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Redshift-space distortions in galaxy surveys happen along the radial direction, breaking statistical
translation invariance. We construct estimators for radial distortions that, using only fast fourier transforms
(FFTs) of the overdensity field multipoles for a given survey geometry, compute the power spectrum
monopole, quadrupole and hexadecapole, and generalize such estimators to the bispectrum. Using realistic
mock catalogs we compare the signal to noise of two estimators for the power spectrum hexadecapole that
require different number of FFTs and measure the bispectrum monopole, quadrupole and hexadecapole.
The resulting algorithm is very efficient, e.g. the BOSS survey requires about 3 min for l ¼ 0; 2; 4 power
spectra for scales up to k ¼ 0.3 hMpc−1 and about 15 additional min for l ¼ 0; 2; 4 bispectra for all scales
and triangle shapes up to k ¼ 0.2 hMpc−1 on a single core. The speed of these estimators is essential as it
makes possible for one to compute covariance matrices from large number of realizations of mock catalogs
with realistic survey characteristics, and paves the way for improved constraints of gravity on cosmological
scales, inflation and galaxy bias.

DOI: 10.1103/PhysRevD.92.083532 PACS numbers: 98.80.-k

I. INTRODUCTION

Redshift-space distortions [1,2] of galaxy clustering are
key in understanding the three-dimensional distribution of
large-scale structure and are also a major probe for
constraining gravity on cosmological scales, as evidenced
in recent work [3–10]. Such distortions change the Fourier
modes from their undistorted real-space values depending
on the orientation of the wave vectors with respect to the
line of sight. In modern era surveys with large solid angles,
the line of sight is significantly space dependent (as the
radial direction varies over the sky), which makes Fourier-
space analysis nontrivial beyond the lowest multipole, the
monopole.
To see this we recall that redshift-space positions s are

given in terms of real-space positions x by

s ¼ x − fx̂ðu · x̂Þ; ð1Þ

where f ¼ d lnDþ=d ln a in terms of the linear growth
factor Dþ and scale factor a, and the peculiar velocity
v ¼ −Hfu with H ¼ d ln a=dτ the comoving Hubble
constant (and τ conformal time). This means that in linear
perturbation theory the redshift-space density fluctuations
are given by

δsðxÞ ¼ δðxÞ þ f∇ · ½x̂ðu · x̂Þ� ð2Þ

or δs ¼ δþ fð2ur=rþ ∂rurÞ which when the solid angle
of the survey is small enough (the so-called plane-parallel
approximation, x̂ → ẑ), goes to δsðxÞ ¼ δðxÞ þ f∇zuz,

leading to δsðkÞ ¼ ð1þ fμ2ÞδðkÞ in Fourier space [1].
Using that in linear theory δ ¼ ∇ · u, we can also write

δsðxÞ ¼
�
1þ f

�
∂2
r þ

2

r
∂r

�
∇−2

�
δðxÞ≡DsδðxÞ ð3Þ

which gives the form of the linear redshift-space distortion
operatorDs. A fundamental property of radial distortions is
that, unlike the plane-parallel case, the reshift-space map
does not commute with translations (as the observer defines
a privileged location) and thusDs is not an eigenfunction of
plane waves, the effect of distortions on a mode is not an
eigenvalue (1þ fμ2) anymore, and as a result the Fourier
power spectrum is no longer diagonal [11]. That is,

hδsðk1Þδsðk2Þi ¼ Pðk1;k2Þ ð4Þ

with Pðk1;k2Þ only becoming diagonal in the plane-
parallel limit, when Pðk1;k2Þ → Pðk1ÞδDðk12Þ with
k12 ¼ k1 þ k2. The fact that Pðk1;k2Þ is not diagonal
is directly related to the space-dependent unit vectors in
Eq. (2) which makes Ds in Fourier space an integral
operator inducing mode coupling even in linear theory
[12]. While in principle such a matrix contains all the
information, it is not clear how to make simple use of it.
One would like to condense all the information into a set of
multipoles as a function of a scalar k as in the plane-parallel
limit but there appears no simple way to do so.
Of course, radial distortions preserve isotropy about the

observer and thus spherical harmonics become a natural
basis for angular modes. Spherical harmonics transform
alternatives to Fourier analysis exist and are well known, at*rs123@nyu.edu
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least for the power spectrum (e.g. [11,13–15]), although
their application to surveys is not done as often due to their
computational cost. For this reason in this paper we
concentrate on Fourier analysis and how to tackle fast
estimation of redshift-space power spectrum and bispec-
trum multipoles in the presence of radial distortions.
The plan for the paper is as follows. In Sec. II Awe now

discuss a slight generalization of the power spectrum and
bispectrum estimators for “local” regions in space where
the fluctuations can be taken to be approximately sta-
tistically homogeneous (and thus these local statistics can
be taken as diagonal). From these in Secs. II B and II C we
build multipoles estimators for the power spectrum and
bispectrum respectively, as if each of these regions is in the
plane-parallel approximation, giving us estimators that
apply to the general case of radial distortions. In Sec. III
we discuss the application to galaxy surveys and in Sec. IV
we conclude.

II. DISTORTIONS ESTIMATORS

A. Local estimators

Since in the presence of radial redshift-space distortions
the resulting redshift-space density field is no longer
statistically homogeneous, it makes sense to define a local
spectrum density estimator at x,

P̂localðk;xÞ≡
Z

d3x12
ð2πÞ3 δsðxþw1Þδsðxþw2Þe−ik·x12 ; ð5Þ

where the wi are the coordinates of the xi from the center of
mass of the pair x ¼ ðx1 þ x2Þ=2, that is xi ¼ xþ wi and
x12 ¼ x1 − x2. Therefore w1 ¼ −x12=2, w2 ¼ x12=2.
Equation (5) is the Fourier transform of the local contri-
bution at x to the correlation function at separation x12. The
local power spectrum density is real but not positive
definite.
We can write Eq. (5) in terms of Fourier coefficients,

P̂localðk;xÞ≡
Z

d3qδsðkþq=2Þδsð−kþq=2Þeiq·x: ð6Þ

Integrating Eq. (6) over space the local power density is
simply

Z
d3x
ð2πÞ3 P̂localðk;xÞ ¼ jδsðkÞj2 ð7Þ

that is, the standard power spectrum estimator when it
makes sense to average over space (when translation
invariance holds). Equation (6) has an expectation value,

hP̂localðk;xÞi ¼
Z

d3qPðkþ q=2;−kþ q=2Þeiq·x; ð8Þ

where we have used the fact that the power spectrum in the
presence of radial distortions is no longer diagonal due to
the loss of statistical homogeneity or translation invariance.
In the case that there is statistical translation invariance
(e.g. in the plane-parallel limit), Pðkþ q=2;−kþ q=2Þ ¼
PðkÞδDðqÞ and we have that hP̂localðk;xÞi ¼ PðkÞ, as
expected. But note that in general, hP̂localðk;xÞi contains
the same information as the matrix Pðk1;k2Þ, as the latter
can be recovered from the former by a Fourier transform.
The advantage of the former now becomes obvious, as
there is a trace of real space (and thus line of sight) that can
be used to take multipoles and thus compress the informa-
tion on redshift distortions in a similar way as in the plane-
parallel limit, as we discuss in the next section.
We can now extend these definitions to write down a

local bispectrum estimator (k3 ¼ −k12)

B̂local
123 ðxÞ≡

Z
d3x13
ð2πÞ3

d3x23
ð2πÞ3 e

−iðk1·x13þk2·x23Þ×
Y3
i¼1

δsðxþwiÞ;

ð9Þ

where the wi are the vectors from the centroid of the
triangle x to the vertices xi, i.e. x ¼ ðx1 þ x2 þ x3Þ=3with
xi ¼ xþ wi and xij ≡ xi − xj. The centroid coordinates of
the vertices are w1¼ 2x13=3−x23=3, w2¼ 2x23=3−x13=3,
and w3 ¼ −x13=3 − x23=3. In terms of Fourier coefficients,

B̂local
123 ðxÞ ¼

Z
d3qe−iq·x

Y3
i¼1

δsðki þ q=3Þ ð10Þ

with expectation value

hB̂local
123 ðxÞi¼

Z
d3qBðk1þq=3;k2þq=3;k3þq=3Þe−iq·x

ð11Þ

which involves the (nondiagonal) bispectrum [note the
similarity with Eq. (8)]. Again, as in the power spectrum
case, when it does make sense to spatially average, we have

Z
d3x
ð2πÞ3 B̂

local
123 ðxÞ ¼

Y3
i¼1

δsðkiÞ ð12Þ

the standard bispectrum estimator for a statistically homo-
geneous field.

B. Power spectrum multipoles

From Eq. (6) we can build the natural estimator of power
multipoles by using x̂ as the line-of-sight direction to the
pair of points,
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P̂lðkÞ≡ ð2lþ 1Þ
Z

dΩk

4π

Z
d3x
ð2πÞ3 P̂localðk;xÞLlðk̂ · x̂Þ;

ð13Þ

where Ll denotes the Legendre polynomials, and by
angular integration we actually mean integration over a
thin shell in Fourier space centered at k, for any function F

Z
dΩk

4π
FðkÞ≡

Z
k

d3q
Nk

FðqÞ; ð14Þ

where Nk ≡ R
k d

3q ¼ 4πk2δk is the volume of the shell in
k-space, with δk the bin size. Equation (13) can be rewritten
using Eq. (5) as

P̂lðkÞ ¼ ð2lþ 1Þ
Z

dΩk

4π

Z
d3x1
ð2πÞ3

d3x2
ð2πÞ3 e

−ik·x12Llðk̂ · x̂Þ

× δsðx1Þδsðx2Þ: ð15Þ

This natural estimator is for l ¼ 2 precisely the same as the
so-called Yamamoto estimator [16]. The complication with
such estimators is well known, i.e. they are expensive to
compute beyond l ¼ 0 because the integrals in Eq. (15) do
not decouple into a product of Fourier transforms due to
the x dependence in Llðk̂ · x̂Þ, and thus when discretized
the integrals become double sums that are quadratic in the
number of grid points (or galaxies), leading to an N2

bottleneck.
Given this complication, it has been proposed [7,17] to

make the replacement for the line-of-sight definition,

Llðk̂ · x̂Þ → Llðk̂ · x̂1Þ ð16Þ

to make the two integrals (or sums in the discrete case)
factorize. Still, without further treatment, one of the
integrals (or sums) which contains the Legendre polyno-
mial is not of Fourier form due to the k̂ dependence for
l > 0. While faster than the natural estimator which
requires dealing with pairs of points, this is still expensive
to compute compared to the power spectrum monopole
which can just be computed with a single Fourier trans-
form. The replacement in Eq. (16) has recently been found
to be rather accurate compared to the natural estimator by
[18], and the latter accurate compared to the full description
of the power spectrum including wide-angle effects [19], so
it is of importance to find a fast way to compute it.
One of the main points of this paper is to point out that

while the replacement in Eq. (16) cannot be written as a
product of Fourier transforms, it can in fact be written as the
sum of a product of Fourier transforms, and as a result of
this, estimators can be built that are computable using a
handful of FFTs. Indeed, as a result of this replacement,
Eq. (15) becomes the cross correlation of the local multi-
pole overdensity with the local monopole [7,17,18] where

δlðkÞ≡
Z

d3x
ð2πÞ3 e

−ik·xδsðxÞLlðk̂ · x̂Þ ð17Þ

which in fact can be computed by FFTs by simply
factorizing out the k̂-dependence, e.g. for l ¼ 2

δ2ðkÞ ¼
3

2
k̂ik̂jQijðkÞ −

1

2
δ0ðkÞ ð18Þ

with

QijðkÞ≡
Z

d3x
ð2πÞ3 e

−ik·xδsðxÞx̂ix̂j ð19Þ

which depends on volume shape through the cosines x̂i [as
the integral in Eq. (19) for a survey becomes over the region
where δs is observed; see Sec. III below]. Since this is a
symmetric tensor only six FFTs are needed to compute it in
the absence of any symmetry of the survey geometry, i.e.

δ2 ¼
3

2
½k̂2xQxx þ k̂2yQyy þ k̂2zQzz

þ 2k̂xk̂yQxy þ 2k̂yk̂zQyz þ 2k̂zk̂xQzx� −
1

2
δ0: ð20Þ

In the plane-parallel limit, all Qij vanish but Qzz and we
recover the standard plane-parallel results. For l ¼ 4 we
have, similarly

δ4ðkÞ ¼
35

8
k̂ik̂jk̂lk̂kQijlkðkÞ −

5

2
δ2ðkÞ −

7

8
δ0ðkÞ ð21Þ

with

QijlkðkÞ≡
Z

d3x
ð2πÞ3 e

−ik·xδsðxÞx̂ix̂jx̂lx̂k ð22Þ

and so on. Since Qijlk is a fully symmetric tensor, in the
absence of any symmetries, one needs to compute 15 FFTs
to fully characterize it,

δ4 ¼
35

8
½k̂4xQxxxx þ ð3Þ cycþ 4k̂3xk̂yQxxxy þ ð6Þ cyc

þ 6k̂2xk̂
2
yQxxyy þ ð3Þ cycþ 12k̂2xk̂yk̂zQxxyz

þ ð3Þ cyc� − 5

2
δ2 −

7

8
δ0; ð23Þ

where the number in parentheses denotes how many total
terms belong to each cyclic permutation (and counts the
numbers of FFTs needed). Again, in the plane-parallel
limit, all Qijkl vanish but Qzzzz and we recover the standard
plane-parallel results.
The power spectrum multipoles estimator then would be

[7,17,18]
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P̂lðkÞ ¼ ð2lþ 1Þ
Z

dΩk

4π
δlðkÞδ0ð−kÞ ð24Þ

and thus for l ¼ 0; 2; 4 a total of 1þ 6þ 15 ¼ 22 FFTs
would be needed. Because of N logN scaling even this
many FFTs is still many orders of magnitude faster than the
naive N2 procedure where the Legendre polynomials are
not written in factorized form.
One obvious question that arises is whether one can do

better for the hexadecapole (and higher multipoles) as it is
rather disappointing that one needs so much additional
computational cost (an additional 15 FFTs for l ¼ 4) to
describe a quantity that has rather poor signal to noise
compared to l ¼ 0; 2 at large scales. The answer is that one
can do better by not constraining oneself to a single line of
sight as l > 2 is considered. To see this let us consider the
case l ¼ 4 for definiteness. We go back to the natural
estimator in Eq. (15) and write the fourth-order Legendre
polynomial in terms of quadratic combinations of lower
even multipoles,

L4ðk̂ · x̂Þ ¼
35

18
½L2ðk̂ · x̂Þ�2 −

5

9
L2ðk̂ · x̂Þ −

7

18
ð25Þ

and then we simply split the first term

½L2ðk̂ · x̂Þ�2 → L2ðk̂ · x̂1ÞL2ðk̂ · x̂2Þ ð26Þ

leading to the factorized hexadecapole estimator,

P̂4bðkÞ ¼
35

2

Z
dΩk

4π
jδ2ðkÞj2 − P̂2ðkÞ −

7

2
P̂0ðkÞ ð27Þ

which does not require any additional FFTs over those
already computed for l ¼ 0; 2 and is based on the
autocorrelation of the local quadrupole of overdensities
generated by the redshift-space mapping. As a result of this
split, computing l ¼ 0; 2; 4 requires only 7 FFTs instead of
22, leading to additional computational savings of just over
a factor of 3 by using P̂4b instead of P̂4. In [18] it was found
that the estimator P̂4 in Eq. (24) has a small bias compared
to the natural estimator at large scales; we study the bias of
P̂4b relative to P̂4 and their cosmic variance in Sec. III
below, and find that P̂4 is preferred due to lower cosmic
variance, although the difference might be negligible for
future surveys.
The same line-of-sight split trick can be used for higher

multipoles, in the obvious way. Note that for l ¼ 6
one cannot avoid computing the 15 FFTs, but this also
allows one to compute l ¼ 8 without extra FFTs. In
general each new set of FFTs becomes useful for two
multipoles, as the Legendre polynomials can be split in
quadratic combinations because of the two line of sights
available in a two-point function.

C. Bispectrum multipoles

We now consider the case of the bispectrum. In the plane-
parallel limit, the bispectrum becomes a function of five
variables: the three sides plus two angular variables describ-
ing the orientation of the triangle with respect to the line of
sight. A third angular variable is irrelevant in the sense that it
rotates the triangle about the line of sight, leaving the
redshift-space bispectrum invariant. A convenient way to
handle the plane-parallel case is then to do a spherical
harmonic decomposition with respect to the two relevant
angular variables. Let k1 ≥ k2 ≥ k3 without loss of general-
ity. From the local bispectrum estimator in Eq. (9) we can
then define the multipoles in the radial distortions case by

B̂ðlmÞ
123 ≡ ð2lþ 1Þ

NT
123

Y3
i¼1

Z
ki

d3qiδDðq123Þ

×
Z

d3x
ð2πÞ3 B̂

local
123 ðxÞYlmðθ1;ϕ12Þ; ð28Þ

where the indices 1,2,3 in B̂local
123 now refer to the qi, which

are being averaged over a shell of thickness δk about the
ki, i.e.

R
ki
d3qi ¼

R
NkiðdΩki=4πÞ for thin shells, and

NT
123 ¼

Y3
i¼1

Z
ki

d3qiδDðq123Þ≃ 8π2k1k2k3δk3: ð29Þ

In Eq. (28) we followed [20] where cos θi ≡ q̂i · x̂,
cos θ12 ≡ q̂1 · q̂2 and ϕ12 is the azimuthal angle
of q2 around q1 satisfying cos θ2 ¼ cos θ1 cos θ12−
sin θ1 sin θ12 cosϕ12. Another possible choice of angular
variables are those that describe the orientation of the normal
to the triangle face. However, it has the disadvantage that it is
notwell defined for zero area triangles but this can behandled
separately as for such triangles a Legendre multipole
decomposition is all that is needed as all q̂i differ at most
by a sign (irrelevant for even multipoles).
Here for simplicity we take Legendre multipoles

with respect to the largest side, corresponding to m ¼ 0
multipoles in Eq. (28), that is

B̂ðlÞ
123 ≡ ð2lþ 1Þ

NT
123

Y3
i¼1

Z
ki

d3qiδDðq123Þ

×
Z

d3x
ð2πÞ3 B̂

local
123 ðxÞLlðq̂1 · x̂Þ ð30Þ

which can also be written as

B̂ðlÞ
123 ¼

ð2lþ 1Þ
NT

123

Y3
i¼1

Z
ki

d3qiδDðq123Þ

×
Z

d3xi
ð2πÞ3 δðxiÞe−iqi·xiLlðq̂1 · x̂Þ ð31Þ

ROMÁN SCOCCIMARRO PHYSICAL REVIEW D 92, 083532 (2015)

083532-4



which is obviously in the same “natural” form as for the
power spectrum. We must now deal with the separability of
the estimator, as in the power spectrum case. For l ¼ 2
using x̂ → x̂1 we obtain the factorized estimator for the
bispectrum quadrupole,

B̂ð2Þ
123 ≡ 5

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123

δ2ðq1Þδ0ðq2Þδ0ðq3Þ ð32Þ

and so computing the bispectrum quadrupole only results
in a total factor of 2 over monopole alone, as the
computation of δ2 is negligible in cost with the bispectrum
itself (and is the same ingredient needed for the power
spectrum quadrupole). A similar consideration leads to the
hexadecapole bispectrum estimator,

B̂ð4Þ
123 ≡ 9

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123

δ4ðq1Þδ0ðq2Þδ0ðq3Þ ð33Þ

and the obvious generalization for higher-order multipoles.
As discussed above for the power spectrum, additional
multipole information may be obtained instead by includ-
ing more than one quadrupole field δ2 in Eq. (32) instead of
computing the additional 15 FFTs to build δ4. That is, if for
l ¼ 4 we may use Eq. (31) and Eq. (25) with the split

½L2ðq̂1 · x̂Þ�2 → L2ðq̂1 · x̂1ÞL2ðq̂1 · x̂2Þ ð34Þ

we obtain the alternative hexadecapole bispectrum
estimator,

B̂ð4bÞ
123 ≡ 35

2

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123

δ2ðq1Þδ2ðq̂1;q2Þδ0ðq3Þ

− B̂ð2Þ
123 −

7

2
B̂ð0Þ
123; ð35Þ

where

δ2ðp̂;qÞ≡ 3

2
p̂ip̂jQijðqÞ −

1

2
δ0ðqÞ: ð36Þ

Note that for zero area triangles δ2ðq̂1;q2Þ ¼ δ2ðq2Þ and
thus,

B̂ð4Þ
123 ≡ 35

2

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123

δ2ðq1Þδ2ðq2Þδ0ðq3Þ

− B̂ð2Þ
123 −

7

2
B̂ð0Þ
123 ð37Þ

which is analogous to the power spectrum case Eq. (27). A
disadvantage of the estimator in Eq. (35) is that the extra q̂1
dependence means that the bispectrum estimator is a bit
more costly, as e.g. for l ¼ 4 we must now estimate

Y3
i¼1

Z
ki

d3qiδDðq123Þðq̂1Þiðq̂1Þjδ2ðq1ÞQijðq2Þδ0ðq3Þ ð38Þ

which corresponds to evaluating six bispectra. Since the
cost of evaluating the bispectrum is much more than
evaluating the next set of 15 FFTs of the overdensity
fields in Eq. (23), it is more convenient in this case to avoid
the split in Eq. (34) and instead use Eq. (33).
Another approach would be to use the zero-area triangle

estimator in Eq. (37) for all triangles. Unlike Eq. (33), this
does not need the extra 15 FFTs and it is as fast to estimate.
However, this estimator for general triangles is not a true
multipole, that is, it does not vanish in real space except for
zero area triangles and therefore extracting information
from it about redshift-space distortions may be more
complicated due to degeneracies with the monopole.
However, it may be useful not just for zero area triangles,
but at bit more generally for nearly squeezed or folded
triangles. It is beyond the scope of this paper to explore this
further; in what follows we will consider the more standard
bispectrum multipoles as in Eqs (32) and (33), particularly
in light of the reduced cosmic variance of such estimators
compared to those that require less FFTs as we find below
for the power spectrum multipoles.
Finally, for completeness we briefly mention how to

build the zero-area triangle estimator for l ¼ 6. We split the
sixth-order Legendre polynomial in cubic combinations of
lower-order even polynomials, as we now have three lines
of sight. Using that

L6ðk̂ · x̂Þ¼
77

18
½L2ðk̂ · x̂Þ�3−

7

3
½L2ðk̂ · x̂Þ�2−

7

6
L2ðk̂ · x̂Þþ

2

9

ð39Þ

we simply split the first term

½L2ðq̂1 · x̂Þ�3 → L2ðq̂1 · x̂1ÞL2ðq̂2 · x̂2ÞL2ðq̂3 · x̂3Þ ð40Þ

which leads to

B̂ð6Þ
123 ≡ 1001

18

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123

δ2ðq1Þδ2ðq2Þδ2ðq3Þ

þ 26

15
B̂ð4Þ
123 −

13

10
B̂ð2Þ
123 þ

283

45
B̂ð0Þ
123 ð41Þ

so now with the six FFTs needed for the quadrupole we can
compute up to the l ¼ 6 zero-area triangle bispectrum
multipole, so each set of FFTs is enough for three multi-
poles as there are three lines of sight in a three-point
function.
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III. IMPLEMENTATION IN GALAXY SURVEYS

A. Power spectrum

We now proceed to implementing the above ideas in the
case of a survey geometry, where the galaxy sample is
characterized by Ng galaxies at positions xj and the radial
and angular selection functions by a random catalog with
Nr objects (α≡ Ng=Nr ≪ 1). Each object is given a weight
wj, e.g. the FKP weights [21]. Given the results above, we
write the overdensity monopole

F0ðkÞ≡
�XNg

j¼1

−α
XNr

j¼1

�
wjeik·xj ð42Þ

whereas for the quadrupole we have

F2ðkÞ≡ 3

2
k̂ak̂bQabðkÞ − 1

2
F0ðkÞ ð43Þ

with

QabðkÞ≡
�XNg

j¼1

−α
XNr

j¼1

�
x̂aj x̂

b
jwjeik·xj : ð44Þ

Thus the power spectrum multipoles estimators for
l ¼ 0; 2; 4 are

P̂0ðkÞ ¼
1

I22

�Z
dΩk

4π
jF0ðkÞj2 − N0

�
; ð45Þ

P̂2ðkÞ ¼
5

I22

Z
dΩk

4π
F2ðkÞF�

0ðkÞ; ð46Þ

P̂4ðkÞ ¼
9

I22

Z
dΩk

4π
F4ðkÞF�

0ðkÞ; ð47Þ

P̂4bðkÞ ¼
7

10I22

Z
dΩk

4π
jF2ðkÞj2− P̂2ðkÞ−

7

2
P̂0ðkÞ; ð48Þ

where the standard normalization constant is [21]

I22 ≡ α
XNr

j¼1

n̄ðxjÞw2
j ð49Þ

and the shot noise obtained from the self-pairs in the first
term in Eq. (45)

N0 ≡
�XNg

j¼1

þα2
XNr

j¼1

�
w2
j ð50Þ

with the first term representing the true shot noise of
galaxies, the second that of random objects. Replacing
the true galaxy shot noise by its expectation value

PNg

j¼1 → α
PNr

j¼1 leads to N0 ¼ αð1þ αÞPNr
j¼1 w2

j , the
standard result [21]. However, using the true shot noise
should always be preferred as it uses more information
about the data [22]. Note that in general one would have a
shot noise

Nl ≡
�XNg

j¼1

þα2
XNr

j¼1

�
w2
j

Z
dΩk

4π
Llðk̂ · x̂jÞ ð51Þ

but this vanishes for l > 0.
The implementation of the above sums by FFTs is

straightforward and follows standard practice, e.g. the
objects (galaxies or random) are interpolated to a grid to
obtain a number density estimator n at gridpoints x, so that
for any (tensor) quantity T

�XNg

j¼1

−α
XNr

j¼1

�
Tjeik·xj →

X
x

½ngðxÞ − n̄ðxÞ�TðxÞeik·x;

ð52Þ

where n̄ ¼ αnr and the sum over the gridpoints x is
performed using FFTs. In our implementation we use
fourth-order interpolation to interlaced grids, which has
superb antialiasing properties [23]. Compared to simpler
interpolations, e.g. second-order (cloud in cell), fourth-
order interpolation costs a factor of 8 more in computa-
tional time and interlacing another factor of 2, but this
allows us to go up to the Nyquist frequency without
any significant bias (thus saving a factor of at least 8
due to the reduced size of the FFT to reach the same
physical k). A detailed analysis of interpolation techniques
and their impact on clustering properties will be presented
elsewhere [24].
We now compare the two hexadecapole estimators P̂4

and P̂4b in terms of their expectation value and cosmic
variance. For this purpose we use two sets of mock
catalogs: the Las Damas LRG (Mg < −21.8) DR7 mocks
catalogs [25] (160 realizations) and the PTHalos CMASS
DR11 mocks catalogs [26] (600 realizations). In both cases
we only use their north galactic cup versions. Figures 1
and 2 show the results. We see that while both estimators
agree within the errors on their expectation value, the
cosmic variance of P̂4 is smaller than for P̂4b with the
difference being smaller for the higher redshift and more
dense sample (CMASS). Therefore the more computation-
ally expensive P̂4 is preferred over the cheaper P̂4b. This is
not a very significant shortcoming as P̂4 is still orders of
magnitude faster than traditional N2 estimates.
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B. Bispectrum

The bispectrum multipoles estimator is given by

B̂ð0Þ
123 ¼

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123I33
F0ðq1ÞF0ðq2ÞF0ðq3Þ − Nð0Þ

123;

ð53Þ

where the shot noise term is given by

Nð0Þ
123 ¼

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123I33
½F0ðq1ÞFw

0 ð−q1Þ þ cyc�

−
2

I33

�XNg

j¼1

−α3
XNr

j¼1

�
w3
j ð54Þ

and for higher multipoles we obtain

B̂ðlÞ
123 ¼ ð2lþ 1Þ

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123I33
Flðq1ÞF0ðq2ÞF0ðq3Þ

−NðlÞ
123 ð55Þ

with the shot noise given by (l > 0)

NðlÞ
123 ¼ð2lþ1Þ

Y3
i¼1

Z
ki

d3qi
δDðq123Þ
NT

123I33
½Flðq1ÞFw

0 ð−q1Þ

þF0ðq2ÞFw
lðq̂1;−q2ÞþF0ðq3ÞFw

lðq̂1;−q3Þ�; ð56Þ

where

Fw
lðq̂1;qÞ≡

�XNg

j¼1

þα2
XNr

j¼1

�
w2
je

iq·xjLlðq̂1 · x̂jÞ ð57Þ

and Fw
lðq̂1;q1Þ≡ Fw

lðq1Þ. If desired the estimator in
Eq. (55) can be symmetrized over its arguments in the
obvious way. In the plane-parallel limit, this estimator for
l ¼ 2 reduces to the one in [20], which was used to
measure the bispectrum quadrupole in Nbody simulations.
We can simplify Eq. (56) by assuming the thin-shell

approximation, which leads to

NðlÞ
123 ≃ ð2lþ 1Þ

Z
k1

d3q1
Nk1

Flðq1ÞFw
0 ð−q1Þ

I33

þ ð2lþ 1Þ
X3
i¼2

Llðq̂1 · q̂iÞ
Z
ki

d3qi
Nki

F0ðqiÞFw
lð−qiÞ

I33

−
2

I33

�XNg

j¼1

−α3
XNr

j¼1

�
w3
jδl0: ð58Þ

In computing the bispectrum, an additional complexity
over the power spectrum case is that a search over closed
triangles has to be done [28], enforced by the delta function
in Eqs. (53) and (55). There are many ways to do this; let us
briefly discuss two options that we have found reasonably
efficient and implemented in the past [29–31]. One is to use
a fast (N lnN) algorithm such as QUICKSORT to sort Fourier
coefficients into shells to quickly find q3 ¼ −q12 in shell k3
given q1 in shell k1 and q2 in shell k2. The sorting can be
done once and the results stored in disk when multiple
realizations need to be run (e.g. when running on mock
catalogs) since it only depends on grid and bin size. The
other is to use FFTs themselves to find closed triangles by
using the plane-wave representation of the delta function
and factorizing the estimator in real space, i.e.
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FIG. 1 (color online). The bias ratio b4 ≡ hP̂4bi=hP̂4i between
the two estimators of the hexadecapole (symbols with error bars),
and the ratio of their cosmic variance σ24 ≡ hΔP̂2

4bi=hΔP̂2
4i as a

function of k for the Las Damas LRG (Mg < −21.8) DR7 mock
catalogs.
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FIG. 2 (color online). Sames as Fig. 1 for the PTHalos CMASS
DR11 mock catalogs.
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Y3
i¼1

Z
ki

d3qiδDðq123ÞFl1ðq1ÞFl2ðq2ÞFl3ðq3Þ

¼
Z

d3x
ð2πÞ3 F

ðl1Þ
k1

ðxÞFðl2Þ
k2

ðxÞFðl3Þ
k3

ðxÞ; ð59Þ

where

FðlÞ
k ðxÞ≡

Z
k
d3qeiq·xFlðqÞ ð60Þ

and thus for each bin ki one must do an inverse FFT to

find the FðlÞ
k , and then sum over real space to obtain

the bispectrum for a given k1, k2, k3. This estimator can
be trivially extended to higher-order spectra, as the
trispectrum [32].
Figure 3 shows the results of measuring the bispectrum

for l ¼ 0; 2; 4 for the LasDamas LRG (Mg < −21.8) DR7
mock catalogs for triangles that correspond to
k1 ¼ 0.047 hMpc−1, k2 ¼ 2k1 as a function of the angle
θ between k1 and k2. The bispectrum multipoles were
computed using Eq. (55) with the shot noise correction
given by Eq. (58). We see that the typical dependence on
triangle shape of the reduced bispectrum defined as

QðlÞ
123 ¼

BðlÞ
123

P0ðk1ÞP0ðk2Þ þ P0ðk2ÞP0ðk3Þ þ P0ðk3ÞP0ðk1Þ
ð61Þ

is shared among the three multipoles. This was already
known up to l ¼ 2 in the plane-parallel approximation
[20]. We leave the comparison of these measurements to
theoretical predictions for an upcoming paper.

C. Performance

To get an idea of performance of the estimators
presented here, we now discuss for definiteness run times
of our codes for the northern part of the CMASS sample
in the Baryon Oscillation Spectroscopic Survey [33],
which comprises about Ng ¼ 650; 000 galaxies (and
Nr ≈ 100Ng). All timings in what follows are for a single
processing core. The galaxies and random objects are put
into a Cartesian box of 3.6 h−1Gpc a side and fourth-order
interpolated into interlaced 3603 grids, enough to reach k ¼
0.3 hMpc−1 for the power spectrum and k ¼ 0.2 hMpc−1

for the bispectrum. To give an idea of how far we are from
the plane-parallel approximation, for the DR11 mask
we have

Lxx ≃ 0.50; Lyy ≃ 0.275; Lzz ≃ 0.222;

Lxy ≃ 0.02; Lyz ≃ −0.025; Lzx ≃ −0.24; ð62Þ

where

Lab ≡
PNr

j x̂aj x̂
b
jwjeik·xjPNr

j wjeik·xj
ð63Þ

which shows dominance of the x-direction (corresponding
essentially to the longest direction in which the survey
extends) but significant amplitudes in the other directions
as well. In the plane-parallel approximation Lab becomes
only nonzero in the diagonal corresponding to the line-of-
sight direction.
The galaxies and randoms are interpolated and the 7

FFTs computed. For the galaxies this takes 22 sec, while for
the randoms 210 sec. Computing the additional 15 FFTs
(and interpolations) as well takes about 60 sec in total for
the galaxies, while computing the corresponding FFTs for
Fw
lðqÞ (needed for bispectrum shot noise subtraction)

doubles the timings again (for a total of 44 interpolations
and FFTs). The overdensity fields are constructed and the
l ¼ 0; 2; 4 multipoles from kmin ¼ 0.0052 hMpc−1 up to
kmax ¼ 0.3 hMpc−1 in δk ¼ 0.0052 hMpc−1 bins com-
puted in 2 sec. For the bispectrum we compute monopole
and quadrupole for all triangles with sides between
kmin ¼ 0.0052 hMpc−1 and kmax ¼ 0.209 hMpc−1 in
δk ¼ 0.0052hMpc−1 bins in about 11 min; adding the
hexadecapole yields an additional 5 min. Clearly, this is a
more than adequate performance and can be scaled to
significantly larger data sets with no foreseeable issues (in
fact we have routinely used these algorithms for tens of
billion particle simulations in the plane-parallel case). In
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FIG. 3 (color online). Reduced bispectrum multipoles QðlÞ
123

(l ¼ 0; 2; 4 from top to bottom) for galaxies in the LasDamas
LRG (Mg < −21.8) DR7 mock catalogs. The triangles corre-
spond to k1 ¼ 0.047 hMpc−1, k2 ¼ 2k1 as a function of the angle
θ between k1 and k2.
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addition, most importantly, this performance allows us to
estimate the covariance matrix of these estimators using
∼104 survey realizations with realistic masks and noise
properties, as has been already presented in the past for
smaller surveys [29,34].

IV. CONCLUSIONS

Computing the redshift-space clustering of galaxies is a
key goal of large-scale structure and one of the most
sensitive probes to test gravity and dark energy, bias and
primordial non-Gaussianity. Application to wide surveys
demands defining statistics that characterize the effect of
redshift-space distortions allowing for the angular depend-
ence of the line of sight along which distortions operate.
In this paper, starting from a definition of local estima-

tors that generalize the definition of power spectrum and
bispectrum to the case of lack of statistical homogeneity,
we defined natural estimators for power spectrum and
bispectrum multipoles. In the case of the power spectrum
multipoles, our natural estimator agrees for l ¼ 2 with
[16], while for the bispectrum multipoles it is new. We then
considered slight modifications to these estimators in which
the “center-of-mass line of sight” is allowed to rotate
among the different members of a pair (for the power
spectrum) or triplet (for the bispectrum). As a result of this,
we presented very efficient estimators to calculate the
power spectrum and bispectrum multipoles, which require
only FFTs.
For the power spectrum quadrupole, an additional 6

FFTs are required over the monopole, while for the power

spectrum hexadecapole we presented two estimators, one
that requires an additional 15 FFTs over the quadrupole,
and another one which does not require any additional
FFTs. We implemented both in mock catalogs with realistic
geometries and found that while the two hexadecapole
estimators agree with each other in the mean value, the
more expensive estimator has a somewhat lower cosmic
variance, and thus higher signal to noise. We also showed
first results for the bispectrum l ¼ 0; 2; 4 estimators in
mock catalogs and presented specifics about the perfor-
mance of such estimators for the BOSS survey. Their speed
and scaling makes application to larger future data sets such
as eBOSS, Euclid and DESI quite encouraging. In the near
future we will present detailed studies of the bias of these
estimators when compared to the plane-parallel approxi-
mation (which is always used to make theoretical predic-
tions) as well as their application to the DR12 sample of
BOSS galaxies.
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