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Computations of quantum corrections to the cosmic microwave background spectrum and to scalar field
dynamics during inflation very often take advantage of the “semiclassical” approach, where the metric
fluctuations are simply omitted. On the other hand, a complete computation ought to take into account that
the matter field perturbation and scalar metric perturbation together constitute a single physical degree of
freedom. The question then naturally arises, in which sense the semiclassical approach is an approximation
to the complete calculation, and whether there are specific limits where this is also a good approximation.
We demonstrate this by explicitly computing the leading quantum radiative corrections to the evolution
equation of the mean field (“condensate”) and the Friedmann equations taking into account scalar
perturbations of both the matter field and the metric, and when omitting the latter. We find that the two
agree in the limit H ≪ Mpl, but one is not a limit of the other. We also find that in simple models of
inflation, H=Mpl is not small enough that the two approaches can be said to agree.
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I. INTRODUCTION

The classical inflaton field,1 often considered in generic
models of inflation, should ultimately be identified with the
expectation value (or mean field or one-point function) of
some quantum scalar field. The dynamics of this “order
parameter” (whether composite or fundamental) is then
conveniently described in terms of the quantum effective
action, from which the effective equations of motion arise
through variation with respect to the field.
At tree level, this effective potential is the classical

potential, and the standard textbook slow-roll treatment
applies. This approach has been extremely successful in the
interpretation of cosmological observations, in terms of
different classical potentials [1–6]. Beyond tree level,
quantum effects may however generate corrections to the
Friedmann and scalar field equations. These can be
significant, and in principle include effects from both the
matter field fluctuations and metric perturbations. Because
of gauge symmetry and constraints in the theory, metric and
field scalar perturbations together represent only a single
physical degree of freedom, and in different gauges,
different variables may for convenience be chosen to vanish
while others do not.
We also know that at energy scales far below the Planck

scale, where gravity effects are a priori negligible, one
often simply ignores metric perturbations and proceeds to

do perturbation theory in the matter field fluctuations only.
This semiclassical approach to quantum corrections in
curved space-time has a very long history, and provides
a hugely popular formalism to compute corrections to the
effective potential (such as recently in [7–9]), to the inflaton
equation of motion (see for instance [10–17]), and to the
Friedman equations (for instance [17]), by treating gravity
as a classical background to a quantum field (for standard
texts see [18,19]).
The standard computation of the cosmic microwave

background (CMB) spectrum traditionally considers free
fields, but when computing loop corrections to correlators,
IR problems are encountered (divergences or secular behav-
ior; see for instance [20]). We know that these are unphys-
ical, and will in the full theory be removed by the generation
of effective masses. This is reminiscent of resummations in
finite temperature field theory, where infrared divergences
arise where the correct infrared physics has not been
properly taken into account; in a sense the perturbative
expansion has been carried out around an inappropriate
vacuum (typically a massless propagator). In recent years,
similar formalisms have been adapted to quantum fields in
the context of inflation, and the IR problems were seen to
indeed be unphysical and manageable (see for instance
[13–17,21–27]). Most of these calculations were carried out
in the semiclassical approach, where ambiguities around
renormalization can be readily resolved.
If one were to include metric perturbations, it is possible

that the perturbative nonrenormalizability of gravity would
jeopardize the resummed computation. If one could
establish the semiclassical computation as a well-defined
approximation to the metric-included computation (rather
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than an ad hoc approach), completely resummed and
consistently renormalized semiclassical computations
could be performed within the window of validity and
directly used to describe the metric-included theory.
Our aim in this paper is to compute the quantum

corrected Friedmann and scalar field equations in both
the semiclassical approach and when including the scalar
metric perturbations from first principles, and show to what
extent the former is an approximation to the latter. We
emphasize that our immediate goal is not to reveal
particular models that exhibit very large or observationally
significant quantum corrections. We are concerned with
establishing the relation between the complete result and
the semiclassical one. This may guide future considerations
as to whether a given model is amenable to a semiclassical
treatment. As an aside, to our knowledge computing the
complete leading corrections to both the Friedmann and the
scalar mean field equations has not been done before.

A. “Semiclassical”

The label “semiclassical” has many uses in different
areas of physics; we will adopt a specific terminology,
designed to hopefully prevent confusion:

(i) The semiclassical limit will be to take H=Mpl → 0,
where Mpl is the Planck mass, and H is the Hubble
rate which determines the typical scale of matter
field fluctuations in an inflationary background. This
encodes the weakness of quantum gravity effects,
and the rate of change of field mode frequencies and
hence also adiabaticity. This is the ratio that is
expected to suppress gravitational corrections rela-
tive to nongravitational effects.

(ii) The semiclassical approach (SC) is in our terminol-
ogy the choice of treating gravitational degrees of
freedom classically (no fluctuations), and matter
field degrees of freedom quantum mechanically. It
is a priori distinct from the semiclassical limit. The
semiclassical approach also involves that for the
Friedmann equations, one should take quantum
expectation values of field correlators in the com-
ponents of the energy-momentum tensor, while
leaving the background (Friedmann-Robertson-
Walker) metric unperturbed and classical.

(iii) Closely related to the semiclassical limit is
H=k → 0, where k is the momentum of a given
field mode. These are the very subhorizon modes at
any given time, and are adiabatic since H ≪ ωk. We
will not give this limit a separate name.

(iv) The alternative to all of these is to use neither the
semiclassical approach nor the semiclassical limit.
This is then the complete quantum calculation
involving fluctuations both in the matter fields
and in the metric degrees of freedom.

In broad terms, our task is then to investigate whether the
semiclassical approach is in some way the semiclassical

limit of the complete calculation, and quantify its range of
validity.
The structure of the paper is as follows: In Sec. II, we set

our notation by deriving the tree-level equations, special-
izing to Newtonian gauge. In Sec. III we quantize the
constrained system of fluctuation equations, to leading
order in slow-roll parameters and compute a set of two-
point vacuum correlators that will enter in the quantum
corrected evolution equations. In Sec. IV we derive these
equations. In Sec. V we derive the analog equations in the
semiclassical approach and discuss to what extent this
approach can be seen as a limit of the complete calculation.
For a particular set of models, we in Sec. VI compute the
actual magnitude of the quantum corrections. We conclude
in Sec. VII. A number of details are relegated to a series of
short Appendixes (A–F).

II. FIELD DYNAMICS IN NEWTONIAN GAUGE

We consider a single real, self-interacting quantum scalar
field ϕ evolving in a fluctuating background metric gμν
close to a flat FRW Universe ḡμν. We can then write in a
homogeneous state

ϕ̂ðxÞ ¼ ϕ̄ðtÞ þ δϕðx; tÞ; ð1Þ
gμνðxÞ ¼ ḡμνðtÞ þ δgμνðx; tÞ; ð2Þ

with

δgμν ¼ a2hμν ¼ a2
�

2A −B;i

−B;i 2ðψδij − E;ijÞ
�
; ð3Þ

and where aðtÞ is the Friedmann-Robertson-Walker (FRW)
scale factor; ϕ̄ ¼ hϕ̂i is the mean field (or “classical” field);
δϕ is the field perturbation; and A, B, E and ψ provide a
parametrization of the scalar degrees of freedom of the
metric. Only one of these 5 degrees of freedom is physical.
The rest can be removed by applying a gauge choice (two)
and constraints arising from the action (two more).
The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ Lϕðϕ; gμνÞ

�
; ð4Þ

whereM2
pl ¼ ð8πGÞ−1, g is the determinant of the metric, R

is the Ricci scalar and Lϕ is the Lagrangian density of the
scalar field, which we will specify in the following to be of
the form

Lϕ ¼ 1

2
∂μϕ∂μϕ − V½ϕ�; ð5Þ

for some potential function V½ϕ�.
We may then insert (1)–(3) into the action and keep terms

to zeroth, first and second order in the fluctuations, so that
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S¼ Sð0Þ þSð1Þ þSð2Þ þOðΔ3Þ ¼ SgþSϕþOðΔ3Þ; ð6Þ

where Δ denotes jointly fδϕ; A; B; E;ψg. We find it
convenient to use the Newtonian gauge

E ¼ B ¼ 0; ð7Þ

leaving only the A, ψ and δϕ variables. The explicit

expressions for Sð0;1;2Þϕ;g in the Newtonian gauge are found
in Appendix A. We adopt conformal time η, dt ¼ aðηÞdη,
derivatives denoted by 0.
In order to derive the equations of motion for the

gravitational field involving the mean metric ḡμν [para-
metrized by the scale factor aðηÞ for a flat FRW Universe]
and the fluctuation δgμν (parametrized by A, ψ) we first take
a variation of the gauge-unfixed action (4) with respect to
the full metric gμν to obtain the Einstein equations. We then
expand these to second order in fluctuations Δ in the
Newtonian gauge, and finally take the quantum expectation
value to extract the equations of motion for the fluctuations
and the mean fields, given below by Eqs. (13)–(16) and
(60)–(61), respectively. A direct variation of the gauge-
fixed action (A1)–(A9) with respect to a, A and ψ would
give an incorrect result for the equations of motion.
On the other hand, the corresponding equations of

motion for the scalar field fluctuation δϕ and the mean
field ϕ̄, given below by Eqs. (17) and (58), respectively, can
be derived either by a direct variation of the gauge-fixed
action (A1)–(A9) with respect to δϕ and ϕ̄, or by a variation
of the gauge-unfixed action (4) and subsequently fixing the
gauge and taking the quantum expectation value. The
reason why both procedures work, i.e. gauge-fixing and
variation of action commute, for the scalar field but not for
the gravitational field is that the gauge-fixing condition (7)
involves the gravitational degrees of freedom E and B but
not the scalar field ϕ. Further details on the derivation of the
equations of motion are presented in Appendix B.

A. Classical equations of motion: Tree level

At tree level, all the fluctuations δϕ, A, B, E, ψ are set to
zero. Variation of S0 gives us the classical or tree-level field
equation of motion and Friedmann equations:

0 ¼ ϕ̄00 þ 2Hϕ̄0 þ V;ϕ½ϕ̄�; ð8Þ

3M2
plH

2 ¼ 1

2
ϕ̄02 þ a2V½ϕ̄�; ð9Þ

3M2
plH

0 ¼ −ϕ̄02 þ a2V½ϕ̄�; ð10Þ

where we have defined the “conformal” Hubble rate
H ¼ a0=a ¼ aH. The task is to find the quantum corrected
versions of (8)–(10).

The tree-level equations form the basis of the slow-roll
expansion (SR), where defining

ϵ ¼ −
_H
H2

¼ 1 −
H0

H2
; δ ¼ −

̈ϕ̄

H _̄ϕ
¼ 1 −

ϕ̄00

Hϕ̄0 ð11Þ

we have

H ¼ −
1

η
ð1þ ϵÞ þOðϵ2Þ;

ϵH2 ¼ ϕ̄02

2M2
pl

¼ 4πGϕ̄02: ð12Þ

For the more general quantum corrected mean field and
Friedmann equations, standard slow-roll manipulations are
not exact, and these definitions are only approximately
applicable. We will however adopt them in the following,
and rank terms in powers of ϵ and δ.

III. FLUCTUATIONS

We now return to the action Sð0Þ þ Sð1Þ þ Sð2Þ (6). By
variation with respect to the metric, and inserting the tree-
level relations (8)–(10), we find for the first order Einstein
equations

∇2ψ − 3Hðψ 0 þHAÞ ¼ 4πGð−Aϕ̄02 þ a2V;ϕδϕþ ϕ̄0δϕ0Þ;
ð13Þ

ψ 00 þ ðH2 þ 2H0ÞAþHðA0 þ 2ψ 0Þ
¼ −4πGðAϕ̄02 þ a2V;ϕδϕ − ϕ̄0δϕ0Þ; ð14Þ

ψ 0 þHA ¼ 4πGϕ̄0δϕ; ð15Þ

A ¼ ψ : ð16Þ

The last equation follows in the Newtonian gauge from
assuming the absence of anisotropic stress (see
Appendix B). When including the equation of motion
for the scalar field fluctuations,

δϕ00 þ 2Hδϕ0 −∇2δϕþ a2V;ϕ̄ ϕ̄δϕ

¼ 4ϕ̄0A0 þ ð4ϕ̄00 þ 4Hϕ̄0 − 2V;ϕ̄ÞA; ð17Þ

one of the equations becomes redundant. Quantizing a
constrained system is a standard procedure, in terms of the
canonical momenta

ΠA ≡ ∂L
∂A0 ¼ 0; ð18Þ

Πψ ≡ ∂L
∂ψ 0 ¼ −

3a2

4πG
½ψ 0 þHðAþ ψÞ�; ð19Þ
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ΠðδϕÞ ≡ ∂L
∂ðδϕ0Þ ¼ a2½δϕ0 − ϕ̄0ðAþ 3ψ − 1Þ�: ð20Þ

Equation (18) is a primary constraint for the (auxiliary)
field A, while the corresponding equation of motion (13)
provides a secondary constraint. Equations (15), (16)
provide two additional constraints, so in total we have
four constraints for the canonical variables ψ , A, δϕ and
their conjugate momenta:

χi ¼ 0; i ¼ 1;…; 4; ð21Þ

with

χ1 ≡ ΠA; ð22Þ

χ2 ≡∇2ψ þ 3H0ψ

− 4πGða2V;ϕδϕþ a−2ϕ̄0Πδϕ − a−2HΠψ − ϕ̄02Þ;
ð23Þ

χ3 ≡Hψ þ 4πG

�
ϕ̄0δϕþ 1

3a2
Πψ

�
; ð24Þ

χ4 ≡ A − ψ ; ð25Þ

where we have used the zeroth order background equations
and Eqs. (19), (20) to solve the time derivatives for the
canonical momenta. This leaves 6 − 4 ¼ 2 variables or 1
physical degree of freedom, as expected.

A. Constrained quantization

The auxiliary field A and its conjugate momentum ΠA
can be readily solved for by using the constraints χ1 and χ4.
The remaining constraints χ2 and χ3 are of the second class
since their Poisson bracket ½χ2; χ3�P does not vanish. To
quantize the variables ψ and δϕ subject to second class
constraints χ2;3 we define the constraint matrix,

Cmn ¼ ½χm; χn�P; m; n ¼ 2; 3; ð26Þ

and the Dirac brackets,

½A;B�D ≡ ½A; B�P −
X

m;n¼2;3

½A; χm�PðC−1Þmn½χn; B�P; ð27Þ

where the standard Poisson bracket is defined as
(ψa ¼ fψ ; δϕg)

½A;B�P ≡X
a

� ∂A
∂ψa

∂B
∂Πψa

−
∂B
∂ψa

∂A
∂Πψa

�
: ð28Þ

The equal-time commutation relations of quantized varia-
bles are then given by

½A;B�≡ i½A; B�D: ð29Þ

The resulting commutation relations for ψ, δϕ and their
conjugate momenta Πψ , Πδϕ are presented in Appendix D.
By using the relations (19), (20) we can solve for the
conjugate momenta in terms of time derivatives to find

½ψðxÞ;ψðyÞ� ¼ ½δϕðxÞ; δϕðyÞ� ¼ 0; ð30Þ

½ψðxÞ;ψ 0ðyÞ� ¼ −i
ð4πGϕ̄0Þ2
a2∇2

x
δ3ðx − yÞ; ð31Þ

½δϕðxÞ; δϕ0ðyÞ� ¼ i
a2

�
1þ 4πGϕ̄02

∇2
x

�
δ3ðx − yÞ; ð32Þ

where we have suppressed the (equal) time arguments of
the fields. Remembering Eq. (12), we see that the usual flat-
space commutation relation is recovered from Eq. (32) in
the ϵ → 0 limit, as well as for modes well within the
horizonH=jkj → 0. The ϵ → 0 limit is singular in the sense
that (31) vanishes.
This procedure and the commutation relations (30), (31)

are consistent with treating ψ as the only dynamical d.o.f.
while δϕ and A are expressed in terms of ψ using the
constraints (15), (16). In this way the dynamical equa-
tions (13), (14) can be written as

ψ 00−∇2ψþ2

�
H−

ϕ̄00

ϕ0

�
ψ 0 þ2

�
H0−

ϕ̄00

ϕ̄0 H
�
ψ ¼ 0. ð33Þ

We note that by substitution or in other gauges, the variable
δϕ or A may appear with a second time derivative, and
hence be the dynamical variable (and indeed, ψ ¼ A here).
In the present case, however, the mode equations are
simplest in terms of ψ .

B. Mode functions

The field ψ can be decomposed in terms of the mode
functions fkðηÞ as

ψðη;xÞ ¼
Z

d3k
ð2πÞ3 ½akfkðηÞe

ik·x þ a†kf
�
kðηÞe−ik·x�; ð34Þ

where the creation and annihilation operators satisfy the
standard commutation relations

½âk; âk0 � ¼ ½â†k; â†k0 � ¼ 0;

½âk; â†k0 � ¼ ð2πÞ3δ3ðk − k0Þ; ð35Þ

and the mode functions satisfy the equation
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f00k þ 2

�
H −

ϕ̄00

ϕ̄0

�
f0k þ 2

�
H0 −

ϕ̄00

ϕ̄0 H
�
fk

þ jkj2fk ¼ 0; ð36Þ

as well as the Wronskian which fixes the normalization2

fkðηÞf0�k ðηÞ − f�kðηÞf0kðηÞ ¼ i

�
4πGϕ̄0

ajkj
�

2

; ð37Þ

in order to accommodate the equal-time commutation
relations (31). Using Eq. (11) the mode equation (36)
can be written to first order in the slow-roll expansion as

f00k −
2δ

η
f0k þ

�
2ðδ − ϵÞ

η2
þ jkj2

�
fk ¼ 0; ð38Þ

with the solution satisfying the constraint (37) given by3

fkðηÞ ¼
ffiffiffiffiffi
πϵ

8

r
H

Mpajkj
ð−ηÞ1=2Hð2Þ

ν ðkηÞ;

ν ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ϵ − 4δ

p
≈
1

2
þ 2ϵ − δ: ð39Þ

C. Vacuum correlators

In the scale factor and mean field equations, the quantum
corrections will appear in terms of two-point correlators,
with up to four time or spatial derivatives. Having solved
for the quantum slow-roll vacuum mode functions (39),
these can now be computed explicitly. Using Eqs. (34), (35)
we get for the loop contribution in the vacuum state

hψ2i ¼
Z

d3k
ð2πÞ3 jfkj

2

¼ ϵH2

16πM2
pa2

Z
ΛUV

ΛIR

dxjHð2Þ
ν ð−xÞj2; ð40Þ

where we use (constant) UV cutoff Λ̄UV for the physical
momenta: k=a ¼ −kHη < Λ̄UV such that x ¼ −kη <
Λ̄UV=H≡ ΛUV and a similar IR cutoff ΛIR, which is related
to the duration of inflation below. The details of evaluating
the loop integrals for hψ2i, hψ∇2ψi and hψ∇4ψi are
presented in Appendix E. The results are given by

C0 ≡ hψ2i

¼ ϵH2

8π2M2
pa2

��
1

2ðδ− 2ϵÞ−
1

2
þ log2þ γE

�
ð1−Λ2δ−4ϵ

IR Þ

þ logΛUV

�
þ � � � ð41Þ

C2≡−hψ∇2ψi

¼ ϵH2

16π2M2
pa2

ð−ηÞ−2½Λ2
UV− ðδ−2ϵÞ logΛUV−Λ2

IR�þ �� �

ð42Þ

C4 ≡ hψ∇4ψi

¼ ϵH2

32π2M2
pa2

ð−ηÞ−4
�
Λ4
UV − ðδ − 2ϵÞΛ2

UV

þ 1

16
ðδ − 2ϵÞ2ð2þ δ − 2ϵÞ2 logΛUV − Λ4

IR

�
þ � � � ;

ð43Þ

where we have neglected the (finite) terms of order Oðϵ; δÞ
and higher4 while the positive powers of the IR cutoff
ΛIR ≪ 1 will be neglected below. The other two-point
correlators of relevance involving derivatives of the fields
can be related to the expressions (41)–(43) by using the
mode equation (36). The resulting relations are given
by Eqs. (C2).

D. IR cutoff and the duration of inflation

Wewill now briefly discuss how the IR cutoff ΛIR can be
related to the duration of inflation. A natural prescription,
following [27], is to set the IR cutoff such that the modes
that were superhorizon already at the beginning of the
inflation (and hence throughout inflation) do not contribute
to the loop integrals. This means that the comoving
momenta are cut off by the initial Hubble radius:

k ≥ ainHin; ð44Þ

which leads to x ≥ ΛIR with

ΛIR ¼ ainHin

aHð1 − ϵÞ : ð45Þ

For approximately constant ϵ, we find

a ¼ aineN; H ¼ Hine−ϵN; ð46Þ

where2Note that the scaled mode functions ~fk ¼ ajkj=ð4πGϕ̄0Þfk
satisfy the standard Wronskian ~fk ~f

0�
k − ~f�k ~f

0
k ¼ i.

3We neglect the time dependence of the slow-roll parameters ϵ
and δ, which is parametrically second order in slow roll.

4For the UV divergences we formally keep also higher order
terms in ϵ and δ, which can be computed reliably.
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NðtÞ≡
Z

t

tin

dt0Hðt0Þ; ð47Þ

is the number of e-foldings from the beginning of the
inflation. Using these expressions we now get for the cutoff
in (45)

ΛIR ¼ 1

1 − ϵ
e−ð1−ϵÞN; ð48Þ

such that the logarithm of ΛIR ≪ 1 is approximately
given by

j logΛIRj ≈ ð1 − ϵÞN: ð49Þ

E. Renormalization and IR behavior

The correlators C0;2;4 are UV divergent, and in order to
have sensible equations of motion, we need to introduce a
renormalization prescription. We have used a simple cutoff
regularization which explicitly breaks Lorentz symmetry,
and ideally one would wish to redo the computation in a
general number of spatial dimensions, making use of
dimensional regularization. In that case, renormalization
may be recast in terms of counterterms for invariant
operators R, R2, RμνRμν (see for instance [8,9]). For our
purposes here, it will be sufficient to adopt a MS-like
prescription, whereby all UV-divergent terms are subtracted
and hence can be discarded in the following.
Doing this, and keeping in addition only terms to leading

order in slow-roll parameters, we find

C0 ¼
ϵH2

16π2M2
pla

2ðδ − 2ϵÞ ð1 − Λ2δ−4ϵ
IR Þ þ � � � ; ð50Þ

C2 ¼ −
ϵH4

16π2M2
pla

2
Λ2
IR ≃ 0; ð51Þ

C4 ¼ −
ϵH6

32π2M2
pla

2
Λ4
IR ≃ 0; ð52Þ

where for C0 we have written down only the dominant
contribution in the slow-roll expansion. C0 involves a
logarithmic IR divergence in the limit ΛIR → 0, while
the positive powers of ΛIR in C2 and C4 give negligible
contributions for very small cutoff (ΛIR ≪ 1). When the
logarithm of ΛIR is related to number of e-foldings via (49),
we find that C0 can be expanded in two limits, N ≪ Nsat
and N ≫ Nsat, with

Nsat ≡ 1

j2δ − 4ϵj ; ð53Þ

to find

C0 ¼
ϵH2

8π2M2
pla

2
Neff ; ð54Þ

where

Neff ≡ 1

2δ − 4ϵ
ð1 − e−ð2δ−4ϵÞj logΛIRjÞ

≃
8<
:

N; N ≪ Nsat;

Nsat; N ≫ Nsat; δ > 2ϵ;

NsateN=Nsat ; N ≫ Nsat; δ < 2ϵ:

ð55Þ

We see that the loop contribution C0 grows linearly for
small N and after N ∼ Nsat e-foldings it either saturates to a
value proportional to Nsat for δ > 2ϵ or grows exponen-
tially for large N in the case of δ < 2ϵ signaling the
breakdown of perturbative loop expansion and calling for
nonperturbative resummation. The behavior of the loop
contributions with linear growth and subsequent saturation
as a function of N is in qualitative agreement with similar
studies using the nonperturbative stochastic approximation
[11,12,24,28,29], although for the latter the expression of
Nsat depends on the model and interactions.
Moreover, we can relate the denominator in (53)–(55) to

the scalar spectral index at the horizon crossing, defined
below in (99), to get

2δ − 4ϵ ¼ 2

3
δM − 6ϵ ¼ ns − 1; ð56Þ

and therefore we see that for the observed spectral index at
k� ¼ 0.05 Mpc−1 [30]: ns ¼ 0.9655� 0.0062 (68% C.L.,
Planck TTþ lowP), δ < 2ϵ and hence for realistic infla-
tionary parameters the perturbative expansion indeed
appears to break down for large N ≳ Nsat. Below in
Sec. VI we estimate the size of quantum radiative correc-
tions for realistic inflation models by assuming that the true
nonperturbative saturation value for Neff would be of
order Nsat.
As we will see below, also derivatives of the loop

contributions with respect to conformal time enter the
quantum corrected equations of motion, but we have to
leading order in slow-roll parameters

∂ηC0 ¼ ∂2
ηC0 ¼ ∂ηC2 ¼ ∂2

ηC2 ¼ 0þOðϵ2Þ: ð57Þ

IV. QUANTUM CORRECTED EQUATIONS
OF MOTION

The derivation of the quantum corrected equations of
motion is discussed in detail in Appendix B. For the mean
field ϕ̄ we find the evolution equation
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ϕ̄00
�
1þ 1

ϵ

�
ð8þ 6ϵÞC0 þ 6

∂ηC0

H
þ 2

∂2
ηC0

H2
þ 4

C2

H2

��

þ 2Hϕ̄0
�
1þ 1

ϵ

�
ð−4− δM þ 10δÞC0 −

1

2
ðδM þ 6− 2ϵ− 14δÞ∂ηC0

H
− ð1− 2δÞ∂

2
ηC0

H2
− 4

C2

H2
− 2

∂ηC2

H3

��
þ a2V;ϕ½1− 2C0�

¼ −
M2

pl

ϵ
a2V;ϕϕϕ½ϕ̄�

�
ð1− 2ϵþ 2δÞC0 þ ð1þ δÞ∂ηC0

H
þ 1

2

∂2
ηC0

H2

�
: ð58Þ

We have introduced the quantity

δM ≡ a2V;ϕϕ½ϕ̄�
H2

≃ 3ðδþ ϵÞ; ð59Þ

where the last relation is correct at leading order in SR. We may therefore take δM to be small whenever the SR parameters
are. Similarly, we have the quantum corrected Friedmann equations

3M2
plH

2 ¼
�
1

2
ϕ̄02 þ a2V½ϕ̄�

�
þM2

plH
2

ϵ

�
−12ϵC0 −

3

2
ϵ
∂2
ηC0

H2
− ð1þ 5ϵþ 4δÞ C2

H2
− ð1þ 2δÞ ∂ηC2

H3
−
1

2

∂2
ηC2

H4
þ 2

C4

H4

þ δM

�
ð1 − 2ϵþ 2δÞC0 þ ð1þ δÞ ∂ηC0

H
þ 1

2

∂2
ηC0

H2
−
C2

H2

��
; ð60Þ

3M2
plH

0 ¼ ½−ϕ̄02 þ a2V½ϕ̄�� −M2
plH

2

ϵ

�
ð12ϵ − 8δÞC0 þ ð10ϵ − 8δÞ ∂ηC0

H
þ ð3 − 8δÞ ∂

2
ηC0

H2
þ ð4 − 12ϵþ 4δÞ C2

H2

þ ð4 − 6δÞ ∂ηC2

H3
þ 2

C4

H4
− δM

�
ð1 − 2ϵþ 2δÞC0 þ ð1þ δÞ ∂ηC0

H
þ 1

2

∂2
ηC0

H2
−
C2

H2

��
: ð61Þ

As advertised, all the quantum corrections are in terms of
the correlators considered in Sec. III, and computed in
Appendixes C and E. It is clear that by removing all the
correlators, we recover the classical result from Sec. II A.
We have introduced the slow-roll parameters wherever
possible, keeping the lowest and next-to-lowest order in
slow-roll parameters. Given a general solution to the mode
functions, to whatever order of interest, the correlators
C0;2;4 can now be inserted. The mode functions we found in
Sec. III B are only accurate to first order in slow-roll
parameters, and inserting these consistently, we would have
to discard all terms of higher order also in the resulting
equations of motion. We will do so explicitly below, but
since all the correlators have an overall factor of ϵH2=M2

p,
the leading term will be of the type C0=ϵ.
What is also important to note is that we should not expect

this computation in Newtonian gauge to agree with compu-
tations in other gauges. The mode functions and therefore
C0;2;4will also be different in different calculations, and only
when inserting these should the results agree.

A. Leading order in slow-roll parameters

To leading order in slow-roll parameters, the correlators
[Oðϵ; δÞ] combine with the equations of motion to give

quantum corrections at Oð1Þ. We have for the Friedmann
equations

3M2
plH

2 ¼
�
1

2
ϕ̄02 þ a2V½ϕ̄�

�

þM2
plH

2

ϵ
ðδM − 12ϵÞCðϵÞ

0 ; ð62Þ

3M2
plH

0 ¼ ½−ϕ̄02 þ a2V½ϕ̄��

þM2
plH

2

ϵ
ðδM − 12ϵþ 8δÞCðϵÞ

0 ; ð63Þ

and for the mean field equation

�
1þ 8CðϵÞ

0

ϵ

�
ϕ̄00 þ 2H

�
1 −

4CðϵÞ
0

ϵ

�
ϕ̄0 þ a2V;ϕ

¼ −
M2

plC
ðϵÞ
0

ϵ
a2V;ϕϕϕ½ϕ̄�; ð64Þ

where the ðϵÞ indicates keeping only leading order in slow-
roll parameters. Inserting the explicit expressions for the
correlators, we find
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3M2
plH

2

�
1 −

H2

M2
pl

ðδM − 12ϵÞNeff

24π2a2

�

¼
�
1

2
ϕ̄02 þ a2V½ϕ̄�

�
; ð65Þ

3M2
plH

0
�
1 −

H2

M2
pl

ðδM − 12ϵþ 8δÞNeff

24π2a2

�

¼ ½−ϕ̄02 þ a2V½ϕ̄��; ð66Þ
and
�
1þ H2

M2
pl

Neff

π2a2

�
ϕ̄00 þ 2H

�
1 −

H2

M2
pl

4Neff

8π2a2

�
ϕ̄0 þ a2V;ϕ

¼ −
H2Neff

8π2a2
a2V;ϕϕϕ½ϕ̄�: ð67Þ

We saw that δM is really a slow-roll parameter, and so to
leading order in SR (65) reduces to the tree-level expres-
sion, whereas (66) does not. Both agree with the tree-level
expression in the semiclassical limit H ≪ Mpl. The field
equation (67) has corrections on the lhs that vanish in the
semiclassical limit; and a correction on the rhs that survives
in both the semiclassical and SR limits.
In the strict sense of slow roll, ϕ̄00 is subleading in the

field equation and ðϕ̄0Þ2 is subleading in the Friedmann
equations, and should be discarded at this order. On the
other hand, one may adopt the view that since the quantum
corrections are small corrections to the full field/Friedmann
equations, only the former should be truncated to leading
order in slow-roll parameters. This is also consistent with
the truncation of the modes.

V. THE SEMICLASSICAL APPROACH

Our aim is to make the connection to the semiclassical
approach, which we therefore present here. The prescrip-
tion of semiclassical gravity is to treat gravitational degrees
of freedom classically (no fluctuations) and the matter
field(s) quantum mechanically (with fluctuations) in the
induced curved spacetime. This amounts to explicitly
setting A ¼ ψ ¼ B ¼ E ¼ 0 from the beginning, while
retaining δϕ as nonzero. As mentioned, this is in principle
ambiguous, since by a gauge transformation, the four
gravitational variables mix with δϕ.
But following the semiclassical reasoning, taking the

expectation value of the field operator and truncating at
some order in connected correlators gives an approximation
to the full field dynamics. We find, in the analogous 1-loop
truncation as for the complete calculation

3M2
plH

2 ¼ 1

2
ϕ̄02 þ 1

2
hδϕ02i þ 1

2
hð∇δϕÞ2i þ a2V½ϕ̄�

þ 1

2
a2V;ϕϕ½ϕ̄�hδϕ2i; ð68Þ

3M2
plH

0 ¼ −ϕ̄02 − hδϕ02i þ a2V½ϕ̄�

þ 1

2
a2V;ϕϕ½ϕ̄�hδϕ2i; ð69Þ

0 ¼ ϕ̄00 þ 2Hϕ̄0 þ a2V;ϕ½ϕ̄� þ
1

2
a2V;ϕϕϕ½ϕ̄�hδϕ2i: ð70Þ

There is a separate equation for the quantum mode
functions,

δϕ00
k þ 2Hδϕ0

k þ ½jkj2 þ a2V;ϕϕ½ϕ̄��δϕk ¼ 0; ð71Þ

which is identical to (the Fourier transform of) Eq. (17)
for ψ ¼ A ¼ 0.
The quantization of the fluctuations is no longer con-

strained; the commutation relations are simply

1

a2
½δϕðxÞ;ΠδϕðyÞ� ¼ ½δϕðxÞ; δϕ0ðyÞ�

¼ i
a2

δ3ðx − yÞ; ð72Þ

and

½âk; â†k0 � ¼ ð2πÞ3δ3ðk − k0Þ; ð73Þ

with all other commutators vanishing. This is indeed the
ϵ → 0 or H=jkj → 0 limit of (32). Using a similar
definition to Eq. (34)

δϕðη;xÞ¼
Z

d3k
ð2πÞ3a½akhkðηÞe

ik·xþa†kh
�
kðηÞe−ik·x�; ð74Þ

the Wronskian obeys the familiar

hkðηÞh0�k ðηÞ − h�kðηÞh0kðηÞ ¼ i; ð75Þ

and the mode equation reduces to

h00kðηÞ þ ½−H2 −H0 þ jkj2 þ a2V;ϕϕ½ϕ̄��hkðηÞ ¼ 0. ð76Þ

Inserting again H ¼ −ð1þ ϵÞ=η and ϵ ¼ 1 −H0=H2, and
taking again δM (59) to be small and constant, we have the
equation to leading order in slow-roll parameters

h00kðηÞ þ
�
−2 − 3ϵþ δM

η2
þ jkj

�
hkðηÞ ¼ 0: ð77Þ

The solution is

hkðηÞ ¼
ffiffiffi
π

4

r
ð−ηÞ1=2Hð2Þ

ν ðkηÞ;

ν ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

9
ð3ϵ − δMÞ

r
≃ 3

2
þ ϵ −

δM
3
: ð78Þ
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The C0;2 correlators can be computed analogously to
Sec. III C (see Appendix E) and we present the result in
Appendix F. Ignoring UV divergences and keeping only
leading order in slow-roll parameters we have

~C0 ≡ hδϕ2i ¼ H2

4π2a2
NSC

eff ;

~C2 ≡ hð∇δϕÞ2i ¼ −
H4

8π2a2
Λ2
IR ≃ 0: ð79Þ

We have defined

NSC
eff ≡ 1

2ðδM=3 − ϵÞ ð1 − e−2ðδM=3−ϵÞj logΛIRjÞ

≃
8<
:

N; N ≪ Nsat;

Nsat; N ≫ Nsat; δM > 3ϵ;

NsateN=Nsat ; N ≫ Nsat; δM < 3ϵ;

ð80Þ

with

NSC
sat ≡ 1

2jδM=3 − ϵj : ð81Þ

We then find

∂η
~C0

H
¼ ∂2

η
~C0

H2

¼
�
−2ϵþ ∂ηNSC

eff

HNSC
eff

�
~C0

≡ ð−2ϵþ ξÞ ~C0; ð82Þ

where we have taken ξ to be first order in SR, and ∂ηξ to be
of higher order. The equations of motion are given by

3M2
plH

2 ¼ 1

2
ϕ̄02 þ a2V½ϕ̄�

þH2

4

�∂2
η
~C0

H2
þ 2

∂η
~C0

H
þ 4δM ~C0 þ 4

~C2

H2

�
;

ð83Þ

3M2
plH

0 ¼ −ϕ̄02 þ a2V½ϕ̄�

−
H2

2

�∂2
η
~C0

H2
þ 2

∂η
~C0

H
þ δM ~C0 þ 2

~C2

H2

�
; ð84Þ

0 ¼ ϕ̄00 þ 2Hϕ̄0 þ a2V;ϕ½ϕ̄� þ
1

2
a2V;ϕϕϕ½ϕ̄� ~C0: ð85Þ

Finally, inserting the explicitly leading terms in slow-roll
Eqs. (79), (82), we find

3M2
plH

2

�
1 −

H2

M2
pl

ð2δM − 3ϵþ 3
2
ξÞNSC

eff

24π2a2

�
¼ 1

2
ϕ̄02 þ a2V½ϕ̄�;

ð86Þ

3M2
plH

0
�
1þ H2

M2
pl

ðδM − 6ϵþ 3ξÞNSC
eff

24π2a2

�
¼ −ϕ̄02 þ a2V½ϕ̄�;

ð87Þ

ϕ̄00 þ 2Hϕ̄0 þ a2V;ϕ½ϕ̄� ¼ −
H2NSC

eff

8π2a2
a2V;ϕϕϕ½ϕ̄�: ð88Þ

Comparing directly with (65), (66), (67), we see that the
Friedmann equations again have corrections on the lhs,
similar to but not identical to the complete calculation.
However, these correction are again suppressed in the

semiclassical limit H ≪ Mpl. Conversely, for the field
equation the corrections on the lhs present in (67) are
absent in the semiclassical approach. But the correction on
the rhs is of the same form. Moreover, since by relation (59)
δ − 2ϵ≃ δM=3 − 3ϵ we find that the saturation values Nsat

and NSC
sat do not in general agree, however, in the perturba-

tive regime N ≪ Nsat we see that Neff ¼ NSC
eff ¼ N and

hence the corresponding quantum corrections agree with
the results of the full calculation.
We conclude that the two calculations agree in the strict

semiclassical limit: H=Mpl → 0 in the perturbative regime
N ≪ Nsat, but that the leading corrections inH2=M2

pl do not
agree, and the leading corrections in SR also do not.
In the strict semiclassical limit, the Friedmann equations

reduce to the tree-level ones, and the field equation is simply
(88). We note that this is simply the “Hartree” term, where
we have inserted the (not Hartree resummed) slow-roll
modes into the correlator, giving the leading H2 behavior.
Hence, during and shortly after inflation, the leading
quantum correction is not the Minkowski space vacuum
contribution, as sometimes advocated in the literature.
The SC equations of motion (86)–(88) are found to agree

with the results of [17] (from the one particle irreducible
effective action), up to a finite renormalization, since in the
saturated regime we can write ð2δM−3ϵÞNSC

sat ¼
δMNSC

sat þ3=2 and ðδM − 6ϵÞNSC
sat ¼ −δMNSC

sat þ 3 in the
Friedman equations (86), (87), respectively, and further
absorb the constants 3=2 and 3 (times H4) into the
counterterms of the higher order gravity operators5 as
discussed in [17].

5In dimensional regularization where the counterterms of
gravity operators can be chosen covariantly these involve R2,
RμνRμν and RμνρσRμνρσ .
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VI. MAGNITUDE OF RADIATIVE
CORRECTIONS: EXAMPLES

In this section we estimate the magnitude of quantum
radiative corrections in the mean field equation (67) for a
couple of popular single-field inflation models.

A. Large-field monomial inflation

Let us first consider the case

V½ϕ� ¼ λ

24
ϕ4; ð89Þ

with ϕ slow-rolling from an initial condition ϕ ≫ Mpl. In
the slow-roll limit we may neglect the second time
derivative in the mean field equation (67) to get

2H
�
1 −

H2

M2
pl

Neff

2π2a2

�
ϕ̄0 þ a2V;ϕ ¼ −

H2Neff

8π2a2
a2V;ϕϕϕ½ϕ̄�:

ð90Þ

By assuming that the quantum corrections are small we
may solve (90) iteratively to zeroth order, ϕ̄0 ¼
−a2V;ϕ=ð2HÞ, and plug this back into the first order (in
quantum corrections) term on the lhs of (90) to get6

2Hϕ̄0 þ a2V;ϕ ¼ −
�
H2Neff

6 · 2π2a2
ϕ̄2

M2
pl

þH2Neff

8π2a2

�
a2λϕ̄: ð91Þ

We see that the non-SC quantum correction term (first term
on the rhs) is related to the SC term by the factor

2

3

ϕ̄2

M2
pl

≈
16

3ϵ
≈
16

3
ðNe þ 1Þ ∼ 102–103; ð92Þ

where Ne denotes the number of e-foldings from the end of
inflation. So we find, rather surprisingly, that for ϕ4

inflation the non-SC quantum correction appears to be
dominant in comparison to the SC quantum correction.
Apparently during inflation the semiclassical limit
H=Mpl ≪ 1 is not sufficiently realized.
Moreover, based on Eqs. (55), (56), we find that for a

realistic value of the scalar spectral index, ns < 1, including
the metric perturbations the quantum radiative corrections
would grow exponentially large for N ≫ Nsat signaling the
breakdown of perturbative expansion for N ≳ Nsat.

7

Assuming that the true nonperturbative saturation value
for Neff would be of order Nsat ≈ Ne, we can estimate the
relative size of the quantum corrections by comparing the

(dominant) correction term inside the square brackets on
the lhs of (90) to unity to find an upper limit

H2

M2
pl

Neff

2π2a2
≲ 4λN3

e

3π2
≲ 105λ ∼ 10−7; ð93Þ

i.e. even the saturated value of the IR enhanced quantum
correction would be negligibly small compared to the tree-
level terms in the mean field equation. In the last relation in
(93), we have used a typical value for the self-coupling
consistent with the CMB.

B. Small-field inflation

Consider instead a hilltop small-field inflation model:

V½ϕ� ¼ Λ4

�
1 −

ϕ4

μ4
þ � � �

�
; ð94Þ

with the understanding that ϕ ¼ 0 initially, and sub-
sequently slow-rolls to the bottom of the potential deter-
mined by the higher order terms. Following the above steps
we find that the non-SC correction in the mean field
equation (67) is related to the SC correction by the same
factor:

2

3

ϕ̄2

M2
pl

≪ 1; for μ ≪ Mp; ð95Þ

which, however, is small in this case and hence the SC
correction dominates over the non-SC correction, as
expected for a small-field inflation model. As before, for
a realistic value ns < 1 the perturbative expansion breaks
for N ≳ Nsat. If we again assume for the true nonperturba-
tive saturation value Neff ∼ Nsat ∼ Ne, we find for the
relative size of the dominant SC quantum correction in
comparison to tree-level terms

H2

ϕ̄2

6Neff

8π2a2
≲ 9As

4Ne
∼ 10−10; ð96Þ

where As denotes the amplitude of the primordial scalar
perturbations in CMB, with As� ≈ 2.22 × 10−9 for k� ¼
0.05 Mpc−1. We find that in this case the quantum radiative
corrections are even smaller than for the previous large-
field example, and so although the semiclassical limit is
enforced and a SC computation is valid, the resulting
corrections are negligible.

C. Exponential inflation

Finally, consider the following exponential potential:

V½ϕ� ¼ λM4
pl

4ξ2

�
1 − exp

�
−

2ϕffiffiffi
6

p
Mpl

��
2

; ð97Þ

6Corrections to this iterative manipulation of the mean field
equation (90) would be of second order in slow-roll and quantum
corrections.

7In the SC, there is no such breakdown as δM=3 − ϵ > 0, but
the non-SC correction is then absent.
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corresponding to Higgs inflation in the Einstein frame [31].
Following the above steps we now find that the non-SC
quantum correction in the mean field equation (67) is larger
by a factor of 6 compared to the SC correction term. Again,
for a realistic value ns < 1 the perturbative expansion
breaks for N ≳ Nsat, and assuming that for the true non-
perturbative saturation value Neff ∼ Nsat ∼ Ne, we now find
for the relative size of the dominant non-SC quantum
correction

H2

M2
pl

Neff

2π2a2
≲ λNe

24π2ξ2
∼ 10−9; ð98Þ

where we have used ξ≃ 47000
ffiffiffi
λ

p
following from the

CMB normalization. Again we find that even the fully
saturated radiative corrections are tiny in comparison to
tree-level contributions.

VII. DISCUSSION AND CONCLUSION

In the standard calculation, the evolution of the back-
ground cosmological degrees of freedom H and ϕ̄ deter-
mine the spectrum of density perturbations through the
slow-roll parameters at horizon exit. To leading order in
slow roll the scalar spectral index and tensor-to-scalar ratio
are given by

ns ¼ 1 − 6ϵþ 2

3
δM; r ¼ 16ϵ; ð99Þ

respectively. At the level of our approximation (quadratic
action in fluctuations) the quantum radiative corrections are
accounted for in the mean field and Friedmann equations
but not in the mode functions, or more generally, in the two-
point functions. Therefore, in this approximation, the
expressions for the power spectra do not involve explicit
quantum corrections and Eq. (99) remains formally intact.
The quantum radiative corrections to these observables
then enter through the corrections in the mean field and
Friedman equations, affecting the values of ϵ and δM at
horizon crossing.
In the present work, we have computed the leading loop

order, leading order in slow-roll radiative corrections to the
mean field and Friedmann evolution equations, both in the
semiclassical approach and including the metric scalar
fluctuations. We found that the two give qualitatively
different results, but that they both reduce to the same in
the semiclassical limit, in the perturbative regime. One is
however not the limit of the other, and away from the
semiclassical limit and/or the perturbative regime (when the
saturated values of Neff apply), the two calculations
diverge.
In the evaluation of the loop integrals the IR cutoff was

related to the number of e-folds from the beginning of
inflation by j logΛIRj ≈ N, corresponding to a prescription
where the modes that have been outside the horizon for the

whole duration of inflation are cut off. For the observed
value of the scalar spectral index, ns < 1, we then found
that the IR contributions grow exponentially large for
N ≳ Nsat ¼ 1=jns − 1j, signaling the breakdown of pertur-
bative expansion and calling for a nonperturbative resum-
mation. Such a Hartree resummation in the SC approach
was carried out in [17], and similar studies using the
nonperturbative stochastic approximation [11,12,24,28,29]
indicate that for large N the loop contributions indeed
saturate after linear growth (as a function of N) to a value
depending on the model. In order to carry out such a
resummation program for the full coupled system including
the metric perturbations, one would have to expand the
Lagrangian at least to cubic order in fluctuations.
To be able to estimate the size of quantum radiative

corrections for realistic models in the present work, we
assumed that the true nonperturbative saturation value for
the loop contributions would be determined approximately
by extrapolating the linear growth until the breaking point
(N ∼ Nsat). Interestingly, we found that for large-field
inflation models considered in Secs. VI A and VI C there
is no window where the semiclassical approach is a good
approximation, since the non-SC H=Mpl-suppressed terms
dominate over the SC corrections. In addition, these
radiative corrections are very small for realistic values of
the couplings due to the CMB normalization constraint.
On the other hand, for the small-field model of Sec. VI B

the SC corrections dominate over the non-SC ones by
virtue of ϕ̄ ≪ Mpl and therefore in this case the SC
approach provides a solid approximation between the full
calculation including the metric scalar perturbations and the
classical tree-level calculation. However, also in this case
the quantum radiative corrections are tiny for realistic
values of parameters.
In more general theories, where the couplings are not all

forced to be small to allow for inflation (multiple field
models, curvaton models, etc.), the overall size of radiative
corrections may not be negligible, and our work suggests
that using the SC approach does not in general provide the
semiclassical limit of the complete calculation. Resolving
IR issues through resummations in the former does there-
fore not imply a solid approximation to the latter, unless
deep in the semiclassical limit. By choosing the gauge
appropriately, only the fluctuations of one field need mix
with the metric perturbations, and additional fields may
therefore explicitly be treated semiclassically, in the sense
described here. This is the subject of ongoing work. At this
point, the prudent approach to IR artifacts seems to be
resummation in the complete calculation; this means
including diagrams to all orders in the couplings, where
also tensor perturbation may play a role.
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APPENDIX A: QUADRATIC ACTION
IN THE NEWTONIAN GAUGE

In the Newtonian gauge E ¼ B ¼ 0 the quadratic
action (up to second order in the fluctuations fδϕ; A;ψg)
is given by

S ¼ Sg þ Sϕ; ðA1Þ

where the part involving the scalar field can be written
as [in conformal time η, dt ¼ aðηÞdη, derivatives denoted
by 0]

Sϕ ¼ Sð0Þϕ þ Sð1Þϕ þ Sð2Þϕ ; ðA2Þ

with

Sð0Þϕ ¼
Z

d3xdηa2
�
1

2
ημν∂μϕ̄∂νϕ̄ − a2V½ϕ̄�

�
; ðA3Þ

Sð1Þϕ ½ϕ; gμν�

¼
Z

d3xdηa2
�
ðA − 3ψÞ

�
1

2
ημνð∂μϕ̄Þð∂νϕ̄Þ − a2V½ϕ̄�

�

− Að∂0ϕ̄Þð∂0ϕ̄Þ þ ðημνð∂μδϕÞð∂νϕ̄Þ − δϕa2V;ϕ½ϕ̄�Þ
�
;

ðA4Þ

Sð2Þϕ ½ϕ; gμν� ¼
Z

d3xdηa2
��

−
A2

2
− 3Aψ þ 3ψ2

2

�

×

�
1

2
ημνð∂μϕ̄Þð∂νϕ̄Þ− a2V½ϕ̄�

�

þ
�
1

2
ημνð∂μδϕÞð∂νδϕÞ−

1

2
δϕ2a2V;ϕϕ½ϕ̄�

�

þ 2A2ð∂0ϕ̄Þð∂0ϕ̄Þ−A∂0δϕ∂0ϕ̄

−AðA− 3ψÞð∂0ϕ̄Þð∂0ϕ̄Þ

þ ðA− 3ψÞðημνð∂μδϕÞð∂νϕ̄Þ− δϕa2V;ϕ½ϕ̄�Þ
�
;

ðA5Þ
while the strictly gravitational part is given by

Sg ¼ Sð0Þg þ Sð1Þg þ Sð2Þg ; ðA6Þ

with

Sð0Þgr ¼ 1

16πG

Z
d3xdηa26ðH0 þH2Þ; ðA7Þ

Sð1Þgr ¼ −
1

16πG

Z
d3xdηa2½−6H2Aþ 6ψð2H0 þH2Þ�;

ðA8Þ

Sð2Þgr ¼ 1

16πG

Z
d3xdηa2½−6ψ 02 − 12HðAþ ψÞψ 0

− 9H2ðAþ ψÞ2 − 2ψ ;ið2A;i − ψ ;iÞ�; ðA9Þ

where H ¼ a0=a ¼ aH is the conformal Hubble rate.

APPENDIX B: EQUATIONS OF MOTION

Variation of the action with respect to a general metric
leads to the Einstein equation

Eμ
ν ¼ Rμ

ν −
1

2
δμνR ¼ 8πGTμ

ν : ðB1Þ

We insert the perturbed metric Eq. (3) in Newtonian gauge
and compute the Christoffel symbols, Ricci tensor, Ricci
scalar. These are then combined into

a2E0
0 ¼ 3H2ð1− 2Aþ 4A2Þ þ 2ð1þ 4ψÞ∇2ψ þ 3ð∇ψÞ2

− 3∇ψ∇Aþ 3ðψ 0 − 2H− 4ψHþ 4HAÞψ 0; ðB2Þ

a2Ei
j¼ð2H0 þH2−8H½ψψ 0−Aψ 0−AA0�−ψ 0½ψ 0 þ2A0�
−2ψ 00½1þ2ðψ −AÞ�þ4½2H0 þH2�A2

−2HðA0 þ2ψ 0Þ−2ð2H0 þH2ÞAþ∇2ðψ−AÞ
−2ðψ −AÞ∇2Aþ3∇ψ∇Aþð∇AÞ2þ4ψ∇2ψ

þ2ð∇ψÞ2Þδij− ½ð1þ2ψÞðψ−AÞ;ij−A;iψ ;j

−A;jψ ;iþ2ψψ ;ijþ3ψ ;iψ ;jþA;jA;iþ2AA;ij�: ðB3Þ

The energy-momentum tensor is calculated by inserting the
perturbed metric and

ϕ ¼ ϕ̄þ δϕ; ðB4Þ

V½ϕ� ¼ V½ϕ̄� þ δϕV½ϕ̄�;ϕ þ
1

2
δϕ2V½ϕ̄�;ϕϕ ðB5Þ

into the expression

Tμ
ν ¼ ϕ;μϕ;ν −

�
1

2
ϕ;αϕ;α − V½ϕ�

�
δμν : ðB6Þ

This gives
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a2T0
0 ¼

1

2
ϕ̄02þa2V½ϕ̄�− ϕ̄02Að1− 2AÞþ ϕ̄0δϕ0ð1− 2AÞ

þ δϕa2V;ϕ;þ
1

2
δϕ02þ 1

2
ð∇δϕÞ2þ 1

2
δϕ2a2V;ϕϕ;

a2Ti
j ¼

�
−
1

2
ϕ̄02þa2V½ϕ̄� þ ϕ̄02Að1− 2AÞ− ϕ̄0δϕ0ð1− 2AÞ

þ δϕa2V;ϕ−
1

2
δϕ02þ 1

2
ð∇δϕÞ2þ 1

2
δϕ2a2V;ϕϕ

�
δij

− δϕ;iδϕ;j; ðB7Þ

with the linear equation (17) for the fluctuation δϕ. To
linear order in perturbations, the i ≠ j component of the
energy-momentum tensor vanishes. Equating this to the
expression for Ei

j i ≠ j, also to linear order, we conclude
that A ¼ ψ . We note that when we later take vacuum
expectation values of the equations, terms linear in the
perturbations will vanish. Inserting the perturbed metric
and splitting the field into a background value ϕ̄ and a
fluctuation, δϕ, we get the following result to second order:

∂μða−2
ffiffiffiffiffiffi
−g

p
a2gμν∂νϕÞ þ

ffiffiffiffiffiffi
−g

p
V;ϕ ¼ 0

⇒ϕ̄00 þ 2Hϕ̄0 þ a2V;ϕ̄ ðϕ̄Þ ¼ −6ϕ̄00ψ2

− 12ϕ̄0½2Hψ þ ψ 0�ψ þ δϕ004ψ þ 4½2Hψ þ ψ 0�δϕ0

þ 2ψ2a2V;ϕ̄ þ 2ψδϕa2V;ϕ̄ ϕ̄ −
1

2
δϕ2a2V;ϕ̄ ϕ̄ ϕ̄: ðB8Þ

In total we obtain the set of equations (13)–(16) for the
gravitational fluctuations at linear order. Finally, computing
the 0

i Einstein equation to first order gives the following
relation:

ψ 0 þHA ¼ 4πGϕ̄0δϕ: ðB9Þ

Inserting slow-roll parameters and writing terms quadratic
in the perturbation in terms of C0; C2; C4 as described in
Appendix C enables us to combine the Einstein equations
to (4.3) and (4.4) and write the field equation as (4.1).

APPENDIX C: CORRELATOR RELATIONS

The equations of motion in Appendix B include terms
linear and quadratic in the fluctuations ψ , and through
constraint relations, A and δϕ. Taking the quantum expect-
ation of these equations in the vacuum state, the linear
terms in fluctuations vanish, by the definition of the
separation into ϕ̄þ δϕ, and ḡμν and A, ψ , E, B. At quadratic
order, we define the expectation values to be the symmetric
ones, so that for instance

hψ 0ψi → 1

2
hψ 0ψ þ ψψ 0i;

hψ 00ψi → 1

2
hψ 00ψ þ ψψ 00i;

…; ðC1Þ

with the understanding that all correlators are equal-time
and -space, with this limit to be taken after any differ-
entiation is performed. By taking further time derivatives
and using the mode equation (36) we find the following
relations, which will be useful to us in the following:

1

2
hψ 0ψ þ ψψ 0i ¼ 1

2
∂ηhψ2i;

1

2
hψ 00ψ þ ψψ 00i ¼ −Hδ∂ηhψ2i − 2H2ðδ − ϵÞhψ2i

þ hψ∇2ψi;

hψ 02i ¼ 1

2
∂2
ηhψ2i − 1

2
hψ 00ψ þ ψψ 00i;

1

2
hψ 00ψ 0 þ ψ 0ψ 00i ¼ −2Hδhψ 02i −H2ðδ − ϵÞ∂ηhψ2i

þ 1

2
∂ηhψ∇2ψi;

1

2
hψ 000ψ þ ψψ 000i ¼ −½ðHδÞ0 − 2H2δ2 þH2ðδ − ϵÞ�∂ηhψ2i

þ 1

2
∂ηhψ∇2ψi − 2Hδhψ∇2ψi

− 2½ðH2ðδ − ϵÞÞ0 − 2H3δðδ − ϵÞ�hψ2i;
hψ 002i ¼ 4H2δ2hψ 02i þ 4H3δðδ − ϵÞ∂ηhψ2i

þ 4H4ðδ − ϵÞ2hψ2i;−2Hδ∂ηhψ∇2ψi
− 4H2ðδ − ϵÞhψ∇2ψi þ hψ∇4ψi:

ðC2Þ

By these relations we can express all the loop contributions
in the background equations of motion in terms of
C0 ¼ hψ2i, C2 ¼ hψ∇2ψi and C4 ¼ hψ∇4ψi given by
Eqs. (41)–(43) and their η-derivatives.

APPENDIX D: COMMUTATION RELATIONS

In this section we present the equal-time commutation
relations for ψ, δϕ and their conjugate momenta Πψ , Πδϕ.
Using (26)–(29) we get by a straightforward calculation8

½ψðxÞ;ψðyÞ� ¼ ½ΠψðxÞ;ΠψðyÞ� ¼ 0;

½ψðxÞ;ΠψðyÞ� ¼ i
12πGϕ̄02

∇2
x

δ3ðx − yÞ; ðD1Þ

8Identical commutation relations would have been recovered
by including all four constraints χ1;…; χ4 in the (4 × 4) con-
straint matrix Cij.
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½δϕðxÞ; δϕðyÞ� ¼ ½ΠδϕðxÞ;ΠδϕðyÞ� ¼ 0;

½δϕðxÞ;ΠδϕðyÞ� ¼ i

�
1 −

12πGϕ̄02

∇2
x

�
δ3ðx − yÞ; ðD2Þ

and

½ψðxÞ;δϕðyÞ�¼−i
4πGϕ̄0

a2∇2
x
δ3ðx−yÞ;

½ΠψðxÞ;ΠδϕðyÞ�¼−i3a2
�
ϕ̄0 þ3H0ϕ̄0 þa2HV;ϕ

∇2
x

�
δ3ðx−yÞ;

½ψðxÞ;ΠδϕðyÞ�¼ i
4πGð3Hϕ̄0 þa2V;ϕÞ

∇2
x

δ3ðx−yÞ;

½δϕðxÞ;Πψ ðyÞ�¼−i
3Hϕ̄0

∇2
x

δ3ðx−yÞ; ðD3Þ

where we have suppressed the (equal) time arguments of
the fields. The various commutation relations involving δϕ
can also be obtained by solving δϕ and Πδϕ from the
constraints χ3 and χ2 and using Eqs. (D1) for the commu-
tation relations of ψ and Πψ and therefore the commutation
algebra (D2)–(D3) is consistent with all the constraints.

APPENDIX E: CALCULATION
OF ONE-LOOP CORRELATORS

To evaluate the one-loop integral (40)

hψ2i ¼
Z

d3k
ð2πÞ3 jfkj

2

¼ ϵH2

16πM2
pa2

Z
ΛUV

ΛIR

dxjHð2Þ
ν ð−xÞj2; ðE1Þ

we notice that the Hankel functionsHð1;2Þ
ν ðxÞ have a branch

cut along the negative real axis x < 0 and here we pick the

branch by the relation Hð2Þ
ν ðe−iπxÞ ¼ eiπνHð1Þ

ν ðxÞ such that
for x > 0

jHð2Þ
ν ð−xÞj2 ¼ jHð1Þ

ν ðxÞj2: ðE2Þ

We then separate the momentum integration in Eq. (E1)
into three parts:

Z
ΛUV

ΛIR

¼
Z

κIR

ΛIR

þ
Z

κUV

κIR

þ
Z

ΛUV

κUV

; ðE3Þ

with

ΛIR ≪ κIR ≪ 1 ≪ κUV ≪ ΛUV: ðE4Þ

The low-momentum (IR) part of the loop integral can be
evaluated by using the x → 0 asymptotic expansion of the
Hankel function:

Hð1Þ
ν ðxÞ ¼ −i

�
2

x

�
ν Γ½ν�

π
þOðxνÞ; ðE5Þ

to get

Z
κIR

ΛIR

dxjHð1Þ
ν ðxÞj2

¼ 22νΓ2ðνÞ
π2ð1− 2νÞ ðκ

1−2ν
IR −Λ1−2ν

IR Þ

¼ 2

π

��
1

2ðδ− 2ϵÞ−
1

2
þ log2þ γE

�
ð1−Λ2δ−4ϵ

IR Þ þ log κIR

�

þOðϵ;δÞ: ðE6Þ

For the intermediate-momentum contribution we may set
ϵ; δ → 0 and use

Hð1Þ
1=2ðxÞ ¼ −i

ffiffiffiffiffi
2

πx

r
eix; ðE7Þ

to get

Z
κUV

κIR

dxjHð1Þ
ν ðxÞj2 ¼ 2

π
½log κUV − log κIR� þOðϵ;δÞ: ðE8Þ

Finally, using the large-jxj asymptotic expansion

Hð1Þ
ν ðxÞ ¼ −

eiðx−πν
2
Þffiffiffiffiffi

πx
p

�
ð1 − iÞ þ ð1þ iÞðν2 − 1=4Þ

2x

−
ð1 − iÞð9 − 40ν2 þ 16ν4Þ

128x2

�
þOðx−7=2Þ; ðE9Þ

we get for the high-momentum (UV) part

Z
ΛUV

κUV

dxjHð1Þ
ν ðxÞj2 ¼ 2

π
½logΛUV − log κUV�

þOðϵ; δÞ: ðE10Þ

By combining these expressions we get for the loop integral
(E1) in total

C0 ≡ hψ2i

¼ ϵH2

8π2M2
pa2

��
1

2ðδ− 2ϵÞ−
1

2
þ log2þ γE

�
ð1−Λ2δ−4ϵ

IR Þ

þ logΛUV

�
þOðϵ;δÞ: ðE11Þ

Similarly, we get for the k2-loop
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C2 ≡ −hψ∇2ψi

¼
Z

d3k
ð2πÞ3 k

2jfkj2

¼ ϵH2

16π2M2
pa2

ð−ηÞ−2½Λ2
UV − ðδ − 2ϵÞ logΛUV − Λ2

IR�

þ � � � ; ðE12Þ

and for the k4-loop

C4 ≡ hψ∇4ψi

¼
Z

d3k
ð2πÞ3 k

4jfkj2

¼ ϵH2

32π2M2
pa2

ð−ηÞ−4
�
Λ4
UV − ðδ − 2ϵÞΛ2

UV

þ 1

16
ðδ − 2ϵÞ2ð2þ δ − 2ϵÞ2 logΛUV − Λ4

IR

�

þ � � � ðE13Þ

APPENDIX F: CORRELATORS IN THE
SEMICLASSICAL APPROACH

In the semiclassical approach the mode functions are
given by (78). Computing the analog of the C0;2 correlators,
we find (see Sec. III C for the notation)

~C0 ¼
Z

d3k
ð2πÞ3

1

a2
jhkj2

¼ 1

8π2a2
ð−ηÞ−2

Z
ΛUV

ΛIR

dxx2jHð1Þ
ν ðxÞj2

¼ 1

4π2a2
ð−ηÞ−2

��
1

2ðδM=3 − ϵÞ þ
log 2
2

þ ψð3=2Þ
�

× ð1 − Λ2ðδM=3−ϵÞ
IR Þ þ Λ2

UV

2
þ logΛUV

�

þOðϵ; δMÞ: ðF1Þ

~C2 ¼
Z

d3k
ð2πÞ3

k2

a2
jhkj2

¼ 1

8π2a2
ð−ηÞ−4

Z
ΛUV

ΛIR

dxx4jHð1Þ
ν ðxÞj2

¼ 1

8π2a2
ð−ηÞ−4

�
1

2
Λ4
UV þ Λ2

UV − Λ2
IR

�
; ðF2Þ

and we also have the relation

hðδϕ0Þ2i ¼ 1

2
∂2
ηhδϕ2i − 1

2
hδϕ00δϕþ δϕδϕ00i

¼ 1

2
∂2
η
~C0 þH∂η

~C0 þH2δM ~C0 þ ~C2: ðF3Þ
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