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I. INTRODUCTION

Due to the nonlinearity of Einstein’s equations, it is
highly difficult to find exact solutions. This is even more so
in modified gravity theories where more powers of curva-
ture added to the Einstein-Hilbert action to make the theory
better behaved in the UV region. Therefore, it is quite
important to find exact solutions of higher-derivative
gravity theories. Especially for the purposes of the anti–
de Sitter/conformal field theory correspondence, it is highly
desirable to find some “neighboring” solutions to the anti–
de Sitter (AdS) spacetime. This work started with the
purpose of providing some AdS-related solutions to generic
gravity theories in three dimensions. For a specific quad-
ratic curvature gravity, called the new massive gravity
(NMG) [1], this kind of solution was studied in Refs. [2–5].
Recently [6,7], using general arguments, we have shown
that the AdS-wave and the pp-wave metrics solve the most
general gravity theory with the action in the n-dimensional
spacetime given as

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
Fðgαβ; Rμ

νγσ;∇ρRμ
νγσ;…;

× ð∇ρ1∇ρ2…∇ρMÞRμ
νγσ;…Þ; ð1Þ

where F is a differentiable function of its arguments. In this
work, as an explicit example to our formalism, we shall
provide the solutions of the most general sixth-order theory
in three dimensions. These wave solutions can be written in
the Kerr-Schild form

gμν ¼ ḡμν þ 2Vλμλν; ð2Þ

with ḡμν as the “background metric,” which is the flat
Minkowski metric for the pp waves and the AdS spacetime

for the AdS-wave metrics. The properties of the λμ-vector
are crucial: it is a null and a geodesic vector. Namely, it
satisfies the following expressions for both gμν and ḡμν:

λμλ
μ ¼ gμνλμλν ¼ ḡμνλμλν ¼ 0; ð3Þ

λμ∇μλρ ¼ λμ∇̄μλρ ¼ 0; ð4Þ

∇μλν ¼ ∇̄μλν ¼ λðμξνÞ ¼
1

2
ðλμξν þ ξμλνÞ; ξμλμ ¼ 0;

ð5Þ

where ∇̄μ is the covariant derivative with respect to the
background metric. The last property restricts the Kerr-
Schild metric to the Kundt class where the λμ vector is
nonexpanding, shear free, and nontwisting. Due to this
property, we denote this class of metrics as Kerr-Schild-
Kundt (KSK) metrics. The new vector ξμ that appears in (5)
is defined via that equation. The metric function V satisfies
λμ∂μV ¼ 0. Let us suppose that the most general theory is a
2N þ 2 derivative theory; namely, the highest partial
derivative of the metric in the field equations is 2N þ 2.
For example, Einstein’s gravity has N ¼ 0, and any of the
form fðRiemannÞ with no derivatives of the Riemann
tensor but only quadratic and more contractions has
N ¼ 1. Explicit AdS-wave solutions of these theories have
been considered before [3–5,8–10]. Explicit solutions of
the most general N ¼ 2 theory, namely the six-derivative
theory, have not been considered before. Here, we shall
remedy this in three dimensions for the most general theory.
We have shown that for the metrics of the form (2)

having the properties (3)–(5), all curvature scalars are
constant and the scalar curvature is R ¼ − 6

l2, and the
traceless part of the Ricci tensor, that is Sμν ≡ Rμν − 1

3
gμνR,

reduces to the following simple expression [7]:

Sμν ¼ −
�
□̄þ 2

l2

�
λμλνV ≡ λμλνOV; ð6Þ
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where l is the AdS radius, □̄ is the Laplace-Beltrami
operator of the background metric, and the operator O can
be found in three dimensions as

O ¼ −
�
□̄þ 2ξμ∂μ þ

1

2
ξμξμ −

2

l2

�
: ð7Þ

The field equations of the most general ð2N þ 2Þ-derivative
gravity theory splits into two parts: One is the trace part that
determines the AdS radius in terms of the parameters given
in the action, such as the bare cosmological constant and
the coefficients of the curvature terms. The other equation
is the traceless part, which reads as [7]

XN
n¼0

an□̄nSμν ¼ 0; ð8Þ

where an’s ðn ¼ 0; 1; 2;…Þ are constants which are again
functions of the parameters of the theory whose proof
for the AdS-spherical wave will be given in Ref. [11].
Equation (8) can be factored as

YN
n¼1

ð□̄þ cnÞSμν ¼ 0; ð9Þ

where cn’s are the roots of the polynomial

aNyN þ aN−1yN−1 þ � � � þ a1yþ a0 ¼ 0; ð10Þ

which are a priori complex in general. But, in order for the
theory to be free of tachyons, all the roots must be real,
since they are related to the masses of the spin-2 excitations
about the AdS background through the relation

cn ¼
2

l2
−m2

n; n ¼ 1; 2;…; N: ð11Þ

This can be understood as follows: once a perturbation
about the AdS background hμν ≡ gμν − ḡμν is defined as
hμν ≡ 2Vλμλν, with all the properties of λμ and V intact as
in the exact solution, then the exact solution and the
perturbative solution for this particular transverse-traceless
hμν representing spin-2 modes become equal. Note that
the spin-0 modes cannot be obtained this way, as the full
spacetime is a constant curvature spacetime, namely the
linearized part of the scalar curvature is zero. For the case of
the pp-wave metrics, one takes the limit l → ∞. Note that
the naive counting of the degrees of freedom in terms of the
metric alone in these higher derivative theories would take
one astray: for example, in four dimensions, one would
conclude that a symmetric two-tensor, hμν, could have at
most ten propagating degrees of freedom. This could only
be true in a second derivative theory without any sym-
metries. On the other hand, in higher derivative theories,

∂phμν-type objects should be considered as independent
fields, as was done by Pais and Uhlenbeck [12]. Since Sμν
satisfies (6), then (9) reduces to

YN
n¼1

ðOþm2
nÞOV ¼ 0; ð12Þ

where we also used the relations

□ðϕλαλβÞ ¼ □̄ðϕλαλβÞ ¼ −λαλβ
�
Oþ 2

l2

�
ϕ; ð13Þ

which are valid for any function ϕ satisfying λμ∇μϕ ¼ 0.
This also leads to λμ∇μOϕ ¼ 0. Provided that all m2

n’s are
different, the most general solution to (12) can be written as

V ¼ VE þ
XN
n¼1

Vn; ð14Þ

where VE represents the solution to the cosmological
Einstein theory satisfying

OVE ¼ 0: ð15Þ

In three dimensions, the solutions of this equation can be
“gauged away”: namely, the metric ḡμν þ 2VEλμλν is that of
AdS3. This is related to the fact that the cosmological
Einstein theory does not have any propagating degree of
freedom in three dimensions. In other dimensions, on the
other hand, (15) does have nontrivial solutions. In what
follows, since we work explicitly in three dimensions, we
shall gauge away this Einsteinian solution and not write it.
In (14), each Vn satisfies

ðOþm2
nÞVn ¼ 0: ð16Þ

In the case of two or more coalescing m2
n’s, the structure

of the solution changes dramatically; for example, the
asymptotic behavior is no longer that of AdS. Let r be the
number (multiplicity) of m2

n ’s that are equal to say m2
r ;

then the corresponding Vr satisfies a nonfactorizable
higher-derivative equation,

ðOþm2
rÞrVr ¼ 0: ð17Þ

The most general solution now becomes

V ¼ Vr þ
XN−r

n¼1

Vn; ð18Þ

where Vr contains logp terms with p ¼ 1; 2;…; r − 1.
Such theories are called critical (r-critical). Note that m2

r
may also be zero. Then, the most general solution is in the
form
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V ¼ Vr0 þ
XN−r

n¼1

Vn; ð19Þ

where Vr0 is the solution of Orþ1Vr0 ¼ 0 and involves
logp terms with p ¼ 1; 2;…; r. If all the mass parameters
are equal to zero, then the criticality reaches its maximum
value of N þ 1. Furthermore, the relation between the
maximum criticality and the derivative order of any
gravity theory is worth mentioning: derivative order

maximum criticality ¼ 2.
For the case of maximum criticality, the field equations
take the form

ONþ1V ¼ 0: ð20Þ
As noted above, for the pp-wave metrics, the above
discussions are also valid, but in the limit the AdS radius
goes to infinity, l → ∞.
The layout of the paper is as follows: In Sec. II, we define

the most general sixth-order theory in three dimensions and
give its field equations for KSK metrics from which the
masses of the spin-2 excitations around the (A)dS back-
ground can be obtained. In Sec. III, we give the solutions of
the sixth-order theory, and in the ensuing section we extend
these solutions to all higher-order derivative theories. In
Sec. V, we also give the pp-wave solutions of sixth-order
theories and beyond.

II. SIXTH-ORDER THEORY IN
THREE DIMENSIONS

To give a nontrivial explicit example in full detail, let us
consider the action

I ¼ 1

κ2

Z
d3x

ffiffiffiffiffiffi
−g

p ðFðRμ
νÞ þ LR□RÞ; ð21Þ

where at this stage, FðRμ
νÞ is an arbitrary differentiable

function of the Ricci tensor but not its derivatives, and the
second piece in the action consists of the two possible
second-derivative terms (up to boundary terms):

LR□R ¼ b1∇μR∇μRþ b2∇ρRαβ∇ρRαβ: ð22Þ

In Ref. [13] (see also Ref. [14]), it was shown that the
FðRμ

νÞ function can be represented more compactly as
FðRμ

νÞ ¼ FðR; SμνSνμ; SμρSνμSρνÞ after the use of Schouten
identities to represent higher-curvature scalars in terms
of these three curvature scalars, so that the most general six-
derivative theory takes the form1

I ¼ 1

κ2

Z
d3x

ffiffiffiffiffiffi
−g

p ðFðR;A; BÞ þ LR□RÞ; ð23Þ

where we have defined

A≡ SμνSνμ; B≡ SμρSνμS
ρ
ν: ð24Þ

Let us write the field equations coming from the variation
of (23) in two parts:

Eμν þHμν ¼ 0; ð25Þ

where Eμν comes from the FðR;A; BÞ part as [14]

Eμν ¼ −
1

2
gμνF þ 2FAS

ρ
μSρν þ 3FBS

ρ
μSρσSσν þ

�
□þ 2

3
R

��
FASμν þ

3

2
FBS

ρ
μSρν

�

þ
�
gμν□ −∇μ∇ν þ Sμν þ

1

3
gμνR

�
ðFR − FBS

ρ
σSσρÞ − 2∇α∇ðμ

�
SανÞFA þ 3

2
SρνÞS

α
ρFB

�

þ gμν∇α∇β

�
FASαβ þ

3

2
FBSαρS

β
ρ

�
: ð26Þ

Here, the derivatives of the F function are represented as FR ≡ ∂F
∂R, FA ≡ ∂F

∂A, and FB ≡ ∂F
∂B. The second part of the field

equations, that is Hμν, comes from the variation of LR□R and is given as

Hμν ¼ b1

�
∇μR∇νR − 2Rμν□R − 2ðgμν□2 −∇μ∇ν□ÞR −

1

2
gμν∇αR∇αR

�

þ b2

�
∇μRαβ∇νRαβ −□

2Rμν − gμν∇ρ∇σ□Rρσ þ 2∇ρ∇ðμ□RνÞρ þ 2∇ρRρσ∇ðμRσ
νÞ þ 2Rρσ∇ρ∇ðμRσ

νÞ

− 2Rσðμ□Rσ
νÞ − 2∇ρRσðμ∇νÞRρσ − 2Rσðμ∇ρ∇νÞRσ

ρ −
1

2
gμν∇ρRαβ∇ρRαβ

�
: ð27Þ

1Note that one does not have to use this procedure. A more direct way would be to work with Rμ
ν as the only independent variable, but

for our purposes the laid out method is better, since Sμν ∼ λμλν.
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For the metric (2), with the properties listed in (3)–(5),
we noted that Sμν is in the form (6) and furthermore, the
following identities can be computed from the listed
properties of the metric:

∇α
□Rαμ ¼ 0; ∇αRαμ ¼ 0; ð28Þ

∇μRαβ∇νRαβ ¼ 0; ð29Þ

∇ρRσμ∇νRρσ ¼ 0; ð30Þ

∇ρ∇μRρν ¼ −
3

l2
Sμν; ð31Þ

∇ρ∇μ□Rνρ ¼ −
3

l2
□Sμν; ð32Þ

Rρ
μ∇σ∇νRρσ ¼

6

l4
Sμν; ð33Þ

Rρσ∇σ∇μRνρ ¼
6

l4
Sμν; ð34Þ

Rρ
μ□Rνρ ¼ −

2

l2
□Sμν: ð35Þ

In deriving these identities, we have used the representation
of the three-dimensional Riemann tensor in terms of the
Ricci tensor and the scalar curvature, and also the identity
λρ∇νSρσ ¼ 0, which is valid for the KSK class of metrics to
which our gravity waves in AdS belong.
With these identities, Hμν reduces to the following form:

Hμν ¼ −b2
�
□þ 2

l2

�
□Sμν: ð36Þ

The metric discussed above represents constant-curvature,
type-N spacetimes, as Sμν has the form Sμν ¼ ρλμλν. Then,
the field equations for these spacetimes (26) becomes

�
1

3
RFR −

1

2
F

�
gμν

þ
�
−b2□2 þ

�
FA −

2b2
l2

�
□ −

1

3
RFA þ FR

�
Sμν ¼ 0;ð37Þ

where for the Eμν part, results of Ref. [14] were used. The
trace of (37) yields

1

3
RFR −

1

2
F ¼ 0; ð38Þ

which determines the cosmological constant or the AdS
radius l. The traceless part of (37) becomes the nonlinear
equation

�
−b2□2þ

�
FA−

2b2
l2

�
□−

1

3
RFAþFR

�
Sμν¼0; ð39Þ

which can be rewritten as a product of two operators in
general:�

□þ 2

l2
−m2

−

��
□þ 2

l2
−m2þ

�
Sμν ¼ 0; ð40Þ

where the mass-squared parameters follow from (39) as

m2
� ¼ 1

l2
þ FA

2b2
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

l2
þ FA

2b2

�
2

þ 1

b2
FR

s
: ð41Þ

This formula represents the masses of the two spin-2
excitations for the most general sixth-order gravity theory.
Once the explicit form of F is given, one can calculate
the masses of these modes. For example, for the choice
of the most general quadratic curvature gravity in three
dimensions, FðRμ

νÞ has the form

FðRμ
νÞ ¼ σR − 2λ0 þ αR2 þ βRαβRαβ

¼ σR − 2λ0 þ
�
αþ β

3

�
R2 þ βSαβSαβ; ð42Þ

yielding

FR ¼ σ −
12

l2

�
αþ β

3

�
; FA ¼ β; ð43Þ

and the square of the mass reads

m2
� ¼ β

2b2

þ 1

l2
∓ 1

2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4b22

l4
þ 4b2σ −

12b2
l2

ðβ þ 4αÞ
s

:

ð44Þ

For a six-derivative theory, the mass-squared terms, m2
�,

can be arranged to be zero given that 1
l2 þ FA

2b2
¼ 0 and

FR ¼ 0. In this limit, the field equations of the so called
tricritical theories reduce to the form

O3V ¼ 0; ð45Þ

and hence have the same logarithmic solutions that we
discuss in the next section.

III. AdS-WAVE SOLUTIONS

Let us now discuss the exact solutions of (40) which
fall into several distinct classes depending on the values
of m2

�. In the generic case, m2þ ≠ m2
−. As a second case,
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m2þ ¼ m2
− ≠ 0. In the third case, one of them could be zero.

In the last case, m2þ ¼ m2
− ¼ 0.

Case 1—m2þ ≠ m2
−: For this case, (40) reduces to

ðOþm2
−ÞðOþm2þÞOV ¼ 0; ð46Þ

whose solutions can be obtained from the solutions of the
lower-derivative equations

OVE ¼ 0; ð47Þ

ðOþm2þÞVþ ¼ 0; ð48Þ

ðOþm2
−ÞV− ¼ 0; ð49Þ

as V ¼ VE þ Vþ þ V−. Here, VE refers to the solution of
Sμν ¼ 0. Let us note that ðOþm2ÞOV ¼ 0 is the traceless
part of the field equation for these metrics of the quadratic
curvature gravity, and hence, in some sense for these
metrics, the field equations of the sixth-order theory reduce
to two copies of the quadratic theory.
With specific choices of λμ vector, one can get the AdS-

plane and AdS-spherical wave solutions. The AdS–plane
wave metric can be given as

ds2 ¼ l2

z2
ð2dudvþ dz2Þ þ 2Vðu; zÞdu2; ð50Þ

where the null coordinates are defined as u ¼ 1ffiffi
2

p ðxþ tÞ
and v ¼ 1ffiffi

2
p ðx − tÞ. Then, the relevant differential equation

becomes [7]

�
z2

l2

∂2

∂z2 þ
3z
l2

∂
∂z −m2

�

�
Vðu; zÞ ¼ 0; ð51Þ

whose solution is

V�ðu; zÞ ¼
1

z
ðc1zp� þ c2z−p�Þ; ð52Þ

where p� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

�l
2

p
and c1;2 are functions of u. This

solution was given in the case of NMG in Ref. [10]. In the
p → 1 limit, one obtains the Einsteinian solution

VEðu; zÞ ¼
1

z2
ðc1z2 þ c2Þ: ð53Þ

From this form, it is easy to see that with this VE, (50) is the
AdS space.
The metric in the coordinates used in Ref. [15] reads

ds2 ¼ l2

cos2θ

�
4dudv
ðuþ vÞ2 þ dθ2

�
þ 2Vðu; θÞdu2; ð54Þ

which is called the AdS-spherical wave, as the null coor-
dinates are defined as u¼ 1ffiffi

2
p ðrþ tÞ and v¼ 1ffiffi

2
p ðr− tÞ, so the

AdS part is conformal to the flat space in spherical
coordinates. Then, the relevant differential equation
reduces to

�
cos2θ

∂2

∂θ2−3sinθcosθ
∂
∂θ−ð2cos2θþm2

�l
2Þ
�
V�ðu;θÞ

¼0; ð55Þ

whose solution is

V�ðu;θÞ¼
1

cosθ

�
c1

�
cosθ

1þsinθ

�
p� þc2

�
cosθ

1þsinθ

�
−p�

�
;

ð56Þ

where c1;2 are arbitrary functions of the null coordinate u.
Again, this solution was given in the case of NMG in
different coordinates in Refs. [3–5]. The p ¼ 1 case yields
the Einsteinian solution

VEðu; θÞ ¼
1

cos2θ
ðcþ þ c− sin θÞ; ð57Þ

where c� ¼ c2 � c1, which can again be gauged away.
Therefore, the general AdS-spherical wave solution to the
most general sixth-order gravity is

Vðu; θÞ ¼ Vþðu; θÞ þ V−ðu; θÞ; ð58Þ

where Vþ and V− are given in (56) and the mass parameters
m2þ and m2

− are given in (41).
Case 2—m2þ ¼ m2

− ≠ 0: The AdS–plane wave solution
of the fourth-order massive operator part is

Vm ¼ 1

z

�
c1zp þ c2z−p þ ln

�
z
l

�
ðc3zp þ c4z−pÞ

�
; ð59Þ

while the AdS-spherical wave solution is

Vm ¼ 1

cos θ

�
c1

�
cos θ

1þ sin θ

�
p
þ c2

�
cos θ

1þ sin θ

�
−p

þ ln

�
cos θ

1þ sin θ

��
c3

�
cos θ

1þ sin θ

�
p

þc4

�
cos θ

1þ sin θ

�
−p
��

: ð60Þ

The log terms appear because of the genuinely fourth-order
nature of the equation.
Case 3—One of the masses is zero: The solution is

V ¼ Vm þ V log; ð61Þ

where, for the AdS–plane wave, one finds
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V logðu; zÞ ¼
1

z2
ln

�
z
l

�
ðc3z2 þ c4Þ; ð62Þ

which also appeared in the NMG case [10], and for the
AdS-spherical wave, one finds

V logðu; θÞ ¼
1

cos2θ
ln

�
cos θ

1þ sin θ

�
ðc3 þ c4 sin θÞ: ð63Þ

Case 4—m2þ ¼ m2
− ¼ 0: In this case, the theory is called

tricritical [16]. The AdS–plane wave solution is

V logðu; zÞ ¼
1

z2
ln

�
z
l

��
c3z2 þ c4 þ ln

�
z
l

�
ðc5z2 þ c6Þ

�
;

ð64Þ

which was partially covered in Ref. [17], while the AdS-
spherical wave solution is

V logðu; θÞ ¼
1

cos2θ
ln

�
cos θ

1þ sin θ

��
c3 þ c4 sin θ

þ ln

�
cos θ

1þ sin θ

�
ðc5 þ c6 sin θÞ

�
: ð65Þ

IV. EXTENSION TO ANY
HIGHER-DERIVATIVE ORDER

As noted above, for the AdS-wave metrics, the traceless
part of the field equations of any ð2N þ 2Þ-derivative
theory in three dimensions reduces to the following
product:

ðOþm2
1ÞðOþm2

2Þ � � � ðOþm2
NÞOV ¼ 0; ð66Þ

where mi are the masses of the spin-2 excitations, which
can be found in a rather tedious procedure in terms of the
parameters of the theory once the Lagrangian of the theory
is given. In Sec. II, we gave an explicit example for the
sixth-order gravity. Solutions of (66) depend on whether
the masses are equal or not.
Case 1—All the masses are distinct: For this case, the

most general solution is the sum of the solutions of each
massive operator part as

V ¼
XN
i¼1

Vi; ð67Þ

where the solutions Vi are given in (52) for the AdS–plane
wave and in (54) for the AdS-spherical wave. Here, we
again dropped the Einsteinian part.
Case 2—Some masses are equal but not zero: For the

case where r number of masses are equal to m, the general
solution takes the form

V ¼
Xr−1
i¼0

Vmðci; ciþ1Þðln fÞi þ
XN−r

i¼1

Vi; ð68Þ

where f ¼ z
l, and Vmðci; ciþ1Þ is given in (52) for the

AdS–plane wave; and f ¼ cos θ
1þsin θ, and Vmðci; ciþ1Þ is given

in (52) for the AdS-spherical wave.
Case 3—Some or all of the masses are zero: If r number

of masses are zero, then the general solution is

V ¼
Xr
i¼1

VEðci; ciþ1Þðln fÞi þ
XN−r

i¼1

Vi; ð69Þ

where f ¼ z
l, and VEðci; ciþ1Þ is given in (53) for the

AdS–plane wave; and f ¼ cos θ
1þsin θ, and VEðci; ciþ1Þ is given

in (57) for the AdS-spherical wave. When all of the masses
are zero, that is the maximal criticality case, then the
general solution becomes

V ¼
XN
i¼1

VEðci; ciþ1Þðln fÞi: ð70Þ

V. pp-WAVE SOLUTIONS

Finally, let us discuss the pp-wave solutions, which read
in the Kerr-Schild form as

gμν ¼ ημν þ 2Vλμλν; ð71Þ

where ημν is the flat Minkowski metric. The function V
satisfies the property λμ∂μV ¼ 0. The vector λμ is null
λμλ

μ ¼ 0 and satisfies ∇μλν ¼ 0.2

It is well known that for pp-wave spacetimes, the Ricci
tensor takes the form Rμν ¼ −λμλν∂2V, where ∂2 is the flat
Laplacian. As discussed in Ref. [7], the field equations of
the ð2N þ 2Þ-derivative gravity theory for the pp-wave
metrics reduce to the form

XN
n¼0

an□nRμν ¼ −λμλν
XN
n¼0

an□n∂2V ¼ 0; ð72Þ

where □ is the Laplacian of the full metric and an are
constants depending on the parameters of the theory. Here,
the first equality follows from ∇μλν ¼ 0. For the pp-wave
spacetimes, a scalar ϕ satisfying λμ∇μϕ ¼ 0 also satisfies
□ϕ ¼ ∂2ϕ and in turn λμ∇μ□ϕ ¼ 0 [7]. Using ∇μλν ¼ 0,
together with these results, it can be shown that
□

n∂2V ¼ ð∂2Þnþ1V, so the field equations become

2One may consider the possibility of extending the condition
∇μλν ¼ 0 to the more general condition ∇μλν ¼ 1

2
ðλμξν þ ξμλνÞ.
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XN
n¼0

anð∂2Þn∂2V ¼ 0: ð73Þ

Furthermore, this equation can also be factorized as in the
case of the AdS-wave metrics:

YN
n¼1

ð∂2 −m2
n;flatÞ∂2V ¼ 0; ð74Þ

where m2
n;flat’s are the mass-squared terms for the massive

spin-2 excitations around the flat spacetime. Note that
m2

n;flat’s are related to the m2
n’s in the limit liml→∞m2

n ¼
m2

n;flat. If one assumes that the all m2
n;flat’s are distinct, then

the most general solution of (74) is again in the form

V ¼ VE þ
XN
n¼1

Vn; ð75Þ

where VE is the Einsteinian solution solving ∂2VE ¼ 0
and each Vn is the massive solution solving
ð∂2 −m2

n;flatÞVn ¼ 0. For the case of some m2
n;flat’s being

equal, the pp-wave solutions also follow the same pattern
discussed for the AdS-wave solutions at the end of Sec. I
after just changing O → −∂2.
Now, let us find the pp-wave solutions of the sixth-order

gravity for the four cases discussed above.
Case 1—m2þ ≠ m2

−: For this case, the field equation has
the form

ð∂2 −m2
−Þð∂2 −m2þÞ∂2V ¼ 0; ð76Þ

which has the solution V ¼ VE þ Vþ þ V−, where
VE, Vþ, and V− satisfy ∂2V ¼ 0, ð∂2 −m2þÞV ¼ 0, and
ð∂2 −m2

−ÞV ¼ 0, respectively.
To find the explicit solutions, let us write the pp-wave

metric in the null coordinates

ds2 ¼ 2dudvþ dz2 þ 2Vðu; zÞdu2: ð77Þ

Then, the relevant differential equation becomes
ð∂2

z −m2
�ÞV�ðu; zÞ ¼ 0 with the solution

V�ðu; zÞ ¼ c1em�z þ c2e−m�z: ð78Þ

As we discussed, the Einsteinian part can be gauged away,
so there is no need to consider VE.
Case 2—m2þ ¼ m2

− ≠ 0: The pp-wave solution for this
case becomes

Vm ¼ c1emz þ c2e−mz þ zðc3emz þ c4e−mzÞ: ð79Þ

Case 3—One of the masses is zero: The solution is

V ¼ Vm þ V0; ð80Þ

where

V0ðu; zÞ ¼ c3z3 þ c4z2: ð81Þ

Case 4—m2þ ¼ m2
− ¼ 0: In this case, the pp-wave

solution is

Vðu; zÞ ¼ c1z5 þ c2z4 þ c3z3 þ c4z2: ð82Þ
For the general case of ð2N þ 2Þ-derivative theory, we

have the similar cases:
Case 1—All the masses are distinct:
The general solution is

V ¼
XN
i¼1

Vi; ð83Þ

where the solutions Vi are given in (78).
Case 2—Some masses are equal but not zero:
For the case where r number of masses are equal to m,

the general solution is

V ¼
Xr−1
i¼0

Vmðci; ciþ1Þzi þ
XN−r

i¼1

Vi; ð84Þ

where Vmðci; ciþ1Þ is given in (78).
Case 3—Some or all of the masses are zero: If r number

of masses are zero, then the general solution is

V ¼
X2rþ1

i¼2

cizi þ
XN−r

i¼1

Vi; ð85Þ

where VEðci; ciþ1Þ ¼ ci þ ciþ1z. When all of the masses
are zero, that is the maximal criticality case, then the
general solution becomes

V ¼
X2Nþ1

i¼2

cizi: ð86Þ

Note that all the ci’s appearing in the solutions of this
section are arbitrary functions of u.

VI. CONCLUSIONS

In this work, we studied wave-type exact solutions of any
higher-derivative gravity theory in three dimensions. These
solutions also solve the linearized, perturbative equations
for the spin-2 sector as noted below (11). The field
equations of the most general gravity theory are highly
complicated and nonlinear such that, a priori, it is hard to
expect any exact solution (besides the maximally symmet-
ric ones) to be found in closed form. But, rather remarkably,
we found three different wave-type solutions: AdS-plane,
AdS-spherical, and the pp-wave in any higher-derivative
theory, which, by the way, do not exist in pure Einstein
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gravity in three dimensions. The exact solutions, as well as
the perturbative solutions, are parametrized by the values of
the masses of the spin-2 excitations. Among the solutions,
there are some critical cases that arise when some of the
masses vanish or are equal to each other. For these critical
cases, the operators take a nonfactorizable form and
logarithmic terms appear in the solutions, changing the
asymptotic structures of the spacetime. As a specific
example, we worked out the details of the most general
sixth-order gravity for which we determined the field
equations and the masses of the two spin-2 excitations
explicitly. This example also covers the recently introduced
tricritical gravity in three dimensions. It is an open question
whether there could be other wave solutions in these
theories.
Here, we were mainly interested in finding the exact

wave solutions (in flat and AdS spacetimes) as well as the
spin-2 spectrum of the generic theory, while keeping in
mind that these solutions, being the closest cousins of the
globally AdS spacetime with the same curvature invariants
as the latter, have potential applications in the AdS3=CFT2

context. For the generic solutions, where there are no
logarithmic terms, Brown-Henneaux (BH)-type boundary
conditions [18] are applicable; while for the logarithmic
solutions, one needs to relax these boundary conditions, as
was already noted in other theories [10,19]. We have not
studied the properties (c-charges, etc.) of the putative CFT2

theory, but it is quite possible that certain theories among
the generic set we have studied will turn out to have a

unitary conformal field theory (CFT) away from the special
points. On the other hand, we expect that generically, the
specific theories with the log terms will lead to nonuni-
tary CFTs.
While we have studied a large class of gravity theories in

2þ 1 dimensions in this work, we have left several theories
which need to be mentioned: to the most general action,
one can add the parity-violating Chern-Simons term to
obtain a new class of theories which will be extensions of
Topologically Massive Gravity [20]. In principle, it is easy
to extend our solutions to this more general parity-violating
theory. It would be interesting to see if such extensions and
their chiral limits lead to viable boundary CFT theories.
Finally, as was recently suggested [21,22], a theory can be
consistently defined without an action based on the metric
alone, but with field equations, this theory is called the
minimal massive gravity (MMG) with a single massive
helicity-2 graviton with the property that the theory is
unitary both in the bulk and on the boundary. Extension to
the two-spin-2 case was given in Ref. [23]. Exact solutions
of these theories and their chiral limits were given in
Refs. [24,25].
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