
Heating of baryons due to scattering with dark matter during the dark ages

Julian B. Muñoz, Ely D. Kovetz, and Yacine Ali-Haïmoud
Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore,

Maryland 21218, USA
(Received 8 September 2015; published 28 October 2015)

We explore the effects of elastic scattering between dark matter and baryons on the 21-cm signal during
the dark ages. In particular, we consider a dark-matter–baryon interaction with a cross section of the form
σ ¼ σ0v−4, in which case the effect of the drag force between the dark matter and baryon fluids grows with
time. We show that, as opposed to what was previously thought, this effect heats up the baryons due to the
relative velocity between dark matter and baryons. This creates an additional source of fluctuations, which
can potentially make interactions easier to detect by 21-cm measurements than by using the cosmic
microwave background and the Lyman-α forest. Our forecasts show that the magnitude of the cross section
can be probed to σ0 ∼ 3 × 10−42 cm2 for mχ ≪ 1 GeV and σ0 ∼ 2 × 10−41ðmχ=10 GeVÞ cm2 for mχ ≫
1 GeV with next generation experiments, and improved to σ0 ∼ 4 × 10−44 cm2 for mχ ≪ 1 GeV and

σ0 ∼ 4 × 10−43ðmχ=10 GeVÞ cm2 for mχ ≫ 1 GeV with futuristic experiments.
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I. INTRODUCTION

The standard picture of cold dark matter [1] seems to fit
very well with our current observational constraints [2].
There are, however, a few puzzles that would require dark
matter to have nonzero interactions [3–6]. Moreover,
several models for the dark-matter (DM) particle predict
some level of weak nongravitational interaction with
standard-model baryons [7,8]. Here we will study these
interactions during the dark ages.
The simplest way to observe these interactions would be

through direct detection experiments, such as DarkSide
[9,10], LUX [11], and XENON100 [12]. These experi-
ments are very sensitive to large dark-matter masses but
cannot constrain interactions for DM masses below
∼10 GeV due to the small recoil of the nuclei in any given
interaction. A different probe would consist of indirect
early-time effects of these interactions. One example would
be the modification of the small-scale power spectrum, due
to the drag induced in the DM by the interactions [13],
which would be observable in the cosmic microwave
background (CMB), as well as in Ly-α forest measure-
ments. Another example is CMB spectral distortions,
which would be created by the indirect coupling, through
baryons, of dark matter and photons in the very early
universe [14]. These last two probes require interactions to
be relevant at early times, so they are not sensitive to all
velocity dependences. Some models for dark-matter–
baryon interactions may elude constraints because inter-
actions get stronger at later times. We will focus on one of
those models, in which the interaction cross section is
parametrized by σ ¼ σ0v−4, one realization of which would
be dark-matter milicharge [7]. To constrain interactions at
later times, a useful probe is the 21-cm line during the
dark ages.

The dark ages are the period following primordial
recombination and preceding the formation of the first
luminous objects. During this cosmic era the only known
observable is the redshifted hydrogen hyperfine transition,
which traces the neutral hydrogen density [15]. This
observable has been proposed as a probe of non-
Gaussianities [16,17], as well as other effects that would
modify the small-scale power spectrum [18]. Furthermore,
it has recently been proposed for the study of DM-baryon
interactions [19]. We go beyond the analysis in Ref. [19] by
including the effect of relative velocities, which turns out to
change the results significantly.
Interactions between baryons and dark matter can be

detected through their effect on the brightness temperature
of the 21-cm line. This brightness temperature is propor-
tional to the difference between the spin temperature of the
neutral hydrogen and the CMB temperature. In the standard
scenario the spin temperature is coupled to the baryon
temperature during the redshift range z ∼ 30–200. This
creates a departure between spin temperature and CMB
temperature. As shown in Ref. [19], if the baryons are
cooled down (by interacting with a colder fluid, like the
dark matter) the spin temperature will be lower, modifying
the overall brightness temperature.
We emphasize that these interactions do not cause just

cooling of the baryons, but also heating. In the usual picture
of interaction between two fluids, the warmer fluid will lose
energy toward heating up the colder one, while there will be
no energy transfer if both fluids have the same temperature.
However, if there is a relative velocity between the two
fluids—dark matter and baryons in our case—there will be
an additional friction term that will tend to damp this
relative velocity. The kinetic energy lost in this manner will
induce heating in both fluids. The magnitude of this effect
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depends on the initial relative velocity, which is given by a
Gaussian variable with a [three-dimensional (3D)] variance
of ∼29 km=s at kinematic decoupling (z ≈ 1010) [20,21].
The brightness temperature will then acquire an addi-

tional spatial dependence, through the local variation of the
relative velocities. Quantifying this effect, we find that
during the dark ages it creates an additional contribution to
the power spectrum of 21-cm temperature fluctuations,
which can be more than an order of magnitude bigger at
large scales than the standard one, even for values of the
cross section allowed by current CMB studies [13]. We
study the detectability of this new signal with an SKA-
inspired interferometer1 and with a more futuristic pro-
posed experiment. We also study how the global signal
changes due to interactions and discuss the prospects for
experiments such as NenuFAR.2

This paper is organized as follows. In Sec. II we derive
the drag and heating terms and find their effects on the
dark-matter and baryon temperatures. Later, in Sec. III we
study how the change in the baryon temperature affects the
signal of the 21-cm line during the dark ages. In Sec. IV we
carry out a detectability analysis of this signal. We discuss
some generalizations, as well as other possible effects of the
interactions, in Sec. V before drawing our conclusions
in Sec. VI.

II. EVOLUTION OF INTERACTING DARK
MATTER AND BARYON FLUIDS

In this section we will study how the interactions
between DM and baryons change their temperatures. To
do that we will have to calculate the drag on the relative
velocity due to interactions with baryons, as well as the
heating effect on both fluids. Our results will rely on the
current understanding of relative velocities, so let us start
with a brief review.

A. Velocities

In the standard cosmological evolution, dark matter
starts collapsing as soon as matter-radiation equality is
reached. Baryons, however, cannot cluster due to radiation
pressure, until they decouple from the photon background.
This difference in their evolution history generates a
relative velocity between the two components. After the
baryons and photons kinematically decouple, at redshift
z ≈ 1010, this velocity redshifts away, since the baryons
experience infall into the DM gravitational wells.
Reference [20] first pointed out that relative velocities
affect the formation of small-scale structure. Their effect on
the standard power spectrum of 21-cm fluctuations in the
dark ages was studied in Ref. [21].

At kinematic decoupling, the relative velocities Vχb ≡
Vχ − Vb follow a Gaussian distribution, where Vχ and Vb

are the DM and baryon bulk velocities. Then the differ-
ential probability of having an initial relative velocity Vχb;0

is given by

PðVχb;0Þ ¼
e−3V

2
χb;0=ð2V2

rmsÞ

ð2π
3
V2
rmsÞ3=2

; ð1Þ

where the value of the (3D) width of this distribution
is Vrms ¼ 29 km=s∼10−4c at kinematic decoupling
(z ¼ 1010) [21]. This rms value as well as the full power
spectrum of Vχb;0 can be simply extracted from standard
linear Boltzmann codes [18,22].
Elastic interactions between fluids with a relative veloc-

ity will have two different effects. First, they will tend to
decrease the relative velocity and achieve mechanical
equilibrium, which in our scenario will manifest itself as
a drag on the relative velocity [13]. Second, they will
thermally couple the fluids, tending to equilibrate their
temperatures.
We start by calculating the drag on the relative velocity.

B. Drag term

Throughout the text we consider cross sections para-
metrized as σ ¼ σ0v−4. First, we analyze the velocity
change due to the collision with a baryon with velocity
vb. In the center-of-mass (CM) frame the initial velocity of
the DM particle will be

vðCMÞ;0
χ ¼ ðvχ − vbÞ

mb

mb þmχ
; ð2Þ

and in an elastic collision the final velocity can be para-
metrized by the angle toward which it is scattered, so the
final velocity of the dark matter particle is

vðCMÞ;f
χ ¼ vðCMÞ;0

χ n̂; ð3Þ

where n̂ is a unit vector. The change in velocity in a single
collision (which is Galilean invariant, and hence frame
independent) is

Δvχ ¼
mb

mb þmχ
jvχ − vbj

�
n̂ −

vχ − vb
jvχ − vbj

�
: ð4Þ

To calculate the full effect of the interactions we
need to include the rate at which interactions happen
and average over the velocities of the fluid elements.
The rate of interactions in a particular direction dn̂ is
dσ=dn̂jvχ − vbjnb, where σðjvχ − vbjÞ is the cross section
as a function of the relative velocity, and nb is the number
density of baryons (targets). The time derivative of the DM
bulk velocity will then be

1https://www.skatelescope.org/.
2http://nenufar.obs‑nancay.fr.
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dVχ

dt
¼ nb

Z
d3vχfχ

Z
d3vbfbjvχ −vbj

Z
dn̂

dσ
dn̂

Δvχ ; ð5Þ

and we can perform the inner integral, by plugging Eq. (4)
into Eq. (5) and realizing it has to be proportional to the
only direction (vχ − vb) inside the integral, to find

dVχ

dt
¼−

ρb
mbþmχ

Z
d3vχfχ

Z
d3vbfbðvχ −vbÞjvχ −vbjσ̄;

ð6Þ

where we have defined the momentum-transfer cross
section as

σ̄ðjvχ − vbjÞ≡
Z

dðcos θÞ dσ
d cos θ

ð1 − cos θÞ: ð7Þ

Alternatively, we could have calculated the drag on the
baryon velocity, which is given by exchanging χ↔b in
Eq. (6), so that dVb=dt ¼ −ðρχ=ρbÞdVχ=dt. The relative
velocity between the two fluids will then evolve as

dVχb

dt
¼−

ρm
mbþmχ

Z
d3vχfχ

Z
d3vbfbðvχ −vbÞjvχ −vbjσ̄;

ð8Þ

where we have defined ρm ≡ ρb þ ρχ .
To calculate the two integrals over velocities we define

two new variables vm and vth, as

vm ≡
mχ

Tχ
vχ þ mb

Tb
vb

mχ

Tχ
þ mb

Tb

; and ð9Þ

vth ≡ vχ − vb; ð10Þ

so that the velocity distributions f factorizeZ
d3vχfχ

Z
d3vbfb ¼

Z
d3vthfth

Z
d3vmfm: ð11Þ

Nothing will depend on vm, so we can just integrate it out,
leaving then only the integral of the relative velocity vth.
The distribution function fth of this velocity is a Gaussian
displaced from the origin by Vχb and with thermal width
given by the sums of the baryon and DM widths,
Tχ=mχ þ Tb=mb. The integral to calculate hence reduces to

dVχb

dt
¼ −

ρm
mb þmχ

Z
d3vthfthvthvthσ̄ðvthÞ: ð12Þ

Focusing on the case in which the interaction cross
section is parametrized as σ̄ ¼ σ0v−4, the drag term is
given by

DðVχbÞ≡ −
dVχb

dt
¼ ρmσ0

mb þmχ

1

V2
χb

FðrÞ; ð13Þ

where we have defined r≡ Vχb=uth, and
u2th ≡ Tb=mb þ Tχ=mχ , which is the variance of the thermal
relative motion of the two fluids. The function FðrÞ is
determined as

FðrÞ≡ erf

�
rffiffiffi
2

p
�
−

ffiffiffi
2

π

r
e−r

2=2r; ð14Þ

which grows with r from zero at r ¼ 0 to one at r → ∞.

C. Heating

We now study the second effect that interactions have on
the dark-matter and baryon fluids, namely heating.
Interactions between two fluids (1 and 2) with different
temperatures will tend to heat up the colder fluid (in our
case the cold dark matter) at the expense of the energy of
the warmer fluid, tending to equalize their temperatures.
The heating rate is usually proportional to the temperature
difference (T1 − T2). We will show here that, if there is a
relative velocity between the two fluids, the heating rate
will also include a friction term that will heat up both fluids,
independently of their temperature difference.
There is an intuitive reason to expect a heating term even

for equal-temperature fluids: if two fluids with the same
temperature collide with a relative velocity, and then equili-
brate, this final relative velocity should vanish. The kinetic
energy would hence get transformed into a higher final
temperature for both fluids, due to conservation of energy.
Let us calculate the heating rate _Qb of the baryons in

their instantaneous rest frame, where the change in energy
will directly give us the heat instead of having to add bulk
motions. A baryon changes its energy in a collision by
ΔEb ¼ mbvCM · Δvb ¼ −mχvCM · Δvχ [13], where
vCM ¼ ðmbvb þmχvχÞ=ðmb þmχÞ. The heating of the
baryonic fluid per unit time is

dQb

dt
¼ mbρχ

ðmχ þmbÞ
Z

d3vbfb

Z
d3vχfχðvχÞ

× σ̄ðjvχ − vbjÞjvχ − vbj½vCM · ðvb − vχÞ�; ð15Þ

where we have already integrated over outgoing angles dn̂
using Eqs. (4) and (7).
We perform this integral in the Appendix and find

dQb

dt
¼ 2mbρχσ0e−

r2
2 ðTχ − TbÞ

ðmχ þmbÞ2
ffiffiffiffiffiffi
2π

p
u3th

þ ρχ
ρm

mχmb

mχ þmb
VχbDðVχbÞ:

ð16Þ
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The first term, in the r → 0 limit, was derived in [13,19],
but here we also find the second term, which is nonzero
for r ≠ 0.
By symmetry, _Qχ is obtained by simply substituting

b↔χ in Eq. (16). We see that these expressions, with the
drag DðVχbÞ in Eq. (13), conserve the total kinetic energy
density in the baryon-DM fluid, i.e.

nχ
dQχ

dt
þ nb

dQb

dt
−
ρχρb
ρm

DðVχbÞVχb ¼ 0: ð17Þ

Now that we know how the interactions change the
energy of the baryons and DM at any given time, let us find
how their temperatures are modified.

D. Temperature evolution

Using the expressions for the drag DðVχbÞ, in Eq. (13),
and the heating rates _Qb and _Qχ , in Eq. (16), we can write
the equations of the temperature evolution [13,19]. In our
analysis we also evolve the relative velocity Vχb. The set of
equations we will have to solve is then

dTχ

da
¼ −2

Tχ

a
þ 2 _Qχ

3aH
; ð18Þ

dTb

da
¼ −2

Tb

a
þ ΓC

aH
ðTγ − TbÞ þ

2 _Qb

3aH
; ð19Þ

dVχb

da
¼ −

Vχb

a
−
DðVχbÞ
aH

; ð20Þ

where we have assumed the photon temperature Tγ is
unaltered, H is the Hubble parameter and ΓC is the
Compton interaction rate, which depends on the free-
electron density ne. Since the free-electron abundance also
depends on the baryon temperature through the recombi-
nation rate, we must solve for Eqs. (18)–(20) simultane-
ously with the free-electron fraction xe ¼ ne=nH,

dxe
da

¼ −
C
aH

ðnHABx2e − 4ð1 − xeÞBBe3E0=ð4TγÞÞ; ð21Þ

where C is the Peebles factor [23], E0 is the ground energy
of hydrogen, and ABðTb; TγÞ and BBðTγÞ are the effective
recombination coefficient and the effective photoionization
rate to and from the excited state, respectively [24,25].
For convenience, we parametrize the results in terms of a

dimensionless cross section σ41, defined as

σ41 ≡ σ0
10−41 cm2

; ð22Þ

so that σ41 ≤ 3.2ðmχ=GeVÞ is the 95% C.L. constraint from
CMB analysis [13], valid only for mχ ≫ mb.

E. Limiting cases

To gain understanding of the implications of Eq. (16) it is
enlightening to study the extreme cases of very-heavy and
very-light dark matter.

(i) For very massive dark matter (mχ ≫ mb ≈ 1 GeV),
the first term in Eq. (16) is small and the second one
dominates, which means that the new effect we
have calculated is more relevant than the previously
known result. In this limit we then have _Qb¼
ðρχ=ρmÞmbVχbDðVχbÞ½1þOðmb=mχÞ�, whichmeans
_Qb ∝ σ0=mχ . Equivalently, the DM heating term
will be given by _Qχ¼ðρb=ρmÞmbVχbDðVχbÞ×
½1þOðmb=mχÞ�, so that _Qχ ∝ σ0=mχ as well, so
formχ ≫ mb the constraints we will find will behave
as σ0 ∝ mχ .

(ii) In the opposite limit, in which mχ ≪ mb, we find
that the temperature-independent heating term [sec-
ond term in Eq. (16)] is linear in mχ and hence
subdominant. The first term is roughly constant.
Although uth depends on Tχ=mχ , Tχ starts as zero
and does not change unless there are interactions.
This leads to a net mass-independent cooling
_Qb < 0, whereas the dark matter decouples,
since _Qχ ∝ mχ → 0.

Let us now briefly discuss the two limiting cases where
either thermal or relative velocities dominate:

(i) When Vχb ≪ uth ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tχ=mχ þ Tb=mb

p
(thermal

velocity dominates), we recover the results of
Ref. [19], where baryons get cooled down and tend
to thermalize with the dark matter fluid. This is
shown in Fig. 1 as the “Vχb;0 ¼ 0” case.

(ii) In the limit where Vχb is much bigger than uth, the
second term in Eq. (16) dominates, which causes a
net heating of the baryon fluid. However, the overall
rate of interactions (and hence net heating or cool-
ing) is suppressed for large velocities, due to the fact
that the cross section is proportional to v−4.

F. Numerical results

We solve the system Eqs. (18)–(21) for different values
of σ41 andmχ , starting at z ¼ 1010 with the baryons tightly
coupled to the photon fluid (Tb ¼ Tγ) and with perfectly
cold dark matter (Tχ ¼ 0), although we tested that having
slightly warm dark matter at recombination does not
change our results significantly. We use cosmological
parameters consistent with their current best-fit values
[2]. We have also checked that, for the values of σ41
considered in our analysis, the system is not already tightly
coupled at z ¼ 1010, which would require us to start
evolving the system at an earlier redshift.
As for the initial conditions for Vχb, we will solve the

system for an array of values from zero initial velocity to 3
times the width of its Gaussian distribution. For purposes of
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illustration we will plot two different cases, one in which
Vχb;0 ¼ Vrms ¼ 29 km=s at initial redshift, and another in
which Vχb;0 ¼ 0, to show how the relative velocity affects
the results. In the case with Vχb;0 ≠ 0, higher values of mχ

imply a more significant heating of the baryons.
In Fig. 1 we show how the baryon temperature changes

with the strength of the interactions. In the central and
bottom panels we have mχ ≥ mp. In those two figures it is
explicit that having Vχb;0 ≠ 0 (red lines) induces extra heat
in the system as a result of the damping of the relative

velocity, which increases the temperature of both baryons
and dark matter. However, when considering the case with
Vχb;0 ¼ 0 (blue lines), the interactions cool down the
baryons and only heat up the dark matter. In the upper
panel of Fig. 1 we have set mχ ¼ 0.1 GeV. In this case it is
clear that introducing interactions can only cool down the
baryons, albeit with a more pronounced temperature drop
in the Vχb;0 ¼ 0 case.

III. EFFECTS ON THE 21-CMDARKAGES SIGNAL

We have seen how the baryon and dark matter temper-
atures change when adding interactions. Now we will study
how this modified baryon temperature gives rise to a
different spin temperature for the gas during the dark ages,
which in turn modifies the 21-cm brightness temperature
we would observe.

A. 21-cm brightness temperature

The electronic ground state of neutral hydrogen is split
into two hyperfine states, a singlet spin-0 and a triplet spin-1
configuration. The singlet state has a smaller energy, with
the transition from the triplet to the singlet corresponding to
a wavelength of 21 cm. Because of its very long wavelength
it is hard to confuse with any other redshifted line, making it
a very unique probe of the physics of the early universe [15].
We define the spin temperature of the baryon gas through

the ratio of the populations of the triplet to the singlet states,

n1
n0

¼ 3e−T�=Ts ; ð23Þ

where T� ¼ 0.068K ¼ 5.9 μeV is the energy correspond-
ing to the 21-cm transition. During the dark ages the
upward and downward transitions are much faster than the
evolution of the universe. This means that we can use
the quasi-steady-state approximation and, to a good accu-
racy, find the values of n1 and n0 for which there is
equilibrium,

n0ðC01 þ R01Þ ¼ n1ðC10 þ R10Þ; ð24Þ

where Rij are the rates of radiative transitions of the CMB
blackbody photons and Cij are the collisional transition
rates [18]. We will always have T� ≪ Tb; Tγ, in which case
the spin temperature is very well approximated by

Ts ¼ Tγ þ
C10

C10 þ A10
Tb
T�

; ð25Þ

whereA10 is the downward spontaneous Einstein coefficient
of the 21-cm transition. We neglect the Wouthuysen-Field
effect [26–28] that would arise from inelastic scattering of
Lyman-α photons after the first stars are created.

FIG. 1 (color online). Baryon temperatures (three upper curves)
without interactions (solid curve) and when adding interactions
with σ41 ¼ 1 (dashed-blue curve for the case where Vχb;0 ¼ 0 and
red curve for Vχb;0 ¼ Vrms), as well as dark-matter temperatures
(two lower curves, dash-dotted–blue curve for the case where
Vχb;0 ¼ 0 and red curve for Vχb;0 ¼ Vrms). From top to bottom we
show the results for mχ ¼ 0.1, 1, and 10 GeV.
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The fact that the spin temperature is smaller than the
CMB temperature during the dark ages enables the hydro-
gen gas to resonantly absorb more CMB photons with a rest
wavelength of 21-cm than it emits. We would observe this
effect as a smaller brightness temperature of the CMB. Let
us define the temperature (T21) of the 21-cm line (red-
shifted to today) as the brightness temperature contrast with
respect to the CMB, which is given by

T21 ¼
Ts − Tγ

1þ z
ð1 − e−τÞ ≈ Ts − Tγ

1þ z
τ; ð26Þ

where we have used the fact that the optical depth τ is very
small and is in fact given by

τ ¼ 3

32π

T�
Ts

nHIλ321
A10

HðzÞ þ ð1þ zÞ∂rvr
; ð27Þ

where HðzÞ is the Hubble rate, nHI is the density of neutral
hydrogen, λ21 ≈ 21 cm, and ∂rvr is the proper gradient of
the peculiar velocity along the radial direction.
In the usual scenario the spin temperature follows the gas

temperature as of decoupling and until z ∼ 30, which
makes it different from the CMB temperature in the redshift
range z ∼ 30 to 200. This creates a nonzero 21-cm line
temperature T21 in this range. As we have shown, dark-
matter–baryon interactions can either cool down or heat up
the baryons, thus changing the spin temperature.
We show this effect in Fig. 2, where we plot for reference

the CMB temperature, as well as the usual noninteracting
gas and spin temperatures. We also plot the gas and spin
temperature for interacting cases with either Vχb;0 ¼ 0 or
Vχb;0 ¼ Vrms. The deviation of the spin temperature in the
interacting cases (blue and red curves) is apparent, even for
a cross section of σ41 ¼ 1, compatible with CMB bounds.
If there is more heating than cooling of the baryons, the

21-cm brightness temperature decreases in magnitude, since
the spin temperature is closer to the CMB temperature
during the dark ages. Cooling of the baryons increases the
brightness temperature, as long as the spin temperature stays
coupled to the baryons. InFig. 3weplot the 21-cmbrightness
temperature, fromEq. (26), for different values of the relative
velocity and DM mass. It is interesting to note that the
heating increases with the mass of the dark matter, as
predicted, so that the average brightness temperature T̄21

during the dark ages is higher when including interactions.

B. Global signal

Let us define T̄21ðVχbÞ as the brightness temperature in
the absence of density perturbations. In the standard
scenario this quantity is spatially homogeneous and is
termed the global 21-cm signal. Once DM-baryon inter-
actions are included, T̄21ðVχbÞ is still a function of the
initial relative velocities. We calculate its average over said
initial velocities as

hT̄21i ¼
Z

d3Vχb;0T̄21ðVχb;0ÞPðVχb;0Þ; ð28Þ

with the probability distribution PðVχb;0Þ given by Eq. (1).
We show this quantity in Fig. 4 for the interacting case and
for three different DM masses.

C. 21-cm fluctuations

As we have shown, the brightness temperature T21 of the
21-cm line is modified by the inclusion of interactions, and

FIG. 2 (color online). Values of the spin temperature (dashed
curves) and the gas temperature (solid curves) for the collisionless
case (black curve) and when including collisions (blue curve for
Vχb;0 ¼ 0 and red curve for Vχb;0 ¼ Vrms), as well as the CMB
temperature in the dashed-green curve. From top to bottom we
show the results for mχ ¼ 0.1, 1, and 10 GeV.
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this modification depends on the initial relative velocity.
The large-scale fluctuations of the relative velocity will
therefore be imprinted on the brightness temperature, since
two regions with different initial relative velocities will
appear with different brightness temperatures (compare
blue and red lines in Fig. 3), which will actually generate an
additional contribution to the power spectrum of the 21-cm
fluctuations. Let us calculate it.
The standard deviation of T21 as a function of

Vχb;0 is

T21;rms ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT2

21i − hT21i2
q

: ð29Þ
Even if T21 had no explicit spatial dependence, it would

fluctuate because relative velocities are not homogeneous.
In principle, to compute the power spectrum of T21, one
should first compute its two-point correlation function.
This is obtained by integrating over the six-dimensional
joint probability distribution of the relative velocities at two
different points (see Ref. [21]). To simplify matters we shall
make the following approximation:

T21ðVχb;0Þ ≈ hT21i þ T21;rms

ffiffiffi
2

3

r �
1 −

V2
χb

V2
rms

�
; ð30Þ

which has the advantage of resulting in simple analytic
expressions [29] while still reproducing adequately the
variance of T21. For illustration we show T21 as a function
of Vχb;0 for themχ ¼ 1 GeV case in Fig. 5. We calculate the
power spectrum of T21ðVχb;0Þ in this approximation to be

hT21ðkÞT�
21ðk0Þi ¼ T2

21;rmsPV2
χb
ðkÞð2πÞ3δDðkþ k0Þ; ð31Þ

wherePV2
χb
is the power spectrumof

ffiffiffiffiffiffiffiffi
2=3

p ð1 − V2
χb;0=V

2
rmsÞ.

We plot PV2
χb
ðkÞ in Fig. 6.

Our observable, the brightness temperature of the 21-cm
line, varies in space through its dependence on the baryon
density nb, as well as on the initial relative velocities Vχb;0.
To linear order in density perturbations the temperature of
the 21-cm line, Eq. (26), will be given by [17]

T21 ¼ T̄21ðVχb;0Þ þ
dT21

dδ
δ; ð32Þ

where δ≡ ðnb − n̄bÞ=n̄b, dT21=dδ is a well-known func-
tion of redshift for Vχb;0 ¼ 0, and T̄21¼ τ̄ðT̄s−TγÞ=ð1þ zÞ
is the unperturbed value of the brightness temperature.

FIG. 3 (color online). Values of the average brightness temper-
ature of the 21-cm line for the collisionless case (solid-black
curve), the case with interactions (blue-dashed curve for
Vχb;0 ¼ 0, purple–dot-dashed curve for Vχb;0 ¼ Vrms), and the
average over initial velocities in the red-dotted curve. From top to
bottom we show the results for mχ ¼ 0.1, 1, and 10 GeV.

FIG. 4 (color online). Values of the brightness temperature of
the 21-cm line for the collisionless case in solid-black curve, and
three with interactions (σ41 ¼ 1), in dashed-blue curve
mχ ¼ 0.1 GeV, in dot-dashed–purple curve mχ ¼ 1 GeV, and
in dotted-red curve mχ ¼ 10 GeV.
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Both T̄21 and dT21=dδ depend on the initial relative
velocities. The average over initial velocities of T21 is then

hT21i ¼ hT̄21i þ
�
dT21

dδ

�
δ: ð33Þ

We can, however, approximate hdT21=dδi ≈ dT21=
dδðVχb;0 ¼ 0Þ, since the error made in the 21-cm temper-
ature would be of order δT21ðkÞ ∼ T21;rmsδ, which is
subdominant. We can calculate the variance of T21 over
both initial relative velocities and overdensities (as in the
usual power spectrum) to find

PT21
ðkÞ¼ T̄2

21;rmsPV2
χb
ðkÞþ

�
αðzÞþ T̄21

k2jj
k2

�2

Pbðk;zÞ; ð34Þ

where kjj is the magnitude of k in the line-of-sight direction,
αðzÞ as defined in Ref. [17], and Pb is the usual baryon
power spectrum.
We can convert easily from k-space to l-space by using a

harmonic transform [30], which is exact in the case of the
flat-sky limit and still a very good approximation for
l ≥ 10, which should be good enough for our order-of-
magnitude estimates. We define the angular power spec-
trum for the standard fluctuations (std) as

Cstd
l ¼ 1

r2

Z
dkjj
2π

j ~WðkjjÞj2
�
αþ T̄21

k2jj
k2

�2

PbðkÞ; ð35Þ

where k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=r2 þ k2jj

q
, and ~WðkjjÞ is the window func-

tion. The new angular power spectrum (Vχb), due to
interactions, will be

C
Vχb

l ¼ T̄2
21;rms

r2

Z
dkjj
2π

j ~WðkjjÞj2PV2
χb
ðkÞ: ð36Þ

Before going into a full-scale analysis one might be
interested in what would happen at a single l and at
different redshifts. We show in Fig. 7 the value of the square

FIG. 5 (color online). Brightness temperature T̄21 of the 21-cm
line for mχ ¼ 1 GeV and σ41 ¼ 1 at redshifts z ¼ 30 in dashed-
blue curve, z ¼ 40 in dash-dotted–purple curve, and z ¼ 50 in
dotted-red curve. We also show the average over velocities for
each redshift, as defined in Eq. (28), in solid curves and their
corresponding colors.

FIG. 6 (color online). Power spectra as a function of k. In solid-
blue curve we show the power spectrum of V2

χb, as defined in
Eq. (31), and in dashed-black curve the standard power spectrum
of baryon overdensities at redshift z ¼ 30.

FIG. 7 (color online). Amplitude of the brightness-temperature
fluctuations induced by relative velocity fluctuations for three
different cross sections (solid-black curve for σ41 ¼ 0.01, red
curve for σ41 ¼ 0.1, and green curve for σ41 ¼ 1), as well as for
the usual baryon density perturbations. We calculate at two
different scales: in the first panel we show the results for l ¼ 30
and in the second one for l ¼ 1000.
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root of the velocity power spectrum ðCVχb

l Þ1=2 for different
values of the cross section. For illustration purposes we also
show the usual power spectrum ðCstd

l Þ1=2, from Eq. (35),
where for simplicity we have taken αðzÞ=αðz0ÞðCstd

l Þ1=2ðz0Þ
as a proxy for ðCstd

l Þ1=2ðzÞ as well as a redshift-independent
bandwidth of Δν=ν ¼ 0.02 to avoid recalculating the
integral in Eq. (35) for each redshift in this plot. We show
the cases of l ¼ 30 and l ¼ 1000 in the upper and lower
panels, respectively.

IV. DETECTABILITY

So far we have shown that DM-baryons interactions
modify the baryon temperature, raising it or lowering it,
depending on the initial relative velocity. Varying the
baryon temperature will change the spin temperature and
hence the brightness temperature of the 21-cm line. This
quantity, also known as the “global signal,” is the main
observable during the dark ages. We will study how to
detect interactions with a global-signal experiment.
Moreover, since the temperatures depend on initial

velocities, and these have a spatial dependence, we have
argued that there will be a new contribution to the power
spectrum, which, at large scales, can overcome the standard
one for values of the cross section of σ41 ≳ 0.1. We will
study the detectability of this signal with interferometry
later in this section.

A. Global signal

Let us start by analyzing the most direct effect of DM-
baryon interactions, the change in the global signal during
the dark ages. Next-generation experiments, such as
NenuFAR, will survey the 21-cm line brightness temper-
ature down to frequencies possibly as low as ν ∼ 10 MHz,
which corresponds to a redshift z > 100.
We have seen in Fig. 3 how the brightness temperature

changes when adding interactions. We will use the ampli-
tude of the brightness temperature at its peak as a proxy for
the detectability of the signal, even though its very high
redshift (z ∼ 90) may make it unobservable.
Let us first find the signal-to-noise ratio to detect

interactions having a cross section σ41 ¼ 1. If we could
determine the brightness temperature T̄21 at its peak with
5% precision, we would be able to detect interactions with
σ41 ¼ 1 at a signal-to-noise ratio S=N ∼ 10 for
mχ ¼ 0.1 GeV, S=N ∼ 0.5 for mχ ¼ 1 GeV, and S=N ≳
1 for mχ ¼ 10 GeV.
More interestingly, if we were able to improve the error

by a factor of 5, reaching 1% precision of peak-temperature
determination, we would be able to detect cross sections as
small as σ41 ≲ 0.04 for mχ ¼ 0.1 GeV, σ41 ≲ 0.1 for
mχ ¼ 1 GeV, and σ41 ≲ 0.2 formχ ¼ 10 GeV, all of which
are beyond what can be achieved by current CMB
analysis [13].

B. Fluctuations

We now turn our focus to the measurement of the 21-cm
power spectrum, Eq. (34). In a maximum-likelihood
analysis, the Fisher forecast for the error in the measure-
ment of the amplitude A of a power spectrum Cl is given
by [31],3

1

σ2A
¼

X
l

�∂Cl

∂A
�

2 1

σ2l
: ð37Þ

For a given sky coverage fsky, the error for an individual l
in the estimated value Â is [31,34,35]

σÂl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

fskyð2lþ 1Þ

s
ðCstd

l þ CN
l Þ; ð38Þ

where CN
l is the instrumental noise power spectrum,

defined below in Eq. (40), and Cstd
l is the standard power

spectrum of 21-cm fluctuations (under the null hypothesis
of no DM-baryon interactions), Eq. (34).
The minimum detectable amplitude Â at 1-σ significance

is thus

σÂ ¼
�
fsky
2

Xlmax

lmin

ð2lþ 1Þð ~CVχb

l Þ2
ðCb

l þ CN
l Þ2

�
−1
2

; ð39Þ

where ~C
Vχb

l ¼ C
Vχb

l =A encodes the l dependence of the
velocity power spectrum from DM-baryon interactions, and
lmin ¼ 180=θ is the largest scale accessible by an experi-
ment with sky coverage fsky ¼ θ2. Because of the use of
the harmonic transform in Eq. (35), we take lmin ¼ 15.
This should not affect the results significantly since there
are very few modes at lower l.
We will consider two different scenarios, first a realistic

experiment modeled after SKA that could be taking data
within the next few years and second a more idealized
experiment whose noise level will be low enough to detect
the primordial power spectrum at redshift z ¼ 30 (but still
not cosmic-variance limited, since the usual primordial
power spectrum vanishes for smaller redshifts but the noise
will not).
We will study the redshift range z ¼ 20 to 30, at the very

end of the dark ages. This range is chosen to avoid complex
astrophysical processes at low redshift as well as to still be
observable from Earth. We may not be fully free of
contamination, however, since the epoch of the formation
of the first stars is unknown, and the x rays generated
during star formation may start to heat up the gas at z≲ 25
[36]. Moreover, accreting intermediate-mass black holes
(sometimes termed miniquasars) may also be an important

3We assume that the likelihood function is Gaussian in the
vicinity of its maximum [32,33].
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source of x rays during this era [37–39]. Once data of the
gas temperature during the dark ages are acquired, a careful
analysis should take these processes into account along
with the heating produced by DM-baryon interactions, and
by studying their different redshift behaviors and angular
structures, disentangle them. We motivate future work to
address this issue.
The angular noise power spectrum of an interferometer is

given by [40]

l2CN
l ¼ ð2πÞ3T2

sysðνÞ
Δνtof2cover

�
l

lcoverðνÞ
�

2

; ð40Þ

where lcoverðνÞ ¼ 2πD=λ is the maximum multipole at
frequency ν (corresponding to wavelength λ) that can be
measured with an array of dishes with maximum baseline
D, covering a total area Atotal with a covering fraction
fcover ≡ NdishAdish=Atotal, in a frequency window Δν with
an observing time to. The system temperature is given by
Tsys ∼ 180ðν=180 MHzÞ−2.6 K, consistent with [41].
Inspired by design plans for the Square Kilometer Array,

we first consider a future ground-based interferometer with
access to the final stages of the dark ages, z ∼ 20–30, with a
baseline of D ¼ 6 km [corresponding to a maximum
angular scale lcoverðνÞ ∼ 5800 at redshift z ¼ 30], with
fcover ¼ 0.02, surveying a sky fraction fsky ¼ 0.75 for a
total of five whole years. As for the bandwidth, we
surveyed a range between Δν ¼ 0.1 MHz and 10 MHz
and found that Δν ∼ 1 MHz is the optimum value (for
smaller bandwidths the noise Cls dominate over the signal
and for larger ones the number of redshift slices is
too small).
For more optimistic constraints, we set D ¼ 50 km,

fcover ¼ 0.1, and assume ten whole years of observations.
In order to get a result closer to the cosmic-variance limit
we could perform the analysis from z ¼ 20, going up to the
beginning of the dark ages, z ¼ 200. However, we find that
it does not improve the results significantly, due to the rise
of synchrotron radiation at low frequencies, which grows
much more rapidly than the signal. We consider then the
same redshift range as before, z from 20 to 30.
One of the great advantages of 21-cm as a probe is the

ability to analyze the tomography of the signal, enabling us
to coadd information from different redshift slices.
Summing over redshift slices, the signal-to-noise ratio is
given by

ðS=NÞ ¼
�X

z

fsky
2

Xlmax

lmin

ð2lþ 1ÞðCVχb

l ðzÞÞ2
ðCstd

l ðzÞ þ CN
l ðzÞÞ2

�1
2

: ð41Þ

In Fig. 8 we show the Cls for the usual primordial
perturbations (Cstd

l ), for the instrumental noise (CN
l , both

with next-generation and futuristic parameters), and for the

new contribution due to interactions (C
Vχb

l ), all of them at
redshift z ¼ 30.

1. Results

Let us start by considering the realistic noise case (that
corresponds to the experimental parameters of SKA) and
find what the signal-to-noise ratio would be for detecting
σ41 ¼ 1. We calculate the signal-to-noise ratio for σ41 ¼ 1
in each redshift bin between z ¼ 20 and z ¼ 30 with
Eq. (41). We find the total signal-to-noise ratio to be S=N ∼
3 for the case ofmχ ¼ 0.1 GeV, S=N ∼ 9 formχ ¼ 1 GeV,
and S=N ∼ 0.2 for mχ ¼ 10 GeV. We could alternatively
express the results in terms of the smallest σ41 that would
still give us a signal-to-noise ratio of 1, taken to be
approximately σ41;min ¼ 1=

ffiffiffiffiffiffiffiffiffi
S=N

p
. We show the minimum

detectable cross sections in Table I.
Let us now move on to trying to find the smallest

possible σ41 detectable at S=N ¼ 1 in the more optimistic

case. In principle the amplitude A of C
Vχb

l , equal to T̄2
21;rms,

is a nontrivial function of redshift and σ41. However, we
find that for small values of σ41 (σ41 ≲ 0.1), the quantity
fðzÞ≡ T̄21;rms=σ41 is approximately independent of σ41
(although it does depend on mχ). Then we can construct an
estimator for σ41 for each redshift slice,

FIG. 8 (color online). Angular power spectra at redshift z ¼ 30
with bandwidth Δν ¼ 1 MHz. In solid-black curve we show the
usual primordial perturbations, in solid- and dotted-blue curves
the instrumental noises for the realistic and optimistic cases [see
Eq. (40) and discussion below] and in dashed-red curve the new
piece due to interactions for σ41 ¼ 1 and mχ ¼ 1 GeV.

TABLE I. Minimum σ0 (in cm2, corresponding to σ41 × 1041)
detectable with both realistic and optimistic interferometer
parameters at 68% C.L., as well as with global-signal analysis
with 1% accuracy for three different dark-matter masses mχ

(in GeV).

mχ [GeV] 1=10 1 10

Fluctuations (realistic) 6 × 10−42 3 × 10−42 2 × 10−41

Fluctuations (optimistic) 2 × 10−44 4 × 10−44 4 × 10−43

Global signal (1% error) 4 × 10−43 1 × 10−42 2 × 10−42
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ð ˆσ241Þz ¼
ðÂÞz
f2ðzÞ ; ð42Þ

with variance given by σ2ðσ2
41
Þz ¼ σ2AðzÞ=f4ðzÞ. We can then

combine all the estimators into a minimum-variance one,
finding the variance of the final redshift-independent
estimator,

1

σ2
σ2
41

¼
X
z

f4ðzÞ
σ2AðzÞ

: ð43Þ

With the optimistic experimental parameters defined
above we find that the minimum σ41 observable at
68% C.L. (1σ) is σ41 ≲ 1.7 × 10−3 for mχ ¼ 0.1 GeV,
σ41 ≲ 4.3 × 10−3 for mχ ¼ 1 GeV, and σ41 ≲ 3.6 × 10−2

for mχ ¼ 10 GeV. These results are about 2 orders of
magnitude better than the CMB constraints found in [13],
where σ41 ≲ 16ðmχ=10 GeVÞ.

V. DISCUSSION

Before concluding we would like to make a few remarks:
(i) As we have shown, interactions between dark matter

and baryons give rise to a new heating term, which
can increase the temperature of the baryons signifi-
cantly. We only used that heating to study dark-ages
physics but this result may have applications beyond
our analysis, for example in the epoch of reioniza-
tion [42,43].

(ii) In this work we have focused only on the case where
σ ∼ vn with n ¼ −4, but one may wonder whether
the dark ages can potentially provide new informa-
tion not contained in the CMB analysis for other
values of n. Since the dark ages occur more recently
than decoupling, we have only been interested in
interactions that increase at later times. Refer-
ence [13] showed that the interaction rate grows
for n ≤ −3, so all results that we could forecast for
n > −3 would be worse than those obtained with
CMB studies. That still leaves n ¼ −3 as a potential
interaction to study, for example.

(iii) It is also worth mentioning that if we wanted to
translate these results to a constraint specific to a
dark-matter milicharge model [7], the ionization
fraction of the baryons would cause a suppression
of xe ∼ 10−4.

(iv) We have also found a decrease in the bulk relative
velocity of baryons and dark matter characterized by
a drag, Eq. (13). In Fig. 9 we show the unperturbed
relative velocity Vχb, found by solving Eqs. (18)–
(21) with initial relative velocity Vχb;0 ¼ Vrms, and

baryon speed of sound cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tb=mb

p
. We also

plot the same two velocities for an interacting case.
All velocities are divided by a factor of 1=ðzþ 1Þ to
eliminate a fiducial redshift dependence.

In the standard case the speed of sound is always
below the bulk one, which creates supersonic flow of
the baryons [20,21]. Including collisions can both
raise the thermal velocity as well as decrease the
relative one, so it reduces the Mach numberN to be
lower than 1 at lower redshifts, which could affect
the formation of a small-scale structure [44].

(v) Finally, throughout the text we have quoted results
for mχ ¼ 0.1, 1, and 10 GeV. For lower masses, the
result is independent of mass, and for higher masses
it depends on σ0=mχ . We show a larger range of
dark-matter masses in Fig. 10, where we plot the
minimum σ0 one could detect at a signal-to-noise
ratio of 1, as a function of the dark-matter mass mχ .
We show how the result asymptotes for very high
and very low mχ, and we also compare with the
CMBþ Lyα analysis in Ref. [13], shown in dotted-
green curve, which is only valid for large mχ .

FIG. 9 (color online). Values of the relative velocity (solid
curves) and the thermal speed of sound (dashed curves) divided
by (1þ z). We show the collisionless case (black curves) and the
case with σ41 ¼ 1 (blue curves), for mχ ¼ 1 GeV.

FIG. 10 (color online). Minimum σ0 (in cm2) detectable as a
function of mχ in GeV. In black curve we show the results for the
case with realistic parameters and in blue curve the one with
optimistic parameters. In dotted-green curve we display the
current CMB constraint (only valid for mχ ≫ GeV).

HEATING OF BARYONS DUE TO SCATTERING WITH … PHYSICAL REVIEW D 92, 083528 (2015)

083528-11



VI. CONCLUSIONS

We have shown that adding interactions between dark-
matter and baryons (in a velocity-dependentway σ ¼ σ0v−4)
can dramatically change the behavior of the baryons during
the dark ages. Intuitively it would seem that coupling the two
fluids will tend to decrease the temperature of the baryons in
favor of the dark-matter temperature. We have proven,
however, that there is an extra heating term that appears
due to the relative velocity between the two fluids, which
tends to convert initial kinetic energy into thermal energy. For
a wide range of nonzero initial relative velocities and dark-
matter masses mχ ≳ 1 GeV, we find that the heating domi-
nates over the cooling of the baryons (if the initial velocity is
zero, we find that there is only cooling, as expected).
Heating up the baryons affects the physics of the dark ages

significantly. A higher baryon temperaturewill translate into
a higher spin temperature during the dark ages, and hence a
smaller brightness temperature of the21-cm line (if onecools
down the baryons, the effect is the opposite). The depend-
ence of the heating on the initial relative velocity makes the
brightness temperature dependon the position in the sky, and
hence creates an extra source of perturbations to the bright-
ness temperature, sourced by the relative velocity perturba-
tions. We have calculated the power spectrum of these
perturbations andcompared it to the standardprimordial one.
To find constraints to dark-matter–baryon interactions

we have studied two probes. First, the global signal during
the dark ages gets modified by the interactions, and
assuming an experiment that could detect the global signal
at peak redshift with an accuracy of 1% we can forecast
σ0 ≲ 10−42 cm2. Second, the interactions create a new
contribution to the power spectrum. We studied the case
of a realistic ground-based interferometer focusing on the
end of the dark ages (z ¼ 20–30) and found that a cross
section of σ0 ∼ 10−41 cm2 could be marginally detected.
We also considered a more futuristic experiment and found
that the minimum cross section one could measure is
σ0 ∼ 10−44 cm2, more than 2 orders of magnitude better
than can be achieved by CMBþ Lyα analysis, and with a
broader mass range.
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APPENDIX: HEATING RATE

The baryon heating per unit time is given by

dQb

dt
¼ mbρχ

ðmχ þmbÞ
Z

d3vbfb

Z
d3vχfχðvχÞσ̄ðjvχ − vbjÞjvχ

− vbj½vCM · ðvb − vχÞ�; ðA1Þ

we again resort to writing everything in terms of vm and v−,
this time defining them to be thermal, so they do not depend
on Vχb, and we use the general expression σ̄ ¼ σ0vn, so that

dQb

dt
¼ mbρχσ0

ðmχ þmbÞ
Z

d3vmfm

Z
d3v−f−ðjVχb þ v−jÞnþ1

× ½vCM · ðVχb þ v−Þ�; ðA2Þ

and we can calculate the scalar product term using
vCM ¼ aVχb þ bv− þ vm, with a ¼ mχ=ðmχ þmbÞ and
b ¼ ðTχ − TbÞ=½u2thðmχ þmbÞ�. Then the scalar product
will be ðvCM·v−Þ¼aV2

χbþbv2−þðaþbÞVχb ·v−þvm ·ð���Þ.
We will have to integrate over vm and v−, which makes it
obvious that the factors proportional to vm will cancel out,
as

Z
d3vmfm ¼ 1; ðA3Þ

Z
d3vmfmvm ·A ¼ 0: ðA4Þ

Therefore

dQb

dt
¼ mbρχσ0

ðmχ þmbÞ
Z

d3v−f−ðjVχb þ v−jÞnþ1

× ðaV2
χb þ ðaþ bÞv− · Vχb þ bv2−Þ; ðA5Þ

so we can calculate the heating rate in terms of two
integrals,

dQb

dt
¼ mbρχσ0

ðmχ þmbÞ
½aI1ðnÞ þ bI2ðnÞ�; ðA6Þ

defining

I1ðnÞ ¼
Vnþ6
χb

ð2πÞ1=2u3th

Z
∞

0

dxx2e−x
2r2=2

Z
1

−1
dyð1þ x2 þ 2xyÞðnþ1Þ=2ð1þ xyÞ; and

I2ðnÞ ¼
Vnþ6
χb

ð2πÞ1=2u3th

Z
∞

0

dxx2e−x
2r2=2

Z
1

−1
dyð1þ x2 þ 2xyÞðnþ1Þ=2xðxþ yÞ; ðA7Þ
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with x ¼ v−=Vχb and r ¼ Vχb=uth. We can perform the two different y integrals to find

Z
1

−1
dyð1þ x2 þ 2xyÞðnþ1Þ=2ð1þ xyÞ ¼ ðx − 1Þðnþ xþ 4Þjx − 1jnþ3 þ ðn − xþ 4Þðxþ 1Þnþ4

ðnþ 3Þðnþ 5Þx ; and

Z
1

−1
dyð1þ x2 þ 2xyÞðnþ1Þ=2ðxþ yÞ ¼ ðxþ 1Þnþ4½ðnþ 4Þx − 1� − ðx − 1Þ3½ðnþ 4Þxþ 1�jx − 1jnþ1

ðnþ 3Þðnþ 5Þx2 ; ðA8Þ

which means that

I1ðnÞ ¼
Vnþ6
χb

ð2πÞ1=2u3th

Z
∞

−∞
dxe−x

2r2=2x
ðx − 1Þðnþ xþ 4Þjx − 1jnþ3

ðnþ 3Þðnþ 5Þ ; and

I2ðnÞ ¼ −
Vnþ6
χb

ð2πÞ1=2u3th

Z
∞

−∞
dxe−x

2r2=2x
ðx − 1Þ3½ðnþ 4Þxþ 1�jx − 1jnþ1

ðnþ 3Þðnþ 5Þ : ðA9Þ

These functions can be expressed in terms of hypergeometric functions, but since we are interested in the n ¼ −4 case, let us
solve just for that

I1ð−4Þ ¼ −
V2
χb

ð2πÞ1=2u3th

Z
∞

−∞
dxe−x

2r2=2x2
jx − 1j
ðx − 1Þ ¼ −

1

ð2πÞ1=2uth
2e−

r2
2 r −

ffiffiffiffiffiffi
2π

p
erfð rffiffi

2
p Þ

r
; and

I2ð−4Þ ¼
V2
χb

ð2πÞ1=2u3th

Z
∞

−∞
dxe−x

2r2=2x
jx − 1j
ðx − 1Þ ¼

1

ð2πÞ1=2uth
2e−

r2
2 : ðA10Þ

We finally find

dQb

dt
¼ mbρχσ0

ðmχ þmbÞ
1

ð2πÞ1=2uth

�
2ðb − aÞe−r2

2 þ a

ffiffiffiffiffiffi
2π

p

r
erf

�
rffiffiffi
2

p
��

ðA11Þ

or, plugging b and a,

dQb

dt
¼ mbρχσ0

ðmχ þmbÞ2
ffiffiffiffiffiffi
2π

p
uth

�
2
Tχ − Tb

u2th
e−

r2
2 −mχ

FðrÞ
r

�
; ðA12Þ

which in the v− ≫ Vχb limit (corresponding to r → 0) yields

dQb

dt
≈ 2b

mbρχσ0
ðmχ þmbÞ

1

ð2πÞ1=2uth
¼ 2

mbρχσ0
ðmχ þmbÞ2

1

ð2πÞ1=2
�
Tχ

mχ
þ Tb

mb

�
−3=2

ðTχ − TbÞ: ðA13Þ

This expression does not contain a temperature-independent heating (as expected) and matches exactly Ref. [13] for
n ¼ −4. However, Eq. (A12) works for all r. In the opposite limit, where Vχb ≫ v− (and then r → ∞), we find that the
heating is

dQb

dt
≈

mχmbρχσ0
ðmχ þmbÞ2Vχb

; ðA14Þ

which indeed does not cancel even for Tχ ¼ Tb, and ends up being independent of temperature.
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