
Improving reconstruction of the baryon acoustic peak:
The effect of local environment

I. Achitouv1,2,* and C. Blake1
1Centre for Astrophysics & Supercomputing, Swinburne University of Technology,

P.O. Box 218, Hawthorn, VIC 3122, Australia
2ARC Centre of Excellence for All-sky Astrophysics (CAASTRO),

44 Rosehill Street, Redfern, NSW 2016, Australia
(Received 14 July 2015; published 21 October 2015)

Precise measurements of the baryon acoustic oscillation (BAO) scale as a standard ruler in the clustering
pattern of large-scale structure is a central goal of current and future galaxy surveys. The BAO peak may be
sharpened using the technique of density-field reconstruction, in which the bulk displacements of galaxies are
estimated using a Zel’dovitch approximation. We use numerical simulations to demonstrate how the accuracy
of this approximation depends strongly on local environment, and how this information may be used to
construct an improved BAO measurement through environmental reweighting and using higher-order
perturbation theory. We outline further applications of the displacement field for testing cosmological models.
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I. INTRODUCTION

The large-scale structure of the Universe provides one
of our most powerful tests of the cosmological model,
encoding a wealth of information about the expansion
history of the Universe (imprinted as a standard ruler in
baryon acoustic oscillations) and its gravitational physics
(inferred from the growth of structure with time). A central
goal of modern cosmology is to map out this structure
through galaxy redshift surveys and to develop accurate
models to link these observations to theory.
In the modeling of cosmological fluid dynamics,

a particularly important role is played by the vector
displacement field Ψðq; tÞ, which specifies the trajectory
of fluid elements through space (here denoted by a
Lagrangian coordinate q) and time t. In modeling
approaches such as Lagrangian perturbation theory, per-
turbative solutions may be formulated for Ψ and used to
construct models for the statistics of the observed density
field (e.g. [1–4]).
The displacement field has assumed particular impor-

tance in “density-field reconstruction” [5], a technique used
to sharpen measurements of the baryon acoustic peak in the
galaxy correlation function. Measurements of the baryon
acoustic peak, a preferred clustering scale imprinted in the
distribution of photons and baryons by the propagation of
sound waves in the relativistic plasma of the early Universe
[6,7], have assumed particular importance in recent years as
a robust standard ruler to map out the cosmic expansion
history [8,9]. However, the pristine sound-horizon scale
imprinted in the high-redshift matter distribution is
“blurred” by the bulk displacement of galaxies from their
initial positions [10–15]. Reconstruction seeks to use the

observed density field to estimate these displacements, for
example using the Zel’dovitch approximation [16–18]
(ZA), and hence retract galaxies to their near-original
positions in the density field, restoring the sharp preferred
separation. The technique has been successfully applied
to data sets from the Sloan Digital Sky Survey [19], the
Baryon Oscillation Spectroscopic Survey [20] and the
WiggleZ Dark Energy Survey [21].
A series of studies has considered the theory and

implementation of density-field reconstruction. It may be
formulated within Lagrangian perturbation theory [2,22],
to which the ZA is the lowest-order contribution, or by
alternative perturbative schemes [23,24], or in Fourier
space [25]. The method is robust to the treatment of the
bias of the tracer or redshift-space effects [19,26–29],
although room for improvement in the algorithm certainly
exists.
In this paper we undertake a forensic study of the

performance of the current reconstruction algorithm
through comparison with the exact displacement field
derived from particle-tracking in N-body simulations.
First, we study the accuracy of the ZA using the initial
matter velocity field with different hypotheses for the
smoothing procedure and its sensitivity to the local density.
This fiducial investigation is not affected by complications
due to galaxy bias and nonlinear effects on the estimated
density field. Using this to create an unbiased under-
standing of how proto-halo displacement is optimally
modelled, we extend our results to the reconstruction of
the displacement from the nonlinear low-redshift halo
density field. In particular, we study the error in the
estimated displacements as a function of galaxy halo mass,
redshift, filter and smoothing scale for estimating the
density field. We also study how this error depends on
the order of perturbation theory applied and the local*iachitouv@swin.edu.au

PHYSICAL REVIEW D 92, 083523 (2015)

1550-7998=2015=92(8)=083523(12) 083523-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.083523
http://dx.doi.org/10.1103/PhysRevD.92.083523
http://dx.doi.org/10.1103/PhysRevD.92.083523
http://dx.doi.org/10.1103/PhysRevD.92.083523


environment. We discuss the consequences of these results
for the optimal measurement of the distance scale and the
use of the displacement field to test cosmological models.
For the purposes of this investigation, we neglect redshift-
space distortions in the galaxy co-ordinates.
Our paper is structured as follows: in Sec. II we review

the connection between the displacement and density fields
within Lagrangian perturbation theory. We describe our
methods for recovering the exact displacement field from
N-body simulations, and the estimated displacement field
from the initial simulation velocity field. In Sec. III we
examine the performance of the density-field recon-
struction algorithm, in particular focussing on the degra-
dation of this performance with increasing local density. In
Sec. IV we suggest how the measured post-reconstruction
correlation function can be “re-weighted” by environment
to maximize the sharpness of the baryon acoustic peak, and
we consider the level of improvement which may be
obtained in the fitted distance scale. In Sec. V we discuss
the implications of our findings for the use of density-field
reconstruction, and the displacement field itself, for testing
cosmological models.

II. DISPLACEMENT FIELD: THEORY
AND MEASUREMENT

A. The Zel’dovitch and 2LPT approximations

In this section we briefly review Lagrangian perturbation
theory (LPT) at first (i.e., ZA) and second order (i.e.,
2LPT). The displacement vector field Ψ links an initial
(Lagrangian) position q of a mass elementM, smoothed on
a scale RSðMÞ, to the current (Eulerian) position,

xðRSÞ ¼ qðRSÞ þΨðq; RSÞ: ð1Þ

In the ZA, Ψ is determined by the gradient of the
gravitational potential ∇Φ, which can be expressed in
terms of the linearly extrapolated density field. Considering
only the scalar contribution Ψ, at first and second order in
the matter density field, we have [4]

Ψ≃Ψð1Þ þΨð2Þ

Ψ≃−D∇ϕð1Þ − 3

7
D2∇ϕð2Þ; ð2Þ

where D is the linear growth factor, and the gravitational
potential can be solved using the following Poisson
equations:

∇2ϕð1ÞðRSÞ ¼ δ0ðRSÞ

∇2ϕð2ÞðRSÞ ¼ − 1

2
G2ðϕð1ÞÞ; ð3Þ

where δ0ðRSÞ is the linear density field smoothed on scale
RS and

G2ðϕð1ÞÞ ¼
X
i;j

½ð∇ijϕ
ð1ÞÞ2 − ð∇2ϕð1ÞÞ2�: ð4Þ

The first-order displacement ( ð1Þ term) is the well-known
ZA which can be expressed as a function of the initial
peculiar velocity

vðRSÞ ¼ a∂tDðzÞ∂DΨð1Þ; ð5Þ

where a is the cosmic scale factor. The second-order term
has the labelð2Þ. The variance of the displacement field in
the ZA is directly proportional to the initial matter power
spectrum [4] such that (e.g. for the x component)

hΨð1Þ
x ðRSÞ2i ∝ D2

Z
~W2ðk; RSÞPLðk; ziÞdk; ð6Þ

where PL is the linear matter power spectrum at initial
redshift zi and ~W is the Fourier transform of the smoothing
function. The higher orders of the displacement field can be
expressed as higher-dimensional integrals [4].
In order to determine the accuracy of the ZA in various

scenarios, we test two cases:
(i) Case 1: we use the proto-halo velocities to predict

halo positions at z ¼ 0 assuming the ZA, and
compare to the exact simulation displacement field
(see Sec. II B and C).

(ii) Case 2: we use the halo density field at z ¼ 0, and
second-order LPT, to reconstruct the displacement
−Ψ of halos and compare to the exact simulation
displacement field (see Sec. III).

The first case extends the work of [4] (for the unsmoothed
dark matter density field) to the displacement of proto-halos.
In particular, this analysis provides a physical insight of how
proto-halos are displaced from their positions in the initial
matter density field through cosmic time up to z ¼ 0. We
also extend these studies to investigate the sensitivity of the
result to the smoothing scale and local environment, yielding
useful comparisons with case 2.
The second case has a powerful application in the

reconstruction of the baryon acoustic peak. Previous
studies have applied this method using first-order LPT
and found a low sensitivity to the smoothing scale RS which
enters into Eqs. (2) and (3) [19,28]. We extend these tests to
consider the effect of local environment and evaluate the
gain of adding the 2LPT correction to reconstruct the
displacement of halos. In particular, we will show how
the second-order correction depends on the choice of
smoothing scale and environment.

B. Exact displacement field from N-body simulations

In order to test the accuracy of the displacement field
in cases 1 and 2, we use the DEUS simulations. These
simulations were run for several scientific purposes
described in [30–35]. The box side of the simulations is
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648h−1 Mpc and they contain 10243 particles of mass
∼1.75 × 1010h−1M⊙. The simulations were carried out
using the RAMSES code [36] for a ΛCDM model
calibrated to the WMAP 5-year cosmological parameters
[37]. The halos were identified using the Friend-of-Friends
(FoF) algorithm with linking length b ¼ 0.2.
In what follows we will use the Lagrangian size of

halos RL where their mass is given by MðRLÞ ¼ VðRLÞρ̄,
where ρ̄ is the mean matter density. We will approximate
the shape of proto-halos to be spherical, with volume
VðRLÞ ¼ 4

3
πR3

L.
We measured the position of the center of mass xf of all

halos at z ¼ 0. In order to measure the position of the proto-
halos in the initial conditions, we labelled all particles
which belong to a halo at z ¼ 0 and compute the center of
mass xi for these particles in the initial conditions of the
simulation. Therefore we measured for each halo the exact
displacement Ψ ¼ xf − xi.

C. Displacement prediction from initial
velocity field

The final position of a proto-halo at z ¼ 0 may be
predicted from the initial velocity field according to Eq. (5).
Hence, the displacement of a mass element contained in a
smoothing radius RS can be expressed as function of the
average peculiar velocity initially contained in a patch of
size RS, viðq; RSÞ as:

Ψð1Þðq; z; RSÞ ¼
viðRSÞDðzÞ

aiHðaiÞfðaiÞDðziÞ
ð7Þ

where HðaiÞ is the Hubble parameter evaluated at the
initial scale factor ai and f ≡ d lnD=d ln a is the linear
growth rate. In this approximation we can use Eq. (7) to
displace the proto-halos by measuring the average velocity
vi around the center of mass q ¼ xi and within a smoothing
radius RS. We investigated the accuracy of the ZA in
predicting the magnitude of Ψ≡ jΨj.
The smoothing scale RS is a free parameter in our

investigation, used in the estimation of the local over-
density field. For RS → ∞ the average velocity within the
smoothed region tends to zero, and hence the proto-halos
are not displaced. On the contrary, as RS → 0 we obtain the
displacement of individual particles, without considering
that they belong to a halo.
In Fig. 1, we show the measured PDF of Ψ (black

squares) for two different masses of halos: the upper
panel corresponds to halos with Lagrangian radii RL ¼
5h−1 Mpc (M ¼ 1013.6h−1M⊙) while the lower panel
corresponds to halos with Lagrangian radius RL ¼
8.7h−1 Mpc (M ¼ 1014.3h−1M⊙). As we can see, the mean
displacement is not strongly sensitive to the mass of the
proto-halos (varying by only ∼15%). However, the vari-
ance of the absolute displacement is reduced for large
halos. Physically, this is because larger proto-halos are less

sensitive to the external shear field which contributes to the
overall dynamics. In Fig. 1, we can also see the prediction
of Eq. (7) (plotted as histograms) using different smoothing
scales RS (see legend) when measuring the average
peculiar velocities. For RS ≤ 2RL, the absolute displace-
ment predicted by Eq. (7) is approximately independent of
RS. For RS ¼ 4RL, we begin to smooth out relevant
density fluctuations and hence underestimate the absolute

FIG. 1 (color online). The distribution of Ψ measured in N-
body simulations for two different halo masses (black squares).
The upper panel shows halos with Lagrangian radius RL ¼
5h−1 Mpc while the bottom panel shows halos with Lagrangian
radius RL ¼ 8.7h−1 Mpc. For each panel, the histograms show
the Zel’dovitch prediction Eq. (7) using different smoothing
scales RS (see legend). The solid lines correspond to the
Maxwell-Boltzmann distribution with variance σ2ΨðRSÞ computed
according to Eq. (9).
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displacement. In the limit RS ≫ RL, the analytical pdf of Ψ
is given by a Maxwell-Boltzmann distribution [38],

ΠðΨ; σΨÞ ¼
ffiffiffi
2

π

r � ffiffiffi
3

p

σΨ

�3

Ψ2 exp

�
− 3Ψ2

2σ2Ψ

�
ð8Þ

where the variance is

σ2ΨðRÞ ¼
1

2π2

Z
~W2ðR; kÞPLðk; zÞdk: ð9Þ

The Fourier transform of the filter function ~WðR; kÞ is
chosen to be the Fourier transform of a top-hat filter in real
space. In Fig. 1 we can see this analytical prediction for
R ¼ 4RL and R ¼ 2RL (solid lines). For R ¼ 4RL the
analytic prediction of Eq. (8) matches the Zel’dovitch
prediction of Eq. (7) with RS ¼ 4RL (comparing the green
solid line and green histogram). For smaller smoothing
scales (R ¼ 2RL), the regime R ≫ RL is no longer satisfied
and we start observing deviations between Eq. (8) and
Eq. (7) (comparing the blue solid line and blue histogram).
Interestingly, we observe that Eq. (8) qualitatively follows
the trend for the absolute displacement of proto-halos
(black squares) once we use R ¼ 2RL. This observation
could be used to model the clustering of halos with high
accuracy, although this goes beyond the scope of this paper.
Second, we consider the dispersion between the exact

and estimated displacements. For each component i, the

PDF of Ψi −Ψð1Þ
i follows a Gaussian distribution with a

mean value equal to zero. In Fig. 2 we can see the standard

deviation of the difference between the exact and the
Zel’dovitch prediction [Eq. (7)] of Ψx, for halo masses
1012.5, 1013.0 and 1014.3h−1M⊙, as a function of the
smoothing length RS (similar results are obtained for Ψy

and Ψz). Independently of the proto-halo masses, the
optimal smoothing scale to predict the final position of
halos is RS ¼ RL. At this scale Ψ can be determined with
an accuracy of ∼0.5h−1 Mpc, a few per cent of the mean
displacement. This is an impressive result considering that
we only use the ZA. It implies that if we can identify proto-
halos in the initial matter density field, we can predict their
clustering at z ¼ 0 with high accuracy in a very short time.
Finally, we test how sensitive the ZA [Eq. (7)] is to the

local environment. Each environment is defined by the
number density of halos inside a sphere of radius RS.
We divide the halos into environment bins by considering
the probability density function for the number of halos
at z ¼ 0 within RS ¼ RL, in particular the mean δ̄ and
standard deviation σδ of this distribution. We then define 4
different environments corresponding to halos with sur-
rounding densities δ ¼ fδ̄ − σδ; δ̄; δ̄þ σδ; δ̄þ 2σδg.
In Fig. 3 we can see the standard deviation between the

true value and the ZA prediction of Ψx (with RS ¼ RL),
as function of the surrounding number density of halos
(δðRSÞ), considering halos with mass M ¼ 1013h−1M⊙,
which is equivalent to RL ∼ 3h−1 Mpc. The black square
corresponds to the mean overdensity environment. As we
can see, the accuracy of the ZA prediction is sensitive to

FIG. 2 (color online). Standard deviation of the difference
between the x component of the exact displacement and the ZA
Eq. (7), as a function of the ratio of the smoothing length
and Lagrangian size of the halos, RS=RL. The red, black and
blue crosses correspond to halo masses 1012.5, 1013.0 and
1014.3h−1M⊙.

FIG. 3 (color online). Standard deviation of the difference
between the exact displacement and that predicted by Eqs. (2)
and (3) with RS ¼ RL in different environments. Colors represent
different environments. The black square corresponds to the
average density around halos δ̄ðRS ¼ RLÞ. The blue, red and
orange squares correspond to environments with local over-
density δ ¼ fδ̄ − σδ; δ̄þ σδ; δ̄þ 2σδg respectively, where δ̄ is
the mean overdensity and σδ is the standard deviation of the
overdensity distribution amongst the halos.
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the environment. For overdense environments, the ZA
prediction becomes less accurate compared to underdense
environments. This suggests that the displacement field of
proto-halos contains nonlinear information that can not be
encapsulated in the simple ZA. An extension of this work
would be to investigate if the sensitivity to the smoothing
scale and environment depends on cosmology.
In the next section, we will repeat this exercise, compar-

ing the displacements reconstructed using the halo distri-
bution at z ¼ 0 to evaluate the density contrast in Eq. (3), to
the exact displacements.

III. PERFORMANCE OF DENSITY-FIELD
RECONSTRUCTION

A. Displacement prediction from
density-field reconstruction

We first describe how we predict the displacement field
from the z ¼ 0 halo distribution using the technique of
density-field reconstruction. Dividing the volume into a 3D
grid, we first estimated the halo overdensity distribution at
each grid point, using a particular filter (Gaussian or top-
hat) and smoothing scale. We then convert the halo over-
density δhðRSÞ to a matter overdensity δmðRSÞ ¼ δhðRSÞ=b
assuming a linear bias factor b, which we determine by
comparing the amplitude of the large-scale halo power
spectrum to the linear-theory power spectrum used to
generate the simulation. This allows us to solve Eq. (3)
using fast Fourier transform methods, and hence determine
the displacement field −ΨðRSÞ via Eq. (2).

B. Dependence on smoothing scale and filter

Considering only the first order of Ψ in Eqs. (2) and (3),
we used several smoothing scales in the range 0 < RS <
25h−1 Mpc for halos with a massM > 1013h−1M⊙, typical
of luminous red galaxies probed by large-scale structure
surveys such as the Baryon Oscillation Spectroscopic
Survey [20]. We used both a top-hat filter and a
Gaussian filter, and we measured the error made in the
Zel’dovitch prediction compared to the exact values for
each component as a standard deviation σðψ ð1Þ

i − ψ iÞ. The
result for the x axis is shown in Fig. 4, other axes produced
similar results. We find that there is again an optimal
smoothing scale which depends on the filter function. The
optimal performance of both filters leads to a residual error
σ ∼ 2.5h−1 Mpc, around 5 times poorer than the determi-
nation based on the initial proto-velocities.
For small smoothing scales the performance of the

reconstruction method becomes worse, since the number
of neighbors becomes too small to reconstruct the density
field with sufficient accuracy. Furthermore, the higher-order
correction in Eq. (2) becomes non-negligible when RS → 0.
For large smoothing scales, the degradation from the optimal
performance is a slow function of RS, consistent with the
displacement being generated by large-wavelength modes

that may be successfully recovered even in the presence of
significant smoothing [5]. These effects are illustrated in
Fig. 5. Using a Gaussian filter we show the error made in the
first-order (black squares) and 2LPT (black crosses) pre-
dictions for different smoothing scales. The second-order
correction leads to a ∼2% improvement for RS ∼ 8h−1 Mpc
and a ∼12% improvement for RS ∼ 5h−1 Mpc. In the next
section we will emphasize the connection between this result
and the local environment.

FIG. 4 (color online). Standard deviation of the difference
between the x component of the exact displacement, and the ZA
computed using the z ¼ 0 density field using Eqs. (2) and (3), as a
function of the smoothing length RS and the type of filter used.

FIG. 5. Standard deviation of the difference between the x
component of the exact displacement, and that computed using
the z ¼ 0 density field using Eqs. (2) and (3), as a function of the
smoothing length RS using a Gaussian filter. Black squares show
the first-order (ZA) prediction while black crosses show the
prediction including the 2LPT correction.
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Overall, the choice of filter (Gaussian vs. top-hat)
does not affect the performance of the displacement
reconstruction at first-order LPT, once we choose the
optimal smoothing scale (see Fig. 4). Therefore in what
follows we will restrict our analysis to a Gaussian filter.

C. Dependence on local environment

In this section we investigate how the accuracy of the
reconstructed displacement field depends on the local
environment of each halo. Given a smoothing scale RS,
we can compute the number of neighbors for each halo
and therefore estimate the local density contrast. We used
the mean local density around halos δ̄, and the standard
deviation σδ, to define five bins in environment E1,
E2, E3, E4 and E5 with central values δ ¼ fδ̄ − σδ;
δ̄; δ̄þ σδ; δ̄þ 2σδ; δ̄þ 3σδg. For each local environment
we measured the error in the reconstructed displacement at
different smoothing scales.
In Fig. 6 we show the standard deviation of the difference

between the reconstructed and exact Ψx, as function of the
surrounding smoothed halo density δðRSÞ. The blue, black,
red, orange and green data points correspond respectively
to environments E1, E2, E3, E4, and E5. For each
environment we plot 3 different squares and 3 different
crosses which correspond to three different smoothing
scales RS ¼ 10, 7.5, 5h−1 Mpc, from left to right. The
squares correspond to the prediction of first-order LPT,
while the crosses implement the second-order correction.

In agreement with Fig. 3, the accuracy of the prediction
is highly sensitive to the environment. Furthermore, in
Fig. 6 we can see the effect of the second-order correction.
Unsurprisingly, if we choose a large smoothing scale (e.g.
10h−1 Mpc), the second-order correction in Eq. (2) is
negligible. For a smaller smoothing scale (e.g.
RS ¼ 5h−1 Mpc), the second-order correction becomes
more important. In fact, the second-order correction con-
tains a term proportional to δ2ðRSÞ and for small values of
RS the average local density around halos increases
(δ̄ðRS ¼ 10Þ ∼ 0.8, δ̄ðRS ¼ 5Þ ∼ 2.8). However we can
observe that even for RS ¼ 5h−1 Mpc, the improvement
in the residual from the second-order correction is less
significant than the difference in residual between E1 and
E2. This suggests that the displacement contains nonlinear
information that can not be described by deterministic
corrections.
Finally, for dense environments (e.g δ > δ̄), a smaller

smoothing scale leads to a better reconstruction of the
final halo position predicted by the 2LPT approximation
[Eq. (3)]. For halos in a region with the mean density or
below, reducing the smoothing scale does not particularly
improve the accuracy of the displacement field. This
convergence of the optimal smoothing scale toward
RS → RL shows the limits of the reconstruction method.
Reconstruction applied at z ¼ 0 on the nonlinear halo
density field is not equivalent to predicting the final
position of halos from the initial conditions.

D. Dependence on redshift and halo mass

We repeated the previous analysis at redshift z ¼ 1.
Fig. 7 displays these results in the same format as Fig. 6.
As before, for large values of the smoothing (e.g.
RS ¼ 10h−1 Mpc), the second-order correction is negli-
gible, while it becomes important for smaller smoothing
scales when the local density around halos is high. In
this case, choosing a smaller smoothing scale (e.g.
RS ¼ 5h−1 Mpc) and adding the second-order correction
to Eq. (3) gives a better description of the displacement
field [Eq. (2)]. We note that at z ¼ 1 the second-order
correction is more important than at z ¼ 0. This is due
to the choice of halos we consider. At z ¼ 1, halos with
M > 1013h−1M⊙ are more biased and belong to exponen-
tial tail of the halo mass function [39]. Hence the local
overdensity around those halos is larger, leading to a higher
second-order correction of the displacement field.
For halos with mass M > 1012.5h−1M⊙ at z ¼ 1, the

error in the displacement is shown in Fig. 8. For
RS ¼ 10h−1 Mpc, the second-order correction is negligible
and the error in the displacement is similar to that found
for halos with M > 1013h−1M⊙ at z ¼ 0. For smaller
smoothing scales, the second-order correction becomes
more important.
Overall, at z ¼ 1 the analytic approximations for the

displacements [Eq. (2)] are in better agreement with the true

FIG. 6 (color online). Standard deviation of the difference
between the exact displacement and that predicted by Eqs. (2) and
(3) based on the z ¼ 0 halo density field. The squares show the
first-order implementation of Eqs. (2) and (3)) while the crosses
implement the second-order correction. Colors represent different
environments defined in the text (from bottom to top: E1, E2, E3,
E4 and E5). For each color we choose three smoothing scales
(from left to right: RS ¼ 10, 7.5, 5h−1 Mpc.
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displacements we measure in the simulations, by a factor
which depends on the environment. For instance at the
average density (E3, black cross), the standard deviation
of the residual is ∼2.5h−1 Mpc at z ¼ 0 and ∼1.6h−1 Mpc
at z ¼ 1.

IV. EFFECT ON THE BARYON ACOUSTIC
CORRELATION FUNCTION PEAK

In this section we study how the reconstruction of the
baryon acoustic peak depends on the accuracy with which
the displacement field can be determined. In particular, we
investigate if the “sharpness” of the reconstructed acoustic
peak depends on local overdensity, and if this effect may be
used to obtain improved accuracy in the resulting standard
ruler measurement.

A. The WizCOLA N-body simulations

In order to obtain an accurate covariance matrix for our
BAO fits, we require a much larger suite of N-body
simulations than we used in the previous sections. We
therefore analyzed the “WizCOLA” simulations [40],
which were produced in order to extend the comoving
Lagrangian acceleration (COLA) technique [41] to lower-
mass haloes to enable reconstruction of the baryon acoustic
peak in the WiggleZ Dark Energy Survey [21]. The
simulations are generated within a 600h−1 Mpc box using
the “WMAP5” cosmological model. In particular, we used
1000 halo catalogues output at z ¼ 0 in real-space, using
halos with massM > 1013h−1M⊙ as above, which yields a
catalogue with number density ∼5 × 10−4h3 Mpc−3, char-
acteristic of current and future large-scale structure surveys
at high redshift.
We applied the density-field reconstruction method to

these simulation boxes using standard methods described
by, e.g. [19–21]. The process involves applying the dis-
placements to both the data and a set of random points,
which we generated uniformly within each simulation box
with a number density 10 times greater than that of the data
itself. The post-reconstruction correlation function is then
measured using the displaced data and random points.
When determining the displacement field we assumed a
linear bias factor b ≈ 1.4, fixed using the large-scale halo
power spectrum.

B. The correlation functions measured
in different environments

As in Sec. III C, we divided the simulation into
different density regimes by smoothing the density field
traced by the halos. Figure 9 displays the probability
density function Πðδ; RSÞ of the local overdensity δ
around halos (red histogram) and random tracers (black
histogram) at z ¼ 0. The top panel is for a smoothing scale
RS ¼ 7.5h−1 Mpc, while the lower panel shows the PDF
for RS ¼ 10h−1 Mpc. The vertical lines show the mean of
the two distributions; for random tracers the mean is always
zero, while for halos the mean of the distribution increases
for smaller smoothing scales due to clustering.
We split our sample into different environment bins

using the local density around halos. For the purposes of
this section we use five different environments. We defined
the bin divisions by measuring the mean δ̄ and standard
deviation σδ of the density values for each halo. In this case,
environment E3 corresponds to the average density and the
central density values of the other environments are set
using

δ ¼ δ̄þ ði − 3Þσδ: ð10Þ
We also tested defining the bins based on the local density
around random tracers, which produced qualitatively sim-
ilar results.

FIG. 7 (color online). Same as Fig. 6, for halos at redshift z ¼ 1
in the mass range M > 1013h−1M⊙.

FIG. 8 (color online). Same as Fig. 6, for halos at redshift z ¼ 1
in the mass range M > 1012.5h−1M⊙.
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We measured auto- and cross-correlation functions
between different environments using the Landy-Szalay
estimator [42]. The cross-correlation function between
environments ðEi; EjÞ is, therefore,

ξij ¼
DDij

RRij

nRinRj
nDinDj

−DRij

RRij

nRi
nDi

−DRji

RRij

nRj
nDj

þ 1 ð11Þ

where DDij are the pair counts of halos between environ-
ments ði; jÞ nDi is the total number of halos in the
environment i, RRij are the pair counts of random tracers,
DRij the cross-pair counts, and nRi the total number of
random tracers in environment i.
We determined the covariance matrix of the cross-

correlation function between two separation bins ðrk; rlÞ
by averaging over the ensemble of N-body realizations:

Ck;l ¼ hξijðkÞξijðlÞi − hξijðkÞihξijðlÞi: ð12Þ

The error in the measurement of ξijðrkÞ is then
ffiffiffiffiffiffiffiffi
Ck;k

p
.

In Fig. 10 we plot the autocorrelation functions ξiiðrÞ
measured in the five different environments after
reconstruction. The black line (and dots) correspond to
E3, the red lines (and dots) correspond to overdense
environments E4, E5 while the blue lines (and dots) are
for underdense environments E1, E2. In order to produce a
clearer visualization for the purposes of this plot, we
stacked the simulation boxes in groups of ten, such that
the error in the measurements is then determined from 100
realizations of ten stacked boxes. Figure 10 clearly displays
a hierarchy where the baryon acoustic peak is sharper for
the underdense regions and becomes more blurred for the

high-density regions. Interestingly, the most under-dense
environment produces a “bell shape” around the acoustic
peak. The cross-correlation functions display behavior
intermediate between the corresponding autocorrelation
functions.
In order to further understand how the correlation

functions ξij are affected by the reconstruction method,
we plot in Fig. 11 the full correlation function before and

FIG. 9 (color online). The probability density function for the
smoothed overdensity δ around halos and random tracers
measured at z ¼ 0. The top panel shows this PDF for
RS ¼ 7.5h−1 Mpc, while the lower panel is for RS ¼ 10h−1 Mpc.

FIG. 10 (color online). The autocorrelation functions measured
in the different environments, from bottom to top the measure-
ments correspond to ξ11, ξ55, ξ44, ξ33, ξ22. We use RS ¼
10h−1 Mpc for the smoothing scale.

FIG. 11 (color online). Correlation functions measured in the
different environments for RS ¼ 10h−1 Mpc before (dashed
lines) and after reconstruction (solid lines and dots). From bottom
to top the measurements correspond to environments E1, E5, E4,
E3, E2.
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after reconstruction. We see that reconstruction uniformly
improves the sharpness of the acoustic peak in all
environments.
The increased sharpness of the post-reconstruction

baryon acoustic peak in underdense environments could
potentially be used to improve the accuracy of the standard
ruler by upweighting those environments. However, the
fluctuating weight could also serve to increase the covari-
ance in our measurements. We now explore the trade-off
between these effects. We note that using density-
dependent weights will always result in a biased estimator
for the underlying correlation function. However, given that
the amplitude and shape of the correlation function are
marginalized over in standard methods of fitting the
preferred scale, this bias is not necessarily problematic if
the acoustic peak itself is not shifted.

C. Total correlation function and new estimators

The total correlation function ξ can be expressed as a
function of the environmental correlation functions
Eq. (11). We begin with the Landy-Szalay estimator for ξ,

ξ ¼ DD
RR

n2R
n2D

− 2
DR
RR

n2R
n2DR

þ 1 ð13Þ

where DD, RR and DR are the total pair counts (halo-halo,
random-random tracer, halo-random tracer). The total
number of halos (nD), random tracers (nR) and cross-
product (nDR) appearing in this equation satisfy
n2D ¼ P

ijnDinDj, n2R ¼ P
ijnRinRj and n2DR¼

P
ijnDinRj,

where the sum is over all environments (and is written
in this manner to allow us to generalize the relation as
developed below). The conservation of the total number of
pairs can be expressed as

DD ¼
X
i;j

DDij ð14Þ

Substituting Eq. (14) into Eq. (13), we can express ξ as
function of the ξij as

ξ ¼ n2R
n2D

1

RR

X
i;j

DDij − 2
DR
RR

n2R
n2DR

þ 1 ð15Þ

where

X
i;j

DDij ≡ RRij
nDinDj

nRinRj
ðξij − 1Þ

−DRij
nDi

nRi
−DRji

nDj

nRj
: ð16Þ

Hence we have obtained an expression for the total
correlation function in terms of ξij.

1. Illustrative example

As a first illustration of the effect of assigning a different
weight to different environments, we re-write ξij in Eq. (15)
aswijξij, wherewij ≡ ffiffiffiffiffiffiffiffiffiffiwiwj

p is the weight assigned to each
cross-correlation function in terms of weightswi defined for
each environment Ei. In the case where wi ¼ 1, we recover
the original correlation function. For the purposes of this
example we consider a simpler split into 3 environments.
In Fig. 12, we show the linear matter correlation function

rescaled by the linear bias (blue dashed line) and the
nonlinear matter power spectrum measured in the simu-
lations (orange dashed line). The black line (and dots)
shows the reconstructed correlation function using RS ¼
10h−1 Mpc with no weighting. For comparison we plot the
weighted correlation function for two special cases (blue
and red), where we choose w1 ¼ 2, w2 ¼ 2, w3 ¼ 0.5 for
the blue line (upweighting low-density environments) and
w1 ¼ 0, w2 ¼ 0.5, w3 ¼ 2 for the red line (upweighting
high-density environments). We can see that weighting the
underdense environment (E1) more than the overdense
environment (E3) allows us to recover the linear (sharpest)
amplitude of the BAO peak.

2. General linear weighting

We now construct a general estimator for the weighted
correlation function, insensitive to the absolute value of the
weights, as

ξw ¼
P

ijðwijξijRRijαij þ βijÞP
ijwijRRij

ð17Þ

FIG. 12 (color online). The linear correlation function (blue
dashed line) and measured correlation function at z ¼ 0 (orange
dashed line). The standard reconstructed correlation function is
shown by the black line, while the blue and red lines are particular
cases of our new estimate for the reconstructed correlation
functions weighting by environment.
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where

αij ¼
�
nR
nD

�
2 nDinDj

nRinRj
; ð18Þ

and

βij ¼
�
nR
nD

�
2
��

nDj

nRj
− n2D
nDR

�
DRij

þ
�
nDi

nRi
− n2D
nDR

�
DRji þ

�
nDinDj

nRinRj
− n2D
n2R

�
RRij

�
ð19Þ

and we re-defined n2D¼P
ijwijnDinDj, n2R ¼ P

ijwijnRinRj
and n2DR ¼ P

ijwijnDinRj. This new estimator has the
following desirable properties: ξw ¼ ξ for wij ¼ constant,
and ξw ¼ ξkl when wij ¼ δikδjl.
To assign a value for each wij ¼ ffiffiffiffiffiffiffiffiffiffiwiwj

p in Eq. (17) we
used the following parametrization:

wi ≡ 1þ x

�
i − ī

imax − ī

�
; ð20Þ

where ī corresponds to the environment for which the
local density δðRSÞ ¼ δ̄, imax ¼ 2ī − imin is the highest
density environment, and x is a variable that varies in
the range x ¼ ½−1; 1� such that for x ¼ −1, the lowest-
density environment is weighted with the highest amplitude
wimin

¼ 2 and the highest environment is weighted with
wimax

¼ 0.

In Fig. 13 we can see the resulting weighted correlation
functions for various values of x, as well as the linear and
nonlinear correlation functions. We used five different
environments and RS ¼ 10h−1 Mpc. We observe that the
hierarchy of the ξw is not as simple as we show in Fig. 12.
With this parametrization, the standard reconstruction
(black line, x ¼ 0) is closer to the linear correlation
function than the measurement obtained assigning higher
weight to the underdense environments (blue and light-
blue lines) owing to the amplitude bias introduced by the
weighting. However, the sharpness of the acoustic peak is
nonetheless increased by such a weighting scheme. In the
next section we consider the implications for the recovered
standard ruler scale.

D. Baryon acoustic peak fitting

In order to determine the accuracy of the recovered
distance scale, we fit a simple baryon acoustic peak
model to the galaxy correlation functions measured from
each N-body realization, using the distribution of mea-
surements across the realizations as the covariance matrix.
Our fiducial correlation function model is based on a
Fourier-transform of a model linear power spectrum PðkÞ:

ξfidðsÞ ¼
1

2π2

Z
dkk2PðkÞ

�
sin ðksÞ

ks

�
: ð21Þ

We constructed the model power spectrum using a transfer
function from the Eisenstein and Hu (1998) fitting for-
mulas, assuming the fiducial cosmological parameters
of the WiZCOLA simulations. We then fit for the scale
distortion parameter α, marginalizing over a normalization
factor b2:

ξmodðsÞ ¼ b2ξfidðαsÞ ð22Þ

This approximate model is adequate for our purposes
of exploring the relative accuracy of determining α; we
verified that a series of model extensions, such as using
a model power spectrum from CAMB, or marginalizing
over an additive scale-free polynomial or a free damping
parameter, or using the mock mean correlation function as a
template, did not qualitatively change our conclusions.
We quantified the standard ruler performance by the

standard deviation of the best-fitting values of α across the
realizations, which we denote by σα. For this particular test
we used the 1000 single-box COLA realizations and 12
environments, checking that our conclusions were not
sensitive to these choices.
In order to test any improvement brought by the new

concepts developed in the previous sections, we defined
as a reference level the results obtained by a standard
reconstruction method using the Zel’dovitch approxima-
tion, smoothing length RS ¼ 10h−1 Mpc, and no weighting
(x ¼ 0). Similar assumptions are used in standard

FIG. 13 (color online). The linear correlation function (blue
dashed line) and measured unweighted correlation function at
z ¼ 0 (orange dashed line). The solid lines show the weighted
correlation function for x ¼ −1, −0.5, 0, 0.5, 1, which corre-
spond to the blue, dark blue, black, orange and red lines,
respectively. We do not show the errors in the measurement
for clarity of the figure.
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implementations such as [19–21]. Using the measurements
of σα, we computed the relative difference Δσα between
the reference model and the results obtained (a) changing
the smoothing length, (b) adding the 2LPT correction and
(c) introducing weighting of environments as a function
of x.
In Fig. 14 we display our results for this analysis, in the

form of the relative difference Δσα as function of the
weighting parameter x defined by Eq. (20). The solid line
uses the reconstruction method with the Zel’dovitch
approximation and RS ¼ 10h−1 Mpc, the blue short dashed
line shows the result for 2LPTand RS ¼ 7.5h−1 Mpc while
the red dashed line shows 2LPT and RS ¼ 5h−1 Mpc.
We find that the environmental-dependent weighting

produces a small but measurable improvement in σα
(∼3%), with best performance usually produced in the
range −1 < x < −0.5. The implementation of 2LPT for
computing the displacement field also produces a benefit as
judged by σα, such that the total improvement is ∼8%.

V. DISCUSSION AND CONCLUSION

We summarize the conclusions of our study as follows:
(i) The displacement of proto-halos can be predicted

with high accuracy by the ZA using their peculiar
velocities. In this case, Eq. (7) evaluated at RS ¼ RL
provides a very good description of the displacement
field with accuracy σΨ ∼ 0.5h−1 Mpc, independently
of the halomasses. The choice of the smoothing scale
is important, since there is a unique scale for which
the approximation gives the best agreement with the

exact final positions of the halos. The error in each
component of Ψ follows a Gaussian distribution
centered on zero with a variance sensitive to the
smoothing scale and the environment of the halos.

(ii) When reconstruction of the displacement field is
performed using the z ¼ 0 halo distribution in
real space, we likewise find that the accuracy depends
significantly on the smoothing scale and environ-
ment. We extended the ZA to 2LPTand established a
link between the error in predicting the displacement
field and the local density around halos.

(iii) Based on this result, we showed that after applying
reconstruction, the baryon acoustic peak is sharper
in the correlation function of low-density environ-
ments. We hence built a new estimator of the
correlation function, constructed by weighting a
set of auto- and cross-correlation functions measured
between different environments.

(iv) Fitting a BAO model to the results, we found a small
but measurable improvement of ∼8% in determining
the standard ruler scale through a combination of
using 2LPT to find the displacement field and
weighting the environmental correlation functions.
Further improvements may be possible using more
sophisticated weighting schemes.

The fact that the reconstruction of the displacement field
using the halo density distribution at z ¼ 0 is ∼5 times less
accurate than the ZA applied to the initial velocities of
proto-halos (independently of the orders considered in the
LPT approximation) implies that the measurement of the
error σðψ i − ψ ð1Þ

i Þ contains nonlinear information which
could potentially be sensitive to different cosmological
models, especially in high-density environments. The
evolution in time of the environmental correlation functions
should carry this nonlinear information and can be use to
test nonstandard cosmologies.
For instance in Fig. 11, the correlation function before

reconstruction in high-density environments has a smeared
BAO peak compared to that of the lowest-density envi-
ronment. The ratio of the BAO peak widths in those two
environments should be directly proportional to the degree
of late-time nonlinear interactions. For nonstandard cos-
mologies, this ratio might be different (e.g., fewer nonlinear
interactions for early dark energy models). We will inves-
tigate these topics further in future work.
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FIG. 14 (color online). The accuracy of the recovery of the
standard ruler after density-field reconstruction, relative to a
reference implementation, as a function of the parameter x in
Eq. (20) which controls the relative weight assigned to under-
dense and overdense regions. The reference case is the ZA with
RS ¼ 10h−1 Mpc and no weighting.
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