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The global structure of the family of Kerr–de Sitter spacetimes is reexamined. Taking advantage of
the natural length scale set by the cosmological constant Λ > 0, conditions on the parameters ðΛ;M; a2Þ
have been found, so that a Kerr–de Sitter spacetime either describes a black hole with well-separated
horizons, or describes degenerate configurations where two or more horizons coincide. As long as the
rotation parameter a2 is subject to the constraint a2Λ ≪ 1, and the mass parameter M is subject to
a2½1þOða2ΛÞ2Þ� < M2 < 1

9Λ ½1þ 2a2ΛþOða2ΛÞ2Þ�, then a Kerr–de Sitter spacetime with parameters in
these ranges describes a black hole possessing an inner horizon separated from an outer horizon and the
hole is embedded within a pair of cosmological horizons. Still for a2Λ ≪ 1, but assuming that either
M2 > 1

9Λ ½1þ 2a2ΛþOða2ΛÞ2Þ� or M2 < a2½1þOða2ΛÞ2Þ�, the Kerr–de Sitter spacetime describes a
ringlike singularity enclosed by two cosmological horizons. A Kerr–de Sitter spacetime may also describe
configurations where the inner, the outer and one of the cosmological horizons coincide. However, we
found that this coalescence occurs provided M2Λ ∼ 1 and due to the observed smallness of Λ, these
configurations are probably irrelevant in astrophysical settings. Extreme black holes, i.e. black holes where
the inner horizon coincides with the outer black hole horizon, are also admitted. We have found that in the
limit M2Λ ≪ 1 and a2Λ ≪ 1, extreme black holes occur, provided a2 ¼ M2ð1þOðΛM2ÞÞ. Finally a
coalescence between the outer and the cosmological horizon, although in principle possible, is likely to be
unimportant at the astrophysical level, since this requires M2Λ ∼ 1. Our analysis shows that as far as the
structure of the horizons is concerned, the family of Kerr–de Sitter spacetimes exhibits similar structure
to the Reissner–Nordstrom–de Sitter family of spacetimes.
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I. INTRODUCTION

Since the inception of the general theory of relativity, the
rise, fall and eventual reemergence of the cosmological
constant Λ has had an interesting story.1 In 1917, Einstein
introduced theΛ term into his famous equations hoping that
the repulsive effects associated with Λ > 0 would lead to a
static Universe. However since observational data favored a
dynamical world model, he abandoned Λ a few years later.
With the advent of spontaneous symmetry breaking in gauge
theories, the Λ term reappeared and nowadays is at the
epicenter of one of the deep mysteries surrounding modern
science. Amultiple ofΛ is interpreted as the vacuum energy
density and the real issue is why? After so much symmetry
breaking that took place in the early Universe, does Λ relax
to the tiny value suggested by current observations?
The recently discovered type-Ia cosmological super-

novae provide direct observational evidence for a positive
cosmological constant and these developments brought Λ
back into the forefront of scientific research. Although

current estimates suggest Λ < 10−55 cm−2, despite its tiny
value Λ nevertheless has important consequences on the
large scale structure of spacetime. Although it is impossible
to summarize all the scientific work on Einstein’s equations
with a nonvanishing Λ here, a great deal of effort has been
focused on a family of stationary-axisymmetric solutions
of Einstein’s equations with a nonvanishing Λ, discovered
long ago by Carter [3,4]. These solutions, besides Λ,
contain two additional parameters ðM; aÞ. In the limit of
vanishing Λ, the solutions reduce to the Kerr family of
metrics while for a ¼ 0, the Schwarzschild–(anti–)de Sitter
family is recovered. Due to these properties, M is inter-
preted as a mass2 and a as a rotation parameter.3 For certain
values of the parameters ðΛ;M; aÞ the solutions are
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1For a recent account of the history of the Λ term the reader

is referred to an enjoyable and well-documented article by
Straumann in [1]; see also Sec. (6.6) in [2].

2Whether thisM can be rigorously interpreted as some form of
mass energy runs into the subtleties in defining mass energy for
asymptotically (anti–)de Sitter spacetimes. For recent advances
consult Refs. [5,6].

3Preliminary investigations show that ðM;aÞ may admit a
representation in terms of scalar polynomial curvature invariants
patterning the same trend as for the case of Kerr (see the recent
work in [7]). The scalar polynomial curvature invariants ðQ1; Q2Þ
(see [7,8] for their precise form) locate the horizons and
ergosurfaces for the Kerr–(anti–)de Sitter metric. This interesting
result was not realized at the time [7] was written.
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interpreted as representing stationary, axisymmetric black
holes in asymptotically (anti–)de Sitter background4 and in
contrast to black holes in an asymptotically flat spacetime,
these black holes may possess up to four horizons. Two of
these horizons are cosmological and the other two are the
inner and outer black hole horizons enclosing a ringlike
singularity. It is believed that this Kerr–(anti–)de Sitter
family may enjoy a uniqueness property as is the case for
the Kerr black hole and may thus be interpreted as the final
end state of the complete gravitational collapse of a bounded
system in an asymptotically (anti–)de Sitter spacetime (for
recent work on Kerr–de Sitter consult Ref. [13]).
The behavior of geodesics on these spacetimes has

been the subject of many investigations; see for example
[14–18], while for the extension of the solution to arbitrary
spacetime dimension see [19]. Effects of gravitational
lensing on these spacetimes have been addressed in
[20–22]. In two recent works [23,24], the global structure
of this family has been addressed. In [23], the authors
introduced the notion of the projection diagrams as an
alternative to Carter-Penrose conformal diagrams and
through these diagrams, the structure of two-dimensional
submanifolds of the Kerr–(anti–)de Sitter spacetime was
investigated. In [24], the authors advanced an interesting
interpretation of the Kerr–de Sitter spacetime, and they
raised the question regarding the conditions upon ðΛ;M; aÞ
so that in a Kerr–de Sitter spacetime a coalescence between
the inner and outer black hole horizons takes place. Via a
numerical example, they argue that for the case where
Λ > 0 the condition M2 ¼ a2 no longer characterizes an
extreme Kerr–de Sitter black hole.
A complete understanding of the global structure of the

family of Kerr–(anti–)de Sitter requires an investigation of
the parameter space ðΛ;M; aÞ. Under what restrictions
upon ðΛ;M; aÞ does a Kerr–(anti–)de Sitter spacetime
describe a black hole with a well-separated inner, outer
and cosmological horizons? Does there exist a nontrivial
subset of the parameter space where a Kerr–(anti–)de Sitter
spacetime describes extreme configurations, i.e. configu-
rations where for instance the cosmological horizon coin-
cides with the outer black horizon, or do there exist super
extreme configurations where the three horizons coincide?
If such configurations exist, do the parameters ðΛ;M; aÞ
retain values so that these configurations are important in
astrophysics?
The purpose of the present work is to settle some of

these questions. As a first step, we study the behavior of the
roots of a quartic polynomial equation as function of the
parameters ðΛ;M; aÞ. We treat this problem via the proper-
ties of the discriminant of polynomial equations and their
relations to the determinant of the Sylvester matrix.

Primarily, we focus our attention on the parameter space
which is of relevance for the description of astrophysical
sources. Due to the currently suggested tiny value of Λ, the
restrictions M2Λ ≪ 1 and/or a2Λ ≪ 1 cover many sources
of astrophysical relevance.5

The organization of this article is as follows. In the next
section, we briefly introduce the family of Kerr–(anti–)de
Sitter metrics and identify the curvature and the coordinate
singularities. In Sec. III, we discus the roots of a poly-
nomial equationΔðrÞ ¼ 0 and relate their occurrence to the
values of the parameters ðΛ;M; aÞ. In Sec. IV, we comment
on the global structure of the Kerr–de Sitter spacetimes and
discuss future work and open problems.

II. THE KERR–DE SITTER METRIC

In a set of local ðt;φ; r; ϑÞ Boyer-Lindquist coordinates,
the Kerr–(anti–)de Sitter family of metrics has the form

g ¼ −
ΔðrÞ
I2ρ2
½dt − asin2ϑdφ�2

þ ΔðϑÞsin2ϑ
I2ρ2

½adt − ðr2 þ a2Þdφ�2 þ ρ2

ΔðrÞ dr
2

þ ρ2

ΔðϑÞ dϑ
2 ð1Þ

where

ρ2 ≔ r2 þ a2cos2ϑ;

ΔðrÞ ≔ −
1

3
Λr2ðr2 þ a2Þ þ r2 − 2Mrþ a2;

ΔðϑÞ ≔ 1þ 1

3
Λa2cos2ϑ; I ≔ 1þ 1

3
Λa2:

For Λ > 0, this g is the Kerr–de Sitter metric while for
Λ < 0 it corresponds to the Kerr–anti–de Sitter metric;
ðM; a2Þ are free parameters while the factor I ensures the
regularity of the g along the axis of axial symmetry. The
fields ξt ¼ ∂

∂t and ξφ ¼ ∂
∂φ are commuting Killing vector

fields with the zeros of the latter defining the rotation axis.
Via algebraic manipulations using GRTensorII [25],

we find

CμνλρCμνλρ ¼ 48M2

ρ12
Fðr; ϑÞ;

Fðr; ϑÞ ¼ ðr2 − a2cos2ϑÞðρ4 − 16a2r2cos2ϑÞ; ð2Þ

4For arguments supporting this interpretation, see for instance
Ref. [9]. For progress on the important issue of defining a black
hole on a cosmological spacetime, see for instance [10–12].

5Based on a value Λ ∼ 10−55 cm−2, then for the case of the Sun
in a uniform rotation, M2Λ ∼ 10−45 and a2Λ ∼ 10−46 implying
that the restrictions M2Λ ≪ 1 and/or a2Λ ≪ 1 leave plenty of
room for the descriptions of astrophysical configurations.
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C�μνλρC
μνλρ¼96M2ra

ρ12
F�ðr;ϑÞ;

F�ðr;ϑÞ¼ðr2−3a2cos2ϑÞð−3r2þa2cos2ϑÞcosϑ; ð3Þ
where Cμνλρ stand for the components of the Weyl tensor,
while C�μνλρ denote the dual components. These invariants
show that the curvature of (1) becomes unbounded as
ρ → 0, i.e. as the ring (r ¼ 0, ϑ ¼ π

2
) is approached.

Remarkably, Λ drops out of these invariants and so they
exhibit the same structure as the one exhibited by the Kerr
metric. More remarkably the polynomial curvature invar-
iants ðQ1; Q2Þ (see [7]) have a very simple form and also
locate the ergosurfaces and horizons.
Coordinate singularities in (1) occur along the axis of

axial symmetry and these singularities can be removed by
employing generalized Kerr-Schild coordinates. The other
family of coordinate singularities6 in (1) occur at the roots
of ΔðrÞ ¼ 0 and further ahead we discuss the extension of
(1) through these singularities.
Most of the analysis in the literature has focused on the

Kerr–de Sitter metric subject to the assumption that the
parameters ðΛ;M; aÞ in (1) are chosen so that the quartic
polynomial

ΔðrÞ¼−
1

3
Λr2ðr2þa2Þþ r2−2Mrþa2; r∈R ð4Þ

has one negative root and three distinct positive ones.
Although for this choice the resulting spacetimes exhibit
rich structure, nevertheless the Kerr–de Sitter family con-
tains other configurations as well. A complete classification
of all configurations requires an understanding of the roots
of the quartic ΔðrÞ ¼ 0 as a function of the parameters
ðΛ;M; aÞ and in the next section, we discuss that problem.

III. ON THE ROOTS OF THE EQUATION ΔðrÞ ¼ 0

It is convenient for the purposes of this section to
introduce a set of abbreviations so that

ΔðrÞ ¼ −
1

3
Λr4 þ

�
1 −

1

3
Λa2

�
r2 − 2Mrþ a2

≔ p4r4 þ p3r3 þ p2r2 þ p1rþ p0; r ∈ R ð5Þ

p4 ¼ −
1

3
Λ ≔ L; p3 ¼ 0; p2 ¼ 1 −

1

3
Λa2 ≔ N;

p1 ¼ −2M ≔ K; p0 ¼ a2: ð6Þ
Furthermore, hereafter, Δ0ðrÞ, Δ00ðrÞ stand for the first and
second derivatives of the polynomial ΔðrÞ and ri; i ∈
ð1; 2; 3; 4Þ denote the roots of ΔðrÞ ¼ 0.

The discriminant DðΔrÞ of the polynomial equation
ΔðrÞ ¼ 0 is defined by

DðΔrÞ ¼ p6
4

Y
i<j

ðri − rjÞ2; i; j ∈ ð1; 2; 3; 4Þ ð7Þ

and satisfies the important relation

DðΔrÞ ¼
RðΔ;Δ0Þ

p4

ð8Þ

where RðΔ;Δ0Þ is the determinant of the Sylvester matrix
associated with the polynomials ΔðrÞ and Δ0ðrÞ. The
determinant of the Sylvester matrix can be computed in
terms of the coefficients of ΔðrÞ and Δ0ðrÞ and thus (7),
(8) provide insights regarding the reality and multiplicity
of the roots of ΔðrÞ ¼ 0. (For an introduction to the
theory leading to the fundamental identity (8) see for
instance [27,28].) Although the evaluation of the
Sylvester determinant can be a tedious job, fortunately
for polynomials of low order, it has been tabulated and
the results are readily available in the literature. For
the polynomial ΔðrÞ, consulting Maple, Mathematica, or
[27,28], we find

DðΔrÞ ¼ 256a6L3 − 128a4N2L2 þ 144a2K2NL2

þ 16a2N4L − 27K4L2 − 4K2N3L

¼ 128

�
2a6L3 − a4N2L2 þ 9

8
a2K2NL2 þ 1

8
a2N4L

−
27

128
K4L2 −

1

32
K2N3L

�
ð9Þ

while the discriminants for Δ0ðrÞ and Δ00ðrÞ have the form
DðΔ0rÞ ¼ −16½27K2L2 þ 8N3L�; DðΔ00r Þ ¼ −96LN:

ð10Þ
Hereafter we consider only the cases where Λ > 0 and

a ≠ 0. The analysis of Kerr–anti–de Sitter is discussed
elsewhere [26]. For Λ > 0 and a ≠ 0, the equation
ΔðrÞ ¼ 0 has at least one negative and one positive root.
The widely discussed case of the Kerr–de Sitter metric
assumes that the equation ΔðrÞ ¼ 0 admits one negative
and three distinct positive roots and this occurs provided

DðΔrÞ > 0; Λ > 0; a ≠ 0: ð11Þ
The condition DðΔrÞ > 0 by itself implies that either all
roots of ΔðrÞ ¼ 0 are real and distinct or they form two
pairs of complex conjugate roots. However this last
possibility is eliminated once the three conditions in (11)
are taken together.
To get insights into the nature of the restrictions that

conditions (11) impose upon ðΛ;M; a2Þ, at first we write
the discriminant DðΔrÞ in (9) in the equivalent form

6For the case of Kerr–anti–de Sitter ðΛ < 0Þ an additional
coordinate singularity may arise at the zeros of the ΔðϑÞ factor.
The nature of this coordinate singularity, as well as a more
complete analysis of the Kerr–anti–de Sitter spacetime, will be
discussed elsewhere [26].
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DðΔrÞ ¼ −
128

3
½AM4 þ BM2 þ C�;

A ¼ 9

8
Λ2;

B ¼ −
NΛ
8
ðN2 þ 12a2ΛÞ;

C ¼
�
2

9
a4Λ2 þ 1

3
a2ΛN2 þ N4

8

�
a2Λ; ð12Þ

while a computation shows

B2 − 4AC ¼ Λ2

64
½N6 − 12a2ΛN4 þ 48a4Λ2N2 − 64a6Λ3�

≡ Λ2

64
Tða2ΛÞ ð13Þ

where Tða2ΛÞ is a sixth order polynomial with respect to
the positive variable a2Λ. The graph of this polynomial
determines domains on the a2Λ-axis, where it is positive
definite, negative definite or zero. For any a2Λ within the
domains where Tða2ΛÞ is positive definite, B2 − 4AC is
positive definite and thus AM4 þ BM2 þ C ¼ 0 has real
positive roots ρ−ðΛ; a2Þ < ρþðΛ; a2Þ. For any M2 subject
to the bounds

ρ−ðΛ; a2Þ < M2 < ρþðΛ; a2Þ ð14Þ
the inequality DðΔrÞ > 0 holds. However since the obser-
vational data suggest a tiny value for Λ, it is reasonable to
focus our attention on the case where a2 and Λ are chosen
so that a2Λ ≪ 1. Although this is a strong restriction,
nevertheless it is satisfactory from the astrophysical view-
point since it covers a wide range of astrophysical sources.
Assuming therefore that a2Λ ≪ 1, the roots ρ−ðΛ; a2Þ <
ρþðΛ; a2Þ of AM4 þ BM2 þ C ¼ 0 are

ρþðΛ; a2Þ ¼
1

9Λ
½1þ 2a2ΛþOða2ΛÞ2Þ�;

ρ−ðΛ; a2Þ ¼ a2½1þOða2ΛÞ2� ð15Þ

implying that DðΔrÞ > 0, provided M2 lies in the domain:

a2½1þOða2ΛÞ2� < M2 <
1

9Λ
½1þ 2a2ΛþOða2ΛÞ2Þ�:

ð16Þ
This condition, as far as we are aware, is new. It is
fundamental and asserts that as long as M2 is chosen to
satisfy these bounds and a2Λ ≪ 1, then ΔðrÞ ¼ 0 admits
three real positive distinct roots and a negative one. This
estimate gives a relation among the mass M, rotation
parameter a2 and Λ so that a Kerr–de Sitter spacetime
describes a black hole possessing an inner, outer and two
cosmological horizons.

A modification of the conditions in (11) covers the case
where ΔðrÞ ¼ 0 admits one negative, one positive and a
pair of complex conjugate roots. This can occur provided
that

DðΔrÞ < 0; Λ > 0; a ≠ 0: ð17Þ
Based on the same reasoning as above, we assume a2Λ≪ 1
and thus the condition DðΔrÞ < 0 holds, provided either
M2 > 1

9Λ or M2 < a2. A Kerr–de Sitter metric with param-
eters in that range describes a ringlike curvature singularity
enclosed between a pair of cosmological horizons. It is
interesting to note that the parameter space is dominated by
regions where the equation ΔðrÞ ¼ 0 has only a pair of real
roots and this property has some interesting ramifications
regarding the validity of cosmic censorship within the
cosmological domain. However it is important to stress that
the dominance of the parameter space by regions where
ΔðrÞ ¼ 0 possesses a pair of real roots holds under validity
of the restriction a2Λ ≪ 1. Dropping this restriction likely
will alter this conclusion. Although it is interesting to
analyze the case where the condition a2Λ ≪ 1 is relaxed,
we shall not proceed with this case any further here
(see, however, comments further ahead).
For completeness, we now investigate the case where

ΔðrÞ ¼ 0 admits multiple roots and as a first case we
treat the case where ΔðrÞ ¼ 0 admits a negative root and
a positive root of multiplicity 3 (or the closely related
alternative of a negative root of multiplicity 3 and a simple
positive root). From the properties of the discriminant, it is
easily seen that this setting occurs provided that

DðΔrÞ¼DðΔ0rÞ¼0; DðΔ00r Þ>0; Λ>0; a≠0: ð18Þ

The conditions DðΔrÞ ¼ DðΔ0rÞ ¼ 0 guarantee that
ΔðrÞ ¼ 0 has a real root ri of multiplicity at least 3, while
DðΔ00r Þ > 0 implies that ri has multiplicity 3.
Since DðΔ0rÞ ¼ −16L½27K2Lþ 8N3� ¼ 64Λ

3
½−9M2Λþ

2N3� and Λ > 0, clearly DðΔ0rÞ ¼ 0 cannot be satisfied
unless N > 0. In turn, N > 0 requires a2Λ < 3 and under
validity of this constraint,7 DðΔ0rÞ ¼ 0 demands

M2 ¼ 2N3

9Λ
¼ 2

9Λ

�
1 −

1

3
a2Λ

�
3

: ð19Þ

Since Δ00ðriÞ ¼ 0 has r� ¼ �ðN2ΛÞ
1
2 as its roots, there exist

two possibilities regarding the triple root of ΔðrÞ ¼ 0.
Choosing ri ≔ rþ ¼ ðN2ΛÞ

1
2 > 0 then Δ0ðrþÞ ¼ 0 provided

that the positive root is taken in (19), i.e.

Mþ ¼
2
1
2

3

N
3
2

Λ
1
2

; ð20Þ

7In the alternative case, i.e. whenever a2Λ ≥ 3 and Λ > 0, the
discriminant DðΔ0rÞ is always negative definite which implies
further that ΔðrÞ ¼ 0 has only a pair of real roots.
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while ri ≔ r− ¼ −ð N
2ΛÞ

1
2 < 0 obeys Δ0ðr−Þ ¼ 0 provided

that

M− ¼ −
2
1
2

3

N
3
2

Λ
1
2

: ð21Þ

Finally rþ (respectively r−) is also a root of ΔðrÞ ¼ 0,
provided that

a2 ¼ N2

4Λ
¼ 1

4Λ

�
1 −

1

3
a2Λ

�
2

: ð22Þ

Setting y ¼ a2Λ, this constraint yields to the quadratic
equation y2 − 42yþ 9 ¼ 0 with roots 2y ¼ 42� ffiffiffiffiffiffiffiffiffiffi

1728
p ≃

42� 41.56 and thus for any choice of Λ > 0, there exists a
value for a2Λ consistent with the constraint a2Λ < 3.
Moreover for the values M2 and a2 as in (19), (22), it
can be seen that the discriminant DðΔrÞ vanishes identi-
cally. In summary, the Kerr–de Sitter family allows
configurations where the inner, outer and cosmological
horizons coincide. The location of this triple horizon and
the required (positive) mass are8

rþ ¼
�
N
2Λ

�1
2

; Mþ ¼
2
1
2

3

N
3
2

Λ
1
2

: ð23Þ

Due to the tiny value of the observed Λ and since N ≃ 1,
the occurrence of a triple root requires extremely high
values of the mass parameters M2 and likely these
configurations are irrelevant for the description of astro-
physical systems.
We finish this section by considering the case where

ΔðrÞ ¼ 0 has real roots but one of them has multiplicity 2.9

This arrangement can occur in one of the following forms:

r1 ¼ r2 < r3 < r4; r1 < r2 ¼ r3 < r4;

r1 < r2 < r3 ¼ r4: ð24Þ
Again, in view of the properties of the discriminant, this
setting occurs provided that

DðΔrÞ¼ 0;DðΔ0rÞ> 0; Δðr̂iÞ¼ 0; Δ00ðr̂iÞ≠ 0 ð25Þ
where r̂i stands for any of the roots of Δ0ðrÞ ¼ 0 (assuming
for the moment all of them real and distinct). The condition
DðΔrÞ ¼ 0 guarantees that ΔðrÞ ¼ 0 admits (at least one)
multiple root, DðΔ0rÞ > 0 guarantees that Δ0ðrÞ ¼ 0 has
three real and distinct roots, while Δðr̂iÞ ¼ 0 combined
with Δ00ðr̂iÞ ≠ 0 implies that r̂i is just a double root
of ΔðrÞ ¼ 0.
If ΔðrÞ ¼ 0 and Δ0ðrÞ ¼ 0 share a common root denoted

by R̂, then necessarily ðM; a2Þ are related to this root via

M ¼ R̂

�
N −

2Λ
3

R̂2

�
; a2 ¼ R̂2ðN − ΛR̂2Þ: ð26Þ

The first relationMðΛ; R̂Þ is just a restatement that R̂ is a
root of Δ0ðrÞ ¼ 0 while a2ðΛ; R̂Þ is the necessary and
sufficient condition that R̂ is a root ofΔðrÞ ¼ 0 given that R̂
is a root of Δ0ðrÞ ¼ 0. For these choices, ΔðrÞ has a double
zero and thus DðΔrÞ ¼ 0.
For Λ > 0, the condition DðΔ0rÞ > 0 requires

a2Λ < 3; M2 <
2

9Λ

�
1 −

1

3
a2Λ

�
3

¼ 2

9

N3

Λ
ð27Þ

and under these restrictions, Δ0ðrÞ¼−4Λ
3
½r3þc1rþc0�≔

−4Λ
3
cðrÞ¼0; c1¼−3N

2Λ ; c0¼ 3M
2Λ , possessess three real

roots10

r̂1 ¼ 2ρ̂
1
3 cos

�
ϑ̂

3

�
;

r̂2 ¼ 2ρ̂
1
3 cos

�
ϑ̂

3
þ 2π

3

�
;

r̂3 ¼ 2ρ̂
1
3 cos

�
ϑ̂

3
þ 4π

3

�
ð28Þ

with ρ̂2 and the phase angle ϑ̂ given by

ρ̂2¼ N3

8Λ3
¼ 1

8Λ3

�
1−

1

3
Λa2

�
3

; cosϑ̂¼−
M
x
; x2¼2

9

N3

Λ
:

ð29Þ
In order that any of the roots r̂i in (28) is simultaneously a
root ofΔðrÞ ¼ 0 requires that the value of a2 resulting from
(26) once R̂ is substituted for the chosen r̂i to be positive
definite and moreover be compatible with the constraints in
(27). In order to get insights into the conditions leading to
the appearance of double roots, we treat the case where
M2Λ ≪ 1 and a2Λ ≪ 1. In that regime, the phase angle ϑ̂
in (29) can be approximated by

ϑ̂ ¼ π

2
þM

x
þO

�
M
x

�
2

; x2 ¼ 2

9

N3

Λ
ð30Þ

8For any choice of Λ > 0, Eq. (22) determines a value of a2Λ
and thus for this value of a2Λ, Eqs. (23) determine the location of
the triple root and enclosed mass.

9The possibility that there exist two roots both of multiplicity 2
it is not compatible with Λ > 0 and a2 ≠ 0.

10If r0 is a root of cðrÞ ¼ 0, then via Cardano’s method we
set r0 ¼ uþ v and introduce ðα; γÞ so that α ¼ u3; γ ¼ v3. In
this representation r0 is a root of cðrÞ ¼ 0, provided αγ ¼ ð− c1

3
Þ3

and αþ γ þ c0 ¼ 0 and thus ðα; γÞ are the roots of
x2 þ c0xþ ð− c1

3
Þ3 ¼ 0, x ∈ R. If Δ̂ is the discriminant of this

equation, then the requirement DðΔ0rÞ > 0 implies Δ̂ < 0 and

thus 2α ¼ −c0 þ i
ffiffiffiffiffiffiffi
jΔ̂j

q
while γ is the complex conjugate of α. In

polar representation, α ¼ ρ̂eiϑ̂ where ρ̂ and ϑ̂ are as in (29) with
the angle ϑ̂ measured counterclockwise from the positive real
axis. The three real roots of Δ0ðrÞ ≔ − 4Λ

3
cðrÞ ¼ 0 are then the

three distinct fractional powers: α
1
3 þ γ

1
3 which in polar repre-

sentations are as in (28).
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and if we assume M > 0, the roots in (28) can be
approximated by

r̂1 ¼
ffiffiffi
3

2

r
1ffiffiffiffi
Λ
p

�
1 −

M
ffiffiffiffi
Λ
p
ffiffiffi
6
p þO

�
M
x

�
2
�
;

r̂2 ¼ −
ffiffiffi
3

2

r
1ffiffiffiffi
Λ
p

�
1þM

ffiffiffiffi
Λ
p
ffiffiffi
6
p þO

�
M
x

�
2
�
;

r̂3 ¼ M

�
1þO

�
M
x

�
2
�
: ð31Þ

Thus two roots are positive and one is negative, an expected
conclusion based on the structure of the equationΔ0ðrÞ ¼ 0
for positive M. Upon substituting r̂1 or r̂2 into the right-
hand side of (26), we obtain a negative value for a2 and thus
r̂1 or r̂2 cannot be the location of the double root. However,
the choice r̂3 gives a2 ¼ M2ð1þOðΛM2ÞÞ which is
compatible with the constraints11 in (27). Thus in the
regime M2Λ ≪ 1 and a2Λ ≪ 1, there is the possibility
of the occurrence of a double root at the value r̂3 ≃M
provided that a2 ¼ M2ð1þOðΛM2ÞÞ.
In order to complete the picture regarding the formation

of double roots, we examine the case where M approaches
the limiting value x from below. Recalling that x2 is defined
in (30), and settingM ¼ xð1 − ϵÞ with 0 < ϵ ≪ 1 then (28)
in this regime yields the approximated roots

ϑ̂ ¼ π −
ffiffiffiffiffi
2ϵ
p

; ϵ > 0 ð32Þ

r̂1¼
1ffiffiffiffiffiffi
2Λ
p

�
1−

ffiffiffiffiffi
2ϵ

3

r
þOðϵÞ

�
;

r̂2¼
2ffiffiffiffiffiffi
2Λ
p ½−1þOðϵÞ�;

r̂3¼
1ffiffiffiffiffiffi
2Λ
p

�
1þ

ffiffiffiffiffi
2ϵ

3

r
þOðϵÞ

�
: ð33Þ

However, r̂2 cannot be a double of ΔðrÞ ¼ 0, since the
resulting a2 turns out to be negative. For the other two roots
we get a2 ¼ ð4ΛÞ−1ð1þOðϵÞÞ which suggests that within
our approximation, ðr̂1; r̂3Þ could be the location of a
double root for ΔðrÞ ¼ 0. In summary therefore and for
values of M2 approaching the scale Λ−1 from below, there
is the possibility of the occurrence of a double root in
ΔðrÞ ¼ 0 at cosmological length scales.
We conclude this section by comparing the results

derived so far with known results valid for the Reissner–
Nordstrom–de Sitter family of spacetimes. This family was
originally discovered by Kotller [29] but also appears as a
special case of Carter’s family of metrics derived in [3,4]. It

has been widely discussed in the literature and for proper-
ties and references, see for instance [30–32].
In a suitable set of spherical coordinates, the global

structure of this family is determined by the function Δ̂ðrÞ
defined by

FðrÞ ¼ 1 −
2M
r
þQ2

r2
−
Λ
3
r2 ¼ Δ̂ðrÞ

r2
;

Δ̂ðrÞ ≕−
Λ
3
r4 þ r2 − 2MrþQ2: ð34Þ

This Δ̂ðrÞ can be obtained from Eq. (5) by taking NðrÞ ≔ 1

and replacing a2 by Q2 with the latter interpreted as the
electric charge in the solution. Therefore the results of this
section are also applicable for the Reissner–Nordstrom–de
Sitter family of spacetimes.
Assuming Λ > 0 and Q2 ≠ 0, it is seen from Eqs. (19)

and (22) that Δ̂ðrÞ ¼ 0 admits a triple positive root
provided that ðΛ;M;Q2Þ obey the conditions: 9M2Λ ¼ 2

and 4ΛQ2 ¼ 1. These conditions agree with those obtained
in [30,31] and in the terminology of [31], this case is
referred to as the “ultra extreme” Reissner–Nordstrom–de
Sitter spacetime. Setting NðrÞ ¼ 1 and replacing a2 by Q2

in (13), we find that in the limit Q2Λ ≪ 1, the equation
Δ̂ðrÞ ¼ 0 has three distinct positive real roots provided that

Q2½1þOðQ2ΛÞ2Þ� < M2 <
1

9Λ
½1þ 3Q2ΛþOðQ2ΛÞ2Þ�

ð35Þ
which to the required order agrees with the results in [31].
For M2 away from these domains, but still within the
regime Q2Λ ≪ 1, a Reissner–Nordstrom–de Sitter space-
time admits only a cosmological horizon, referred to in [31]
as the generic naked singularity case. For particular values
ðΛ;M;Q2Þ, the equation Δ̂ðrÞ ¼ 0 admits two positive
roots with the one having multiplicity 2. These configu-
rations describe extreme Reissner–Nordstrom–de Sitter
spacetimes where either the inner and outer black hole
horizons coincide or the outer horizon coincides with the
cosmological horizon. Under the conditions M2Λ ≪ 1 and
Q2Λ ≪ 1 our results show that the first possibility occurs
under the condition Q2 ¼ M2ð1þOðM2ΛÞÞ, while the
second possibility requires M2Λ ∼ 1.
Recently, we became aware of a thesis [33] written by

one of the authors in [23], where a detailed analysis of the
roots of the equation ΔðrÞ ¼ 0 is presented. The starting
point in [33] is the quartic polynomial

PðxÞ ¼ −x4þ 3x2 − 2βxþ γ;

r¼ σx; β ¼ 3M
Λσ3

; γ ¼ 3a2

Λσ4
; σ ¼

�
N
Λ

�1
2

;

ð36Þ

11The analysis for the M < 0 case yields similar results except
that now in (31) two of the roots are negative and one is positive.
The interpretation of these results is of course identical to that in
the case of M > 0.
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which is equivalent to the polynomial ΔðrÞ in (5). The
formulas (9) and (10) imply that the discriminants of PðxÞ
and its derivative P0ðxÞ are

DðPxÞ ¼ −16.27
�
β4 − ð4γ þ 1Þβ2 þ 16

27
γ3 þ 8

3
γ2 þ 3γ

�
;

DðP0xÞ ¼ −27.48½β2 − 2� ð37Þ
and in [28], an analysis of the roots β2−ðγÞ; β2þðγÞ of the
equationDðPxÞ ¼ 0 has been made. It is shown that as long
as M > 0 and γ ∈ ½0; 3

4
�, then DðPxÞ > 0 provided that

β2−ðγÞ < β2 < β2þðγÞ and this condition is the analogue of
our Eq. (14). The condition thatDðP0xÞ ¼ 0 requires β2 ¼ 2
which is identical to our Eq. (19) which resulted upon
imposing DðΔ0rÞ ¼ 0. We have checked that the conclu-
sions reached in [33] are in accord with the results obtained
in this section (within the limits of the approximation
employed in this work). The advantage of the approach in
[33] lies in the simple form of the polynomial PðxÞ that
allowed an analytical treatment of the roots of the equation
DðPxÞ ¼ 0 in terms of the parameters ðβ; γÞ. The latter
are, however, complicated expressions of the parameters
ðΛ;M; a2Þ. In contrast, in this work we strived to obtain
conditions upon ðΛ;M; a2Þ so that a Kerr–de Sitter space-
time could be employed to model astrophysical sources;
naturally therefore our analysis prompted a limited region
of the parameter space.
Finally in [16], by a combination of analytical and

numerical methods, conditions upon ðΛ;M; a2Þ have found
that a Kerr–de Sitter spacetime describes a black hole
embedded within two cosmological horizons. Although
qualitatively the results in [14] agree with those obtained
here, due to different methods and approximations no
further comparison can be made.

IV. DISCUSSION

In thiswork,wehave reexamined theKerr–deSitter family
of spacetimes and the results add complementary insights
on this structurally rich family of spacetimes. The conclu-
sion that whenever a2Λ ≪ 1 and a2½1þOða2ΛÞ2Þ� <
M2 < 1

9Λ ½1þ 2a2ΛþOða2ΛÞ2Þ�, then a Kerr–de Sitter
metric describes a black hole within a pair of cosmological
horizons illustrates the role of a positive cosmological
constant upon the black hole structure. When M2

approaches a2 from above, the inner and outer black hole
horizons tend to coalesce, while at the other extreme, i.e. as
M2 approaches the limiting length scale Λ−1 from below,
the outer horizon tends to coalesce with the cosmological
horizon. These conclusions show that a nonvanishing
positive cosmological constant sets a limit on the black
hole size in accord with results obtained in [10–12].
Even though our results juxtapose the Kerr–de Sitter

family of spacetimes with the familiar Kerr family, in
addition they offer further insights on the global structure

of these spacetimes. Starting from a local Boyer-Lindquist
ðt;φ; r; ϑÞ set of coordinates with ri < r < riþ1 where
ri; riþ1 are two consecutive zeros of ΔðrÞ, then in a set
of ingoing Finkelstein coordinates ðv; φ ; r; ϑÞ defined by

dv ¼ dtþ Iðr2 þ a2Þ
Δr

dr; dφ ¼ dφþ Ia
Δr

dr ð38Þ

the Kerr–de Sitter metric in (1) takes the form

g ¼ −
Δr − a2Δϑsin2ϑ

I2ρ2
dv2 þ 2

I
dvdr − 2

a
I
sin2ϑdφ dr

− 2
asin2ϑ½ðr2 þ a2ÞΔϑ − Δr�

I2ρ2
dvdφ þ ρ2

Δϑ
dϑ2

þ Δϑðr2 þ a2Þ2 − Δra2sin2ϑ
I2ρ2

sin2ϑdφ 2: ð39Þ

This g is now regular over points where ΔðrÞ ¼ 0 and by
allowing the coordinates ðv; rÞ to run over the entire real
line, an extension of the Kerr–de Sitter metric is obtained.
In these ðv; φ ; r; ϑÞ coordinates, the translational ξt and
rotational ξφ Killing fields take the form ξt ¼ ∂

∂u, ξφ ¼ ∂
∂ φ 

and the equation gðξt; ξtÞ ¼ 0 shows the existence of
nontrivial ergospheres. Their properties depend upon the
nature of the zeros of ΔðrÞ and their significance will be
discussed elsewhere. Killing horizons are generated by the
Killing field ξ̂i ¼ ξt þ Ωiξφ where as in the case of Kerr,Ωi

are appropriate constants. These fields become null pre-
cisely over the r ¼ ri hypersurface and depending upon the
values of ðΛ;M; a2Þ a Kerr–de Sitter spacetime may
contain up to four Killing horizons.12 The maximal
extension of a Kerr–de Sitter spacetime is obtained by
introducing a set of outgoing Finkelstein coordinates and
joining together these incomplete spacetimes in the same
manner as for the case of a Kerr spacetime (see for instance
[4,34]). Two-dimensional conformal diagrams describing
the causal structure of the rotation axis can be found in
Refs. [9,23,24], while in [23] conformal diagrams for two-
dimensional sections of the Kerr–de Sitter are analyzed.
Finally and in view of the comparison between the
functions ΔðrÞ and Δ̂ðrÞ, the horizon structure between
a Kerr–de Sitter and a Reissner–Nordstrom–de Sitter
spacetime exhibit similarities. Of course the singularity
structure in these spacetimes exhibits different features.

ACKNOWLEDGMENTS

We thank Majd Abdelqader for discussions related to
this work and for sharing with us his expertise on the
invariant representations of the parameters in the Kerr–de

12Promoting these Killing horizons to event horizons is subtle.
For some arguments in that direction see [9].

GLOBAL STRUCTURE OF KERR–DE SITTER SPACETIMES PHYSICAL REVIEW D 92, 084003 (2015)

084003-7



Sitter metric. T. Z. thanks the Department of Physics at
Queen’s University for hospitality during a sabbatical
year. The research of K. L. was supported in part by a
grant from the Natural Sciences and Engineering Research

Council of Canada, while the research of T. Z. was
supported in part by CONACyT Grant No. 234571 and
by a CIC Grant from the University of Michoacana,
Mexico.

[1] N. Straumann, The history of the cosmological constant
problem, arXiv:gr-qc/0208027.

[2] D. Giulini and N. Straumann, Einstein’s impact on the
physics of the twentieth century, arXiv:gr-qc/0507107.

[3] B. Carter, The commutation property of a stationary,
axisymmetric system, Commun. Math. Phys. 17, 233
(1970).

[4] B. Carter, in Black Holes (Gordon and Breach, New York,
1973).

[5] L. B. Szabados and P. Tod, A positive Bondi-type mass in
asymptotically de Sitter spacetimes, arXiv:1505.06637.

[6] P. T. Chruściel and G. Nagy, The mass of space-like
hypersurfaces in asymptotically anti-de Sitter space-times,
Adv. Theor. Math. Phys. 5, 697 (2002).

[7] M. Abdelqader and K. Lake, Invariant characterization of
the Kerr spacetime: Locating the horizon and measuring the
mass and spin of rotating black holes using curvature
invariants, Phys. Rev. D 91, 084017 (2015).

[8] D. N. Page and A. A. Shoom, Local Invariants Vanishing
on Stationary Horizons: A Diagnostic for Locating Black
Holes, Phys. Rev. Lett. 114, 141102 (2015).

[9] G.W. Gibbons and S. W. Hawking, Cosmological event
horizons, thermodynamics, and particle creation, Phys. Rev.
D 15, 2738 (1977).

[10] T. Shiromizu, K. Nakao, H. Kodama, and K. Maeda,
Can large black holes collide in de Sitter space-time? An
inflationary scenario of an inhomogeneous universe, Phys.
Rev. D 47, R3099, (1993).

[11] S. A. Hayward, T. Shiromizu, and K. Nakao, A cosmologi-
cal constant limits the size of black holes, Phys. Rev. D 49,
5080 (1994).

[12] M. E. G. Clement, M. Reiris, and W. Simon, The area-
angular momentum inequality for black holes in cosmo-
logical spacetimes, Classical Quantum Gravity 32, 145006
(2015).

[13] A. Ashtekar, B. Bonga, and A. Kesavan, Asymptotics with a
positive cosmological constant: I. Basic framework,
Classical Quantum Gravity 32, 025004 (2015); Asymptotics
with a positive cosmological constant. II. Linear fields, on
de Sitter spacetime, Phys. Rev. D 92, 044011 (2015); V. S.
Manko and H. Garcia-Compean, Nondisk geometry of r ¼
0 in Kerr-de Sitter and Kerr-Newman-de Sitter spacetimes,
ibid. 90, 047501 (2014); D. Markovic and S. L. Shapiro,
Gravitational collapse with a cosmological constant, ibid.
61, 084029 (2000).

[14] Z. Stuchlik, G. Bao, E. Ostgaard, and S. Hledik, Kerr–
Newman–de Sitter black holes with a restricted repulsive
barrier of equatorial photon motion, Phys. Rev. D 58,
084003 (1998).

[15] Z. Stuchlik and S. Hledik, Equatorial photon motion in the
Kerr-Newman spacetimes with a non-zero cosmological
constant, Classical Quantum Gravity 17, 4541 (2000).

[16] Z. Stuchlik and P. Slany, Equatorial circular orbits in the
Kerr-de Sitter space-times, Phys. Rev. D 69, 064001 (2004).

[17] P. C. Poudel and U. Khanal, Effective potential and geodesic
motion in Kerr-de Sitter space-time, arXiv:1309.1685.

[18] T. Zannias, Properties of causal geodesics on a Kerr-(anti)
de Sitter spacetime (in preparation).

[19] G.W. Gibbons, H. Lu, D. N. Page, and C. N. Pope, The
general Kerr-de Sitter metrics in all dimensions, J. Geom.
Phys. 53, 49 (2005).

[20] G. V. Kraniotis, Gravitational lensing and frame dragging of
light in the Kerr-Newman and the Kerr-Newman-(anti) de
Sitter black hole spacetimes, Gen. Relativ. Gravit. 46, 1818
(2014).

[21] G. V. Kraniotis, Precise analytic treatment of Kerr and
Kerr-(anti) de Sitter black holes as gravitational lenses,
Classical Quantum Gravity 28, 085021 (2011).

[22] G. V. Kraniotis, Frame-dragging and bending of light in
Kerr and Kerr-(anti) de Sitter spacetimes, Classical Quan-
tum Gravity 22, 4391 (2005).

[23] P. T. Chruściel, Christa R. Ölz, and S. J. Szybka, Space-time
diagrammatics, Phys. Rev. D 86, 124041 (2012).

[24] S. Akcay and R. A. Matzner, Kerr-de Sitter universe,
Classical Quantum Gravity 28, 085012 (2011).

[25] This package runs within Maple. The GRTensorII software
and documentation is distributed freely from the address
http://grtensor.org.

[26] K. Lake and T. Zannias, Remarks on the global structure
of Kerr-anti de Sitter spacetimes (in preparation).

[27] D. Eberly, Low-degree polynomial roots, http://www
.geometrictools.com.

[28] V. V. Prasolov, Polynomials (Springer-Verlag, Berlin, 2004).
[29] F. Kottler, Über die physikalischen Grundlagen der

Einsteinschen Gravitationstheorie, Ann. Phys. (Leipzig)
56, 401 (1918).

[30] L. J. Romans, Supersymmetric, cold and lukewarm black
holes in cosmological Einstein-Maxwell theory, Nucl. Phys.
B383, 395 (1992).

[31] D. R. Brill and S. A. Hayward, Global structure of a black
hole cosmos and its extremes, Classical Quantum Gravity
11, 359 (1994).

[32] K. Lake, Reissner-Nordstrom-de Sitter metric, the third law,
and cosmic censorship, Phys. Rev. D 19, 421 (1979).

[33] Christa R. Ölz, The global structure of Kerr de Sitter
metrics, Diplomarbeit, Univ. Wien, 2013.

[34] B. Carter, Global structure of the Kerr family of gravita-
tional fields, Phys. Rev. 174, 1559 (1968).

KAYLL LAKE AND THOMAS ZANNIAS PHYSICAL REVIEW D 92, 084003 (2015)

084003-8

http://arXiv.org/abs/gr-qc/0208027
http://arXiv.org/abs/gr-qc/0507107
http://dx.doi.org/10.1007/BF01647092
http://dx.doi.org/10.1007/BF01647092
http://arXiv.org/abs/1505.06637
http://dx.doi.org/10.1103/PhysRevD.91.084017
http://dx.doi.org/10.1103/PhysRevLett.114.141102
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1103/PhysRevD.47.R3099
http://dx.doi.org/10.1103/PhysRevD.47.R3099
http://dx.doi.org/10.1103/PhysRevD.49.5080
http://dx.doi.org/10.1103/PhysRevD.49.5080
http://dx.doi.org/10.1088/0264-9381/32/14/145006
http://dx.doi.org/10.1088/0264-9381/32/14/145006
http://dx.doi.org/10.1088/0264-9381/32/2/025004
http://dx.doi.org/10.1103/PhysRevD.92.044011
http://dx.doi.org/10.1103/PhysRevD.90.047501
http://dx.doi.org/10.1103/PhysRevD.61.084029
http://dx.doi.org/10.1103/PhysRevD.61.084029
http://dx.doi.org/10.1103/PhysRevD.58.084003
http://dx.doi.org/10.1103/PhysRevD.58.084003
http://dx.doi.org/10.1088/0264-9381/17/21/312
http://dx.doi.org/10.1103/PhysRevD.69.064001
http://arXiv.org/abs/1309.1685
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://dx.doi.org/10.1007/s10714-014-1818-8
http://dx.doi.org/10.1007/s10714-014-1818-8
http://dx.doi.org/10.1088/0264-9381/28/8/085021
http://dx.doi.org/10.1088/0264-9381/22/21/001
http://dx.doi.org/10.1088/0264-9381/22/21/001
http://dx.doi.org/10.1103/PhysRevD.86.124041
http://dx.doi.org/10.1088/0264-9381/28/8/085012
http://grtensor.org
http://grtensor.org
http://www.geometrictools.com
http://www.geometrictools.com
http://www.geometrictools.com
http://dx.doi.org/10.1016/0550-3213(92)90684-4
http://dx.doi.org/10.1016/0550-3213(92)90684-4
http://dx.doi.org/10.1088/0264-9381/11/2/008
http://dx.doi.org/10.1088/0264-9381/11/2/008
http://dx.doi.org/10.1103/PhysRevD.19.421
http://dx.doi.org/10.1103/PhysRev.174.1559

