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We have studied photon motion around axially symmetric rotating Kerr black holes in the presence of
a plasma with radial power-law density. It is shown that in the presence of a plasma, the observed shape
and size of the shadow changes depending on the (i) plasma parameters, (ii) black hole spin, and
(iii) inclination angle between the observer plane and the axis of rotation of the black hole. In order to
extract the pure effect of the plasma influence on the black hole image, the particular case of the
Schwarzschild black hole has also been investigated and it has been shown that the photon sphere around
the spherically symmetric black hole is left unchanged under the plasma influence; however, the
Schwarzschild black hole shadow size in the plasma is reduced due to the refraction of the
electromagnetic radiation in the plasma environment of the black hole. The study of the energy
emission from the black hole in plasma environment shows that in the presence of the plasma the
maximal energy emission rate from the black hole decreases.
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I. INTRODUCTION

The study of astrophysical processes in the plasma
medium surrounding a black hole becomes very interest-
ing and important due to the evidence for the presence of
black holes at the centers of the galaxies [1–3]. For
example, the gravitational lensing in inhomogeneous
and homogeneous plasma around black holes has been
recently studied in [4–8] as an extension of vacuum
studies (see, e.g., [9,10]).
From the literature it is known that the black hole shadow

can be revealed by the gravitational lensing effect, see, e.g.,
[2,11–13]. If the black hole is placed between a bright
source and a far observer, the dark zone is created in the
source image by a photon falling inside the black hole
which is commonly called the shadow of the black hole.
Recently, this effect has been investigated by many authors
for the different black holes (see, e.g., [14–17]). The
silhouette shape of an extremely rotating black hole has
been investigated by Bardeen [18]. Our previous studies on
the shadow of the black hole are related to the non-
Kerr [13], Hořava-Lifshitz [17], Kerr-Taub-NUT [19],
and Myers-Perry [20] black holes. A new coordinate-
independent formalism for characterization of a black-hole
shadow has been recently developed in [21].
The shape of the black hole is determined through a

boundary of the shadow which can be studied by
application of the null geodesic equations. The presence

of a plasma in the vicinity of black holes changes the
equations of motion of photons which may lead to the
modification of the black hole shadow by the influence of
a plasma. In this paper our main goal is to consider the
silhouette of the shadow of an axially symmetric black
hole using the equations of motion for photons in a plasma
with radial power-law density. We would like to underline
that very recently, influence of a non-magnetized cold
plasma with the radially dependent density to black hole
shadow has been studied in [7] using the different alternate
approach. In addition, [22] has studied the photon motion
around the black hole surrounded by a plasma.
The paper is arranged as follows. In Sec. II, we consider

the equations of motion of photons around an axially
symmetric black hole in the presence of a plasma. In
Sec. III we study the shadow of the axial-symmetric black
hole in the presence of a plasma. As a particular case in
subsections III A and III B, we study the shadow and
the energy emission from the spherically symmetric black
hole. Finally, in Sec. IV we briefly summarize our results.
Throughout the paper, we use a system of geometric

units in which G ¼ 1 ¼ c. Greek indices run from 0 to 3.

II. PHOTON MOTION AROUND THE BLACK
HOLE IN THE PRESENCE OF A PLASMA

The rotating black hole is described by the spacetime
metric, which in the standard Boyer-Lindquist coordinates
can be written in the form

ds2 ¼ gαβdxαdxβ; ð1Þ
with [23]
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g00 ¼ −
�
1 −

2Mr
Σ

�
;

g11 ¼
Σ
Δ
;

g22 ¼ Σ;

g33 ¼
�
ðr2 þ a2Þ þ 2a2Mrsin2θ

Σ

�
sin2θ;

g03 ¼ −
2Marsin2θ

Σ
;

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2cos2θ; ð2Þ

where as usual M and a are the total mass and the spin
parameter of the black hole.
In this paper we will consider a plasma surrounding the

central axially symmetric black hole. The refraction index
of the plasma will be n ¼ nðxi;ωÞ, where the photon
frequency measured by the observer with velocity uα is ω.
In this case the effective energy of the photon has the form
ℏω ¼ −pαuα. The refraction index of the plasma as a
function of the photon four-momentum has been obtained
in [24] and has the following form,

n2 ¼ 1þ pαpα

ðpβuβÞ2
; ð3Þ

and for the vacuum case one has the relation n ¼ 1. The
Hamiltonian for the photon around an arbitrary black hole
surrounded by a plasma has the following form:

Hðxα; pαÞ ¼
1

2
½gαβpαpβ þ ðn2 − 1ÞðpβuβÞ2� ¼ 0: ð4Þ

Following the derivation of a gravitational redshift
discussed in [25], we will assume that the spacetime
stationarity allows the existence of a timelike Killing vector
ξα obeying the Killing equations,

ξα;β þ ξβ;α ¼ 0: ð5Þ

Then one can introduce two frequencies of electromag-
netic waves using the null wave-vector kα; the first one is
the frequency measured by an observer with four-velocity
uα and defined as

ω≡ −kαuα; ð6Þ

while the second one is the frequency associated with the
timelike Killing vector ξα and defined as

ωξ ≡ −kαξα: ð7Þ

The frequency (6) depends on the observer chosen
and is, therefore, a function of position, while the frequency
(7) is a conserved quantity that remains unchanged

along the trajectory followed by the electromagnetic
wave. One can apply this property to measure how the
frequency changes with the radial position and is redshifted
in the spacetime. Assume the Killing vector to have
components

ξα ≡ ð1; 0; 0; 0Þ; ξα ≡ g00ð−1; 0; 0; 0Þ; ð8Þ
so that ωξ ¼ k0 ¼ const. The frequency of an electromag-
netic wave emitted at radial position r and measured by an
observer with four-velocity uαf1= ffiffiffiffiffiffiffiffiffiffi−g00

p
; 0; 0; 0g parallel

to ξα (i.e., a static observer) will be governed by the
following equation:ffiffiffiffiffiffiffiffiffiffi

−g00
p

ωðrÞ ¼ ωξ ¼ const: ð9Þ
One may introduce a specific form for the plasma fre-
quency for analytic processing, assuming that the refractive
index has the general form

n2 ¼ 1 −
ω2
e

ω2
; ð10Þ

where ωe is usually called plasma frequency. Now we use
the Hamilton-Jacobi equation which defines the equation of
motion of the photons for a given spacetime geometry
[4,22,24],

∂S
∂σ ¼ −

1

2

�
gαβpαpβ − ðn2 − 1Þ

�
p0

ffiffiffiffiffiffiffiffiffiffi
−g00

q �
2
�
; ð11Þ

where pα ¼ ∂S=∂xα. Using a method of separation of
variables, the Jacobi action S can be written as [13,23]

S ¼ 1

2
m2σ − Etþ Lϕþ SrðrÞ þ SθðθÞ; ð12Þ

where L, E are conservative quantities as angular momen-
tum and energy of the test particles.
For trajectories of the photons, we have the following set

of the equations:

Σ
dt
dσ

¼ aðL − n2Easin2θÞ

þ r2 þ a2

Δ
½ðr2 þ a2Þn2E − aL�; ð13Þ

Σ
dϕ
dσ

¼
�

L
sin2θ

− aE
�
þ a
Δ
½ðr2 þ a2ÞE − aL�; ð14Þ

Σ
dr
dσ

¼
ffiffiffiffiffi
R

p
; ð15Þ

Σ
dθ
dσ

¼
ffiffiffiffi
Θ

p
; ð16Þ

can be derived from the Hamilton-Jacobi equation, where
the functions RðrÞ and ΘðθÞ are introduced as

ATAMUROTOV, AHMEDOV, AND ABDUJABBAROV PHYSICAL REVIEW D 92, 084005 (2015)

084005-2



R ¼ ½ðr2 þ a2ÞE − aL�2 þ ðr2 þ a2Þ2ðn2 − 1ÞE2

− Δ½Kþ ðL − aEÞ2�; ð17Þ

Θ ¼ Kþ cos2θ

�
a2E2 −

L2

sin2θ

�
− ðn2 − 1Þa2E2sin2θ; ð18Þ

and the Carter constant as K.
For calculation examples one needs the analytical

expression of the plasma frequency ωe which for the
electron plasma has the following form,

ω2
e ¼

4πe2NðrÞ
me

; ð19Þ

where e and me are the electron charge and mass,
respectively, and NðrÞ is the plasma number density.
Following the work by [22], here we consider a radial
power-law density,

NðrÞ ¼ N0

rh
; ð20Þ

where h ≥ 0, such that

ω2
e ¼

k
rh

: ð21Þ

As an example, here we get the value for power h as 1 [22].
For this value, we plot the radial dependence of the
effective potential Veff of the radial motion of the photons
defined as �

dr
dσ

�
2

þ Veff ¼ 1: ð22Þ

The radial dependence of the effective potential for
different values of the plasma refraction n and black hole
spin a has been presented in Fig. 1. In Fig. 1 the left plot
corresponds to the case when refraction parameter of the
plasma is n2 ¼ 0.2; 0.44; 0.89 (dotted, dashed, and solid
lines, respectively) at the position r ¼ 3M; the middle

plot corresponds to the case when the refraction parameter
is n2 ¼ 0.19; 0.42; 0.88 corresponding to dotted, dashed,
and solid lines, respectively, at the position r ¼ 3M;
the right plot represents the radial dependence of the
effective potential when the refraction parameter is
n2 ¼ 0.14; 0.39; 0.88, corresponding to dotted, dashed,
and solid lines, respectively, at the position r ¼ 3M.

III. THE SHADOW OF A BLACK HOLE IN THE
PRESENCE OF A PLASMA

In this section we consider the shadow cast by a black
hole surrounded by a plasma. If the black hole surrounded
by a plasma is originated between the light source and the
observer, then the latter can observe the black spot on the
bright background. The observer at infinity can only
observe the light beam scattered away, and due to capturing
of the photons by the black hole the shaded area on the sky
would appear. This spot corresponds to the shadow of the
black hole, and its boundary can be defined using the
equation of motion of photons given by expressions (13)–
(16) around the black hole surrounded by the plasma.
In order to describe the apparent shape of the black hole

surrounded by the plasma, we need to consider the closed
orbits around it. Since the equations of motion depend on
conserved quantities E, L and the Carter constant K, it is
convenient to parametrize them using the normalized
parameters ζ ¼ L=E and η ¼ K=E2. The silhouette of
the black hole shadow in the presence of the plasma can
be found using the conditions

RðrÞ ¼ 0 ¼ ∂RðrÞ=∂r:
Using these equations one can easily find the expressions
for the parameters ζ and η in the form

ζ ¼ B
A

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

A2
−

C
A

s
; ð23Þ

η ¼ ðr2 þ a2 − aζÞ2 þ ðr2 þ a2Þ2ðn2 − 1Þ
Δ

− ðζ − aÞ2; ð24Þ

FIG. 1. The radial dependence of the effective potential of radial motion of photons for the different values of rotation parameter a and
refraction index n of the plasma. Here the quantity Veff is normalized by the energy of the photon E.
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where we have used the following notations,

A ¼ a2

Δ
; ð25Þ

B ¼ a2 − r2

M − r
Ma
Δ

; ð26Þ

C ¼ n2
ðr2 þ a2Þ2

Δ

þ 2rðr2 þ a2Þn2 þ ðr2 þ a2Þ2nn0
M − r

; ð27Þ

and prime denotes the differentiation with respect to radial
coordinate r.
The boundary of the black hole’s shadow can be fully

determined through the expessions (23)–(24). However, the
shadow will be observed at the “observer’s sky,” which can
be referenced by the celestial coordinates related to the real
astronomical measurements. The celestial coordinates are
defined as

α ¼ lim
r0→∞

�
−r20 sin θ0

dϕ
dr

�
; ð28Þ

β ¼ lim
r0→∞

r20
dθ
dr

: ð29Þ

Using the equations of motion (13)–(16) one can easily find
the relations for the celestial coordinates in the form

α ¼ −
ζ

n sin θ
; ð30Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2 − n2a2sin2θ − ζ2cot2θ

p
n

; ð31Þ

for the case when the black hole is surrounded by a plasma.
In Fig. 2 the shadow of the rotating black hole for the

different values of black hole rotation parameter a, incli-
nation angle θ0 between the observer and the axis of the
rotation is represented. In this figure we choose the plasma
frequency in the form ωe=ωξ ¼ k=r. From Fig. 2 one can
observe the change of the size and shape of the rotating
black hole surrounded by the plasma. The physical reason
for this is due to the gravitational redshift of photons in
the gravitational field of the black hole. The frequency
change due to the gravitational redshift affects the plasma
refraction index.

A. Shadow of a nonrotating black hole

Now in order to extract pure plasma effects, we will
concentrate on the special case when the black hole is
nonrotating, and the size of the black hole shadow can be
observed (see, e.g., [7]). In the case of the static black hole,

the shape of the black hole is a circle, and the radius of the
shadow will be changed by the plasma effects. Using the
expressions (30) and (31), one can easily find the radius of
the shadow of a static black hole surrounded by a plasma in
the form

Rsh ¼
1

nðr −MÞ ½2r
3ðr −MÞn2 þ r4nn0ðr −MÞ

− 2r2M2 þ 2Mr2fnr2ðnþ rn0Þ − ð4nþ 3rn0Þ
× nMrþM2ð1þ 3n2 þ 2rnn0Þg1=2�1=2; ð32Þ

where r is the position of the last unstable circular orbit of
photons defined by dr=dσ ¼ 0 and ∂Veff=∂r ¼ 0. In the
absence of the plasma one has the standard value of the
photon sphere radius as r ¼ 3M, and the shadow radius as
Rsh ¼ 3

ffiffiffi
3

p
M [26,27]. In the presence of the plasma, we

will have a different value for the photon sphere radius and,
consequently, a different shadow radius for the boundary of
the black hole shadow. In Fig. 3 the dependence of the
radius of shadow of the static black hole from the plasma
parameters has been presented which shows that the radius
of the shadow of black hole surrounded by inhomogeneous
plasma decreases. It is similar to the results of the paper [7].

B. Emission energy of black holes in plasma

For completeness we evaluate the rate of energy emis-
sion from the black hole in a plasma using the expression
for the Hawking radiation at the frequency Ω as [28,29]

d2EðΩÞ
dΩdt

¼ 2π2σlim
expΩ=T − 1

Ω3; ð33Þ

where T ¼ κ=2π is the Hawking temperature and κ is the
surface gravity. Here, for simplicity, we consider the special
case when the black hole is nonrotating and the background
spacetime is spherically symmetric.
At the horizon the temperature T of the black hole is

T ¼ 1

4πrþ
: ð34Þ

The limiting constant σlim,

σlim ≈ πR2
sh;

defines the value of the absorption cross section vibration
for a spherically symmetric black hole and Rsh is given by
expression (32).
Consequently, one can get

d2EðΩÞ
dΩdt

¼ 2π3R2
sh

eΩ=T − 1
Ω3;

so that the energy of radiation of a black hole in plasma
depends on the size of its shadow.
The dependence of the energy emission rate on the

frequency for the different values of plasma parameters ωe
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FIG. 2. The shadow of the black hole surrounded by a plasma for the different values of the rotation parameter a, inclination angle θ0
between observer and the axis of the rotation, and the refraction index n. The solid lines in the plots correspond to the vacuum case,
while for dashed lines we choose the plasma frequency ωe=ωξ ¼ k=r and ðk=MÞ2 ¼ 0.5.
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is shown in Fig. 4. One can see that with the increasing
plasma parameter ωe, the maximum value of the energy
emission rate decreases, caused by a decrease in the radius
of the shadow.

IV. CONCLUSIONS

In this paper we have studied the shadow and emission
rate of an axial symmetric black hole in the presence of a

plasma with radial power-law density. The obtained results
can be summarized as follows:

(i) In the presence of a plasma the observed shape and
size of the shadow changes depending on (i) the
plasma parameters, (ii) the black hole spin, and
(iii) the inclination angle between the observer plane
and the axis of rotation of the black hole.

(ii) In order to extract the pure effect of the plasma’s
influence on the black hole image, the particular case
of the Schwarzschild black hole has also been
investigated. It is shown that under the influence
of a plasma, the observed size of the shadow of the
spherically symmetric black hole becomes smaller
than that in the vacuum case. So it has been shown
that the photon sphere around the spherically sym-
metric black hole is practically left unchanged under
the plasma influence; however, the Schwarzschild
black hole shadow size in a plasma is reduced due to
the refraction of the electromagnetic radiation in the
plasma environment of the black hole.

(iii) The study of the energy emission from the black
hole in a plasma has shown that with the increase of
the dimensionless plasma parameter, the maximum
value of the energy emission rate from the black hole
decreases due to the decrease of the size of the black
hole shadow.

In the future work we plan to study the shadow and the
related optical properties of different types of gravitational
compact objects in the presence of a plasma in more detail
and in more astrophysically relevant cases.
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