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We investigate scalar field theories in de Sitter space by means of nonperturbative renormalization group
techniques. We compute the functional flow equation for the effective potential of OðNÞ theories in the
local potential approximation and we study the onset of curvature-induced effects as quantum fluctuations
are progressively integrated out from subhorizon to superhorizon scales. This results in a dimensional
reduction of the original action to an effective zero-dimensional Euclidean theory. We show that the latter is
equivalent both to the late-time equilibrium state of the stochastic approach of Starobinsky and Yokoyama
and to the effective theory for the zero mode on Euclidean de Sitter space. We investigate the immediate
consequences of this dimensional reduction: symmetry restoration and dynamical mass generation.
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I. INTRODUCTION

Space-time curvature can have important consequences
on the dynamics of quantum fields. Prominent examples
are the spontaneous Hawking/Unruh radiation from
(analog) black holes [1–3] and the amplification of cos-
mological perturbations during the inflation era [4]. Other
nontrivial effects include the possibility of gravitationally
induced phase transitions in the early Universe [5–7], the
decay of massive particles into themselves [8,9], the
generation of a nonvanishing photon mass [10,11], or
the phenomenon of symmetry restoration through gravita-
tionally enhanced quantum fluctuations [12–15], just to
name a few. More generally, the study of radiative
corrections to quantum field dynamics in nontrivial gravi-
tational backgrounds is the subject of intense investiga-
tions; see, e.g., [16–31].
De Sitter space-time plays a particular role in this

context, first, because it is maximally symmetric and,
second, because of its direct relevance to inflationary
physics and to the recent acceleration of the Universe
[32,33]. For free scalar fields with a small mass in units of
the space-time curvature, the de Sitter kinematics results in
large quantum fluctuations on superhorizon scales, with an
almost scale invariant power spectrum. This is at the very
origin of the success of inflationary cosmology in predict-
ing the spectrum of primordial density fluctuations [34,35].
However, this is also responsible for infrared and secular
divergences in perturbative calculations of quantum (loop)
corrections to scalar field dynamics in de Sitter space
[36,37]. In fact, gravitationally enhanced quantum fluctua-
tions on superhorizon scales lead to genuine nonperturba-
tive effects [28,38].
Specific techniques beyond standard perturbation theory

have been developed to capture the dynamics of the relevant
modes. This ranges from the effective stochastic approach

put forward in Ref. [39] to various quantum field theoretical
methods suitably adapted to de Sitter space; see Refs.
[40–50] for a (non exhaustive) list of examples. In particular,
such methods allow one to study how an interacting scalar
theory cures its infrared and secular problems, e.g., with the
dynamical generation of a nonzero mass.
Nonperturbative renormalization group (NPRG) meth-

ods are particularly adapted for dealing with nontrivial
infrared physics in many instances, from critical phenom-
ena in statistical physics to the long distance dynamics of
non-Abelian gauge fields [51–54]. Such techniques have
recently been formulated in de Sitter space-time1 in
Refs. [58,59], where they have been used to study the
renormalization group (RG) flow of OðNÞ scalar field
theories at superhorizon scales. A remarkable observation
is that, thanks to gravitationally enhanced infrared fluctua-
tions, the RG flow gets effectively dimensionally reduced
to that of a zero-dimensional Euclidean field theory [59].
This has various consequences, such as, e.g., the radiative
restoration of spontaneously broken symmetries in any
space-time dimension.2

1See also [55–57] for other recent applications in curved
spaces.

2The phenomenon of radiative symmetry restoration for OðNÞ
scalar theories in de Sitter space-time has been firmly established
both for the case of a continuous Abelian symmetry N ¼ 2 [12]
and in the limit N → ∞ [13,15], where exact results can
be obtained. It has been convincingly demonstrated for generic
values of N using the stochastic approach [60] and NPRG
techniques [59]. It is to be mentioned that some studies [61–64]
find a possible (de Sitter invariant) broken symmetry phase for
finite N. However, for continuous symmetries (N ≥ 2), the Gold-
stone modes acquire a nonzero mass, which is rather unphysical.
We believe these are artifacts of the various approximation
schemes employed in these works. For instance, the Hartree
approximation used in Refs. [61–63] is known to produce similar
spurious solutions in flat space-time at finite temperature [65].
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In the present work, we extend the NPRG study of
Ref. [59] and investigate the flow of the effective potential
of OðNÞ theories from the flat space-time (Minkowski)
regime at subhorizon scales to the regime of superhorizon
momenta, with fully developed curvature effects. Using
the so-called local potential approximation (LPA), we
study in detail the onset of gravitational effects at the
horizon scale.
The phenomenon of effective dimensional reduction

mentioned above allows us to establish a direct relation
between the present NPRG approach and the stochastic
effective theory of Starobinsky and Yokoyama [39]. In
particular, we show that the effective zero-dimensional field
theory which results from integrating out the superhorizon
degrees of freedom is equivalent to the late-time equilib-
rium state of the stochastic description. We also discuss our
approach in relation with recent studies on Euclidean de
Sitter space [42,43,57]. We show that the dimensionally
reduced theory in (Lorentzian) de Sitter space-time at
superhorizon scales is equivalent to the effective theory
for the zero mode on the compact Euclidean de Sitter space.
This provides a direct link between Euclidean de Sitter
calculations and the stochastic approach. This also adds to
the quantum field theoretical foundations of the latter
[36,66–71].
Finally, we discuss the consequences of the dimensional

reduction in the infrared by explicitly solving the functional
RG flow equation for the effective potential in various
situations of interest. We show that, in the cases of theories
which would be either critical or in the broken phase in
Minkowski space, the curvature-induced effects lead to
symmetry restoration and dynamical mass generation. This
is nicely illustrated in the limitN → ∞, where we can solve
the full functional flow equation analytically in the infrared.
We argue that the large-N limit actually gives the correct
qualitative picture for arbitrary N and, using the equivalent
zero-dimensional field theory, we compute the effective
mass and coupling parameters in the deep infrared. We
recover and extend known results of the stochastic
approach.
The paper is organized as follows. Section II briefly

reviews the NPRG setup in de Sitter space-time and the
derivation of the flow equation for the effective potential in
the LPA. We discuss the various regimes of interest and the
phenomenon of dimensional reduction in Sec. III, where we
also establish the relations with the stochastic approach
and with Euclidean de Sitter space, respectively. Explicit
solutions of the functional flow equation are discussed in
the large-N limit and at finite N in Secs. IV and V. Some
technical details are presented in the Appendices.

II. GENERAL SETUP

We consider a scalar field theory with OðNÞ symmetry
on the expanding Poincaré patch of a de Sitter space-time
with Lorentzian signature in D ¼ dþ 1 dimensions. In

terms of the conformal time −∞ < η < 0 and of comoving
spatial coordinates X, the line element reads

ds2 ¼ a2ðηÞð−dη2 þ dX2Þ with aðηÞ ¼ −1=η; ð1Þ

in units where the expansion rate a0=a2 ¼ 1. The classical
action reads

S½φ� ¼ −
Z
x

�
1

2
∂μφa∂μφa þ VðφÞ

�
; ð2Þ

where
R
x ¼

R
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp ¼ R

dηaDðηÞ R ddX is the
invariant integration measure, with gðxÞ the determinant
of the metric tensor, the potential VðφÞ is a function of the
OðNÞ invariant φaφa, and a summation over repeated
space-time or OðNÞ indices a ¼ 1;…; N is understood.
Note that the potential VðφÞ includes possible couplings to
the (constant) space-time curvature.
Correlation functions for the scalar field can be com-

puted by means of path integral techniques with weight
expðiSÞ. In order to keep the large contributions from long
wavelength quantum fluctuations under control, one intro-
duces the modified action Sκ ¼ Sþ ΔSκ, with

ΔSκ½φ� ¼
1

2

Z
x;x0

φaðxÞRκðx; x0Þφaðx0Þ; ð3Þ

where the infrared regulator Rκ acts as a large mass term for
(quantum) fluctuations on sizes larger than 1=κ and
essentially vanishes for short wavelength modes, thereby
suppressing the contribution from the former to the path
integral.3 From the generating functional

eiWκ ½J� ¼
Z

Dφ exp

�
iSκ½φ� þ i

Z
x
Jaφa

�
; ð4Þ

one defines the regulated effective action

Γκ½ϕ� ¼ Wκ½J� −
Z
x
Jaϕa − ΔSκ½ϕ�; ð5Þ

where J and ϕ are related through δWκ½J�=δJ ¼ ϕ. The
functional (5) smoothly interpolates between the classical
action at the ultraviolet scale4 κ ¼ Λ, that is, ΓΛ½ϕ� ¼ S½ϕ�,
and the standard effective action—the generating func-
tional of one-particle-irreducible vertex functions—at the
scale κ ¼ 0, where all quantum fluctuations have been
integrated out, namely, Γκ¼0½ϕ� ¼ Γ½ϕ�. It can roughly be
seen as an effective action for the physics at a scale κ. The

3The distinction between long and short wavelength modes is
ambiguous in spaces with Lorentzian signature. Here, we make
this distinction on (Euclidean) constant-time hypersurfaces; see
below.

4The ultraviolet scale is implicitly assumed to be much larger
than any other scale in the problem, e.g., Λ2 ≫ 1; V 00ðφÞ.
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dependence on κ is controlled by the Wetterich
equation [72]

_Γκ ¼
i
2
Tr
�
_RκðΓð2Þ

κ þ RκÞ−1
�
; ð6Þ

where thedot denotes a derivativewith respect to theRGtime

ln κ and Γð2Þ
κ;abðx;yÞ ¼ ½gðxÞgðyÞ�−1=2δ2Γκ½ϕ�=δϕaðxÞδϕbðyÞ

is the covariant two-point vertex function. Here, the func-
tional inversion, matrix product, and trace Tr involve both
space-time variables and OðNÞ indices.5
The functional partial differential equation (6) cannot be

solved in a closed form in general. In the present work, we
are interested in the flow of the effective potential VκðϕÞ
defined as Γκ½ϕ ¼ const� ¼ −

R
x VκðϕÞ. To this purpose,

we evaluate Eq. (6) at constant field and employ the local
potential ansatz (LPA)

ΓLPA
κ ½ϕ� ¼ −

Z
x

�
1

2
∂μϕa∂μϕa þ VκðϕÞ

�
ð7Þ

to compute the right-hand side of the equation. This is
motivated by the expectation that terms with higher powers
of field derivatives should be suppressed in the physically
relevant regime κ ≲ 1. The LPA further neglects a possible
field-dependent renormalization factor of the derivative
term. It is the simplest nontrivial ansatz which incorporates
the full field dependence of the effective potential. Notice
that one has VΛðϕÞ ≈ VðϕÞ at the ultraviolet scale κ ¼ Λ.
Following [58,59], we choose an infrared regulator of

the form

Rκðx; x0Þ ¼ −
δðη − η0Þ
aDðηÞ

Z
ddK
ð2πÞd e

iK·ðX−X0ÞRκð−KηÞ

¼ −δðt − t0Þ
Z

ddp
ð2πÞd e

ip·ðx−x0ÞRκðpÞ; ð8Þ

where, in the second line, we introduced the cosmological
time t ¼ − lnð−ηÞ as well as the physical coordinates and
momentum variables, x ¼ aðηÞX and p ¼ K=aðηÞ. When
plugged in Eq. (3), one checks that this indeed leads to a
momentum-dependent mass term. An important remark is
that this only regulates spatial momenta and thus breaks the

local Lorentz symmetry of de Sitter space-time. The
difficulty of choosing a fully invariant regulator is related
to the fact that the distinction between high and low
momentum modes is ambiguous in a space with
Lorentzian signature. We emphasize though that it is
important to regulate physical momenta p ¼ −Kη in order
to keep as much as possible of de Sitter symmetries [59]. In
particular, this guarantees that the affine subgroup of the de
Sitter group is left unbroken [78,79] and this leads to a
consistent6 truncation of both sides of the flow equation (6).
With these choices, the flow equation for the potential

takes the following form, in the caseN ¼ 1 and keeping the
field dependence implicit,

_Vκ ¼
1

2

Z
ddp
ð2πÞd

_RκðpÞ
juκðpÞj2

p
; ð9Þ

where the mode function uκðpÞ satisfies the evolution
equation7

�
∂2
p þ 1 −

ν2κ − RκðpÞ − 1
4

p2

�
uκðpÞ ¼ 0; ð10Þ

with appropriate initial conditions, where

νκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
− V 00

κ

r
: ð11Þ

For the simple Litim regulator [80]

RκðpÞ ¼ ðκ2 − p2Þθðκ2 − p2Þ ð12Þ

and demanding the Bunch-Davies [81] vacuum conditions
at large momentum (which reproduce the Minkowski
vacuum for deep subhorizon modes), the solution reads

uκðpÞ ¼
ffiffiffiffiffiffi
πp
4

r
eiφκ

�
cþκ

�
p
κ

�
ν̄κ þ c−κ

�
κ

p

�
ν̄κ
�

for p ≤ κ

uκðpÞ ¼
ffiffiffiffiffiffi
πp
4

r
eiφκHνκðpÞ for p ≥ κ; ð13Þ

where φκ ¼ π
2
ðνκ þ 1=2Þ, ν̄2κ ¼ ν2κ − κ2, HνðpÞ is the

Hankel function of the first kind, and where the coefficients
5A technical comment is in order. The calculation of the

correlation functions of interest here can be conveniently for-
mulated as an initial-value problem, where initial conditions
corresponding to the quantum state of interest are specified in the
infinite past (see below). This is the typical setup of a non-
equilibrium problem [73]. In that case, standard functional
techniques can be generalized by formulating the theory
on Schwinger’s closed time contour C [74]. In the present
context, this amounts to the replacement

R
dη →

R
C dη and

δðη − η0Þ → δCðη − η0Þ; see, e.g., Ref. [47] for details. Discus-
sions of NPRGmethods for nonequilibrium systems can be found
in Refs. [75–77].

6For instance, a regulator on comoving momenta leads to
inconsistencies such as the fact that one cannot factor out the
volume factor

R
x on both sides of Eq. (6); see Ref. [58].

7In general cosmological space-times, the mode function
depends separately on the comoving momentum K and the
conformal time η. The symmetries of the de Sitter space-time—
in fact the affine subgroup [78,79]—constrain these dependences
to be tight together by the gravitational redshift. Themode function
is a nontrivial function of the physical momentum p ¼ −Kη only.
The time-evolution equation can be traded for a (physical)
momentum evolution equation; see Refs. [47,78,79] for details.
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c�κ ¼ 1

2

�
HνκðκÞ �

κ

ν̄κ
H0

νκðκÞ
�

ð14Þ

ensure the continuity of uκðpÞ and of its first derivative at
p ¼ κ. The momentum integral in Eq. (9) can be computed
explicitly. We obtain the functional beta function for the
potential as

_Vκ ≡ βðV 00
κ ; κÞ ¼

Cdκ
dþ2

κ2 þ V 00
κ
Bdðνκ; κÞ; ð15Þ

where Cd ¼ πΩd=½16dð2πÞd�, with Ωd ¼ 2πd=2=Γðd=2Þ,
and where we have defined the function8 (see Fig. 1)

Bdðν; κÞ ¼ e−πImðνÞ
�
ðd2 − 2ν2 þ 2κ2ÞjHνðκÞj2

þ 2κ2jH0
νðκÞj2 − 2dκRe½H�

νðκÞH0
νðκÞ�

�
: ð16Þ

The generalization to the case N > 1 is straightforward.
Defining

VκðϕÞ ¼ NUκðρÞ with ρ ¼ ϕaϕa

2N
; ð17Þ

we obtain the functional flow equation

N _Uκ ¼ βðm2
l;κ; κÞ þ ðN − 1Þβðm2

t;κ; κÞ; ð18Þ

with the local curvatures in the longitudinal and transverse
directions in field space

m2
l;κðρÞ ¼ U0

κðρÞ þ 2ρU00
κðρÞ and m2

t;κðρÞ ¼ U0
κðρÞ:

ð19Þ

III. FROM SUBHORIZON TO SUPERHORIZON
SCALES: THE ONSET OF GRAVITATIONAL

EFFECTS

We now discuss the beta function for the effective
potential in various regimes and compare it to its flat space
(Minkowski) counterpart in order to pinpoint the specific
effects of the space-time curvature.

A. Minkowski regime

The first case of interest is the regime of subhorizon
scales κ ≫ 1, where all fluctuating modes are effectively
heavy in units of the space-time curvature. One thus
expects to recover the Minkowski limit of the flow

equation. Indeed, using the asymptotic behavior HνðκÞ ∼ffiffiffiffi
2
πκ

q
expfiκ − i π

2
ðνþ 1=2Þg of the Hankel functions in

Eq. (16), one finds Bdðν; κÞ ≈ 8κ=π. This leads to a beta
function (15) identical to that obtained by deriving the flow
equation directly in Minkowski space in the limit κ2 ≫ V 00

κ ,
as shown in Appendix A.
Similarly, for field values where the curvature of the

potential V 00
κ ≫ 1, one expects space-time curvature effects

to be negligible for all κ. In this case, the index ν2κ ≈ −V 00
κ

and we obtain, using the properties of the Hankel function
for imaginary index, Bdðν; κÞ ≈ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ V 00

κ

p
=π. The beta

function (15) thus reads

βðV 00
κ ; κÞ ≈

8Cd

π

κdþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ V 00

κ

p ; ð20Þ

which is identical to the Minkowski beta function; see
Appendix A. The right-hand side of (20) is plotted as a
function of the RG scale κ for various values of V 00

κ in the
top panel of Fig. 2.

B. Infrared regime and dimensional reduction

The Minkowski beta function (20) receives sizable
corrections at superhorizon scales κ ≲ 1 when the curvature
of the potential V00

κ ≲ d2=4. This corresponds to ν2κ increas-
ing from (large) negative to positive values. For instance,
for V 00

κ ¼ d2=4 (νκ ¼ 0), one has

2 4

2 0.4

2 0

2 0.4

2 9 4

0.001 0.01 0.1 1 10 100

10

100

1000

104

105
Bd ,

FIG. 1 (color online). The function Bdðν; κÞ [see Eq. (16)] in
D ¼ 3þ 1 dimensions versus κ for various (real and imaginary)
values of ν. In the UV regime κ ≳ 1 the function Bdðν; κÞ ∼ κ,
which reproduces the Minkowski beta function for the potential.
Imaginary values of ν correspond to regions of field space where
the curvature of the potential V 00

κ > d2=4. In that case, the
function Bdðν; κÞ shows a bounded oscillatory behavior for κ ≲
1 and it is essentially constant for large field curvatures,
V 00
κ ≫ d2=4. For ν ¼ 0, this turns into a logarithmic behavior,

which reflects the gravitational enhancement of superhorizon
fluctuations. Finally, real positive values of ν correspond to
regions of field space where the curvature of the potential V 00

κ <
d2=4 and are most sensitive to space-time curvature effects. The
logarithmic enhancement is turned into a power law κ−2ν.

8A. Kaya has informed us that the beta function published in
Ref. [58] contains two typos: 3þ 3n → 3þ 2n and
9þ 6n − 2α2 → 9þ 6nþ 2α2. Our results agree once these
typos are corrected.
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Bdð0; κÞ ¼
4d2

π2
ln2

�
κ

2

�
−
8d
π2

ln

�
κ

2

�
þOðκ0Þ: ð21Þ

This shows a (double) logarithmic enhancement as com-
pared to the Minkowski case in the corresponding regime.
This effect gets more pronounced as V 00

κ is further decreased
(νκ is further increased to positive values). For ν ∈ Rþ and
κ ≲ 1, the Hankel functions HνðκÞ ∼ ΓðνÞ

iπ ð2=κÞν and we
obtain

Bdðν; κÞ ≈ dðdþ 2νÞΓ
2ðνÞ
π2

�
2

κ

�
2ν

½1þOðκ2Þ�: ð22Þ

The logarithmic enhancement of Eq. (21) is turned into a
power law κ−2ν, which reflects the strong gravitational
amplification of infrared fluctuations. In the case of small
potential curvature jV 00

κ j ≪ 1, one has νκ ≈ d=2, and the
beta function reads

βðV 00
κ ; κÞ ≈

1

ΩDþ1

κ2

κ2 þ V 00
κ
; ð23Þ

where we used ΩDþ1 ¼ 4πd=2þ1=½dΓðd=2Þ�. The various
regimes of the beta function in de Sitter space are illustrated
in Fig. 2 together with their Minkowski counterparts.
Equation (23) reproduces the result of Ref. [59] obtained

directly in the infrared limit. As pointed out there, the beta
function (23) describes an effective Euclidean RG flow in
zero space-time dimension.9 For instance, in the regime
V 00
κ ≪ κ2 ≪ 1, the flow function βðV 00

κ ; κÞ ∼ κ0, to be
compared to the canonical scaling in D dimensions
∼ κD. Below we shall make this statement more precise
by showing that the beta function (23) describes a RG flow
on the D-dimensional sphere SD, that is, the Euclidean de
Sitter space. As a measure of the effective dimensional
reduction we show the logarithmic slope of the beta
function in the various regimes of interest in Fig. 3.
This effective dimensional reduction signals the fact

that the solution of the flow equation governed by the
beta function (23) can be written as an effective zero-
dimensional field theory. We introduce the following
ordinary integral

e−ΩDþ1WκðJÞ ¼
Z

dNφe−ΩDþ1½VeffðφÞþJaφaþκ2

2
φaφa�; ð24Þ

where VeffðφÞ is a function to be specified below.
Repeating the steps leading to the flow equation (6), it
is easy to check that the Legendre transform

VκðϕÞ ¼ WκðJÞ − Jaϕa −
κ2

2
ϕaϕa; ð25Þ

with ∂WκðJÞ=∂Ja ¼ ϕa, satisfies the flow equation (23).
One can adjust the function VeffðφÞ so as to produce the
appropriate initial conditions10 for the infrared flow at a
scale κ0 ∼ 1. All solutions of the flow equation in the deep
de Sitter regime can thus be written as Eq. (24). In
particular, it is remarkable that, in this regime, the original
D-dimensional Lorentzian theory, with complex weight

V'' 10 4

V'' 0

V'' 10 4

V'' 1

V'' d2 4

V'' d2 4

'',

10 14

10 10

10 6

0.01

100

106

V'' 10 4

V'' 0

V'' 10 4

V'' 1

V'' d2 4

V'' d2 4

'',

10 14

10 10

10 6

0.01

100

106

2 1 0 1 2

2 1 0 1 2
ln

ln

FIG. 2 (color online). The beta function βðV 00; κÞ of the
effective potential as a function of ln κ for different values of
the potential curvature V 00 in Minkowski (top) and de Sitter
(bottom) space-times in D ¼ 3þ 1. The de Sitter beta function
coincides with the Minkowski one for all values of V 00 in the
regime of subhorizon scales κ ≫ 1 and for all values of κ when
V 00 ≫ 1. Curvature effects become sizable on superhorizon scales
for V 00 ∼ d2=4 [see Eq. (11)] and the de Sitter beta function is
qualitatively different from the Minkowski one for small curva-
tures V 00 ≪ d2=4. In particular, its slope is dramatically reduced
and even turns to zero for V 00 ≪ κ2 ≪ 1 as a result of the
gravitationally induced amplification of infrared fluctuations.
This corresponds to the phenomenon of effective dimensional
reduction described in the text. Also shown is the case of negative
potential curvature, for which the beta function diverges as
κ2 → V 00. In such regions of field space, the potential undergoes
a strong RG flow which lowers the absolute value of the negative
curvature.

9A similar dimensional reduction phenomenon has been
observed for fermionic degrees of freedom in spaces with
constant negative curvature [55,82].

10In the case N ¼ 1, one can show that VeffðφÞ ≈ Vκ0ðφÞ if
V 00
effðφÞ ≪ κ20. For arbitrary N, the inequality should be satisfied

by the largest eigenvalue of the curvature matrix
∂2VeffðφÞ=∂φa∂φb.

QUANTUM SCALAR FIELDS IN DE SITTER SPACE FROM … PHYSICAL REVIEW D 92, 084010 (2015)

084010-5



expðiSÞ eventually flows to a zero-dimensional Euclidean-
like integral, with real weight expð−ΩDþ1VeffÞ.

C. Relation to the stochastic approach

The phenomenon of dimensional reduction described
above is deeply related with the stochastic approach
proposed by Starobinsky and Yokoyama in Ref. [39].
The latter is based on exploiting the specific aspects of
the de Sitter kinematics to write down an effective theory
for light fields on superhorizon scales. First, the large
amplitude of quantum fluctuations on superhorizon scales

implies that these behave as classical stochastic variables.
Second, such fluctuations, of spatial size larger than the
causal horizon are almost frozen in time and can essentially
be described by a single degree of freedom11 φaðtÞ in each
direction in field space, with t the cosmological time.
Finally, because of the stationary gravitational redshift, this
stochastic variable is sourced by the short wavelength
(subhorizon) modes. The effective dynamics of the long
wavelength modes is then described by an effective
Langevin equation with delta-correlated noise [39,43]

∂tφaðtÞ þ
1

d
∂VsoftðφÞ
∂φaðtÞ

¼ ξaðtÞ; ð26Þ

where VsoftðφÞ is the potential seen by the long wavelength
modes (see below). Treating the short wavelength modes as
noninteracting fields in the Bunch-Davies vacuum, one has,
generalizing the calculation of [39,43] to arbitrary N,

hξaðtÞξbðt0Þi ¼
Γðd=2Þ
2π

d
2
þ1

δabδðt − t0Þ: ð27Þ

Using standard manipulations, Eq. (26) can be turned into
the following Focker-Planck equation for the probability
distribution Pðφ; tÞ of the stochastic process

∂tP ¼ 1

d
∂

∂φa

�∂Vsoft

∂φa
P þ 1

ΩDþ1

∂P
∂φa

�
: ð28Þ

The latter admits an OðNÞ-symmetric stationary attractor
solution at late times (i.e., in the deep infrared), given by

PðφÞ ∝ expf−ΩDþ1VsoftðφÞg: ð29Þ

Equal-time correlation functions on superhorizon scales
can then be computed as moments of this distribution. This
coincides with the outcome (24) of the above RG analysis
in the limit κ → 0 provided one identifies VsoftðφÞ ¼
VeffðφÞ ≈ Vκ0ðφÞ. For instance, one has

hφaφbi ¼
R
dNφφaφbPðφÞR

dNφPðφÞ ¼ 1

ΩDþ1

∂2Wκ¼0ðJÞ
∂Ja∂Jb

				
J¼0

:

ð30Þ

The relevant potential to be used in the stochastic approach
is thus not the microscopic one (at the UV scale Λ) but the
one evolved down to the horizon scale κ0, which makes
perfect physical sense.
The present NPRG approach thus sheds a new light on

the basic principles underlying the stochastic approach.
Moreover, it clarifies the relation between the stochastic
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FIG. 3 (color online). The same as Fig. 2 but for κ∂κ ln βðV 00; κÞ.
This shows the various power law behaviors in the different
regimes of interest for the Minkowski (top) and the de Sitter
(bottom) beta functions. In the former case, one has β ∼ κD for
κ2 ≫ V 00 and β ∼ κDþ1 for κ2 ≪ V 00. In the de Sitter case, there is
an extra dimensionful parameter and the structure is more
complex. The Minkowski scaling is reproduced either for
κ2 ≫ 1 or for V 00 ≫ 1 but there are strong modifications in the
infrared regime κ ≪ 1 for V 00 ≲ d2=4. The gravitationally induced
logarithmic and power law enhancements (21) and (22) are
clearly visible. The modified power law behavior in the infrared
as compared to the flat space-time case results in an effective
dimensional reduction up to the zero-dimensional scaling for
V 00
κ ≪ 1.

11This can be generalized to take into account the field
derivative ∂tφaðtÞ as an independent degree of freedom; see
Ref. [68].
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approach and the Euclidean de Sitter approach, as we now
discuss.

D. Relation to Euclidean de Sitter space

Another interesting consequence of the dimensional
reduction concerns the relation between Lorentzian and
Euclidean de Sitter spaces, the latter being nothing but the
D-dimensional sphere SD. It has been pointed out in [43]
that, for what concerns the calculation of static quantities
(e.g., equal-time correlators) on superhorizon scales, the
nonperturbative physics of the zero mode on the sphere
reproduces the results of the stochastic approach. However,
the origin of this result has remained unclear.
The present NPRG approach allows us to clarify this

point. As we have discussed above, the stochastic approach
emerges as the result of the effective dimensional reduction
of the RG flow due to strong enhancement of infrared
fluctuations in the Lorentzian case. A similar dimensional
reduction takes place in the Euclidean case for more
obvious reasons since the sphere is compact.12 The spec-
trum of the theory is thus discrete and all heavy modes
decouple for scales below the first excited level, leaving the
zero mode as the only fluctuating degree of freedom.
The effective dimensional reduction for a scalar field

theory (N ¼ 1) on the sphere has been studied in detail by
means of NPRG techniques in Ref. [57]. There the author
finds, employing the LPA and a Litim regulator, that the
beta function for the effective potential on length scales
larger than the sphere radius exactly reproduces the one
obtained in [59] for the Lorentzian theory on superhorizon
scales, Eq. (23). Below, we provide a short alternative
description of the origin of the dimensional reduction on
the sphere.
The generating functional for connected correlation

functions is given by

e−W̄κ ½J� ¼
Z

Dφ exp

�
−S̄½φ� − ΔS̄κ½φ� −

Z
x
Jaφa

�
;

ð31Þ
where we denote Euclidean quantities by an overall bar (we
do not need to be more precise here) and

R
x is the invariant

integration on the unit sphere SD. One decomposes the
fields on the discrete basis of eigenfunctions of the
corresponding Laplacian operator

φaðxÞ ¼
X
~L

φa;~LY ~LðxÞ; ð32Þ

where ~L ¼ ðL; LD−1;…; L1Þ is a vector of integer numbers
with L ≥ LD−1 ≥ … ≥ jL1j and where the spherical har-
monics satisfy

□SDY ~LðxÞ ¼ −λLY ~LðxÞ; ð33Þ

with λL ¼ LðLþD − 1Þ, and are normalized asZ
x
Y�

~L
ðxÞY ~L0 ðxÞ ¼ δ~L;~L0 : ð34Þ

The zero mode is the constant Y0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
ΩDþ1

p
, with ΩDþ1

the volume of the unit sphere SD. The infrared regulator in
Eq. (31) can be written as

ΔS̄κ½φ� ¼
1

2

X
a;~L

R̄κðLÞjφa;~Lj2 ð35Þ

where the function R̄κðLÞ provides a large effective mass
for modes such that λL ≲ κ2. Because the spectrum is
discrete, it is essentially constant for scales below the first
nonzero mode κ2 ≲D. For a potential curvature lower than
the first level, V 00 ≲D, and for scales κ2 ≲D, the nonzero
modes effectively behave as heavy modes and decouple in
the flow equation. The physics of the zero mode is
nonperturbative and must be treated separately [42,43].
For instance, employing the following regulator

R̄κðLÞ ¼ ðκ2 − λLÞθðκ2 − λLÞ; ð36Þ

one has R̄κðLÞ ¼ κ2δL;0 for κ2 < D. Writing the field as

φaðxÞ ¼ φ̄a þ φ̂aðxÞ; ð37Þ

with φ̄a ¼ φa;0Y0 ¼
R
x φaðxÞ=ΩDþ1, we define the gener-

ating function for the fluctuations of the zero mode as
W̄κ½J ¼ const� ¼ ΩDþ1W̄κðJÞ, which reads

e−ΩDþ1W̄κðJÞ ¼
Z

dNφ̄e−ΩDþ1½V̄effðφ̄Þþκ2

2
φ̄aφ̄aþJaφ̄a�: ð38Þ

Here we wrote Dφ ¼ dNφ̄Dφ̂ and we defined the effective
potential for the zero mode as

e−ΩDþ1V̄effðφ̄Þ ¼
Z

Dφ̂e−S̄½φ�: ð39Þ

Equation (38) coincides with the Lorentzian result
Eq. (24)—and thus with the stochastic approach as dis-
cussed above—provided one identifies the respective
effective potentials Veff and V̄eff .

IV. LARGE-N LIMIT

We now discuss the actual RG flow from subhorizon to
superhorizon scales. We first consider the limit of a large
number of field components, N → ∞, for which the flow
equation for the potential is exactly given by the LPA [84]
and can be solved analytically in the interesting infrared
regime. Furthermore, as we shall see later, the large-N limit

12Dimensional reduction is spaces with compact dimension
has been studied in [83]. The number of effective dimension is
simply given by the number of noncompact dimensions.
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correctly captures the qualitative behavior of the finite
N case.
For N → ∞, only the transverse modes contribute to the

flow equation (18), which becomes

_UκðρÞ ¼ βðU0
κðρÞ; κÞ; ð40Þ

with the beta function given by Eqs. (15) and (16). A
standard trick [85,86] is to rewrite this equation in terms of
the function ρκðWÞ defined by the relation13 U0

κðρκðWÞÞ ¼
W. One thus has _ρκðWÞ ¼ − _U0

κðρÞ=U00
κ ðρÞjρ¼ρκðWÞ as well

as U00
κ ðρκðWÞÞρ0κðWÞ ¼ 1 and the flow takes the following

explicit expression

_ρκðWÞ ¼ −∂WβðW; κÞ: ð41Þ

An important property of this flow equation is that, because
the κ-dependence of the right-hand side is explicit, the
coefficients of the Taylor expansion of ρκðWÞ in W, e.g.,
around W ¼ 0, all have independent RG flows.
A typical initial condition at the UV scale κ ¼ Λ is

UΛðρÞ ¼ m2
Λρþ λΛρ

2=2, that is, ρκðWÞ ¼ ðW −m2
ΛÞ=λΛ.

Here, the parameter m2
Λ can be of any sign and λΛ ≥ 0. The

flow in the UV regime κ ≳ 1 is described by the Minkowski
beta function (20) and one gets

ρκðWÞ ¼ ρΛðWÞ − 4Cd

π

Z
Λ

κ
dk

kdþ1

ðk2 þWÞ3=2 : ð42Þ

For theories deep in the symmetric phase, where
U0

κðρÞ ≫ 1∀ ρ ≥ 0, the flow eventually freezes out in
the Minkowski regime at a scale κ2 ∼ U0

κð0Þ. More inter-
esting are the cases of theories either close to criticality or
deep in the broken phase, for which there exists a
significant region in field space where14 jU0

κðρÞj ≲ 1 down
to scales κ ∼ 1. This is the case where we expect important
gravitational effects. In the region W ≪ 1, the Minkowski
flow (42) reads

ρκðWÞ ¼ W −m2
κ

λκ
þOðW2Þ; ð43Þ

where

m2
κ

λκ
¼ m2

Λ

λΛ
þ 4Cd

π

ΛD−2 − κD−2

D − 2
ð44Þ

1

λκ
¼ 1

λΛ
þ 6Cd

π

ΛD−4 − κD−4

D − 4
: ð45Þ

For infrared scales κ ≪ 1, the flow of the part of the
potential where jU0

κðρÞj ≪ 1 is described by the dimen-
sionally reduced beta function (23) and one gets

ρκðWÞ ¼ ρκ0ðWÞ þ 1

2ΩDþ1

�
1

κ20 þW
−

1

κ2 þW

�
; ð46Þ

where κ0 ∼ 1 denotes the horizon scale. Using the approxi-
mate UV flow (43) down to the scale κ0, we have Uκ0ðρÞ ≈
m2

κ0ρþ λκ0ρ
2=2 and Eq. (46) can be rewritten as

ðU0
κ þ κ20ÞðU0

κ þ κ2ÞðU0
κ −U0

κ0Þ ¼
λκ0

2ΩDþ1

ðκ20 − κ2Þ: ð47Þ

Under the above assumptions, we have U0
κðρÞ ≪ κ20 in the

relevant region of the potential and Eq. (47) becomes a
second order polynomial equation for U0

κ. The latter can
easily be solved and integrated in ρ. Introducing the
function ~UκðρÞ ¼ UκðρÞ þ κ2ρ, we obtain

~UκðρÞ − ~Uκð0Þ ¼
M4

κðρÞ −M4
κð0Þ

2λκ0

þ 1

2ΩDþ1

�
1 −

κ2

κ20

�
ln
M2

κðρÞ
M2

κð0Þ
; ð48Þ

where the curvature term M2
κðρÞ ¼ ~U0

κðρÞ ¼ U0
κðρÞ þ κ2 is

given by15

M2
κðρÞ ¼

m2
κ0 þ λκ0ρþ κ2

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

κ0 þ λκ0ρþ κ2

2

�
2

þ λκ0
2ΩDþ1

�
1 −

κ2

κ20

�s
:

ð49Þ

For κ ¼ 0, this reproduces the result of Ref. [15], obtained
by a direct calculation of the effective potential in the limit

13This assumes that the functionU0
κðρÞ or, equivalently, ρκðWÞ,

is invertible. It is easy to check that _ρκðWÞ in Eq. (41) is a
decreasing function of W: _ρ0κðWÞ ≤ 0. Here, we shall consider
cases where the initial condition at the scale κ ¼ Λ is a
monotonous—thus invertible—function with ρ0ΛðWÞ ≥ 0∀W.
It follows that ρ0κ≤ΛðWÞ ≥ 0∀W and hence the function
ρκðWÞ is invertible for all κ ≤ Λ.

14This stems from the fact that, unlike the interpolating
potential UκðρÞ, the regulated potential UκðρÞ þ Rκð0Þρ is a
convex function of φa [51,52]. Indeed, it is the Legendre
transform of the generating functional (4) for constant sources
W½J ¼ const�, which is a convex function of Ja. Note that this
assumes that the infrared regulator RκðpÞ indeed completely
regulates the theory at all scales κ. With the regulator (12), this
implies that a possibly concave region is such that the negative
curvature never exceeds the IR cutoff scale: κ2 þ U0

κðρÞ > 0.

15Notice that ~UκðρÞ is nothing but the Legendre transform
potential mentioned earlier. We check that the latter is a convex
function of ρ all along the (infrared) flow: M2

κðρÞ ¼ U0
κðρÞþ

κ2 > 0. Finally, we recall that the expressions (48) and (49) are
valid provided M2

κðρÞ ≪ 1.
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N → ∞. We mention that the above result for the running
potential in the infrared regime can equivalently be
obtained by a direct calculation of the integral (24) using
standard large-N techniques.

A. Symmetry restoration

Let us discuss some consequences of the findings of the
previous sections. As pointed out in Ref. [59], an important
consequence of the effective dimensional reduction of the
RG flow in the infrared regime is the fact that any
spontaneously broken symmetry gets radiatively restored.
This is easily understood from the fact that the generating
function of the effective zero-dimensional field theory
given by the ordinary integral Eq. (24) is analytic and
cannot present a spontaneously broken phase. In the limit
N → ∞, this phenomenon of symmetry restoration along
the flow in the infrared regime can be seen on the exact
solution, Eqs. (48) and (49), as illustrated on Fig. 4.
The analysis of Ref. [59] was restricted to the deep

infrared regime, where the flow is already dimensionally
reduced. Here, we extend this discussion and we consider
the complete flow from subhorizon to superhorizon scales.
This allows us to study how a possible broken phase in the
Minkowski regime gets restored once gravitational effects
become important in the infrared regime. We follow the
flow of the minimum ρ̄κ of the potential, defined as
U0

κðρ̄κÞ ¼ 0 or, equivalently, as ρ̄κ ¼ ρκðW ¼ 0Þ. As
explained above, the RG flow of ρ̄κ is independent of that
of other couplings. We have, from Eq. (41),

_̄ρκ ¼ −∂WβðW; κÞjW¼0: ð50Þ

The right-hand side can be evaluated in closed form for
each dimension d. For instance, we get

_̄ρκ ¼
d¼1

1

4π

�
1

κ2
þ 3þ 2gð2κÞ − 4κfð2κÞ

�
ð51Þ

_̄ρκ ¼
d¼2

1

32

�
ð4þ 2κ2ÞjH1ðκÞj2 − κ2jH0ðκÞj2

�
ð52Þ

_̄ρκ ¼
d¼3

1

72π2

�
27

κ2
þ 15 − κ2 þ 2ð9 − 16κ2Þgð2κÞ

− 4κð9 − 2κ2Þfð2κÞ
�
; ð53Þ

where the real functions g and f are defined as

gðxÞ þ ifðxÞ ¼
Z

∞

0

du
eiu

uþ x
for x > 0: ð54Þ

The functions (51)–(53) are plotted in Fig. 5 along with
their equivalents in Minkowski space. As before, the
subhorizon regime is governed by the Minkowski beta
function (20), which yields

_̄ρκ ≈
4Cd

π
κD−2 for κ ≫ 1: ð55Þ

One easily checks that the functions (51)–(53) are indeed
given by the above formula in this regime. One sees in
Fig. 5 that gravitational corrections become significant for
κ ∼ 1 and dramatically modify the flow for κ ≪ 1, where

FIG. 5 (color online). The beta functions for the minimum of
the potential in the large-N limit in de Sitter (plain lines) and
Minkowski (dashed lines) space-times in D ¼ dþ 1 dimensions.
The de Sitter and Minkowski beta functions coincide in the
regime of subhorizon scales κ ≫ 1, where they behave as a power
law κD−2. Significant deviations occur for scales close to the
horizon, κ ∼ 1. As a result of the strong gravitational enhance-
ment of infrared fluctuations, the de Sitter beta functions switch
to a common κ−2 behavior for superhorizon scales, which signals
an effective zero-dimensional flow.

2 4 6 8 2

0.1

0.2

0.3

U

FIG. 4 (color online). The effective potential UκðρÞ in the limit
N → ∞ [see Eq. (48)] in D ¼ 3þ 1 as a function of the radial
variable

ffiffiffiffiffi
2ρ

p
in field space for (from bottom to top) κ ¼ 1, 0.1, 0.

The parameters at the horizon scale κ0 ¼ 1 are taken as
m2

κ0 ¼ −0.01, and λκ0 ¼ 0.001.
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the functions (51)–(53) acquire the same slope in all
dimensions. This signals the effective dimensional reduc-
tion discussed above. Indeed, inserting the beta function
(23) in Eq. (50), we obtain

_̄ρκ ≈
1

ΩDþ1κ
2

for κ ≪ 1; ð56Þ

which reproduces the small κ behavior of Eqs. (51)–(53).
In the Minkowski regime, the flow (55) integrates to

ρ̄κ ¼ ρ̄Λ −
4Cd

π

ΛD−2 − κD−2

D − 2
for 1≲ κ ≤ Λ ð57Þ

and we recover the following known facts. First, in D ¼ 2,
the minimum of the potential would reach zero at a finite
scale κ ¼ Λ expð−4πρ̄ΛÞ for any initial condition and the
Minkowski theory has no phase of spontaneously broken
symmetry. In contrast, in D > 2, the Minkowski theory
reaches a phase of broken symmetry in the limit κ → 0
if ρ̄Λ > ρc ¼ 4CdΛD−2=½πðD − 2Þ�. For ρ̄Λ ¼ ρc, the
Minkowski theory is critical.
These matters are drastically changed in de Sitter space

for κ ≲ 1. In that regime, the flow (56) integrates to

ρ̄κ ¼ ρ̄κ0 þ
1

2ΩDþ1

�
1

κ20
−

1

κ2

�
for κ ≤ κ0 ≲ 1 ð58Þ

and one sees that the minimum of the potential reaches zero
at a finite scale so the theory always ends up in the
symmetric phase at κ ¼ 0. The flow of the minimum of the
potential is shown in Fig. 6 in various dimensions for an
initial condition which would result in a broken phase in
Minkowski space in both D ¼ 3 and D ¼ 4. The plain
curves are obtained by integrating the complete flow
equations (51)–(53) and are compared to the corresponding
flow in Minkowski space. We see that, even in the case
D ¼ 2, where the Minkowski flow would eventually
reaches the symmetric phase, gravitational effects make
a qualitative difference and dramatically speed up sym-
metry restoration. Finally, we mention that the result of the
numerical integration of Eqs. (51)–(53) in that case is
quantitatively well described by Eqs. (57) and (58) with a
matching point at κ0 ¼ 1.

B. Mass (re)generation

As we have seen previously, a theory with a large mass
gap in units of the space-time curvature does not feel any de
Sitter effects and is essentially described by the Minkowski
flow all the way to the deep infrared. Space-time curvature
plays a nontrivial role when there are light excitations
mκ0 ≲ κ0 at the horizon scale κ0 ∼ 1. This is the case for
theories which are nearly critical (ρ̄Λ ≈ ρc) or in the broken
phase (ρ̄Λ ≳ ρc) at subhorizon scales.
We thus consider initial conditions at the UV scale Λ

such that ρ̄Λ ≥ ρc. The flow of the minimum of the
potential has been described in the previous subsection.
As long as it is nonzero, the mass of the transverse
Goldstone modes vanish identically m2

t;κ ¼ U0
κðρ̄κÞ ¼ 0

whereas the mass of the longitudinal mode is given by
m2

l;κ ¼ 2λκρ̄κ, where λκ ¼ U00
κ ðρ̄κÞ. Once the symmetry

gets restored, the minimum of the potential stays at
ρ̄κ ¼ 0 and the transverse and longitudinal masses become
degenerate: m2

t;κ ¼ m2
l;κ ¼ U0

κð0Þ≡m2
κ .

The flow of the coupling λκ in the UV regime is given by
Eq. (45). In the infrared regime, it can be obtained directly
from Eq. (46) as

1

λκ
¼ 1

λκ0
−

1

2ΩDþ1

�
1

ðκ20 þm2
t;κÞ2

−
1

ðκ2 þm2
t;κÞ2

�
: ð59Þ

Alternatively, it can be computed by evaluating the second
derivative of the approximate solution (48) for the potential
at the minimum. As recalled above, the transverse mass is
zero as long as ρ̄κ ≠ 0. Once the symmetry gets restored,
the flow of the degenerate mass is obtained from Eq. (49) as
m2

κ ¼ U0
κð0Þ ¼ M2

κð0Þ − κ2, that is,

m2
κ ¼

m2
κ0 − κ2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

κ0 þ κ2

2

�
2

þ λκ0
2ΩDþ1

�
1 −

κ2

κ20

�s
:

ð60Þ

FIG. 6 (color online). The flow of the minimum of the potential
in de Sitter (plain lines) and Minkowski (dashed lines) space-
times obtained by a direct integration of the beta functions shown
in Fig. 5. The initial condition ρ̄Λ at the scale Λ ¼ 102 is chosen
such that the Minkowski theories in D > 2 are in the broken
phase. We clearly see the effects of gravitationally amplified
infrared modes in de Sitter space which quickly restore the
symmetry as soon as κ ≲ 1. In the case D ¼ 2, the Minkowski
flow slowly restores the symmetry with a logarithmic flow.
Infrared de Sitter effects lead to a much faster (power law)
symmetry restoration.
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In particular, these converge to the final values for
κ → 0

m2
κ¼0 ¼

m2
κ0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

κ0

4
þ λκ0
2ΩDþ1

s
ð61Þ

and

λκ¼0 ¼ λκ0

�
1þ λκ0

2ΩDþ1m4
κ¼0

�
−1
: ð62Þ

Equation (61) reproduces the result of Ref. [15]. The
nonanalytic expression of the generated mass and coupling
at the scale κ ¼ 0 in terms of the coupling λκ0 is a signature
of the nontrivial infrared physics at work here.
Two cases are of interest. The first one is that of a theory

which would be close to critical in Minkowski space, i.e.,
ρ̄Λ ≈ ρc. In that case, the symmetry gets almost restored
already at the horizon scale and the whole infrared flow
takes place in the restored symmetry phase. The (dimen-
sionless) effective coupling of the zero-dimensional theory
is large, λeffκ0 ≡ λκ0=ð2ΩDþ1m4

κ0Þ ≫ 1 and the infrared gen-
erated mass and coupling are given by

m2
κ¼0 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λκ0

2ΩDþ1

s
and λκ¼0 ≈

λκ0
2
: ð63Þ

This reproduces the result of the stochastic approach in the
large-N limit for the so-called dynamical mass [87]. We
note that the dimensionally reduced infrared theory is
strongly coupled:

λeffκ¼0 ¼
λκ¼0

2ΩDþ1m4
κ¼0

≈
1

2
: ð64Þ

The other interesting limit is that of a theory which
would be deeply in the broken phase in Minkowski space
(ρ̄Λ ≫ ρc). In that case, part of the infrared de Sitter flow
takes place in the broken phase and the symmetry gets
restored in the deep infrared. There remains less RG time to
build up a mass and the latter is thus smaller than in the
previous critical case. Here, one has m2

κ0 < 0 and, in the
limit where λeffκ0 ≪ 1, we obtain, for the infrared mass and
coupling,

m2
κ¼0 ≈ λeffκ0 jm2

κ0 j and λκ¼0 ≈ λeffκ0 λκ0 : ð65Þ

We note that despite the fact that the effective coupling at
the horizon scale λeffκ0 ≪ 1, the resulting zero-dimensional
theory is, again, strongly coupled in the deep infrared:

λeffκ¼0 ¼
λκ¼0

2ΩDþ1m4
κ¼0

≈ 1: ð66Þ

We show in Fig. 7 the flow of the longitudinal and
transverse masses as well as that of the coupling for the
would-be critical theory inD ¼ 3þ 1. The case of a theory
in the would-be broken phase is shown in Fig. 8.

FIG. 7 (color online). Flow of the (would-be) critical theory in
D ¼ 3þ 1 in the large-N limit (see text). The initial conditions at
the scale Λ ¼ 102 are ρΛ ¼ ρc ¼ 625=ð3π2Þ ≈ 21 and
λΛ ¼ 10−3. The upper panel shows the flow of longitudinal
and transverse masses. The transverse Goldstone mass is zero and
the longitudinal one decreases until symmetry restoration at
κ ¼ κ0 ∼ 1. For lower scales both masses agree and a nontrivial
infrared gap is generated (blue curve). The lower panel shows the
flow of the coupling constant λκ ¼ U00

κ ðρ̄κÞ. The UV flow is very
slow (logarithmic) while we see a rapid transition to the final
value λκ¼0 ≈ λΛ=2 in the infrared. In both panels, the dashed lines
show the corresponding flows in Minkowski space. The Min-
kowski theory is critical in that case: the longitudinal and
transverse mass vanish at κ ¼ 0.
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V. FINITE N

We now discuss the flow equation (18) for N finite. The
longitudinal mode plays an increasingly important role as
N decreases down to N ¼ 1, where there are no transverse
modes left. As already discussed, nontrivial gravitational
effects occur when the local curvature of the potential at the
horizon scale κ0 ∼ 1 is small, namely, m2

l;κ0
ðρÞ≲ κ20 and/or

m2
t;κ0ðρÞ≲ κ20. This is the case for theories which are close

to critical or in the broken phase in the UV sense (i.e.,
theories which would flow toward a critical theory or a
broken phase in Minkowski space). For N ≥ 2 the con-
dition of small potential curvature in the broken phase is

guaranteed by the presence of Goldstone modes, for
which m2

t;κ ¼ U0
κðρ̄κÞ ¼ 0.

However, there is another mechanism which drives the
system into the interesting infrared regime, namely the
convexification of the potential along the flow [51,52]. This
simply stems from the fact that, if the theory is properly
regulated, one has κ2 þm2

l;κðρÞ > 0 and κ2 þm2
t;κðρÞ > 0

for all scales. In particular, starting the flow in the broken
phase at a given ultraviolet scale, the inner region of
negative potential curvature between the potential minima
is brought to a nearly flat profile at the horizon scale, with a
(negative) curvature at most of the order of κ20. This is a
sufficient condition for the flow at superhorizon scales to
enter the dimensionally reduced regime mentioned above.
For N ¼ 1, this second, convexification mechanism is the
only one at work. This is illustrated in Fig. 9, where we
show the convexification of the potential16 along the flow in
the UV regime and the subsequent symmetry restoration
(complete convexification) due to the effective dimensional
reduction in the infrared regime.
We conclude that the qualitative discussion of the large-

N case goes over to finite N: for initial conditions
corresponding to the would-be critical or broken phase

FIG. 8 (color online). Same as in Fig. 7 for a UV theory in the
broken phase. Here, we chose ρ̄Λ ¼ 25 > ρc and λΛ ¼ 10−3. The
symmetry gets restored deeper in the infrared and the generated
mass is thus smaller than in the critical case. The smaller infrared
mass implies a smaller infrared coupling as can be seen from
Eq. (62). The dashed lines show the corresponding flows in
Minkowski space. We see that the Minkowski theory is in the
broken phase at κ ¼ 0, with massless Goldstone modes and a
massive longitudinal mode.

3 2 1 1 2 3 2

0.02

0.04

0.06

0.08

0.10

0.12

U

FIG. 9 (color online). The effective potential for the N ¼ 1
theory in D ¼ 3þ 1 obtained from the complete functional flow
equation (15) with initial condition UΛðρÞ ¼ λΛðρ − ρ̄ΛÞ2=2 at
the ultraviolet scale Λ ¼ 10, with λΛ ¼ 0.01 and ρ̄Λ ¼ 1.5.
Curves from bottom to top correspond to κ ¼ 10; 1; 0.1 One
clearly observes the convexification of the potential in the
Minkowski regime κ ≳ 1 and the symmetry restoration in the
infrared regime κ ≲ 1.

16A qualitative way to understand this convexification effect is
to note that the beta function for the potential is positive and is a
decreasing function of the curvature V 00

κ . It follows that the overall
potential decreases along the flow and that the smaller the
curvature, the quicker the flow. The overall effect is to flatten
regions of negative curvature. We mention though that, for some
initial conditions, this effect is not strong enough and the flow
reaches the singular point κ2 þ V 00

κ ¼ 0. This has also been
observed in flat space and is a mere artifact of the infrared
regulator [51]. This is usually avoided by using a more appro-
priate function RκðpÞ.
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cases, the flow enters the dimensionally reduced regime in
the infrared. It follows that the symmetry gets restored at a
finite RG scale and that a nonzero mass is generated. The
latter can be exactly computed from the equivalent integral
(24); see Appendix B. As before, we parametrize the
effective potential at the horizon scale as Uκ0ðρÞ ¼ m2

κ0ρþ
λκ0ρ

2=2 and we define λeffκ0 ¼ λκ0=ð2ΩDþ1m4
κ0Þ. For the

critical case (m2
κ0 ≈ 0 and λeffκ0 ≫ 1), we get

m2
κ¼0 ¼ AðNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λκ0

2ΩDþ1

s
ð67Þ

and

λκ¼0

λκ0
¼ NA2ðNÞ

2

�
1 −

A2ðNÞ
1þ 2=N

�
; ð68Þ

where we defined17

AðNÞ ¼
ffiffiffiffi
N

p

2

ΓðN
4
Þ

ΓðNþ2
4
Þ : ð69Þ

In that case, the effective coupling of the dimensionally
reduced theory in the infrared is

λeffκ¼0 ¼
N
2

�
1 −

A2ðNÞ
1þ 2=N

�
> 0.135: ð70Þ

In the broken symmetry case (m2
κ0 < 0 and λeffκ0 ≪ 1), we

obtain

m2
κ¼0 ≈ λeffκ0 jm2

κ0 j and λκ¼0 ≈
N

N þ 2
λeffκ0 λκ0 ð71Þ

and the effective coupling is

λeffκ¼0 ¼
N

N þ 2
>

1

3
: ð72Þ

VI. CONCLUSION

We have studied the RG flow of OðNÞ scalar theories in
de Sitter space-time by means of NPRG techniques with
particular emphasis on the onset of gravitational effects as
one progressively integrates out degrees of freedom from
subhorizon to superhorizon momentum scales. At the level
of the effective potential, the gravitational enhancement of
superhorizon fluctuations results in an effective dimen-
sional reduction of the original D-dimensional Lorentzian
action to an effective zero-dimensional Euclidean theory.
The latter is equivalent to the late-time equilibrium state of

the stochastic approach and to the nonperturbative descrip-
tion of the zero mode on the compact Euclidean de Sitter
space. The phenomenon of dimensional reduction thus
provides a unifying description of these two approaches
and explains their identical results for what concerns the
calculation of the effective potential.
The present NPRG approach offers a new perspective on

the nonperturbative dynamics of light scalar fields on de
Sitter space-time. The LPA can be systematically improved,
e.g., by employing a derivative expansion [52] or by means
of more advanced approximation schemes such as that put
forward in Ref. [86]. This might open a new way for
practical calculations of correlation functions of interacting
fields in de Sitter space-time. For instance, it is interesting
to investigate the role of the field anomalous dimension on
the RG flow and to make a link with the recent calculation
of field correlators at unequal space-time points of
Ref. [48]. This is work in progress.
Other interesting extensions of the present work concern

the application of the NPRG approach to other degrees of
freedom, such as fermionic or gauge fields, as well as to
other types of (e.g., derivative) interactions, for which a
stochastic description is not always available [36,66,67].
An important example is the case of gravitational fluctua-
tions. Finally, it is of interest to investigate the possible
implications of the dimensional reduction discussed here
for the phenomenology of inflationary cosmology or for
models of dark energy.
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APPENDIX A: FLOW IN MINKOWSKI SPACE

We derive the LPA flow equation for the effective
potential in Minkowski space-time using the regulator
(on the closed time contour) given by Eqs. (8) and (12).
Following the procedure outlined in Sec. II, we get, for
N ¼ 1 and leaving the field dependence implicit,

_Vκ ¼
1

2

Z
ddp
ð2πÞd

_RκðpÞjχκðp; tÞj2; ðA1Þ

where the mode function χκ is now defined by

ð∂2
t þ p2 þ RκðpÞ þ V 00

κ Þχκðp; tÞ ¼ 0: ðA2Þ
With the regulator (12) and selecting positive frequency
solutions in the infinite past—corresponding to the
Minkowski vacuum—we get

χκðp; tÞ ¼
e−iωκðκÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωκðκÞ

p for p ≤ κ ðA3Þ17The large-N results of the previous section are recovered
using AðNÞ ¼ 1þ 1=ð2NÞ þOðN−2Þ.
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χκðp; tÞ ¼
e−iωκðpÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωκðpÞ

p for p ≥ κ; ðA4Þ

with ωκðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ V 00

κ

p
. Using _RκðpÞ ¼ 2κ2θðκ2 − p2Þ,

the Minkowski flow equation thus reads

_Vκ ¼
Ωd

2dð2πÞd
κdþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ V 00

κ

p ; ðA5Þ

which agrees with Eq. (20). The generalization to N ≥ 1 is
straightforward; see Eqs. (18) and (19).
It is a simple exercise to show that the flow equation (A5)

reproduces the standard one-loop results for the critical
exponents of OðNÞ models in D ¼ 4 − ϵ dimensions.
To this aim it is sufficient to consider the polynomial
ansatz

UκðρÞ ¼
λκ
2
ðρ − ρ̄κÞ2: ðA6Þ

The parameters ρ̄κ and λκ are defined as

U0
κðρ̄κÞ ¼ 0; U00

κ ðρ̄κÞ ¼ λκ ðA7Þ

and satisfy the following flow equations

_̄ρκ ¼
vd
2N

κdþ2

�
3

ðκ2 þ 2λκρ̄κÞ32
þ N − 1

κ3

�
ðA8Þ

_λκ ¼
3vd
4N

κdþ2λ2κ

�
9

ðκ2 þ 2λκρ̄κÞ52
þ N − 1

κ5

�
; ðA9Þ

where vd ¼ Ωd=½2dð2πÞd�. Introducing the dimensionless
parameters

rκ ¼ ρ̄κκ
2−D and lκ ¼ λκκ

D−4 ðA10Þ

and expanding to first nontrivial order in lκ ∼OðϵÞ close to
the Wilson-Fisher fixed point, we have

_rκ ¼ −
�
2 − ϵþ 9vd

2N
lκ

�
rκ þ

vdðN þ 2Þ
2N

þOðϵ2Þ ðA11Þ

_lκ ¼ −ϵlκ þ
3vdðN þ 8Þ

4N
l2
κ þOðϵ3Þ: ðA12Þ

The fixed point is located at

r� ¼ vdðN þ 2Þ
4N

and l� ¼ 4Nϵ

3vdðN þ 8Þ : ðA13Þ

Critical exponents are obtained from the linearized flow
around the fixed point. For instance, the correlation-length

exponent ν is obtained as minus the inverse of the smallest
(negative) eigenvalue of the Jacobian matrix of the linear-
ized flow [52]. We get

ν ¼ 1

2
þ ϵ

4

N þ 2

N þ 8
þOðϵ2Þ; ðA14Þ

which reproduces the well-known perturbative result
[88].

APPENDIX B: DIMENSIONALLY
REDUCED RG FLOW

In this section we show how the flow of the parameters
describing the effective potential in the regime of
dimensional reduction can be read off the equivalent
zero-dimensional theory, Eq. (24). For the sake of the
discussion we focus on the symmetric phase and we
only consider the square mass and the quartic coupling,
defined as

m2
κ ¼ U0

κð0Þ and λκ ¼ U00
κð0Þ: ðB1Þ

The discussion can easily be extended to any other
coupling. At vanishing sources, the first nontrivial corre-
lators have the following OðNÞ structures

hφaφbi ¼ δabGκ ðB2Þ

and

hφaφbφcφdi ¼ ðδabδcd þ δacδbd þ δadδbcÞCð4Þ
κ : ðB3Þ

The two- and four-point functionsGκ andC
ð4Þ
κ are related to

the parameters of the effective potential UκðρÞ through the
Legendre transform (25) as

Gκ ¼
1

ΩDþ1ðκ2 þm2
κÞ

ðB4Þ

and

Cð4Þ
κ ¼ G2

κ −
ΩDþ1λκ

N
G4

κ : ðB5Þ

For a potential at the horizon scale of the form
Uκ0ðρÞ ≈ m2

κ0ρþ λκ0ρ
2=2, the various correlators of the

theory are obtained from the moments

hðφaφaÞqi ¼
R∞
0 dφφNþ2q−1e−αφ

2−βφ4R∞
0 dφφN−1e−αφ

2−βφ4 ; ðB6Þ

where we introduced α ¼ ΩDþ1ðκ2 þm2
κ0Þ=2 and

β ¼ ΩDþ1λκ0=ð8NÞ. For instance, one has Gκ ¼
hφaφai=N and Cð4Þ

κ ¼ hðφaφaÞ2i=½NðN þ 2Þ�. The
moments (B6) can easily be computed. For instance, in
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the limit β=α2 ≫ 1, which corresponds to the critical case
discussed in the main text, one has

hðφaφaÞqi ≈ β−
q
2

ΓðNþ2q
4

Þ
ΓðN

4
Þ : ðB7Þ

Putting Eqs. (B4)–(B7) together, one obtains
Eqs. (67)–(69). The other limit of interest is that of a

would-be broken phase, corresponding to α < 0 and
β=α2 ≪ 1. In that case, one gets

hðφaφaÞqi ≈
�jαj
2β

�
q
; ðB8Þ

from which Eq. (71) follows.
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