
Equilibrium and stability of charged strange quark stars

José D. V. Arbañil* and M. Malheiro†

Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial,
12228-900 São José dos Campos, São Paulo, Brazil
(Received 28 July 2015; published 2 October 2015)

The hydrostatic equilibrium and the stability against radial perturbation of charged strange quark stars
composed of a charged perfect fluid are studied. For this purpose, it is considered that the perfect fluid
follows the MIT bag model equation of state and the radial charge distribution follows a power-law. The
hydrostatic equilibrium and the stability of charged strange stars are investigated through the numerical
solutions of the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar’s pulsation equation, being
these equations modified from their original form to include the electrical charge. In order to appreciably
affect the stellar structure, it is found that the total charge should be of order 1020 ½C�, implying an electric
field of around 1022 ½V=m�. We found the electric charge that produces considerable effect on the structure
and stability of the object is close to the star’s surface. We obtain that for a range of central energy density
the stability of the star decreases with the increment of the total charge and for a range of total mass the
electric charge helps to grow the stability of the stars under study. We show that the central energy density
used to reach the maximum mass value is the same used to determine the zero eigenfrequency of the
fundamental mode when the total charge is fixed, thus indicating that the maximum mass point marks the
onset of instability. In other words, when fixing the total charge, the conditions dM

dρc
> 0 and dM

dρc
< 0 are

necessary and sufficient to determine the stable and unstable equilibrium configurations regions against
radial oscillations. We also consider another charge distribution, charge density proportional to the energy
density, and show that our results do not depend on this choice and the conditions used to determine regions
made of the stable and unstable charged equilibrium configurations are maintained.
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I. INTRODUCTION

A. Hydrostatic equilibrium of charged strange stars

The theoretical possibility that strange quark matter
(strange matter, for short) can be the ground state for the
strong interaction was proposed, independently, by Bodmer
[1] andWitten [2]. This matter is usually thought as a liquid
with equal numbers of unconfined up, down and strange
quarks. Some authors have studied how this strange
material could manifest in Nature. Among the possibilities,
the study of stars composed by strange matter has gained
attention. Nowadays these spherical objects are known as
strange quark stars or, simply, strange stars.
Whether stars made of strange matter exist, these could

be a structure made of approximately equal number of up,
down and strange quarks together with smaller number of
electrons required to provide electrical charge neutrality. In
a strange star the electrons are distributed on its surface,
forming an electron surface width of several hundred
Fermis. The strong electric field generated in this region
is on the order of 1020 ½V=m� (see, e.g., [3,4]). This strong
surface electric field value may be exceeded if strange
matter forms a color superconductor, as expected for such
matter [5].

Strange quark stars with a strong electric field can be
modeled solving the Maxwell-Einstein field equations.
Through the numerical solution of the Tolman-
Oppenheimer-Volkoff (TOV) equation for the charged case
[6], also known as the hydrostatic equilibrium equation,
Negreiros and collaborators [7,8] modeled these objects
considering spheres composed of strange matter that
follows the MIT bag model equation of state (EoS) and
a Gaussian distribution of the electric charge on the surface
of the star. Through this model, the authors estimated that
the electric charge that causes significant impact on the
structure of the strange stars produces a surface electric
field of the order E ∼ 1022 ½V=m�. This strong electric field
is found in stars where the electrical energy density is not
negligible compared to the radial pressure.
The studies developed in [7,8] form part of a quantity of

works where the influence of the electric charge on the
structure of spherically symmetric static objects is ana-
lyzed. Within this bulk of works, we found studies
developed considering polytropic stars with a charge
density proportional to the energy density [9–11] and with
a charge density proportional to the rest mass density [12].
We also found models where incompressible stars (stars
with a constant energy density) are considered with an
electric charge distribution qðrÞ following a power-law of
the form qðrÞ ¼ Qðr=RÞn. In [13,14], n ≥ 3 is taken in
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order to prevent the divergence of the charge density at the
origin, with parameters Q and R representing the total
charge and the star’s radius. Anninos and Rothman also
investigated the structure of charge incompressible stars in
[15] considering a complex distribution of electric charge
dependent on the radial coordinate. For other examples
review [16] and references cited therein.

B. Stability of charged strange stars

Even though the first work on the stability of electrically
charged stars was developed in the Maxwell-Einstein
context in the seventies, we have not found studies on
electrically charged strange stars. In the literature, we find
that the first works on stability of charged stars were
investigated by Stettner [17]. He analyzed the stability
problem of a homogeneous distribution of matter contain-
ing a constant surface charge. Stettner found that stars with
a constant energy density and with a little surface charge
are more stable than uncharged incompressible stars. Some
years later, Glazer generalized the Chandrasekhar’s equa-
tion of pulsation to include the electric charge [18,19] and
studied the stability of Bonnor’s charged dust stars and
charged incompressible stars. Glazer presented in [18] that
the Bonnor stars are dynamically unstable and in [19] that
the electric charge increases the stability of an incompress-
ible star. An analysis of the stability of incompressible
charged stars was also performed in [14,15] where it was
concluded that for a range of parameters these configura-
tions can be stable. The stability against radial oscillations
for a charged star with a realistic EoS was investigated
by Brillante and Mishustin [20]. They studied hybrid
stars with a small net electric charge. The authors showed
that, for a fixed value of the central baryon density, an
increment of the electric charge leads to lower values of
eigenfrequencies.

C. This work

We study how the equilibrium structure and stability of
strange stars are affected by electric charges. With that
purpose we use the MIT bag model EoS and a distribution
of electric charge of the form qðrÞ ¼ Qðr=RÞ3 (≡βr3,
being β ¼ Q=R3). The results obtained assuming that the
charge distribution follows this power-law are supple-
mented with others obtained assuming that the charge
density is proportional to the energy density of the form
ρe ¼ αρ (being α a dimensionless proportionality
constant).
The paper is structured as follows. In Sec. II we describe

the EoS used and the profile of the electric charge
considered. In Sec. III we show the hydrostatic equilibrium
equations and radial oscillation equations, both modified to
include a net electric charge, as well as the numerical
method used to numerically solve these equations. In
Secs. IV and V the studies of equilibrium and stability
of charged strange quark stars with fixed β and with fixed

total charge Q are presented, respectively. In Sec. VI we
supplement the results obtained in Secs. IV and V using a
different charge distribution, specifically we use the charge
density proportional to the energy density ρe ¼ αρ. Finally,
in Sec. VII we present our conclusions. Throughout the
present article we use the units c ¼ 1 ¼ G.

II. EQUATION OF STATE AND DISTRIBUTION
OF THE ELECTRIC CHARGE

We use the strange quark matter equation of state of the
MIT bag model, i.e.,

p ¼ ðρ − 4BÞ=3: ð1Þ

The parameters p and ρ represent, respectively, the pressure
and the energy density of the fluid, and B the bag constant.
We consider for the bag constant B ¼ 60 ½MeV=fm3�
because, as stated in [2,21], with this bag constant the
parameters of the maximum mass configuration for strange
stars are similar to those for realistic neutron stars made of
baryonic matter.
Since our purpose is to investigate the effects of the

electric charge on the structure of strange stars, we also
have to define the electric charge distribution. We assume
that the electric charge follows a function of the radial
coordinate of the form:

q ¼ Q

�
r
R

�
3 ≡ βr3; ð2Þ

with Q and R being the total charge and the total radius,
respectively. As show in Eq. (2), β is a constant that is
related to the total charge and the total radius of the star of
the form β ¼ Q=R3. The ansatz considered for the elec-
trical charge distribution is the simplest case of electric
charge distribution used in [13,14].

III. STELLAR STRUCTURE EQUATIONS AND
RADIAL OSCILLATIONS EQUATIONS

A. Stellar structure equations

The unperturbed line element used to describe a spheri-
cal charged object, in Schwarzschild-like coordinates, is
given by:

ds2 ¼ −eνdt2 þ eλdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where the exponents ν ¼ νðrÞ and λ ¼ λðrÞ are functions of
the radial coordinate r alone. As mentioned before, the
matter contained in the charged sphere is described by
the charged perfect fluid energy-momentum tensor. In the
considered spacetime and energy-momentum tensor, the
equations that govern the hydrostatic stellar structure of a
charged sphere are
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dq
dr

¼ 4πρer2eλ=2; ð4Þ

dm
dr

¼ 4πρr2 þ q
r
dq
dr

; ð5Þ

dp
dr

¼ −ðpþ ρÞ
�
4πrpþ m

r2
−
q2

r3

�
eλ þ q

4πr4
dq
dr

; ð6Þ

dν
dr

¼ −
2

ðpþ ρÞ
�
dp
dr

−
q

4πr4
dq
dr

�
; ð7Þ

with the potential metric eλ of the form:

e−λ ¼ 1 −
2m
r

þ q2

r2
: ð8Þ

As usual, the parameters q and m represent the charge
and mass within the radius r and ρe the electric charge
density. Equation (6) is the Tolman-Oppenheimer-Volkoff
equation [22,23], also known as the hydrostatic equilibrium
equation, with the inclusion of the electric charge (see,
e.g., [6–11,16]).
The stellar structure equations, Eqs. (4)–(7), are inte-

grated from the center toward the surface of the star. The
integration of these equations starts with the values at the
center:

mð0Þ ¼ 0; qð0Þ ¼ 0; ρð0Þ ¼ ρc; and νð0Þ ¼ νc:

ð9Þ

The surface of the star is determined by pðRÞ ¼ 0. At this
point the interior solution is smoothly connected to the
vacuum exterior Reissner-Nordström metric. This means
that, at the surface of the charged star, the inner and outer
potential functions are related through the equality:

eνðRÞ ¼ e−λðRÞ ¼ 1 −
2M
R

þQ2

R2
; ð10Þ

with M being the total mass of the star. The boundary
condition of the functions ν and λ at the surface of the star
are determined by relation (10).

B. Radial oscillations equations

The equations governing infinitesimal radial oscillations
are determined by perturbing the fluid and spacetime
variables. This is done in a manner that the spherical
symmetry of the background object is maintained. The
perturbations are inserted in the field equations and in the
energy-momentum tensor conservation while maintaining
only first order terms.
The equation for infinitesimal radial oscillations of an

uncharged spherical object was obtained by Chandrasekhar
[24,25]. This equation constitutes a Sturm-Liouville

eigenvalue problem, its solution furnishes the eigenvalues
and eigenfunction of the radial perturbation. Aiming to
obtain a more advantageous equation for numerical appli-
cations, the Chandrasekhar’s pulsation equation can be
placed in a different form. The pulsation equation can be
derived into two first-order equations for the quantities
Δr=r and Δp [26], with Δr and Δp being respectively the
relative radial displacement and the Lagrangian perturba-
tion of pressure (review also [27]).
The infinitesimal radial pulsation was also investigated

considering the effect of the electric charge in stars. This
is done by considering the effect of the electric charge
in the energy-momentum tensor, and thus extending the
Chandrasekhar’s equation for radial pulsation for the case
of a charged star. The equation for radial oscillations of
charged objects has been presented in a more appropriate
form for numerical solutions. Brillante and Mishustin [20]
derived the radial oscillation equation for the charged case
into two first-order equations for the quantities Δr=r and
Δp. This set of equations is a generalized form of the first-
order set of equations presented in [26]. The system of
equations for charged stars is, ξ ¼ Δr=r:

dξ
dr

¼ ξ

2

dν
dr

−
1

r

�
3ξþ Δp

pΓ

�
; ð11Þ

dΔp
dr

¼ eλ−νðpþ ρÞω2ξrþ
�
dν
dr

�
2 ðpþ ρÞξr

4

− 4ξ

�
dp
dr

�
− 8πðpþ ρÞξreλ

�
pþ q2

8πr4

�

−
�
1

2

dν
dr

þ 4πreλðpþ ρÞ
�
Δp; ð12Þ

with Γ ¼ ð1þ ρ
pÞðdpdρÞ, ω being the eigenfrequency, and the

quantities ξ;Δp are assumed to have time dependence eiωt.
To solve Eqs. (11) and (12) two boundary conditions are
necessary. In order to have a regular solution in the center
of the star, it is required that the coefficient in Eq. (11)
vanishes for r → 0:

ðΔpÞcenter ¼ −3ðξΓpÞcenter: ð13Þ

For normalized eigenfunctions we have ξðr ¼ 0Þ ¼ 1 at the
center of the star. On the surface of the star r ¼ R, p → 0,
implying that:

ðΔpÞsurface ¼ 0: ð14Þ

C. Numerical method

1. Hydrostatic equilibrium of charged strange stars

Once given the EoS and electric charge distribution,
Eqs. (1) and (2), respectively, we numerically solve
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Eqs. (4)–(7) together with the boundary conditions (9) and
(10) for different values of β and ρc, by using the Runge-
Kutta method of fourth order implemented with the
shooting method.
The numerical solutions start with the integrations of

Eqs. (4)–(6). These equations are integrated from the center
to the surface of the object through the Runge-Kutta
method for a given ρc and β.
After obtaining the coefficients p, ρ, ρe, q, m and λ

for a given ρc and β, we use the shooting method to solve
Eq. (7) because its boundary condition Eq. (10) is at the
surface of the star. In order to integrate numerically
Eq. (7) we consider a proof value νc in the center of the
star. Equation (7) is integrated from the center toward
the surface of the object. Whether after the integration the
boundary condition (10) is not satisfied, we correct the
value of νc. This process is repeated until the equality (10)
is satisfied.

2. Radial oscillations of charged strange stars

After obtaining the coefficients of the pulsation equation
for a given ρc and β, the pulsation equation (11) and (12)
and the boundary conditions (13) and (14) were solved
by a shooting method using Runge-Kutta integration. The
integrations of pulsation equations are developed from the
origin to the surface of the star. We start this process
considering a trial value for ω2. Whether after each
integration the condition at the surface of the star (14) is
not satisfied, the value of ω2 is corrected. The process
is repeated until condition (10) is satisfied. The values
of ω2 for which the boundary condition is satisfied are
called eigenvalues of the pulsation equation and ω of
eigenfrequencies.

IV. EQUILIBRIUM AND STABILITY
OF CHARGED STRANGE QUARK

STARS WITH FIXED β

A. Equilibrium of charged strange quark
stars with fixed β

Figure 1 shows the stellar mass, in solar masses M⊙,
against the central energy density ρc for different values of
the constant β. We use central energy densities in the range
250 ≤ ρc ≤ 2000 ½MeV=fm3�. The full circles and the full
triangles over the curves indicate the points where the
maximum mass values and the zero eigenfrequencies of the
fundamental mode are found, respectively. In all cases, we
observe that the mass of the star grows with the increment
of the central energy density until it reaches a maximum
mass in ρc ¼ ρ�c. For central energy densities larger than ρ�c
the mass decreases with the growth of ρc.
For the uncharged case (β ¼ 0) we observe that the

central energy density used to reach the maximum mass
value coincides with the value of ρc considered to deter-
mine the eigenfrequency ω ¼ 0. This means that the

maximum mass point separates the stable equilibrium
configuration from the unstable one. The equilibrium
configurations lying in the region where dM

dρc
> 0 are always

stable configurations, in turn, the configurations that are in
the region where dM

dρc
< 0 are always unstable. I.e., the

inequalities dM
dρc

> 0 and dM
dρc

< 0 are necessary and sufficient
conditions to recognize regions made of stable and unstable
equilibrium configurations, respectively. On the other hand,
for the charged cases (β ≠ 0) we note that the central energy
density used to determine the maximum mass point (ρ�c) is
not the same ρc used to find ω ¼ 0. We obtain that the zero
eigenfrequency is found in a central energy density
ρc > ρ�c. This indicates that the relation dM

dρc
> 0 is only a

200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.5

1.0

1.5

2.0

2.5

 β=0.0
 β=5.0x10-4

 β=6.0x10-4

 β=7.0x10-4

 β=8.0x10-4

 β=9.0x10-4

 β=1.0x10-3

M
/M

ρ
c
 [MeV/fm3]

FIG. 1 (color online). Mass of the star, normalized in solar
masses M⊙, versus the central energy density ρc for some values
of β. The units used for β are ½M⊙=km3�. The full circles represent
the maximum mass points and the full triangles the places where
the zero eigenfrequencies of the fundamental mode are found.
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FIG. 2 (color online). Radius against the mass of the star,
M=M⊙, for different values of β, given in units of ½M⊙=km3�. The
full circles and the full triangles represent, respectively, the
maximum mass points and the places where the zero eigenfre-
quency of the fundamental mode are found.
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necessary condition to recognize regions of stable
configurations.
In Fig. 2 we present the mass-radius relation for different

values of β. The circles and triangles indicate where the
maximum mass points and the zero eigenfrequencies are
found. The behavior of the curves shown are characteristic
of strange quark stars. It is clear that the masses and radii of
the stars change with the increment of β. For the uncharged
case, the point of maximum mass coincides with the point
where the zero eigenfrequencies are found. However, as in
Fig. 1, for β ≠ 0 the point of maximum mass does not
coincide with the point where ω ¼ 0 is determined.
Analyzing the maximum mass and its respective radius
found in each curve we determine that these values could
change from 2% to 30%. The growth of the mass and radius
with β can be explained observing that the electric charge
increases with β (see Fig. 3), so we understand that the
electric charge acts as an effective pressure helping
the radial pressure to support a more massive star avoiding
the collapse.
The total charge as a function of the total mass of the star

is plotted in Fig. 3 for a few values of β. Note that the total
charge grows with the total mass until it reaches the point
of maximum charge value. After this point, the charge

decreases with the increment of mass. When the maximum
mass point is reached, the curves inflect to the left for the
charge to begin to decrease with the decay of the electric
charge. From this we understand that the value of the
maximum charge and the value of the maximum mass do
not form part of the same equilibrium configuration. The
value of the maximum charge is reached before finding the
value of the maximum mass.
It is worth mentioning that in Fig. 3 it is observed that in

some points of the curves we found the limit
Q ≈ ðM=M⊙Þ × 1020 ½C�, using the relation 1M⊙ ¼
1.7114 × 1020 ½C� we have Q ≈M, this is the same
maximum charge limit for the Reissner-Nordström
black hole.
The values used for β and the maximum masses values

with their respective radii, charges, and electric field of the
charged spherical objects, are shown in Table I. Note that
some maximum masses and their respective radii and
charges are similar to those found in Table I of [7]. This
indicates that, as well as the Gaussian charge distribution
considered in [7], the radial distribution of the electric
charge produces considerable effects only near the surface
of the strange star. Near the surface of the object, the
electrical energy density E2ðrÞ=8πð≡q2ðrÞ=8πr4Þ is not
negligible compared to the radial pressure pðrÞ (see Fig. 4).
Figure 4 shows the behavior of the radial pressure and

electrical energy density with the radial coordinate, for a
static equilibrium configuration with maximum mass
determined with β ¼ 1.0 × 10−3 ½M⊙=km3�.

B. Stability of charged strange quark stars with fixed β

The eigenfrequency of the fundamental mode against the
mass, normalized to the Sun’s mass, for different values of
β is shown in Fig. 5. The full circles in purple indicate the
points of maximum masses. It is worth mentioning that the

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6  β=5.0x10-4

 β=6.0x10-4

 β=7.0x10-4

 β=8.0x10-4

 β=9.0x10-4

 β=1.0x10-3

Q
 [C

] (
x1

020
)

M/M

FIG. 3 (color online). The total charge against the total mass of
the star M=M⊙ for few values of β. The units for the constant β
are ½M⊙=km3�.
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FIG. 4 (color online). The radial pressure pðrÞ and the electrical
energy density E2ðrÞ=8π as a function of the radial coordinate for
a static equilibrium configuration with maximum mass found in
β ¼ 1.0 × 10−3 ½M⊙=km3�.

TABLE I. The constant β and the maximum masses with their
respective radii, charges and electric fields of the stars.

β½M⊙=km3� M=M⊙ R½km� Q½C� E½V=m�
5.0 × 10−4 2.072 11.04 1.151 × 1020 8.500 × 1021

6.0 × 10−4 2.129 11.22 1.452 × 1020 1.037 × 1022

7.0 × 10−4 2.205 11.44 1.791 × 1020 1.233 × 1022

8.0 × 10−4 2.309 11.75 2.223 × 1020 1.448 × 1022

9.0 × 10−4 2.461 12.16 2.772 × 1020 1.686 × 1022

1.0 × 10−3 2.701 12.78 3.570 × 1020 1.968 × 1022
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curve found for the uncharged case (β ¼ 0) is similar to the
curve found in the study of radial oscillations of strange
quark stars in [28] (specifically, Fig. 7). For the zero-
charge, we have that the value of ω decreases monoton-
ically with the growth of the mass of the star. However, for
the charged case we determine a different behavior of ω
with M=M⊙. We note that the eigenfrequency decays with
the increment of the mass until the maximum mass value is
reached. After this point, ω begins to decrease with the
diminution of the mass until to attain ω ¼ 0 thus showing
that the maximum mass point does not match the point of
zero eigenfrequency. We also note that for some mass
parameters, the increment of β allows the stars to become
more stable against radial perturbations.

V. EQUILIBRIUM AND STABILITY OF
CHARGED STRANGE QUARK STARS

WITH FIXED TOTAL CHARGE

A. Construction of the curves for the study
of equilibrium and stability of strange quark

stars with fixed total charge

The curves used to study the hydrostatic equilibrium
and stability against radial oscillations with fixed value
of the total charge are built using the configurations
with the same value of Q found in each curve obtained
in the study of hydrostatic equilibrium and stability
with fixed β. This can be observed graphically in Fig. 6
where each panel shows the results obtained for
different values of β between 4.0 × 10−4 and 8.6 ×
10−4 ½M⊙=km3� (solid lines) and for a total charge Q ¼
1.0 × 1020 ½C� (dashed line).
In Fig. 6, the top panel shows how the total mass

changes with an increment of the central energy density.

In the middle panel the mass-radius relation is shown,
and at the bottom panel the behavior of the eigenfre-
quency of the fundamental mode with the total mass can
be seen.
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FIG. 6 (color online). The top panel shows the behavior of the
mass with the central energy density, whereas the one in the
middle shows the variation of the total mass with the total radius,
and the one at the bottom shows the eigenfrequency of the
fundamental mode as a function of the total mass. As is indicated
in each panel, the solid lines shown are made considering 4.0 ×
10−4 ≤ β ≤ 8.6 × 10−4 ½M⊙=km3� and the dashed line is con-
structed considering the configurations with Q ¼ 1.0 × 1020 ½C�.
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FIG. 5 (color online). The eigenfrequency of the fundamental
mode as a function of the stellar mass of strange charged quark
stars, for some different values of β. In each curve, the full circles
represent the maximum mass points. The constant β has units of
½M⊙=km3�.
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B. Equilibrium of charged strange quark stars
with fixed total charge

In Fig. 7 the total mass as a function of the central energy
density for four total charge values is plotted. The full
circles indicate the maximum mass points and the full
triangles represent the zero eigenfrequencies. Both geo-
metric forms coincide at the same points. This means that
these points, where ∂M

∂ρc jQ ¼ 0, separate the regions of stable
and unstable stars. The configurations lying on the seg-
ments with dM

dρc
> 0 are always stable against radial oscil-

lations, in turn, the opposite inequality dM
dρc

< 0 always
indicates instability of charged configurations. I.e., in a

system of configurations with fixed total charge, the
inequalities dM

dρc
> 0 and dM

dρc
< 0 are necessary and sufficient

conditions to determine stable and unstable configurations
against radial oscillations.
Figure 8 shows the total mass against the total radius

for some different values of the total charge. The circles
and triangles on the curves indicate the maximum mass
points and the points where the zero eigenfrequencies
are found. In this figure, as in Fig. 7, the maximum
mass and the zero eigenfrequency coincide at the same
points.
The behavior of the radial pressure and of the

electrical energy density with the radial coordinate are
presented in Fig. 9, for a static equilibrium configura-
tion with maximum mass found in Q ¼ 2.0 × 1020 ½C�.
The values of β ¼ 8.15 × 10−4 ½M⊙=km3� and ρc ¼
1050.42 ½MeV=fm3� are used. Note that the electrical
energy density and the radial pressure are in the same
order of magnitude only near the surface of the star,
from this we understand that the strange quark stars are
affected by the quantity of charge lying near the star’s
surface.

C. Stability of charged strange quark stars
with fixed total charge

The oscillation frequency as a function of the central
energy density for different values of total charge is plotted
in Fig. 10. In the graphic we only consider values of the
central energy densities where we found a positive value
of ω. For all values of Q considered, we observe that the
eigenfrequency of the fundamental mode decreases mono-
tonically with the increment of the central energy density.
This means that for larger central energy density, we have
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FIG. 7 (color online). The total mass against central energy
density for some values of the total charge. The maximum mass
points and the zero eigenfrequencies are indicated, respectively,
with full circles and full triangles. The total charge has units
of [C].
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FIG. 8 (color online). The total mass as a function of the total
radius for some different values of the total charge. The full
circles and the fill triangles indicate the maximum mass points
and the zero eigenfrequencies, respectively. The total charge has
units of [C].
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FIG. 9 (color online). The radial pressure and the electrical
energy density as a function of the radial coordinate in a con-
figuration with maximum mass found in Q ¼ 2.0 × 1020 ½C�. The
units of β and of the central energy density ρc are ½M⊙=km3� and
½MeV=fm3�.
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lower stability. On the other hand, the influence of the
charge on the stellar stability can be also observed in
Fig. 10. There is a range of values of ρc for which ω
decreases with the increment of Q, as found in the study of
hybrid stars developed in [20]. In other words, for a range
in central energy density the increment of electric charge
helps to decrease the stability of the star.
The eigenfrequency of the fundamental mode as a

function of the total mass for some values of the total
charge Q is seen in Fig. 11 where we only consider stable
configurations, i.e., charged star with ω positive. In all
curves, it can be observed that the value of ω decreases
monotonically with the increase of the mass M=M⊙.
Clearly we see that the zero eigenfrequency is attained
for the maximum mass value. For a range of values of the
mass, we have that the electric charge helps the star to
become more stable against radial oscillations.

D. Turning-point method for stability of charged stars

An analysis of the stability of charged stars against
radial perturbation can be done using an alternative
method. The stability of charged stars can be analyzed
in a manner similar to that developed in the study of the
turning-point method for axisymmetric stability of uni-
formly rotating relativistic stars in [29]. Using the study
developed in [30], in [29] the authors found that along a
sequence of rotating objects with increasing ρc and with
fixed angular momentum the equilibrium configurations
with maximum mass point marks the onset of instability.
Using the turning-point method and following the steps
used in [29], it must be possible to show that in a
sequence of charged stars with fixed total charge and
growing central energy density the point of maximum
mass marks the beginning of the instability, such as it
was demonstrated through the perturbation method.

VI. DEPENDENCE OF THE STRANGE QUARK
EQUILIBRIUM AND STABILITY ON THE

CHARGE DISTRIBUTION

A. Charge density relation

In order to analyze the dependence on the choice of the
charge distribution in our study of equilibrium and stability
of strange quark stars, we consider in this section the charge
density related to the energy density by the form:

ρe ¼ αρ; ð15Þ

being α a dimensionless proportionality constant, already
used in the first charged compact star self-consistent
calculation solving the charged Tolman-Oppenheimer-
Volkoff equation [9].
The numerical method used in this study is described in

Sec. III C. It is clear that the stellar structure equations and
the radial oscillation equations are solved for different
values of ρc and α instead of ρc and β as were done above.

B. Equilibrium and stability of charged strange
quark stars with fixed α

Figure 12 shows in the top panel the behavior of the total
mass of the star as a function of the central energy density
and in the bottom panel the behavior of the mass as a
function of the total radius. In both panels, the curves are
plotted considering four values of α. The full circles and
the full triangles over the curves indicate, respectively, the
places where are found the maximum mass points and the
zero eigenfrequency of the fundamental mode. As we can
observe in the charged case (α ≠ 0), the full circles and the
full triangles do not match at the same point indicating that
the condition dM

dρc
> 0 ðdMdρc < 0Þ is a necessary but not a

sufficient condition to determine regions made of stable
(unstable) configurations.
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FIG. 10 (color online). The eigenfrequency of the fundamental
mode against the central energy density, for some values of total
charge. The total charge has units of [C].
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FIG. 11 (color online). The eigenfrequency of the fundamental
mode versus the total mass for few values of the total charge. The
total charge has units of [C].
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The eigenfrequency of the fundamental mode against the
total mass is plotted in Fig. 13 for four values of α. In all
cases presented the values of ω decrease monotonically
with the growth of the total mass.

C. Equilibrium and stability of charged strange
quark stars with fixed charge

The stellar mass of the charged strange quark star as a
function of the central energy density and as a function of
the total radius for four different values of the total charge
are plotted, respectively, on the top panel and on the bottom
panel of Fig. 14. As we can note, the maximummass points
and the zero eigenfrequency points overlap at the same
place when is fixed the total charge. Analyzing the top
panel, we distinguish that regions made by stable and
unstable configurations against radial oscillations can be
recognized through relations dM

dρc
> 0 and dM

dρc
< 0 when the

total charge is fixed.
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FIG. 12 (color online). Top panel: the behavior of the total mass
of the star in solar masses as a function of the central energy
density. Bottom panel: the total mass versus the total radius of the
star. In both panels, the curves are plotted considering four values
of α. The full circles represent the maximum mass points and the
full triangles the places where the zero eigenfrequencies of the
fundamental mode are found.
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FIG. 13 (color online). The eigenfrequency of the fundamental
mode as a function of the stellar mass of strange charged quark
stars for some values of α.
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FIG. 14 (color online). On the top panel and on the bottom
panel are shown the total mass of the star versus of the central
energy density and the total mass against the total radius of the
star, respectively. As is indicated in both panels, the curves are
made considering four values of total charge. The full circles
represent the maximum mass points and the full triangles the
places where the zero eigenfrequencies of the fundamental mode
are found.
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From these results and the ones obtained in Sec. V B
we understand that the configurations on the segments
dM
dρc

> 0 and dM
dρc

< 0 are always stable and unstable
against radial oscillations when the total charge is fixed,
independently of the charge distribution used (either
q ¼ βr3 or ρe ¼ αρ). We understand this result since for
a fixed charge of stellar objects, the total charge is
always limited by the electrical charge distributed near
the surface: as we can see observing Figs. 9 and 15 the
pressure due to the electrical energy density does not
vanishes, as it is the case for the radial pressure, near
the surface of the spherical object. This electrical
pressure needs to be balanced by gravity at star surface,
and from Gauss law depends only on the total charge
(not how it is distributed) and the star radius.

In fact as we already discussed, our results are similar to
those found in Table I of [7] for the same total charge. In
this work, the radial distribution of the electric charge is
only concentrated near the star’s surface.
Figure 15 shows the radial pressure and the electrical

energy density as a function of the radial coordinate for an
equilibrium configuration with maximum mass found in
the case Q ¼ 2.0 × 1020 ½C�. In this figure we use the
values α ¼ 0.41 and ρc ¼ 1162.72 ½MeV=fm3�.
Figure 16 shows how the eigenfrequency of the funda-

mental mode changes with the stellar mass for some values
of α. Note in the figure that the zero eigenfrequencies are
attained in the maximum mass points when the total charge
is fixed.

VII. CONCLUSIONS

In this article we study the equilibrium and stability of
stars made of strange matter that follows the MIT bag
model equation of state and with an electrical charge
distribution of the form qðrÞ ¼ ðQ=R3Þr3 ≡ βr3. The
configurations under study have spherical symmetry and
are matched to the exterior Reissner-Nordström spacetime.
The hydrostatic equilibrium and the stability against radial
perturbation were analyzed for some different values of ρc,
β and Q.
We found that the necessary total charge value to

influence in the equilibrium and stability of the star is
around 1020 ½C�, the electric field produced for that total
charge is around 1022 ½V=m�. We found the electric charge
that produces significant effect on the structure and stability
of the object is near the star’s surface, since near the surface
of the star the electric energy density is not negligible
compared to the radial pressure.
Using the radial perturbation method, the results indicate

that for a central energy density range the stability of the
star decreases with the growth of the total charge and for a
total mass range the electric charge helps to increase the
stability of the stars.
We also determine that the maximum mass point and the

zero eigenfrequency of the fundamental mode are found in
the same value of the central energy density when the total
charge is fixed. This indicates that in a system of configu-
rations with fixed total charge the stable and unstable
equilibrium configurations can always be distinguished
through the conditions dM

dρc
> 0 and dM

dρc
< 0, respectively.

Finally, considering the charge density proportional to the
energy density ρe ¼ αρ, we show that the condition used to
distinguish regions made of stable and unstable charged
equilibrium configurations found considering the distribu-
tion of charge q ¼ βr3 are maintained.
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