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In this paper we investigate the limits imposed by thermodynamics on a dark energy fluid. We obtain
the heat capacities and the compressibilities for a dark energy fluid. The thermal and mechanical stabilities
require these quantities to be positive. We show that dark energy fluids must satisfy the stability conditions
and that such a requirement puts difficulties on the cosmic fluid models with negative constant equation-of-
state (EoS) parameters. We also show that the observational constraints imposed by type Ia supernova, BAO
and H�z� data on a general dark energy fluid with a time-dependent EoS parameter are in conflict with the
constraints imposed by thermodynamics. This result indicates that dark energy fluid models are unphysical.
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I. INTRODUCTION

Since the standard cold dark matter model (SCDM) was
discarded by the type Ia supernovae observations, which
point to a present-day accelerated Universe [1,2], theoreti-
cal physicists have been challenged to find a model that
agrees with the data and, at the same time, has a solid
theoretical basis. This task is not easy. Usually, physicists
start with the simplest model. Thus, the first attempt is to
reintroduce the cosmological constant Λ into Einstein’s
field equations. A positive Λ term acts in the equations of
motion as a constant repulsive force and, therefore, can
speed up the Universe at large scales. The so-called ΛCDM
model is able to explain most of the current observational
data and has a strong theoretical appeal since it may be
linked to the zero point energy of all quantum fields filling
the Universe. Physicists would be in favor of the cosmo-
logical constant if it did not suffer from a serious problem:
The value of the vacuum energy density obtained by
observations differs from the value provided by quantum
field theory by at least 60 orders of magnitude [3–5]. It is
very difficult to handle this huge discrepancy. If we think of
it in terms of a net cosmological constant, as the sum of a
bare geometrical Λ term with the quantum vacuum energy
density to explain such a small value, this will generate a
fine-tuning problem: The absolute value of the geometrical
and matter contributions to the net cosmological constant

must be extremely close. Also, symmetry arguments are not
enough to explain the small value of the vacuum energy
observed today. The lack of a reasonable explanation for
the cosmological constant problem has led physicists to
explore other routes to explain the observations. The
simplest one, although controversial and highly dogmatic,
is to assume that vacuum energy is canceled out by some
unknown symmetry in nature. In such a scenario, scalar
fields (quintessence) [6] stand out among the alternatives
to the cosmological constant since they provide a link
between particle physics and cosmology. The energy
density of such a form of scalar matter must evolve with
time but should mimic a cosmological constant to be
compatible with the data. However, the majority of scalar
fields that adjust the data have no foundations on particle
physics theory, and they are somewhat artificial. In fact,
vacuum energy and quintessence are not the only possibil-
ities to explain the cosmic acceleration. Fluids with
negative pressure (see [7] and references therein), k-essence
[8], phantom fields [9], modifications of gravity theory
[10], brane worlds [11] and other open-minded proposi-
tions that do not require additional sources for the energy
content of the Universe [12] are also possibilities.
Collectively, all models that invoke additional sources of

energy to explain the cosmic acceleration are called dark
energy (DE) (see Ref. [13] for a review). The easiest way to
implement dark energy is through a dark energy fluid.
By assuming that general relativity is the correct theory of
gravitation, the pressure of a DE fluid must be sufficiently
negative to make the sum

P
i�ρi � 3pi=c2� negative in

order to produce an accelerated expansion of the Universe.
Dark energy fluids are frequently characterized by the
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equation of state (EoS) parameter (the ratio between its
pressure and its energy density) w � pDE=ρDEc2, which
can be constant or time dependent. Such a phenomeno-
logical approach mimics the vacuum energy.1 (w � −1),
scalar fields [−1 ≤ w�t� ≤ 1], phantom fields [w�t� < −1]
and many other forms of exotic matter. Although quintes-
sential [−1 ≤ w�t� ≤ 1] and phantom fluids [w�t� < −1]
act, respectively, in the same way as the canonical and
phantom scalar fields in Einstein’s equations, it should be
stressed that fluids and fields are two physically different
things. For instance, while the sound speed of a dark energy
fluid c2s � ∂pDE=∂ρDE can evolve with time, the sound
speed of a quintessence (phantom) scalar field is always
equal to c2 (−c2) [7,14]. In fact, if the acceleration of the
Universe is due to some type of dark energy, the great issue
that must be answered is the following: What is dark
energy? Is it vacuum energy, some type of scalar matter or
even some form of more exotic matter? Observational data
are not enough to allow us to decide between different
kinds of dark energy since most of the proposed models are
able to adjust the data seamlessly. We therefore need to go
deeper into theory in order to achieve a better under-
standing of the mechanisms behind the cosmic acceler-
ation. In this direction, thermal physics is of particular
importance in dark energy studies. The laws of thermo-
dynamics are based on experimental evidence, and they
apply to all types of macroscopic systems. Unlike classical
mechanics or electromagnetism, thermodynamics does
not predict specific numerical values for observables.
Thermodynamics sets limits on physical processes. The
power of thermodynamics resides in its generality.
Therefore, to explore the thermodynamical behavior of
the cosmic fluids that pervade our Universe may be a line
of attack for unveiling the nature of the content of the
Universe, particularly the hypothetical DE fluid. For
example, the positiveness of the entropy may be one of
the main weapons to impose bounds on the EoS parameter
of dark energy fluids [15]. Applying the laws of thermo-
dynamics to the dark energy fluid theory can help us
constrain or even rule out some dark energy fluid models.
Below we carry out this task.

II. THERMODYNAMICS OF THE COSMIC FLUIDS

Let us consider an expanding, homogeneous, isotropic
Universe filled by (baryonic and dark) matter, described by

a pressureless perfect fluid (w � 0); radiation, described by
a perfect fluid with an EoS parameter w � 1=3; and dark
energy, described by a perfect fluid with an EoS parameter
w � p=ρc2. Homogeneity and isotropy imply that all
physical distance scales with the same factor a�t�, called
the scale factor of the Universe. Thus, the physical volume
of the Universe at a given time is V � a3�t�V0 .

2 In such a
model the internal energy of the ith fluid component can be
written as

Ui � ρic2V: �1�

Assuming a reversible adiabatic expansion, the first law
of thermodynamics,

TidSi � dUi � pidV; �2�

leads to the so-called fluid equation

d ln ρi � 3�1� wi�d ln a � 0; �3�

which expresses the energy-momentum conservation.
Assuming that density is a function of both temperature
and volume, i.e., ρi � ρi�Ti; V�, the fact that dSi is an exact
differential implies that [16]

d lnTi � −3wid ln a; �4�

or, using Eq. (3) to eliminate wi,

d lnTi � d ln ρi � 3d ln a: �5�

Integrating the temperature law (5) we obtain

Ti

Ti;0
� ρi

ρi;0
a3 �6�

or, in a more suggestive form,

1

wi

piV
Ti

� 1

wi;0

pi;0V0

Ti;0
� constant: �7�

The above equation generalizes the ideal gas law for a
time-dependent EoS parameter. Finally, the fluid energy
can be written in terms of the temperature as

Ui � Ui;0
Ti

Ti;0
: �8�

In what follows, we derive the expressions for the heat
capacity, compressibility and thermal expansibility. These
thermodynamical derivatives are easily accessible exper-
imentally concerning any terrestrial fluid. The heat capacity

1It should be stressed that the link between the zero-point
energy of all matter fields filling the Universe and the cosmo-
logical constant comes from a semiclassical quantization process
where quantum effects are taken into account only in the energy-
momentum tensor. Since a fluid with EoS p � −ρc2 acts in the
field equations in the same way as the zero-point energy
contribution, vacuum energy is commonly termed dark energy.
But, in spite of its mathematical equivalence, a dark energy fluid
with an EoS p � −ρc2 is physically distinct from vacuum
energy.

2Here the index 0 denotes the present time value of an
observable, and we adopt the convention a0 � 1.
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and the compressibility of the fluid are related, respectively,
to both thermal stability and mechanical stability, and they
must have their values greater than zero since the stable
equilibrium has been reached by the system. Thus, we can
use these variables to impose bounds on the EoS parameter
of DE.

A. The Universe’s heat capacity

The classical thermodynamical definition of a fluid’s
heat capacity Ci is [17]

dQi � CidTi; �9�

where dTi is the fluid temperature increase due to an
absorbed heat dQi � TidSi. The heat capacity of a fluid
will differ depending on whether the fluid is heated at
constant volume or at constant pressure. From the first law
of thermodynamics, Eq. (2), at constant volume, Eq. (9)
becomes

dUi � CiVdTi; �10�

where

CiV �
�
∂Ui

∂Ti

�
V

�11�

is the fluid’s heat capacity at constant volume. The heat
capacity at constant pressure can be built up from the enthalpy

hi � Ui � piV; �12�

in terms of which the first law of thermodynamics is
written as

dQi � dhi − Vdpi: �13�

Thus, at constant pressure, Eq. (9) becomes

dhi � Cpi
dTi; �14�

where

Cpi
�

�
∂hi
∂Ti

�
pi

�15�

is the fluid’s heat capacity at constant pressure.
From Eq. (8), it is easy to show that

CiV � Ui;0

Ti;0
� constant; �16�

for any component of the Universe. Since piV � wiUi, the
enthalpy (12) becomes

hi � �1� wi�Ui �17�

and, from Eqs. (8) and (4), we have

Cpi
�

�
1� wi −

1

3

d ln jwij
d ln a

�
CiV: �18�

Since Ui;0 � ρi;0c2V0, the specific heat (the heat capac-
ity per mass unit) at constant volume is

ciV ≡ CiV

ρi;0V0

� c2

Ti;0
: �19�

For relativistic matter Tr;0 � 2.725 K so that crV and cpr

are of order of ∼1013 cal · g−1 · K−1. Since the temperature
of the other components must be smaller than the temper-
ature of relativistic matter, the specific heat of the relativ-
istic matter is an inferior limit for the Universe’s specific
heat. As expected, this result reveals that the Universe is a
huge thermal reservoir. Unfortunately, despite easy exper-
imental access for terrestrial fluids, we cannot isolate a
cosmologically significant portion of the Universe, to
provide an enormous amount of heat, and to measure
the temperature change of our Universe sample to obtain its
specific heat experimentally.

B. Compressibility and expansibility

If we consider the volume as a function of temperature
and pressure, we have that.3

dV �
X
i

��
∂V
∂Ti

�
pi

dTi �
�
∂V
∂pi

�
Ti

dpi

�
: �20�

We now define the thermal expansivity, which measures
the volume thermal expansion at constant pressure, by

αi �
1

V

�
∂V
∂Ti

�
pi

; �21�

and the isothermal compressibility, which measures the
relative change of volume with increasing pressure at fixed
temperature, by

κTi
� −

1

V

�
∂V
∂pi

�
Ti

: �22�

Analogously to the isothermal compressibility, we can
define the adiabatic compressibility κSi if, instead of
temperature, the entropy is kept fixed. It can be shown
that the isothermal compressibility and the isothermal
expansibility are connected by

3Remember that we are assuming that the fluids evolve
separately; that is, they do not exchange heat, as shown by
Eq. (3).
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αi
κTi

�
�
∂pi

∂Ti

�
V
; �23�

and that the ratio between the adiabatic and the isothermal
compressibilities is equal to the ratio between the heat
capacities at constant volume and at constant pressure, i.e.,

κSi
κTi

� CiV

Cpi

: �24�

Noting that piV � wiCiVTi and using Eq. (4), we obtain

αi �
CiV

piV

�
wi −

1

3

d ln jwij
d ln a

�
: �25�

From Eq. (23) it is easy to show that

κTi
� αiV

wiCiV
; �26�

and from the above equation and Eq. (24), we have

κSi �
αiV
wiCpi

: �27�

C. Stability conditions

A thermodynamic system involving only the work due
to the change in volume will be in stable equilibrium if the
second-order variation

δ2Ui � δTiδSi − δpiδV �28�

is greater than zero [18]. Otherwise, a thermodynamic
stability is not obtained. If Ti and V are the independent
variables, it is easy to show that

δ2Ui �
CiV

Ti
δT2

i �
1

VκTi

δV2: �29�

Also, taking Si and pi as independent variables, Eq. (28)
becomes

δ2Ui �
Ti

Cpi

δS2i � VκSiδp
2
i : �30�

It is easy to see that, if a given cosmic fluid component
reaches the thermodynamic stability δ2Ui ≥ 0, Eqs. (29)
and (30) imply that

CiV; Cpi
; κTi

; κSi ≥ 0 �31�

simultaneously. Conversely, if stability is not reached, i.e.,
δ2Ui < 0, the heat capacities and the compressibilities are
all negative simultaneously. According to Eq. (16), CiV is
constant and positive for any fluid component, showing

that the Universe components, viewed as noninteracting
perfect fluids, are necessarily constrained by Eq. (31).4

Positiveness of the heat capacity is related to thermal
stability, and positiveness of compressibility is related to
mechanical stability. Additionally, it can be shown that
CiV; Cpi

; κSi , and κTi
are related by

Cpi
� CiV � TVα2i

κTi

�32�

and

κTi
� κSi �

TVα2i
Cpi

: �33�

Thus, since the system satisfies the stability conditions
(31), we have that

Cpi
≥ CiV and κTi

≥ κSi : �34�

III. CONSTRAINTS ON DARK FLUIDS

From Eqs. (18) and (25) it is easy to see that the
conditions (31) and (34) are satisfied only if the fluid
EoS parameter obeys the constraint

wi −
1

3

d ln jwij
d ln a

≥ 0: �35�

It is obvious that, if wi is constant, thermal and
mechanical stability imply that wi ≥ 0. This result implies
that homogeneous negative pressure fluids with a constant
EoS parameter are unphysical. This does not mean that
vacuum energy cannot be the piece behind cosmic accel-
eration. As we have already stressed, although mathemati-
cally equivalent, physically a fluid with pressure p � −ρc2
is quite different from vacuum energy. Therefore, if the
accelerated expansion of the Universe is caused by a dark
energy fluid, its EoS parameter must be time dependent. In
Table I we list some time-dependent guesses of the DE EoS
parameter. Although in excellent agreement with the data,
these phenomenological models do not satisfy the thermo-
dynamical bound (35).
Now, let w and ρDE denote, respectively, the EoS

parameter and the density of the dark energy fluid.
Since w must evolve with time, we can use Eq. (3) to
rewrite the inequality (35) as

3� d ln ρDE
d ln a

≤ −
d ln jwj
d ln a

: �36�

4It should be stressed that inhomogeneous systems or inter-
acting systems can have a negative heat capacity. Examples of
inhomogeneous systems are globular clusters [19] and black
holes [20] whose density is high in the center due to gravitational
field strength.
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Integrating both sides of the inequality above, we can
write

���� ww0

���� ≤ ρDE;0
ρDEa3

� TDE;0

TDE
; �37�

where we have used Eq. (6). According to Eq. (4) the
temperature of the fluid will increase (decrease) with the
expansion of the Universe if w < 0�w > 0�. The constraint
(37) reveals that an eternal accelerated expansion cannot be
sustained by a DE fluid. If w < 0 ∀ a ≥ 1, TDE�a → ∞� →
∞ and jw�a → ∞�j → 0, which means that the accelerated
expansion will stop in the distant future. On the other hand,
if the sign of w changes in the course of the expansion, the
Universe can enter and leave in an accelerated expansion
phase that depends on how many times the sign of w
changes, but it cannot keep an acceleration expansion phase
forever. This transient behavior imposed by thermodynam-
ics is particularly important for the formulation of string or
M theory since an eternal accelerated expansion implies
that a conventional S matrix cannot be built [27–29].
Now, at the present time the inequality (35) becomes

w0
0 ≥ 3w2

0: �38�

In order to check the compatibility of the observational
data with the above thermodynamic constraint, we follow
the approach developed in Ref. [30] which is one of the
less model-dependent methods to probe the DE EoS time
dependence. This approach consists of assuming that the
DE density admits a Taylor expansion in the range
� ~a − ϵ−; ~a� ϵ��, that is,

ρDE�a� � ρDE� ~a� �
dρDE
da

����
a� ~a

�a − ~a�

� 1

2

d2ρDE
da2

����
a� ~a

�a − ~a�2 � � � � ; �39�

and then use the conservation equation (3) as a recurrence
formula to write the derivatives of ρDE in terms of the
derivatives of w, i.e.,

dρDE
da

� −
3

a
�1� w�ρDE;

d2ρDE
da2

�
�
3

a2
�1� w� � 9

a2
�1� w�2 − 3

a
dw
da

�
ρDE;

..

. ..
.
:

This approach allows us to constrain w and its derivatives
at different redshifts simply by changing the series expan-
sion center ~a. Since for sufficiently small values of ϵ� the
second-order approximation must work reasonably well,
we restrict our analysis up to the second-order expansion of
ρDE around ~a � a0 � 1

5 Thus, by choosing the expansion
center at a0, the second-order approximation of the DE
density becomes

ρDE�a� � ρDE;0

�
1� 3�1� w0��1 − a� � 1

2
�3�1� w0�

− 3w0
0 � 9�1� w0�2	�1 − a�2

�
: �40�

Figure 1 shows the observational constraints in 1σ, 2σ,
and 3σ on w0 and w0

0 for a spatially flat, homogeneous,
isotropic Universe filled with relativistic matter, nonrela-
tivistic matter, and a DE fluid described by Eq. (40)

TABLE I. Thermodynamic viability of some DE parametric
models found in the literature. Here, w0

0 � �dw=da�a�1.

Reference w w − 1
3
d ln jwj
d ln a ≥ 0 ∀ a ∈ �0;∞�

[21] w0

�1−b ln a�2 No

[22] wf � Δwa1=τt

a1=τt �a1=τ
No

[23] wfwi
al�alt

wial�wfalt
No

[24] w0 � w0
0�a − a2� No

[25] w0 � w0
0

a−1
1−2a�2a2 No

[26] w0 � w0
0
aβ−1
β No

-2 -1.5 -1 -0.5 0
w

0

-4

-2

0

2

4

w
’ 0

Thermodynamically Forbidden Region

FIG. 1. The w0 − w0
0 parametric space. The thermodynamically

forbidden region corresponds to points in the phase space for
which the inequality (38) is not satisfied. The contours are drawn
for Δχ2 � 2.30, 6.17, and 11.8.

5For example, taking the expansion center ~a � a0 � 1 and
ϵ� � 1=3, it is possible to cover the redshift range 0 ≤ z ≤ 2.
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obtained from 580 supernovae data of the Union 2.1
compilation [31], the six estimates of the BAO points
given in Table 3 of Ref. [32], and the 28 measurements of
the Hubble function H�z� compiled by Liao et al. [33] and
Farooq and Ratra [34] (see also the references therein). The
present value of the Hubble parameter H0 and the matter
density parameter Ωm;0 were marginalized. For this data
combination, the best-fit values are w0 � −0.96�0.22

−0.21 and
w0
0 � −0.33�2.00

−1.53 , with the upper and lower values denoting
the one-parameter 1σ errors. As we can see, a large portion
of the w0 − w0

0 confidence region lies in the unphysical
region. This lack of sensitivity of the data to the physical
constraint w0

0 ≥ 3w2
0 can be interpreted as evidence against

the DE fluid models since, if a DE fluid is causing the
accelerated expansion, the data would not be in conflict
with its physical properties. However, if DE cannot be
described as a fluid with negative pressure, the data should
not be expected to follow the physical properties of such a
fluid, but would rather force the fluid’s parameters to
converge to the values that better approximate the true
mechanism behind the cosmic acceleration regardless of
the physical bounds that a hypothetical DE fluid must obey.

IV. FINAL REMARKS

What is causing the accelerated expansion of the
Universe? Is it DE or is it because Einstein’s general
relativity does not work at large scales? Physicists have
worked on both fronts to answer the questions of accel-
erated expansion. Particularly, on the DE side, many
models have been proposed. In this article we believe that
we have taken a big step in the understanding of the current
phase of accelerated expansion of the Universe. We have
studied the thermodynamical aspects of an expanding,
homogeneous, isotropic Universe filled by matter (baryonic
plus dark), relativistic matter (radiation plus neutrinos), and
a hypothetical DE. By regarding the cosmic components as
perfect fluids, we have estimated the Universe’s specific
heat and examined the constraints imposed by classical
thermodynamics on the DE fluid. We have shown that the
cosmic fluids necessarily must reach the thermodynamic

stability. Such a requirement implies that negative-pressure
perfect fluids with a constant EoS parameter are unphys-
ical. We have also shown that the observational constraints
on a DE fluid with a time-dependent EoS parameter are in
conflict with the physical constraints imposed by thermo-
dynamics. This result suggests that adding a DE fluid to the
content of the Universe may not be the answer to the
cosmic acceleration problem.
Although our analysis implies that a DE fluid with an

EoS parameter w � −1 is unphysical, vacuum energy
remains untouched since it is physically different from a
DE fluid with p � −ρc2. If we ignore the cosmological
constant problem by setting ρΛ � 0, then the cosmic
acceleration due to some type of dark energy fluid does
not seem to be a good way to address the problem. By
doing so, we are replacing a physically well-motivated
explanation by a hypothesis that, at least in its simplest
formulation, cannot be corroborated by the basic physical
laws. However, a question still remains: Is the cosmological
constant the explanation for the accelerated expansion?
TheΛ term certainly is the simplest solution, but no one can
guarantee that it is the true answer. Scalar fields and other
models that do not require any additional sources remain
possibilities. Thus, finding deviations of the cosmological
term will remain as one of the hottest theoretical inves-
tigation lines concerning cosmic acceleration. If DE fluids
should not be considered, approaches such as the kinematic
method developed in Ref. [35] can be useful tools to search
for such deviations.
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