherical harmonics. Then

• polar modes : Um
l ¼ 0

• axial modes : Vm
l ¼ Wm

l ¼ 0
as Ω → 0;

Ω being the stellar rotation rate. f-modes, as well as
p- (acoustic waves) and g-modes (gravity waves), are
examples of polar modes. They constitute the “regular”
mode spectrum of a star and have finite frequencies in the
nonrotating limit. r-modes, on the other hand, are axial and
become trivial in the nonrotating limit, where
their frequencies vanish (for a detailed presentation of
oscillation modes, cf. for instance, Refs. [1,2]). The picture
above slightly changes in the case of zero-buoyancy stars.
g-modes, which are caused by the presence of buoyancy,
become trivial too. The result of this “mixture” of trivial
modes (r- and g-modes) is another class of modes, called
hybridmodes, which have both polar and axial components
in the nonrotating limit. In the special case where l ¼ m
one obtains the “classical” r-modes, which are purely
axial [34].
Assuming a star which is uniformly rotating with an

angular velocityΩ, the fluid equations, in the frame rotating
with the star, are

∂ρ
∂t þ∇ · ðρvÞ ¼ 0; ð2:2Þ

∂v
∂t þ ðv · ∇Þvþ 2Ω × vþΩ × ðΩ × rÞ ¼ −

∇p
ρ

−∇Φ;
ð2:3Þ

and

∇2Φ ¼ 4πGρ; ð2:4Þ
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where ρ is the density, p the pressure, v the velocity, Φ the
gravitational potential andG the gravitational constant. The
system above has to be supplemented with an equation of
state p ¼ pðρ; μÞ, where μ usually corresponds to entropy
or composition and depends on the density. By considering
“small” perturbations imposed on the equilibrium state,
these equations are written as

∂δρ
∂t þ∇ · ðρδvÞ ¼ 0; ð2:5Þ

∂δv
∂t þ 2Ω × δv ¼ −

∇δp
ρ

þ∇p
ρ2

δρ −∇δΦ; ð2:6Þ

∇2δΦ ¼ 4πGδρ; ð2:7Þ

and

Δp
p

¼ Γ1

Δρ
ρ

þ
�∂ lnp
∂ ln μ

�
ρ

Δμ
μ

; ð2:8Þ

where

Γ1 ¼
�∂ lnp
∂ ln ρ

�
μ

: ð2:9Þ

In the equations above δ denotes a Eulerian perturbation
and Δ corresponds to a Lagrangian perturbation. The
former monitors changes in a particular point in space,
whereas the latter refers to changes in a given fluid element.
The two are related by Δf ¼ δf þ ðξ ·∇Þf, where ξ is the
Lagrangian displacement of the fluid element [1,35].
By definition, Δv ¼ dξ=dt ¼ _ξ þ ðv · ∇Þξ, but, since

v ¼ 0 in the background, Δv ¼ _ξ ¼ δv. Then, the perturbed
Euler equation (2.6) can be written as [35]

̈ξ þ Bð_ξÞ þ CðξÞ ¼ 0; ð2:10Þ

where

BðξÞ ¼ 2Ω × ξ; ð2:11Þ

and

CðξÞ ¼ ∇δp
ρ

−
∇p
ρ2

δρþ∇δΦ: ð2:12Þ

Operator C can be written in terms of ξ by using Eqs. (2.5),
(2.7), and (2.8) to replace the perturbations δρ, δΦ, and δp,
respectively (cf. for example, Sec. II B in Ref. [18], or
Sec. 2.1 in Ref. [35]).
Seeking solutions of the form ξðr; tÞ ¼ ξðrÞeiωt, where ω

denotes the frequency of a mode in the corotating frame,
Eq. (2.10) is written as

−ω2ξ þ iωBðξÞ þ CðξÞ ¼ 0: ð2:13Þ

This is the eigenvalue equation which needs to be solved,
supplemented with the appropriate boundary conditions, in
order to obtain the mode spectrum of the star.

A. The nonrotating limit

Equation (2.13) is simplified significantly in the absence
of rotation, since operator B vanishes. Then, according to
Eq. (2.1), the displacement vector of a polar mode is

ξðr; θ;ϕÞ ¼
�
ξrðrÞ; ξhðrÞ

∂
∂θ ; ξhðrÞ

1

sin θ
∂
∂ϕ
�
Ym
l ðθ;ϕÞ;

ð2:14Þ

where ξr and ξh are the radial and horizontal components of
ξ, respectively. It should be noted that, since operator C is
Hermitian [35], the solutions to Eq. (2.13) (with vanishing
B) are orthogonal, i.e.

hξα; ξβi≡
Z

ρξ�α · ξβd3r ¼ Iαδαβ; ð2:15Þ

where the indices in ξ denote different solutions, δαβ is the
Kronecker delta, and the star denotes complex conjugation.
Since all perturbative quantities are functions of ξ, they can
all be expressed as

δfðr; θ;ϕ; tÞ ¼ δfðrÞYm
l ðθ;ϕÞeiωt:

Hence, a separation of variables is possible and the problem
is reduced to calculating the radial dependence of the
perturbation [1].
A sample from the polar mode spectrum of a polytropic

star is presented in Fig. 1. Each mode is generally described
by three numbers: its overtone n, its degree l, and its order
m. When rotation is absent, the mode frequencies do not

FIG. 1 (color online). Polar mode spectrum of a star obeying
a polytropic equation of state with Γ ¼ 2. The adiabatic
exponent Γ1 is equal to 2.1. Mode frequencies, which scale as
~ω ¼ ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
, are plotted against the mode degree l.
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depend on m (see Sec. II B). The f-mode (n ¼ 0) lies
between its overtones (n > 0), the high-frequency p-modes
and the low-frequency g-modes. g-modes are pushed
towards zero as the effects of buoyancy become less and
less important, until they finally vanish for zero-buoyancy
stars. Departure from the zero-buoyancy case can be a
result of stratification (composition gradients) or deviations
from isentropy (star with a finite temperature) [36].
This behavior can be described by the so-called

Schwarzschild discriminant, which is given by

A ¼ d ln ρ
dr

−
1

Γ1

d lnp
dr

;

where Γ1 is the adiabatic exponent, defined in Eq. (2.9).
If the star obeys a simple polytropic equation of state
p ¼ KρΓ (where K and Γ are constants), the Schwarzschild
discriminant becomes

A ¼ Γ1 − Γ
Γ1

d ln ρ
dr

:

Then, if Γ ¼ Γ1 the star exhibits no convective phenomena
(zero-buoyancy case). On the other hand, Γ < Γ1 (Γ > Γ1)
denotes convective stability (instability), i.e. oscillatory
(unstable) g-modes.
If the equation of state is described by the more general

relation p ¼ pðρ; μÞ, the occurrence of convective phe-
nomena is parametrized through μ. The condition for the
existence of g-modes is Δμ ¼ 0 [cf. Eq. (2.8)]. If μ
corresponds to the composition, this condition means that
the composition of a displaced fluid element is “frozen”;
weak interaction processes need more time than an oscil-
lation period to restore β-equilibrium between the displaced
fluid element and the surrounding matter. On the other
hand, if μ corresponds to entropy, it means that the fluid
displacement occurs adiabatically. The Schwarzschild dis-
criminant, as a function of μ, is given by

A ¼ −
1

Γ1

�∂ lnp
∂ ln μ

�
ρ

d ln μ
dr

:

B. The slow-rotation approximation

Taking rotation into account, the situation changes
significantly. The equilibrium configuration no longer
exhibits spherical symmetry and an oscillation mode
cannot be described by a single spherical harmonic.
Typically, Eq. (2.13) has to be solved from scratch.
However, rotation can also be introduced perturbatively,
namely, by considering the effects of rotation to the various
quantities as perturbations. Rotation affects polar modes in
two ways. First, it lifts the ð2lþ 1Þ-fold degeneracy in the
eigenfrequency of each mode, by introducing a Zeeman-
like splitting. The eigenfrequency now depends on both the

degree l and the order m, as opposed to the nonrotating
limit, where it is degenerate in m. Second, rotation distorts
the equilibrium structure of the star, which also changes the
mode frequencies. An additional effect of rotation is, as
discussed before, the appearance of a whole different class
of modes, the inertial modes (like the r-mode), whose
restoring force is the Coriolis force.
Mode splitting is already introduced as a first-order

effect, whereas equilibrium distortion is a second-order
effect. Higher-order effects also become important for large
rotational velocities, but the analysis is quite cumbersome
even at second order in Ω. A third-order perturbation
formalism was developed in Ref. [37], where an interesting
case of near degeneracy was observed. Nevertheless, we
stopped at quadratic perturbations in Ω, keeping in mind
that higher-order effects could be significant at the near-
Kepler angular velocities that we are interested in.
Eigenfrequencies, eigenfunctions, as well as equilibrium

quantities, are expanded as

ω ¼ ω0 þ ω1ðΩÞ þ ω2ðΩ2Þ þOðΩ3Þ;
ξ ¼ ξ0 þ ξ1ðΩÞ þ ξ2ðΩ2Þ þOðΩ3Þ;
ρ ¼ ρ0 þ ρ2ðΩ2Þ þOðΩ4Þ:

Substituting these in Eq. (2.13) and distinguishing between
first- and second-order terms, we obtain [18]

−ω2
0ξ1 þ C0ðξ1Þ − 2ω0ω1ξ0 þ iω0B1ðξ0Þ ¼ 0 ð2:16Þ

and

−ω2
0ξ2 þ C0ðξ2Þ − 2ω0ω1ξ1 þ iω0B1ðξ1Þ − 2ω0ω2ξ0

− ω2
1ξ0 þ iω1B1ðξ0Þ þ C2ðξ0Þ ¼ 0; ð2:17Þ

respectively. From the above, we find theOðΩÞ andOðΩ2Þ
corrections to the eigenfrequencies. The first is rather
simple and is given by

ω1 ¼ mC1Ω; ð2:18Þ

where

C1 ¼
R ½2ξrξh þ ξ2h�ρr2drR ½ξ2r þ lðlþ 1Þξ2h�ρr2dr

:

The second is more complicated and has the general form
[38]

ω2 ¼ C2Ω2 ¼ ðX þm2YÞΩ2; ð2:19Þ

where X and Y include corrections due to the distortion of
the equilibrium and due to the effects of the Coriolis force.
The effect of rotation on the mode eigenfrequencies (up to
second order) can be seen in Fig. 2.
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As for the eigenfunctions, rotation couples polar modes
to axial modes, as well as other polar modes. This means
that a mode cannot be any more described by a single
spherical harmonic, which makes the situation more
complicated. Since operator B is nonvanishing in this
case, the solutions to Eq. (2.13) do not obey the orthogon-
ality relation (2.15). Instead, they satisfy a modified
orthogonality condition, given by1 [18]

ðωα þ ωβÞhξα; ξβi − hξα; iBðξβÞi ¼ bαδαβ: ð2:20Þ

III. THE f -MODE INSTABILITY

As it was discovered by Chandrasekhar [3] and rigor-
ously proven by Friedman and Schutz [4], oscillation
modes can be driven unstable by the emission of gravita-
tional radiation, if the star is rotating rapidly enough. Every
mode can be thought of as having a prograde (denoted by
−jmj) and retrograde (denoted by jmj) component. Should
the star rotate sufficiently fast, it can drag the retrograde
component towards the direction of rotation, making it
appear as prograde to a distant observer. Emission of
gravitational waves by the perturbation can then act as a
driving mechanism, increasing the mode energy. This can
be seen by the standard multipole expansion of the power
radiated in the form of gravitational waves (GW) [39]�

dE
dt

�
GW

¼ −
X∞
lmin

Nlωðω −mΩÞ2lþ1ðjδDm
l j2 þ jδJml j2Þ:

ð3:1Þ

As one can see, the power emitted is negative (gravitational
radiation damps the mode), unless ωðω −mΩÞ < 0, in
which case the energy of the mode is increased. The onset
of the instability occurs when ω=m ¼ Ω, namely when the
pattern speed of the mode matches the angular velocity of
the star. The angular velocity at which this happens is
usually called critical. Alternatively, ω −mΩ can be
thought of as the mode frequency, measured in an inertial
frame (ω is the corotating frame frequency). Then, the
instability sets in at the point when the inertial-frame
frequency changes sign.
In Eq. (3.1), Nl is a constant given by

Nl ¼
4πG
c2lþ1

ðlþ 1Þðlþ 2Þ
lðl − 1Þ½ð2lþ 1Þ!!�2 ð3:2Þ

(c being the speed of light), whereas δDm
l and δJml denote

the mass and current multipole moments, respectively. The
f-mode radiates mainly via the former,2 which are given by

δDm
l ¼

Z
rlδρY�m

l d3r: ð3:3Þ

Finally, the lower limit of the sum is given by
lmin ¼ maxð2; jmjÞ.
Depending on the equation of state, all the l ¼ mf-modes

can become unstable. However, various dissipation mecha-
nisms are expected to act against the CFS instability.
Responsible for the dissipation of the f-mode are mainly
bulk and shear viscosity (BVandSV), and their contributions
are given by [11]�

dE
dt

�
BV

¼ −
Z

ζδσδσ�d3r ð3:4Þ

and �
dE
dt

�
SV

¼ −
Z

2ηδσijδσ�ijd
3r; ð3:5Þ

respectively. Here, δσij is the stress tensor and is given, in
terms of the velocity perturbations, by

δσij ¼ 1

2

�
∇iδvj þ∇jδvi −

2

3
gijδσ

�
; ð3:6Þ

δσ ¼ ∇iδvi; ð3:7Þ

gij being the spatial metric tensor. ζ and η are the bulk
and shear viscosity coefficients, which depend on the
equation of state (cf. for instance, Ref. [40]). Bulk
viscosity is a result of the fluid trying to restore

FIG. 2 (color online). Eigenfrequency of the l ¼ 2 f-mode (in
the corotating frame), as a function of the rotation rate Ω. Each
line corresponds to a different value of m. As in Fig. 1, a
polytrope with Γ ¼ 2 and Γ1 ¼ 2.1 was used. The mode
frequency scales as ~ω ¼ ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
, whereas the rotational

velocity is normalized to the Kepler limit ΩK.

1Note that Ref. [18] uses a different ansatz for ξðr; tÞ, i.e.
ξðr; tÞ ¼ ξðrÞe−iωt, hence the sign difference in the second term.

2Current multipole moments become significant in the case of
the r-modes (cf. for example, Ref. [14]).
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β-equilibrium and operates at high temperatures, as
opposed to shear viscosity, which is due to particle
scattering and is dominant at low temperatures.
For normal nuclear matter, comprising (nonsuperfluid)

neutrons, (nonsuperconducting) protons, and electrons,
neutron collisions make the biggest contribution to shear
viscosity, and the two coefficients are given by [11,41,42]

ζ ¼ 6 × 10−59ρ2ω−2T6 g cm−1 s−1 ð3:8Þ

and

η ¼ 347ρ9=4T−2 g cm−1 s−1; ð3:9Þ

where T is the stellar temperature and all the quantities
have cgs units. For superfluid nuclear matter another
dissipation mechanism dominates, called mutual friction.
This is expected to occur for temperatures ≲109 K and
suppresses the instability very efficiently [43]. Here, we
only consider normal nuclear matter; as shown by
Ref. [32], the star may never enter the superfluid region,
since neutrino cooling is balanced by the oscillation-
induced viscous heating before the star reaches the
transition temperature.3

The instability is active only if the total energy rate of the
mode is positive, i.e.

dE
dt

¼
�
dE
dt

�
GW

þ
�
dE
dt

�
BV

þ
�
dE
dt

�
SV

> 0: ð3:10Þ

By solving this inequality, one obtains the instability
window of the mode, namely the region in the T-Ω plane
where the mode is CFS unstable (Fig. 3). Once the star
enters this area, the amplitude of the mode will grow, until
such a point where nonlinear effects become important and
saturate it. This will be discussed in the following section.

IV. MODE COUPLING—QUADRATIC
PERTURBATION SCHEME

Considering the perturbations as small, the modes of the
star are uncoupled oscillations (in the nonrotating limit).
This is a result of the linear approximation used to define
them (cf. Sec. II). However, as the amplitude of the unstable
mode grows, the linear approximation fails to accurately
describe it; higher-order terms are bound to play an
important role in the amplitude evolution, since they
introduce mode coupling. The result of this interaction
of the unstable mode with other modes is the eventual
saturation of the unstable mode’s amplitude.
The actual value of this saturation amplitude is mainly

important for two reasons. First, it sets the maximum
amplitude of the gravitational wave signal obtained from
the unstable mode. Second, it affects the evolutionary path
of the neutron star inside the instability window. After the
star enters the instability window, it cools down, until
neutrino cooling is balanced by viscous heating due to the
oscillation. Then, it descends the instability window at
almost constant temperature, by losing angular momentum.
However, magnetic braking also slows down the star,
competing with gravitational radiation; as shown in
Ref. [32], the instability may not have enough time to
grow, if the spin-down of the star is dominated by the
magnetic torque.
As in previous work for the r-mode instability

[18–21,23], we will consider quadratic perturbations and
study their effects in the evolution of the f-mode. Even
higher than second-order terms could, in principle, be
important at large oscillation amplitudes, but the complex-
ity of the formulation and the requirements of our problem
allow us to choose simplicity over accuracy. Work that also
includes cubic nonlinearities can be found in Refs. [46,47].
Also, for a more general investigation of systems with
quadratic and cubic nonlinearities the reader is referred to
Chapter 6 of Ref. [48].

A. Mode decomposition

As mentioned in Sec. II A, operator C of Eq. (2.13) is
Hermitian. This means that, in the nonrotating limit (where
B vanishes), any perturbation, described by the displace-
ment vector ξðr; tÞ, can be decomposed as

FIG. 3 (color online). Instability windows of the l ¼ m ¼ 3 and
l ¼ m ¼ 4 f-modes, for a polytropic model with Γ ¼ 2 and Γ1 ¼
2.1 (the l ¼ m ¼ 2 f-mode does not become unstable for this
model). Fiducial values were used for the mass and radius of the
star, i.e. M ¼ 1.4M⊙ and R ¼ 10 km. The angular velocity is
normalized to the Kepler limit ΩK. These curves were not pro-
duced using the slow-rotation formalism described in Sec. II B,
because the modes fail to become unstable in this approximation.
Also, although this model does not favor the instability, making
use of realistic equations of state and relativity can push the
windows to quite lower angular velocity values [44,45].

3Reference [32] uses E ¼ 10−4MΩ2R2 for the saturation
energy of the f-mode. However, if the saturation energy is
smaller, viscous heating due to the oscillation balances neutrino
cooling at lower temperatures.
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ξðr; tÞ ¼
X
α

qαðtÞξαðrÞeiωαt; ð4:1Þ

where ξαðrÞ is a solution to Eq. (2.13) (with vanishing B)
and represents the eigenfunction of an oscillation mode,
whereas qαðtÞ is the amplitude coefficient. In the case of
polar modes, this eigenfunction is given by Eq. (2.14).
If rotation is included, operator B is nonvanishing and

the solutions to Eq. (2.13) are not orthogonal, in general.
However, instead of a configuration space mode expansion,
like Eq. (4.1), one can use a phase space mode expansion
[49]. Then, a perturbation can be decomposed as [18]

�
ξðr; tÞ
_ξðr; tÞ

�
¼
X
α

�
QαðtÞ

�
ξαðrÞ

iωαξαðrÞ

�
eiωαt

þQ�
αðtÞ
�

ξ�αðrÞ
−iωαξ�αðrÞ

�
e−iωαt

�
: ð4:2Þ

This result was obtained by using the fact that both ðωα; ξαÞ
and ð−ωα; ξ�αÞ are solutions to Eq. (2.13), as well as
assuming that ξðr; tÞ is real.

B. Equations of motion

Including second-order perturbative terms in Eq. (2.10),
one obtains the quadratic equation of motion, which can be
generally written as

̈ξ þBð_ξÞ þ CðξÞ þN ¼ 0; ð4:3Þ

whereN collectively denotes all Oðξ2Þ terms. Substituting
Eq. (4.2), and using the eigenvalue equation (2.13) and the
orthogonality condition (2.20), we get

_QαðtÞ ¼
i
bα

hξα;N ie−iωαt: ð4:4Þ

This is the equation of motion for the amplitude of the
modeQα. If quadratic terms are ignored (or, equivalently, if
the perturbation is small), then the amplitude Qα is
constant, since there is no interaction with other modes.
However, a nonzero N couples the mode denoted by α
with other modes, leading to an energy exchange between
them. For a derivation of the equations of motion (4.3) and
(4.4), cf. Appendix A.
By further replacing Eq. (4.2) in N , we obtain

_QαðtÞ ¼
i
bα

X
β

X
γ

½F αβγQβQγeið−ωαþωβþωγÞt

þ F αβ̄γQ
�
βQγeið−ωα−ωβþωγÞt

þ F αβγ̄QβQ�
γeið−ωαþωβ−ωγÞt

þ F αβ̄ γ̄Q
�
βQ

�
γeið−ωα−ωβ−ωγÞt�; ð4:5Þ

where F denotes the coupling coefficient and is generally
given by

F αβγ ¼ hξα;N ðξβ; ξγÞi: ð4:6Þ

Borrowing the notation of Ref. [18], a bar over an index
means that the corresponding mode eigenfunction inN has
to be complex conjugated and its frequency sign reversed.
The explicit form of the coupling coefficient is given in
Appendix B.
Observing Eq. (4.5), we see that modes couple in

triplets, which is a natural consequence of the quadratic-
perturbation approximation. This does not, however,
restrict the number of couplings for a single mode; if a
mode couples to a pair of other modes, it can simulta-
neously couple to other pairs as well. Also, one can notice
that not all terms of Eq. (4.5) are equally significant.
Rapidly varying terms do not contribute much on long-term
dynamics and average to zero, as opposed to slowly
oscillating components (this is proven by means of the
multiscale method in Appendix C 1). Hence, couplings
which really affect the mode amplitude evolution ought to
satisfy a resonance condition, e.g.

ωα ¼ ωβ þ ωγ þ Δω; ð4:7Þ

whereΔω is a small detuning (Δω ≪ ωi). Assuming such a
relation between the mode frequencies, we can single out a
mode triplet and follow its evolution. The amplitude
equations of motion for the three modes are

_Qα ¼
iF αβγ

bα
QβQγe−iΔωt; ð4:8aÞ

_Qβ ¼
iF βγ̄α

bβ
Q�

γQαeiΔωt; ð4:8bÞ

_Qγ ¼
iF γαβ̄

bγ
QαQ�

βe
iΔωt: ð4:8cÞ

So far, we have assumed that the modes are simply
harmonic oscillations, unaffected by any growth/damping
mechanisms. However, as discussed in the previous sec-
tion, all the modes are influenced by various effects, such as
gravitational radiation and viscosity. The majority of the
modes is damped by these mechanisms, whereas a handful
of modes can become unstable and grow, for a certain
parameter range.
Such effects are often parametrized by the imaginary part

of the oscillation frequency. But we have hitherto assumed
that mode frequencies are real, since no such effects were
introduced in our equations. So, in order to calculate
growth/damping rates, we will use the definition of the
corotating-frame mode energy, which is given by [18]
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Eα ¼ jQαj2ωαbα

¼ jQαj2ωα½2ωαhξα; ξαi − hξα; iBðξαÞi�: ð4:9Þ

This is a quadratic functional of ξ, so, if γ is the imaginary
part of the frequency, then

dEα

dt
¼ 2γαEα: ð4:10Þ

Formulas for dE=dt for the various mechanisms were
provided in the previous section, so we can calculate the
growth/damping rate γ for a particular mode.
Incorporating the growth/damping rates in Eqs. (4.8),

we get

_Qα ¼ γαQα þ
iH
bα

QβQγe−iΔωt; ð4:11aÞ

_Qβ ¼ γβQβ þ
iH
bβ

Q�
γQαeiΔωt; ð4:11bÞ

_Qγ ¼ γγQγ þ
iH
bγ

QαQ�
βe

iΔωt; ð4:11cÞ

where we also replaced the coupling coefficients withH≡
F αβγ ¼ F βγ̄α ¼ F γαβ̄ (cf. Appendix B).
Such three-mode systems can give an estimate of the

effects of nonlinear coupling to the amplitude of an
unstable mode, like the f-mode. Such a mode, which
we shall call “parent,” has γ > 0 and has to be coupled to
two “daughter” modes, which are linearly damped (γ < 0).
The efficiency of the coupling depends on the value of the
coupling coefficient H, as well as on how close to
resonance the three modes are. As we will see, some
additional conditions have to be met, in order for the triplet
to reach an equilibrium and saturate.

C. Mode normalization

For the amplitude coefficients of the modes Q to be
meaningful, we first have to normalize all the modes
according to some convention. By doing this, we will be
able to compare the modes, using the same standards. The
most popular normalization choice is to fix the mode
energy (4.9) at unit amplitude to some arbitrary value
Eunit, namely,

ωαbα ¼ Eunit; ð4:12Þ

for all modes. References [19–21] use Eunit ¼ MΩ2R2,
whereas Ref. [32] also uses Eunit ¼ Mc2. The conversion
between two different normalization choices can be
straightforwardly written as

jQαj2Eunit ¼ jQ0
αj2E0

unit: ð4:13Þ

Using a normalization choice of the form (4.12), we can
rewrite Eqs. (4.11) as

_Qα ¼ γαQα þ
iωαH
Eunit

QβQγe−iΔωt; ð4:14aÞ

_Qβ ¼ γβQβ þ
iωβH
Eunit

Q�
γQαeiΔωt; ð4:14bÞ

_Qγ ¼ γγQγ þ
iωγH
Eunit

QαQ�
βe

iΔωt: ð4:14cÞ

From this form of the amplitude equations of motion it is
easier to see that the coupling coefficient H has units of
energy. For the sake of generalization, though, we will be
using Eqs. (4.11) in the subsequent sections.4

D. Coupling selection rules

As we already mentioned, the three modes forming the
coupled network have to obey a resonance condition, given
by Eq. (4.7). The structure of the coupling coefficient
imposes two more conditions, which have to be met in
order for the coupling to occur.
As shown in Appendix B, the angular dependence of the

zeroth-order component of the coupling coefficient has the
form ZZ

Y�mα
lα

Y
mβ

lβ
Y
mγ

lγ
sin θdθdϕ;

where Ym
l is the spherical-harmonic angular dependence of

each mode [cf. Eq. (2.14)]. This integral is proportional to
the Clebsch-Gordan coefficients (cf. for instance, Ref. [50])
and is nonzero if

mα ¼ mβ þmγ ð4:15Þ

and

li ¼ lj þ lk − 2λ; ð4:16Þ

where

li ≥ lj ≥ lk and λ ¼ 0; 1;…λmax ≤
lk
2
:

Equations (4.7), (4.15), and (4.16) constitute the selection
rules which the coupled mode triplet has to satisfy and
restrict the search for possible couplings.5

4If one chooses a normalization of the form (4.12), they can
simply replace H=bα with ωαH=Eunit in the following sections.

5It should be noted that, even though we evaluated the
coupling coefficient in the nonrotating limit in Appendix B,
these selection rules are valid to all orders in Ω, as shown by
Ref. [18].
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E. Parametric resonance instability

As mentioned before, we are particularly interested in the
case where an unstable parent mode (γα > 0) is coupled to
two damped daughter modes (γβ;γ < 0). In the beginning of
the evolution, when the amplitudes are small, linear terms
dominate: the amplitude of the parent grows and the
amplitudes of the daughters decrease. At some point,
nonlinear terms catch up and the parent starts pumping
energy into the daughters. This point occurs when the
parent exceeds a certain amplitude, called the parametric
instability threshold. Such an interaction between the
modes is an example of a parametric resonance instability,
i.e. an instability which can occur when the parameters of
an oscillator vary in time (cf. for example, Ref. [51]).
In order to obtain the parametric instability threshold, we

take the daughters’ equations of motion (4.11b) and (4.11c)
and ask what the value of the parent’s amplitude Qα should
be, in order for the daughters’ amplitudes Qβ;γ to start

growing. Setting Qβ;γ ¼ ~Qβ;γ expðiΔωt=2Þ and writing
these equations in matrix form, we get [52] _~Qβ

_~Q
�
γ

!
¼
�
γβ − iΔω=2 iQαH=bβ
−iQ�

αH=bγ γγ þ iΔω=2

� ~Qβ

~Q�
γ

!

(Qα is considered an unknown constant). The eigenvalues
of the system matrix are

λ1;2 ¼
1

2

"
γβ þ γγ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγγ − γβ þ iΔωÞ2 þ 4H2

bβbγ
jQαj2

s #
:

Then, for the system to admit a growing exponential
solution, i.e. for the daughter modes to grow, the condition
ReðλÞ > 0 has to be satisfied, for at least one of the
eigenvalues. This gives

jQαj2 >
γβγγbβbγ

H2

�
1þ

�
Δω

γβ þ γγ

�
2
�
; ð4:17Þ

which is the expression for the parametric instability
threshold (PIT), i.e. the amplitude that the parent has to
surpass so that the daughters will start growing.6

Ignoring nonlinear effects until the PIT-crossing, parent
growth is described by _Qα ¼ γαQα, which means that PIT-
crossing occurs at

tPIT ¼ 1

γα
ln

�
QPIT

Qαð0Þ
�
; ð4:18Þ

where Qαð0Þ is the parent’s initial amplitude.

F. Equilibrium solution

Once the parent crosses the PIT and the daughters start
growing, the three modes will continue interacting by
exchanging energy. There can be two general outcomes
from this process: (i) the system admits a stable equilibrium
solution and all three modes reach saturation, or (ii) the
parent’s growth cannot be halted by the daughters and all
three modes grow, continuing to exchange energy.
Equations (4.11) admit an easy-to-obtain equilibrium

solution. Expressing the complex amplitudes Q in terms of
real amplitude and phase variables, we can introduce the
variable transformation [52]

Qα ¼
ffiffiffiffiffiffiffiffiffi
bβbγ

p
H

εαeiϑα ; ð4:19aÞ

Qβ ¼
ffiffiffiffiffiffiffiffiffi
bγbα

p
H

εβeiϑβ ; ð4:19bÞ

Qγ ¼
ffiffiffiffiffiffiffiffiffiffi
bαbβ

p
H

εγeiϑγ : ð4:19cÞ

Then, Eqs. (4.11) are written as

_εα ¼ γαεα þ εβεγ sinφ; ð4:20aÞ

_εβ ¼ γβεβ − εγεα sinφ; ð4:20bÞ

_εγ ¼ γγεγ − εαεβ sinφ; ð4:20cÞ

and

_φ ¼ cotφ

�
_εα
εα

þ _εβ
εβ

þ _εγ
εγ

− γ

�
þ Δω; ð4:20dÞ

where φ ¼ ϑα − ϑβ − ϑγ þ Δωt and γ ¼ γα þ γβ þ γγ .
Setting the time derivatives to zero, we find the steady-
state solution

ε2α ¼ γβγγ

�
1þ

�
Δω
γ

�
2
�
; ð4:21aÞ

ε2β ¼ −γγγα
�
1þ

�
Δω
γ

�
2
�
; ð4:21bÞ

ε2γ ¼ −γαγβ
�
1þ

�
Δω
γ

�
2
�
; ð4:21cÞ

and

cotφ ¼ Δω
γ

; ð4:21dÞ

or, in terms of the original complex amplitudes,

6Note the importance of the mode frequency signs here: if
ωβωγ < 0, then bβbγ < 0 and no parametric instability can occur.
This is a result of the assumed resonance (4.7) between the parent
and the daughters. If we perform the same analysis, for example,
for mode β being the parent, then ωβ ≈ ωα − ωγ , in which case
ωαωγ < 0 is a necessary condition for parametric instability.
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jQαj2 ¼
γβγγbβbγ

H2

�
1þ

�
Δω
γ

�
2
�
; ð4:22aÞ

jQβj2 ¼ −
γγγαbγbα

H2

�
1þ

�
Δω
γ

�
2
�
; ð4:22bÞ

jQγj2 ¼ −
γαγβbαbβ

H2

�
1þ

�
Δω
γ

�
2
�
: ð4:22cÞ

Note that, for jγβ þ γγj ≫ γα, the equilibrium amplitude
(4.22a) of the unstable mode coincides with the PIT (4.17).

G. Saturation conditions

Such three-mode coupled systems, exhibiting a para-
metric resonance instability, have been studied in the
past [53,54] for their significance in various fields, e.g.
plasma physics [55,56]. These studies show that certain
conditions have to be met, in order for the system to
approach saturation.
Performing a linear stability analysis of Eqs. (4.20)

(which is presented in Appendix C 2), we find that the
equilibrium solution (4.22) is stable if [52]

jγβ þ γγj > γα ð4:23Þ

and

3fðζβ þ ζγ − 1Þ½ðζβ − ζγÞ2 þ 2ðζβ þ ζγÞ þ 1� − 6ζβζγg
�
Δω
γ

�
4

þ fðζβ þ ζγ − 1Þ½ðζβ − ζγÞ2 þ ðζβ þ ζγÞ2 þ 2� − 12ζβζγg
�
Δω
γ

�
2

− ðζβ þ ζγ − 1Þ3 − 2ζβζγ > 0; ð4:24Þ

where ζβ;γ ¼ −γβ;γ=γα, which are the relative damping rates
of the daughters. To simplify the expression above, we set
ζ ≡ ζβ ¼ ζγ . Then, keeping in mind that Eq. (4.23) should
also be true, it is reduced to

ζ >
1þ ffiffiffi

3
p

2
≈ 1.37 ð4:25Þ

and

Δ2 >
2ζ2 − 2ζ þ 1

2ζ2 − 2ζ − 1
ð1 − 2ζÞ2; ð4:26Þ

where Δ ¼ Δω=γα.
First, we notice that Eq. (4.25) imposes a stronger

constraint on ζ than Eq. (4.23). Second, we see from

FIG. 4 (color online). (a) Δ versus ζð≡ζβ ¼ ζγÞ. The saturation condition (4.26) is satisfied inside the shaded area. The two asymptotes
at ζ ≈ 1.37 and Δ ¼ 2ζ − 1 are also shown (dashed lines). A global minimum occurs at (1.77, 3.73). (b) Δ versus ζβ versus ζγ . The
saturation condition (4.24) is satisfied inside the region that lies above the plotted surface. The thick line corresponds to the case where
ζβ ¼ ζγ ≡ ζ.
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Eq. (4.26) that there is a lower limit on the detuning, which
depends on ζ. This is illustrated in Fig. 4.
If Eq. (4.23) is not satisfied, all solutions are unbounded

and the triplet’s amplitudes grow to infinity; the damping
rate of the daughters needs to be larger than the driving rate
of the parent, in order to stop its growth. The additional
condition (4.24) [or, for γβ ¼ γγ, (4.25) and (4.26)] is more
unintuitive; as shown by Refs. [53,54], a number of
interesting behaviors occur when it is not fulfilled, includ-
ing limit cycles and chaotic motion. The amplitude evo-
lution of a triplet satisfying the saturation conditions can be
seen in Fig. 5.

V. DISCUSSION

The anticipated advent of gravitational-wave astronomy
will hopefully shed some light on the neutron star equation
of state problem: should gravitational radiation from
individual sources be observable, much information about
the neutron star interior could be obtained. However,
gravitational-wave asteroseismology would have to deal
with very weak signals, generated by stellar oscillations.
The fact that some of these oscillations are unstable to the

emission of gravitational radiation, due to the CFS mecha-
nism presented in Sec. III, works to our advantage: the
amplitude of the mode will grow until such a point when
nonlinear effects saturate the instability.
Studies on the r-mode instability have shown that the

saturation levels will make detection very difficult. In the
most optimistic cases, the signal may be detectable with
Advanced LIGO from within the local galaxy group [23].
As far as the f-mode instability is concerned, reasonably
high saturation levels make the signal from a nascent star
definitely detectable with the Einstein Telescope (in some
cases even with Advanced LIGO) for sources in the Virgo
cluster [32].
Estimating the saturation amplitudes for the r- and

f-mode instabilities is also important for another reason:
their values affect the evolution of the star inside the
instability area. A newborn star, for which both insta-
bilities can be significant, will enter the instability
window, which it will traverse at approximately constant
angular velocity, until it reaches thermal equilibrium;
then, at approximately constant temperature, the star will
spin down due to the emission of gravitational radiation,
as well as magnetic braking, until it exits the window.
The saturation amplitude affects the duration of these
phases, thus the time which the star spends inside the
instability area.
By taking quadratic perturbations into account, coupled

three-mode networks are formed throughout the star.
These triplets have to satisfy an internal resonance and
two selection rules for their orders m and degrees l.
Although any triplet can be part of this network, we are
obviously interested in the case where one of the
participating modes is the unstable f-mode. Then, the
coupled triplet is said to be parametrically resonant and
can lead to a parametric instability, if the unstable
(parent) mode crosses the so-called parametric instability
threshold. At that point, the other two (daughter) modes
start growing. The system reaches saturation if certain
conditions are satisfied for the modes’ growth/damping
rates, and their frequency mismatch.
In this paper, we have focused on polar modes, like

f-, p-, and g-modes. However, all the formulas pre-
sented in Sec. IV are also applicable to axial modes. It is
only in Appendix B where we assume that all three
modes are polar, and find an expression for the zeroth-
order component of the coupling coefficient. Results
from the application of the formulation above to
Newtonian, polytropic stars will be presented in a
subsequent paper.
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FIG. 5 (color online). Amplitude evolution of a coupled triplet
that satisfies the saturation conditions. Horizontal solid lines
represent the saturation amplitudes of each mode. The dashed
horizontal line shows the position of the triplet’s PIT, whereas
the dashed vertical line denotes the PIT-crossing time. At that
point the parent (mode α) crosses the PIT and the daughters
(modes β and γ), which were damped until that point, start
to grow. Then, the amplitudes oscillate and finally converge
(albeit very slowly in this example) around their equilibrium
values (the parent’s equilibrium coincides with the PIT in
this example). In this graph, we show the triplet with the
lowest PIT, in a polytropic model with Γ ¼ 2 and Γ1 ¼ 2.1,
for Ω ¼ ΩK and T ¼ 5 × 109 K. Mode α is the 3

3f-mode, mode
β is the −4

4f-mode, andmode γ is the 7
7g5-mode (where the notation

m
l gn has been used). The growth/damping rates are γα¼
2.7×10−6 rads−1, γβ ¼ −1.0 rad s−1, and γγ¼−1.4×10−5 rads−1,
and the detuning is Δω¼14.1 rads−1. The value of jQj depends
on the mode normalization choice as jQj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Emode=Eunit

p
(cf. Sec. IV C); here, we chose Eunit ¼ Mc2.

SATURATION OF THE f-MODE INSTABILITY IN … PHYSICAL REVIEW D 92, 084018 (2015)

084018-11



APPENDIX A: DERIVATION OF THE
EQUATIONS OF MOTION

1. The quadratic equation of motion

The derivation of the quadratic equation of motion (4.3)
can be performed in the same way as the derivation of the
linear equation of motion (2.10), except that now we also
want to retain second-order perturbative terms.
Following Ref. [52], we will use the velocity v, instead of

the Lagrangian displacement ξ, to describe the perturbation.
As mentioned in Sec. II, the background velocity is zero
(because we are working in the corotating frame), so
v≡ δv ¼ _ξ. Differentiating Eq. (2.3) with respect to time
and imposing perturbations on the equilibrium state, we
obtain the equation of motion for the velocity, namely

̈vþ Bð_vÞ þ CðvÞ þN v ¼ 0; ðA1Þ

where

BðvÞ ¼ 2Ω × v ðA2Þ

and

CðvÞ ¼ 1

ρ
∇
�∂δ1p

∂t
�
−
∇p
ρ2

∂δ1ρ
∂t þ∇

�∂δ1Φ
∂t
�
; ðA3Þ

with δ1 denoting first-order and δ2 second-order Eulerian
perturbations.N v represents the quadratic terms, which are
explicitly written as

N v ¼
∂
∂t
�
ðv ·∇Þvþ∇δ2p

ρ
þ δ1

�
1

ρ

�
∇δ1p

þδ2

�
1

ρ

�
∇pþ∇δ2Φ

�
; ðA4Þ

where

δ1

�
1

ρ

�
¼ −

δ1ρ

ρ2
and δ2

�
1

ρ

�
¼ −

δ2ρ

ρ2
þ ðδ1ρÞ2

ρ3
:

It should be noted that N , which appears in Eq. (4.3), is
related to N v simply by N v ¼ ∂N =∂t.
Perturbing the continuity equation (2.2), we get

∂δ1ρ
∂t ¼ −ρ∇ · v − ðv ·∇Þρ ðA5Þ

and

∂δ2ρ
∂t ¼ −δ1ρ∇ · v − ðv ·∇Þδ1ρ; ðA6Þ

for first- and second-order terms, respectively. Accordingly,
the perturbed Poisson equation (2.4) gives

∇2δ1Φ ¼ 4πGδ1ρ and ∇2δ2Φ ¼ 4πGδ2ρ;

whose (time-differentiated) solutions are

∂δ1Φ
∂t ¼ G

Z ∇r0 · ðρvÞ
jr − r0j d3r0 ðA7Þ

and

∂δ2Φ
∂t ¼ G

Z ∇r0 · ðδ1ρvÞ
jr − r0j d3r0: ðA8Þ

Finally, perturbation of the equation of state p ¼ pðρ; μÞ
to second order gives

Δp ¼
�∂p
∂ρ
�

μ

Δρþ 1

2

�∂2p
∂ρ2
�

μ

ðΔρÞ2;

or

Δp
p

¼ Γ1

Δρ
ρ

þ 1

2

�
Γ1ðΓ1 − 1Þ þ

� ∂Γ1

∂ ln ρ
�

μ

��
Δρ
ρ

�
2

;

ðA9Þ

where Γ1 is defined by Eq. (2.9). Here we have
assumed that Δμ ¼ 0, i.e. the composition is frozen
(if μ corresponds to the composition) and/or the star is
isentropic (if μ denotes entropy). Also, we have used
Lagrangian perturbations, which, to second order, are
related to Eulerian by

Δf¼ δ1fþðξ ·∇Þfþ δ2fþðξ ·∇Þδ1fþ 1

2
ξ · ½ξ ·∇ð∇fÞ�:

Using this, we obtain from Eq. (A9)

∂δ1p
∂t ¼ −ðv ·∇Þp − pΓ1∇ · v ðA10Þ

and

∂δ2p
∂t ¼ −ðv · ∇Þδ1pþ ½ðξ · ∇ÞðpΓ1Þ þ pΓ1χ∇ · ξ�∇ · v;

ðA11Þ

where

χ ¼ Γ1 þ
�∂ lnΓ1

∂ ln ρ
�

μ

:

2. The amplitude equation of motion

In order to obtain the equation of motion for the
amplitude (4.4), we have to replace v in Eq. (A1) with
the expansion (4.2). Note that this expansion implies that
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X
α

ð _Qαξαeiωαt þ _Q�
αξ�αe−iωαtÞ ¼ 0 ðA12Þ

and X
α

ðQ̈αξαeiωαt þ iωα
_Qαξαeiωαt

þQ̈�
αξ�αe−iωαt − iωα

_Q�
αξ�αe−iωαtÞ ¼ 0: ðA13Þ

Making use of the eigenvalue equation (2.13), the ortho-
gonality condition (2.20), as well as Eqs. (A12) and (A13),
we get

Q̈α þ iωα
_Qα ¼

i
bα

hξα;N vie−iωαt: ðA14Þ

It is easily seen that Eq. (A14) is obtained by differentiating
Eq. (4.4) with respect to time. By further replacing the
expansion (4.2) in N v one gets

Q̈α þ iωα
_Qα ¼

i
bα

iωα

X
β;γ

½FαβγQβQγeið−ωαþωβþωγÞt

þ Fαβ̄γQ
�
βQγeið−ωα−ωβþωγÞt

þ Fαβγ̄QβQ�
γeið−ωαþωβ−ωγÞt

þ Fαβ̄ γ̄Q
�
βQ

�
γeið−ωα−ωβ−ωγÞt�;

ðA15Þ

where

Fαβγ ¼
1

iωα
hξα;N vðξβ; ξγÞi ðA16Þ

is the coupling coefficient (a bar over an index means that
the corresponding mode eigenfunction in N v has to be
complex conjugated and its frequency sign reversed).
As mentioned in Sec. IV B, not all terms in Eq. (A15)

play an equally important role in the amplitude evolution.
As shown in Appendix C 1, a resonance condition between
the modes is necessary for the dynamics of the system to be
significantly affected by quadratic terms. Assuming a
resonance of the form ωα ¼ ωβ þ ωγ þ Δω, where Δω

is a small detuning, one can omit rapidly varying terms in
Eq. (A15). Then, choosing a mode triplet which satisfies
the resonance condition, we get

Q̈α þ iωα
_Qα ¼

i
bα

iωαFαβγQβQγe−iΔωt; ðA17aÞ

Q̈β þ iωβ
_Qβ ¼

i
bβ

iωβFβγ̄αQ�
γQαeiΔωt; ðA17bÞ

Q̈γ þ iωγ
_Qγ ¼

i
bγ

iωγFγαβ̄QαQ�
βe

iΔωt: ðA17cÞ

If such a resonance exists, it can be shown that
iωαFαβγ ¼ iðωα − ΔωÞF αβγ , where F αβγ is given by
Eq. (4.6). So, ignoring the detuning, Fαβγ ≈ F αβγ , which
also implies that Q̈ is negligible, because only then we can
retrieve the equivalent system (4.8).
Setting H≡ Fαβγ ¼ Fβγ̄α ¼ Fγαβ̄ (cf. Appendix B) and

introducing growth/damping rates for the modes,
Eqs. (A17) become

_Qα ¼ γαQα þ
iH
bα

QβQγe−iΔωt; ðA18aÞ

_Qβ ¼ γβQβ þ
iH
bβ

Q�
γQαeiΔωt; ðA18bÞ

_Qγ ¼ γγQγ þ
iH
bγ

QαQ�
βe

iΔωt; ðA18cÞ

which coincide with Eqs. (4.11).

APPENDIX B: THE COUPLING COEFFICIENT

Proceeding with the evaluation of Eq. (A16), using
equations from Appendix A 1, we find an explicit form
for the coupling coefficient, which is [52]

Fαβγ ¼
1

ωα
ðωβSαβγ þ ωγSαγβÞ; ðB1Þ

where

Sαβγ ¼
Z �

ρωβωγ½−∇ðξβ · ξγÞ þ ξβ × ð∇ × ξγÞ þ ξγ × ð∇ × ξβÞ�

−
1

ρ
½∇ · ðρξβÞ∇ðξγ · ∇pþ pΓ1∇ · ξγÞ þ∇ · ðρξγÞ∇ðξβ ·∇pþ pΓ1∇ · ξβÞ�

þ∇ · ðρξβÞ∇ · ðρξγÞ
∇p
ρ2

−
�
ξβ ·∇

�∇ · ðρξγÞ
ρ

��
∇p −Gρ∇

�Z ∇r0 · ½ξβ∇ · ðρξγÞ�
jr − r0j d3r0

�

þ∇½ξβ · ∇ðξγ · ∇pþ pΓ1∇ · ξγÞ þ ð∇ · ξβÞξγ ·∇ðpΓ1Þ þ pΓ1χð∇ · ξβÞð∇ · ξγÞ�
�
· ξ�αd3r: ðB2Þ
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The expressions for Fβγ̄α and Fγαβ̄ are obtained from
Eq. (B1), keeping in mind that a bar over an index means
that the corresponding mode eigenfunction has to be
complex conjugated and the corresponding frequency
has to change sign.
As pointed out by Ref. [18], the expression above for the

coupling coefficient is identical for both nonrotating and
rotating stars. This of course does not make the actual value
of the coupling coefficient the same for both cases. If
rotation is included, the eigenfrequencies, the eigenfunc-
tions, and the equilibrium quantities are all affected
(cf. Sec. II B).
We now assume that ξ takes the form (2.14), namely,

it describes the eigenfunction of a polar mode in the
nonrotating limit. We also define the dimensionless
quantities [1]

x ¼ r=R; ~ω ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

q
;

y1 ¼
ξr
r
; y2 ¼ c1 ~ω2

ξh
r
;

y3 ¼
δΦ
gr

; y4 ¼
1

g
dδΦ
dr

;

c1 ¼
�
r
R

�
3 M
Mr

; U ¼ d lnMr

d ln r
¼ 4πρr3

Mr
;

Vg ¼
V
Γ1

¼ −
1

Γ1

d lnp
d ln r

; A� ¼ 1

Γ1

d lnp
d ln r

−
d ln ρ
d ln r

;

where g ¼ GMr=r2 is the local gravitational acceleration
and Mr ¼

R
r
0 4πρr

2dr. Then, after cumbersome calcula-
tions, the coupling coefficient takes the form [52]

~H≡ H
GM=R3

¼ Zαβγ

Z
1

0

�
−
X
k

ðA�y1;k þ VgzkÞ
�
ϖk0ϖk00y1;k0y1;k00 þ

QCk

c21
y2;k0y2;k00

�

þ Vg

c1

��
V − 2Vg −

d lnΓ1

d ln r

�Y
k

zk þ Ag

Y
k

ðy1;k − zkÞ
�

þ A�

c1

��
Vg þU − 4 − c1

X
k

ϖ2
k

�Y
k

y1;k − Vg

X
k

zky1;k0y1;k00 þ
X
k

y4;ky1;k0y1;k00
�

þA�

c21

X
k

y2;kðGCky1;k0y1;k00 þQCk0y1;k0zk00 þQCk00y1;k00zk0 Þ
�
ρR5x4dx: ðB3Þ

In the expression above, the index k successively takes one
of the values ðα; β; γÞ, whereas the indices k0 and k00 take the
values that come next and after next, respectively (for
example, for k ¼ α, k0 ¼ β and k00 ¼ γ). The rest of the
quantities are defined as

zk ¼ y2;k − y3;k;

ϖk ¼
�

~ωk

− ~ωk
for

k ¼ α

k ¼ β; γ;

QCk ¼
−Λk þ Λk0 þ Λk00

2ϖk0ϖk00
;

GCk ¼
Λkϖk þ ðΛk0 − Λk00 Þðϖk0 −ϖk00 Þ

2ϖkϖk0ϖk00
;

with Λk ¼ lkðlk þ 1Þ. Also,

Ag ¼ −
d lnΓ1

d ln r
− Vg

�∂ lnΓ1

∂ ln ρ
�

μ

:

Finally,

Zαβγ ¼
ZZ

Y�
αYβYγ sin θdθdϕ;

where Yk ≡ Ymk
lk
.

Equation (B3) is invariant to the transformations

Yα ⇄ Yβ; yi;α ⇄ yi;β; Yγ → Y�
γ ; ~ωγ → − ~ωγ

and

Yα ⇄ Yγ; yi;α ⇄ yi;γ; Yβ → Y�
β; ~ωβ → − ~ωβ;

which proves that Fαβγ ¼ Fβγ̄α ¼ Fγαβ̄ ≡H.
The expression above is the zeroth-order component of

the coupling coefficient, namely, all quantities are evalu-
ated in the nonrotating limit. A more general expression
could be found if we had replaced the rotationally corrected
eigenfunctions in Eq. (B1), but this would significantly
complicate the calculation.
H has units of energy; the normalization in Eq. (B3) is

useful when all quantities in the amplitude equations of
motion (4.11) [or (A18)] are normalized accordingly.
Defining a dimensionless time τ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
and a
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dimensionless frequency ~ω ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
, the equations

of motion are written

Q0
α ¼ ~γαQα þ

i ~H
~bα

QβQγe−iΔ ~ωτ; ðB4aÞ

Q0
β ¼ ~γβQβ þ

i ~H
~bβ

Q�
γQαeiΔ ~ωτ; ðB4bÞ

Q0
γ ¼ ~γγQγ þ

i ~H
~bγ

QαQ�
βe

iΔ ~ωτ; ðB4cÞ

where ~γ ¼ γ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
, ~b ¼ b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
and the prime

denotes differentiation with respect to τ.

APPENDIX C: STUDY OF A THREE-MODE
NETWORK WITH QUADRATIC

NONLINEARITIES

1. The multiscale method

Let us assume that we have an ordinary differential
equation which includes a small parameter ϵ. We write the
solution to this equation in the form of an asymptotic series,
in the sense that

yðtÞ →
X∞
n¼0

ynðtÞϵn:

In the beginning of the evolution, when t is small, low-
order terms dominate the solution. However, as t grows
bigger, the contribution of higher-order terms cannot be
neglected. These terms are usually called secular terms,
because their effects become important (compared to low-
order terms) at later stages of the evolution. This behavior
appears, for example, in a damped harmonic oscillator,
where the zeroth-order solution is simply an undamped
harmonic oscillation, with the damping effects occurring at
higher orders.
The multiscale method (cf. for instance, Ref. [48]) is a

way to capture such higher-order effects from secular terms
and make them appear in the low-order terms. As a result,
the low-order approximation of the solution would be valid
on secular time scales.
We define the time scales Tn ¼ ϵnt and rewrite the

asymptotic solution, so that

yðtÞ →
X∞
n¼0

ynðT0; T1; T2;…Þϵn:

In other words, we let the terms of the series depend on
more than one time scale. As we will see, this allows us to
“eliminate” secular effects from higher-order terms, thus
preventing these terms from becoming significant.

We are going to use this method, in order to study
Eqs. (4.11). First, we remove the exponential time depend-
ence by setting Ck ¼ Qk expðiωktÞ (k ¼ α; β; γ) and the
equations of motion are written as

_Cα − iωαCα ¼ γαCα þ
iH
bα

CβCγ; ðC1aÞ

_Cβ − iωβCβ ¼ γβCβ þ
iH
bβ

C�
γCα; ðC1bÞ

_Cγ − iωγCγ ¼ γγCγ þ
iH
bγ

CαC�
β: ðC1cÞ

Now, we seek solutions of the form

Ck ¼ ϵCð1Þ
k ðT0; T1Þ þ ϵ2Cð2Þ

k ðT0; T1Þ þ � � � ;

where T0 ¼ t and T1 ¼ ϵt. Time derivatives then become

d
dt

¼ ∂
∂T0

þ dT1

dT0

∂
∂T1

¼ ∂
∂T0

þ ϵ
∂

∂T1

:

Replacing the solutions in Eqs. (C1) and distinguishing
between OðϵÞ and Oðϵ2Þ terms, we get

∂Cð1Þ
α

∂T0

− iωαC
ð1Þ
α ¼ 0;

∂Cð1Þ
β

∂T0

− iωβC
ð1Þ
β ¼ 0;

∂Cð1Þ
γ

∂T0

− iωγC
ð1Þ
γ ¼ 0;

and

∂Cð1Þ
α

∂T1

þ ∂Cð2Þ
α

∂T0

− iωαC
ð2Þ
α ¼ γ̂αC

ð1Þ
α þ iH

bα
Cð1Þ
β Cð1Þ

γ ;

∂Cð1Þ
β

∂T1

þ ∂Cð2Þ
β

∂T0

− iωβC
ð2Þ
β ¼ γ̂βC

ð1Þ
β þ iH

bβ
C�ð1Þ
γ Cð1Þ

α ;

∂Cð1Þ
γ

∂T1

þ ∂Cð2Þ
γ

∂T0

− iωγC
ð2Þ
γ ¼ γ̂γC

ð1Þ
γ þ iH

bγ
Cð1Þ
α C�ð1Þ

β ;

respectively, where we also set γk ¼ ϵγ̂k, so that damping
and nonlinear terms appear in the same order.
The first-order equations have simple solutions of the

form

Cð1Þ
k ðT0; T1Þ ¼ AkðT1ÞeiωkT0 ; ðC2Þ
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which we substitute to the second-order equations, to get

∂Cð2Þ
α

∂T0

− iωαC
ð2Þ
α ¼

�
γ̂αAα −

dAα

dT1

�
eiωαT0 þ iH

bα
AβAγeiðωβþωγÞT0 ; ðC3aÞ

∂Cð2Þ
β

∂T0

− iωβC
ð2Þ
β ¼

�
γ̂βAβ −

dAβ

dT1

�
eiωβT0 þ iH

bβ
A�
γAαeiðωα−ωγÞT0 ; ðC3bÞ

∂Cð2Þ
γ

∂T0

− iωγC
ð2Þ
γ ¼

�
γ̂γAγ −

dAγ

dT1

�
eiωγT0 þ iH

bγ
AαA�

βe
iðωα−ωβÞT0 : ðC3cÞ

As we mentioned earlier, the whole point of the multi-
scale method is to transfer long-term effects from higher-
order terms to low-order terms. In this case, we want to
prevent the second-order terms of the solution, Cð2Þ

k , from
growing and becoming important. To accomplish this, we
have to eliminate the so-called secular terms. In the case of
Eqs. (C3), terms that include the factor exp ðiωkT0Þ have to
vanish, because they produce secular terms, causing the
solution to grow in time.

a. The nonresonant case

If there is no resonance of the form ωα ≈ ωβ þ ωγ

between the modes, then the conditions for the elimination
of secular terms from Eqs. (C3) are

dAk

dT1

¼ γ̂kAk;

or

Ak ¼ akeγ̂kT1 ;

which makes the first-order solutions (C2)

Ck ¼ ϵCð1Þ
k þOðϵ2Þ ¼ ϵakeγkteiωkt þOðϵ2Þ;

or, in terms of the original variables Qk,

Qk ¼ ϵakeγkt þOðϵ2Þ: ðC4Þ

Equation (C4) shows that, if there is no resonance between
the modes, their amplitudes grow or decrease with time,
depending on the sign of γk.

b. The resonant case

If a resonance of the form ωα ¼ ωβ þ ωγ þ Δω exists
(Δω being a small detuning), then the second terms on
the right-hand sides of Eqs. (C3) also contribute in the
production of secular terms in the solution. Then, the
secular-term elimination conditions become

dAα

dT1

¼ γ̂αAα þ
iH
bα

AβAγe−iΔω̂T1 ; ðC5aÞ

dAβ

dT1

¼ γ̂βAβ þ
iH
bβ

A�
γAαeiΔω̂T1 ; ðC5bÞ

dAγ

dT1

¼ γ̂γAγ þ
iH
bγ

AαA�
βe

iΔω̂T1 ; ðC5cÞ

where we set Δω ¼ ϵΔω̂. From Eqs. (C5) we obtain our
original system (4.11), whose study is presented in
sections IV E–IVG.

2. Linear stability analysis

Having used the variable transformation (4.19) to
the equations of motion (4.11), we obtain Eqs. (4.20),
namely

_εα ¼ γαεα þ εβεγ sinφ;

_εβ ¼ γβεβ − εγεα sinφ;

_εγ ¼ γγεγ − εαεβ sinφ;

and

_φ ¼ cotφ

�
_εα
εα

þ _εβ
εβ

þ _εγ
εγ

− γ

�
þ Δω;

where φ ¼ ϑα − ϑβ − ϑγ þ Δωt and γ ¼ γα þ γβ þ γγ.
We linearize these equations by imposing small pertur-

bations around their equilibrium solutions (4.21). Denoting
these perturbations by δ (not to be confused with a Eulerian
perturbation), we get [52]

d
dt

�
δεα
εα

�
¼ −γα

�
−
δεα
εα

þ δεβ
εβ

þ δεγ
εγ

þ κδφ

�
; ðC6aÞ

d
dt

�
δεβ
εβ

�
¼ −γβ

�
δεα
εα

−
δεβ
εβ

þ δεγ
εγ

þ κδφ

�
; ðC6bÞ

d
dt

�
δεγ
εγ

�
¼ −γγ

�
δεα
εα

þ δεβ
εβ

−
δεγ
εγ

þ κδφ

�
; ðC6cÞ

and
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dδφ
dt

¼ κ
X
k

Γk
δεk
εk

þ γδφ; ðC6dÞ

where κ ¼ Δω=γ and Γk ¼ 2γk − γ, with the index k
successively taking the values ðα; β; γÞ.
The matrix of the linear system (C6) is

A ¼

0
BBB@

γα −γα −γα −κγα
−γβ γβ −γβ −κγβ
−γγ −γγ γγ −κγγ
κΓα κΓβ κΓγ γ

1
CCCA;

with the help of which we can find the system’s
characteristic polynomial, via the relation jA − λIj ¼ 0,
where λ are the eigenvalues of A and I is the identity
matrix. The polynomial has the form λ4 þ a1λ3 þ a2λ2 þ
a3λþ a4 ¼ 0, where

a1 ¼ −2γ; a2 ¼ γ2ð1þ κ2Þ − 4κ2
X
k

γkγk0 ;

a3 ¼ 4ð1þ 3κ2Þ
Y
k

γk; a4 ¼ −4ð1þ κ2Þγ
Y
k

γk;

with the index k0 taking the value that comes after k’s
value (e.g., if k ¼ α, k0 ¼ β).
Now, we can use the Routh-Hurwitz stability criteria

(cf. for instance, Ref. [57]), in order to determine the
behavior of the system. First, we construct the Routh-
Hurwitz matrix, using the polynomial coefficients, which is

M ¼

0
BBB@

a1 1 0 0

a3 a2 a1 1

0 a4 a3 a2
0 0 0 a4

1
CCCA:

Then, the stability criteria are given by

W1 ≡ a1 > 0; ðC7Þ

W2≡
				 a1 1

a3 a2

				 ¼ a1a2 − a3 > 0; ðC8Þ

W3≡
						
a1 1 0

a3 a2 a1
0 a4 a3

						 ¼ a3W2 − a21a4 > 0; ðC9Þ

and

W4 ≡ jMj ¼ a4W3 > 0: ðC10Þ
Since γβ;γ < 0, it can be easily shown that the second and

fourth criteria are redundant and follow from the other
ones. Indeed, if W1 > 0 then a4 is also positive, which,
combined with W3 > 0, makes the fourth criterion true.
Also, W3 > 0 yields W2 > a21a4=a3, but since a3 > 0, the
second criterion is also true.
So, finally, from the first and third criteria we obtain the

stability conditions (4.23) and (4.24), which are further
studied in Sec. IVG.
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