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The validity of the semiclassical approximation is investigated during the preheating phase in models of
chaotic inflation using a modification of a criterion previously proposed for semiclassical gravity. If the
modified criterion is violated then fluctuations of the two-point function for the quantum fields are large
and the semiclassical approximation is not valid. Evidence is provided that the semiclassical approximation
breaks down during the early stages of preheating, well before either scattering effects or backreaction
effects are important.
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The semiclassical approximation has been used to study
the effects of quantized fields on a classical background
field in a wide variety of scenarios including black hole
evaporation [1], the decay of an electric field due to the
Schwinger effect [2], heavy ion collisions in nuclear
physics [3], and preheating in chaotic inflation [4,5]. It
is expected to be valid in cases where quantum effects are
small, such as the initial stages of the evaporation of a solar
mass black hole. At the opposite end of the spectrum is the
case of preheating in models of chaotic inflation.
Preheating occurs immediately after the inflationary phase
and is a period in which the rate of particle production is
extremely rapid, resulting in strong backreaction effects
upon the inflaton field [6,7]. It is not known whether the
predictions of the semiclassical approximation can be
trusted when quantum effects are so large.
The semiclassical backreaction equations for quantum

fields coupled to a classical background field arise out of
the one loop effective action for that field [8]. As such they
would typically be expected to break down when back-
reaction effects are large and terms coming from higher
loops may be important. One way around this is to use a
large N expansion where N is the number of identical
quantum fields. The semiclassical backreaction equations
become exact in the limit N → ∞. This expansion has been
used in cases such as preheating [5,9] where backreaction
effects are significant.
For the semiclassical approximation to be valid, quantum

fluctuations about the mean of whatever quantity couples
the quantum fields to the classical background field(s) must
be small. One way to characterize these fluctuations is
through the two-point functions for the square of the

quantum field and/or its energy-momentum tensor. These
have been examined for the energy-momentum tensor in
semiclassical gravity [10–13] and for the square of the field
and its energy-momentum tensor during the preheating
phase in chaotic inflation models [14]. However, it has been
shown for the symmetric part of the two-point function for
the energy-momentum tensor that there can be state
dependent divergences [12] and that different renormaliza-
tion schemes can yield different results when the points
come together [13]. To overcome these difficulties a
criterion was given in [15] that relates the validity of the
semiclassical approximation in gravity to the stability of
solutions to the linear response equation, which results
when the semiclassical backreaction equation is perturbed
about a solution to that equation. The linear response
equation has a term which involves the perturbed energy-
momentum tensor, so renormalization proceeds in the usual
way and there are no state dependent divergences.
The criterion states that the large N semiclassical

approximation in gravity will break down if any linearized
gauge invariant quantity constructed from solutions to the
linear response equations with finite non-singular initial
data, grows without bound. It has been shown to be
satisfied for massive and massless free scalar fields in flat
space in the Minkowski vacuum state [15], and for
conformally invariant free fields in the expanding part of
de Sitter space, when spatially flat coordinates are used, the
fields are in the Bunch-Davies state, and scalar perturba-
tions are considered [16]. Tensor perturbations for con-
formally invariant free fields were investigated in [17] and
it was found that they are bounded, so the criterion is
satisfied in that case as well.
In both flat space and the expanding part of de Sitter

space the character of the solution to the semiclassical
backreaction equations does not change in time. However
there are important situations such as preheating where the
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question of the validity of the semiclassical approximation
becomes a time dependent one. There are two reasons for
this in preheating. First, the damping of the inflaton field
due to the backreaction effects of the produced particles is
not uniform in time and in particular does not go on for an
arbitrarily long period of time. Second, one of the approx-
imations that is usually made when the semiclassical
approximation is used for preheating is that interactions
between the produced particles are neglected. This should
be a good approximation at early times but interactions
become important at later times [4].
The above criterion needs to be modified in such cases in

order to take the time dependence of the background field
into account. Since the criterion is related to the stability of
the solutions it is useful to consider situations in which
there is an instability but the system is only observed for a
finite amount of time. For such systems one will find that
perturbations grow rapidly during the allotted time.
However, they obviously cannot grow without bound
and further, if the perturbations are small enough initially
then they will not have time to grow to a large enough size
to become significant. Thus it is the rapid growth of a
perturbation rather than its size which indicates an
instability.
The criterion is also stated only for gravity and needs to

be modified in a straightforward way to cover other cases.
We propose the following: The large N semiclassical
approximation will break down if any linearized gauge
invariant quantity constructed from solutions to the linear
response equation with finite non-singular initial data,
grows rapidly for some period of time. By linear response
equation we mean the equation that is obtained by
perturbing the semiclassical backreaction equation about
one of its solutions.
In this paper we continue an investigation begun in [18],

where we adapted the criterion in [15] to check the validity
of the semiclassical approximation in models of preheating
in chaotic inflation,1 in which rapid damping of the inflaton
field occurs, and found evidence that quantum fluctuations
are large in between the two periods of rapid damping. Here
we study in great detail the relationship between solutions
to the linear response equation and quantum fluctuations,
and use the results to relate the size of the fluctuations to the
particle production rate. We also include a case in which
there is no rapid damping. We find evidence that quantum

fluctuations are large and the semiclassical approximation
breaks down whenever the particle production rate is high,
including during the early stages of preheating when
scattering effects ignored in our model and backreaction
effects on the inflaton field are small.
We consider a model of chaotic inflation for which the

inflaton field ϕ is coupled to N identical massless scalar
fields ψ i with a coupling of the form

P
N
i¼1 g

2ϕ2ψ2
i . Full

backreaction effects for this coupling have been investi-
gated in detail in Refs. [4,5,21–23] (although not all of
these were in the context of the large N expansion or for
massless quantum fields). After a standard rescaling of the
coupling constant g [5], the problem reduces to the
coupling of the inflaton field to a single scalar field ψ ,
and the semiclassical backreaction equation for the inflaton
field is □ϕ − ðm2 þ g2hψ2iÞϕ ¼ 0. As in [5] we work in a
flat space background and consider only homogeneous and
isotropic solutions for ϕ.
The mass of the inflaton field can be scaled out of the

equations using t → mt and ϕ → ϕ=m, with similar
changes of variable for other relevant quantities. (See [5]
for details.) The result is

ϕ̈þ ð1þ g2hψ2iÞϕ ¼ 0; ð1aÞ
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; ð1bÞ

f̈k þ ðk2 þ g2ϕ2Þfk ¼ 0: ð1cÞ

Note that hψ2i is independent of the positive constant ϵ and
that M is a mass scale which typically enters when
computing renormalized quantities for massless fields [5].
The linear response equation can be derived as in [15] by

taking a second variation of the effective action. The result
is

ð□ −m2 − g2hψ2iÞδϕ − g2δhψ2iϕ ¼ 0; ð2aÞ

δhψ2i ¼ −ig2
Z

d4x0ϕðx0Þδϕðx0Þθðt − t0Þh½ψ2ðxÞ;ψ2ðx0Þ�i

þ δhψ2iSD: ð2bÞ

Here δhψ2iSD comes from a variation in the state of the
quantum field.
The linear response equation can also be derived by

perturbing the semiclassical backreaction equation about
one of its solutions. We illustrate this for homogeneous and
isotropic perturbations. The equation for the inflaton field

1A different type of backreaction problem that is also relevant
to inflation is the generation of density perturbations during the
inflationary phase. The backreaction in this case involves the
generation of fluctuations in the gravitational field due to
quantum fluctuations of a scalar field. The resulting quantum
to classical transition has been described in terms of squeezed
states in Refs. [19,20]. In the type of backreaction problem we are
considering for preheating, quantum fluctuations are averaged
over when the quantity hϕ2i is computed. This quantity is then
coupled to the classical inflaton field as shown in Eq. (1a).
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(1a) and the mode equation (1c) are perturbed in the usual
way, keeping quantities that are first order in δϕ and δfk.
The perturbed mode equation is then solved in terms of the
solutions to (1) with the result:

δfk ¼ Akfk þ Bkf�k þ 2g2i
Z

t

0

dt0ϕðt0Þδϕðt0Þfkðt0Þ

× ½f�kðtÞfkðt0Þ − fkðtÞf�kðt0Þ�: ð3Þ

The coefficients Ak and Bk are related to a change of state
and are fixed by the initial values of δfk and its first
derivative. Such a change in state (as pointed out in [24] for
semiclassical gravity) must occur if the original state is a
second order or higher adiabatic state [8].
The linear response equation in this case is

δϕ̈þ ð1þ g2hψ2iÞδϕþ g2ϕδhψ2i ¼ 0; ð4aÞ
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: ð4bÞ

For the fourth order adiabatic states used in [5],
we find that Ak ¼ 0 to linear order. An explicit
expression for Bk can easily be obtained but we will not
display it here.
If one can find solutions to (1) then it is easy to generate

approximate solutions to (2a). One simply takes two
solutions, ϕ1 and ϕ2, which have nearly the same values
at the initial time t ¼ 0, and evolves them numerically in
time. If we define the difference between the solutions to be
δϕe ≡ ϕ2 − ϕ1, then δϕe satisfies the equation:

δϕ̈e þ ð1þ g2hψ2i1Þδϕe þ g2ðhψ2i2 − hψ2i1Þðϕ1 þ δϕeÞ:
ð5Þ

The linear response equation (4a) in this case is

δϕ̈þ ð1þ g2hψ2i1Þδϕþ g2ϕ1δhψ2i½ϕ → ϕ1� ¼ 0: ð6Þ

Here, and below, the square brackets after δhψ2i give
instructions as to how this quantity, which is given in (4b),
is to be evaluated. Note that the first two terms in these
equations have the same form. Thus, δϕe, which is a
solution to (5), is also an approximate solution to (6) so
long as the amplitude of the oscillations of ϕ1 is much
larger than the amplitude of oscillations of δϕe

and δhψ2i½ϕ → ϕ1; δϕ → δϕe� ≈ hψ2i2 − hψ2i1.

Given the structure of Eq. (6) it is possible to go further
and separate out the part of the perturbation driven by
δhψ2i. For simplicity we choose the starting values for ϕ2

and ϕ1 such that ϕ2ð0Þ ¼ ϕ20, ϕ1ð0Þ ¼ ϕ10, and
_ϕ2ð0Þ ¼ _ϕ1ð0Þ ¼ 0. Then let

δϕe ¼ ϕ2 − ϕ1 ¼ cϕ1 þ δϕc; ð7Þ

with c ¼ ðϕ20 − ϕ10Þ=ϕ10. Substituting into (6) and using
(1a) one finds that if δϕe is an approximate solution to (6),
then δϕc is an approximate solution to the equation

δϕ̈c þ ð1þ g2hψ2i1Þδϕc

þ g2ϕ1δhψ2i½ϕ → ϕ1; δϕ → δϕc; Ak → 0; Bk → 0�
¼ −g2ϕ1δhψ2i½ϕ → ϕ1; δϕ → cϕ1�: ð8Þ

The term on the right-hand side is a source term which
depends on δhψ2i in (4b) evaluated with ϕ ¼ ϕ1 and
δϕ ¼ cϕ1. Since the initial conditions are δϕcð0Þ ¼
δ _ϕcð0Þ ¼ 0, at early times the growth of δϕc is driven
by the source term.
Given that the point of our criterion is that the semi-

classical approximation breaks down when quantum fluc-
tuations are significant, for the specific case of preheating
the criterion can be further revised to state that the semi-
classical approximation breaks down if either of the
quantities δϕe or δϕc grow significantly for some period
of time. The reason it is important to include δϕc is because
δϕe ∼ c cosðtÞ at early times before backreaction effects
due to the quantum fields are important. However, quantum
fluctuations can still be significant at this time.
An important question is, what does the breakdown of

the semiclassical approximation mean if backreaction
effects are small? If the breakdown is due to quantum
fluctuations then there will be a sensitivity to initial
conditions which will make it virtually impossible to
determine in a detailed manner the damping of the inflaton
field using the semiclassical approximation even at early
times when there is only a small amount of damping.
As an illustration it is interesting to first look at a toy

model in which hψ2i in (1a) is replaced by the last term in
(1b) with ϵ=M chosen so that this term is equal to −ϕ2=g2

and the resulting equation for ϕ is ϕ̈þ ð1 − ϕ2Þϕ ¼ 0.
Then g2δhψ2i ¼ −2ϕδϕ and the source term for δϕc is
2cϕ3. The solutions for ϕ are stable for the starting values
0 < ϕð0Þ < 1 and _ϕð0Þ ¼ 0. In this case it is easy to solve
the linear response equation directly. The results for ϕð0Þ ¼
10−1 and δϕð0Þ ¼ 10−5 are shown in Fig. 1. One sees that
over the range shown there is linear growth in the amplitude
of δϕc while the amplitude of δϕ does not grow signifi-
cantly initially. This pattern of early growth of δϕc is also
seen in the solutions to the full set of backreaction
equations.
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In [6] it was predicted that there are two qualitatively
different types of solutions to the backreaction equation for
ϕ. For one there is a relatively slow damping of the inflation
field while for the other there is a period in which the
inflaton field is rapidly damped. In [5] Eqs. (1) were solved
numerically and it was found for a flat space background
that rapid damping of the inflaton field occurs whenever
g2ϕ2

0 ≳ 2 for models in which the starting values are

ϕ0 ¼ ϕðt ¼ 0Þ and _ϕðt ¼ 0Þ ¼ 0. Rapid damping does
not occur for significantly smaller values such as g2ϕ2

0 ¼ 1.
Whenever rapid damping does occur it is observed to
happen twice and there appears to be no significant
damping after that. These effects are illustrated in the
upper panels of Fig. 2 where the inflaton field is plotted as a
function of time for g2ϕ2

0 ¼ 1 and g2ϕ2
0 ¼ 10.

Examination of the plots in Fig. 2 shows that in both
cases δϕe grows exponentially at about the time that a
significant amount of damping of ϕ first occurs, while δϕc
grows exponentially starting at much earlier times. After
δϕc grows to be comparable in size to δϕe the two
quantities are nearly identical and cannot be distinguished
on the scale of the plots. For g2ϕ2

0 ¼ 1 a small amount of
damping of ϕ occurs very quickly followed by a much
slower damping rate which goes on for a long time. During
this latter period δϕe grows approximately linearly in time.
For g2ϕ2

0 ¼ 10 the exponential growth of δϕe continues
through the end of the second rapid damping period and
then all growth appears to cease.
Using the detailed analysis of the particle production in

[5] we find that the rate of growth of δϕc appears to be
closely tied to the overall particle production rate. It is
exponential when the particle production rate is high,

FIG. 2. Numerical solutions to the full set of equations (1) are shown for the inflaton field ϕ in the upper panels. In the lower panels
jδϕej (dashed curves) and jδϕcj (solid curves) are plotted. For each plot g ¼ 10−3. For the upper left panel g2ϕ2

0 ¼ 1 and the upper right
one g2ϕ2

0 ¼ 10. In the lower left panel δϕe is the difference between solutions to (1) with g2ϕ2
0 ¼ 1þ 10−5 and g2ϕ2

0 ¼ 1. In the lower
right panel δϕe is the difference between solutions to (1) with g2ϕ2

0 ¼ 10ð1þ 10−5Þ and g2ϕ2
0 ¼ 10.

FIG. 1. Plotted are δϕ (upper curve) and δϕc for the toy model
described in the text with ϕð0Þ ¼ 10−1 and δϕð0Þ ¼ 10−5. The
upper curve has been offset by 4 × 10−5.
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approximately linear in time during periods of slow damp-
ing when the rate is much smaller, and is negligible after the
second rapid damping phase when the particle production
rate is negligible (in cases where rapid damping occurs).
It is clear from the rapid growth of δϕc at early times that

our revised criterion for the validity of the semiclassical
approximation during preheating is violated during the
early stages of preheating, well before either scattering
effects or backreaction effects are important. This has been
shown explicitly for a flat space background. As pointed
out in [6], the flat space approximation does not always
give an accurate account of the details of the preheating
process because the expansion of the universe can have a
significant effect on the parametric amplification process.
Nevertheless our results strongly suggest that during
preheating whenever there is a period in which a lot of
parametric amplification occurs, the semiclassical approxi-
mation breaks down.
Given that the semiclassical approximation breaks down

for preheating, one can ask what it should be replaced with.
Since the breakdown happens before significant damping
of the inflaton field occurs, one can legitimately solve the
mode equation using solutions to the mode equation when
the g2hψ2iϕ term is neglected. Thus one can investigate the
amount of particle production that occurs before back-
reaction effects become important and one can use that
information to determine the time at which they become
important. What one cannot do is to follow the detailed
evolution of the inflaton field using the semiclassical
approximation. Once backreaction effects become impor-
tant a significant amount of particle production will have
taken place. This should make it possible to compute the
backreaction of the particles on the inflaton field by using a

different type of approximation in which the classical
equations of motion for the quantum fields are solved
using random initial conditions [21–23,25]. This method
has the additional advantage that it is possible to include
interactions between the fields. Interestingly, in at least one
case2 the results of a calculation using this method are
similar in nature to those obtained in [5] by solving the
semiclassical backreaction equations. So even though the
solutions to the semiclassical backreaction equations can-
not be trusted in detail for preheating, they may still give a
good qualitative picture of the initial and intermediate
stages of the preheating process.
This is the first application that has been made of the

criterion in [15] for the validity of the semiclassical
approximation when particle production effects are signifi-
cant. We think it likely, but cannot be certain, that our
results generalize to similar situations. Thus the semi-
classical approximation may never be valid, at least in
terms of its detailed predictions, when there is a high rate of
particle production.
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