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We develop a numerical tool for the fast computation of the temperature and polarization power spectra
generated by domain wall networks, by extending the publicly available CMBACT code—which calculates
the cosmic microwave background signatures generated by active sources—to also describe domain wall
networks. In order to achieve this, we adapt the unconnected segment model for cosmic strings to also
describe domain wall networks, and use it to model the energy-momentum contribution of domain wall
networks throughout their cosmological history. We use this new tool to compute and study the TT, EE, TE
and BB power spectra generated by standard domain wall networks, and derive a conservative constraint on
the energy scale of the domain wall-forming phase transition of η < 0.92 MeV (which is a slight
improvement over the original Zel’dovich bound of 1 MeV).
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I. INTRODUCTION

Domain walls are two-dimensional topological defects
that are formed when a discrete symmetry is spontaneously
broken in a phase transition [1]. The production of domain
wall networks as remnants of phase transitions in the early
universe is predicted in several grand unified scenarios.
They are, however, often overlooked in cosmology since
the energy scale of the phase transition that originates the
domain walls is restricted to be smaller than 1 MeV [2].
Nonetheless, there is still room for domain walls to play a
relevant role in cosmology: for instance, they have been
suggested as a possible significant dark energy contributor
[3]—albeit they have since been ruled out as a major dark
energy component [4–6]—and as a possible explanation for
the spatial variations of the fine structure constant hinted at
by HIRES/Keck and VLT/UVES data [7–9].
Standard domain wall networks are expected to persist

throughout cosmological history, and their presence at late
times would necessarily leave imprints on the cosmic
microwave background (CMB). Although current CMB
observations seem to be consistent with the inflationary
paradigm, in which the fluctuations are seeded in the very
early universe, they also allow for a subdominant topo-
logical defect contribution [10]. Domain walls, as cosmic
strings, source metric perturbations actively throughout the
cosmological history. For this reason, their CMB signatures
are expected to be fundamentally different from those due
to primordial fluctuations. In particular, cosmic defects are

expected to generate a significant vector component that
would not be present in inflation-seeded scenarios, because
vector modes decay rapidly in the absence of a source [11].
The B-mode polarization signal originated by topological
defects has then contributions from both tensor and vector
modes, and may, for this reason, produce an observatio-
nally relevant signal in this channel, despite providing only
subdominant contributions to the temperature and E-mode
power spectra. The B-mode polarization channel thus offers
a relevant observational window for the detection of
topological defects.
Although some preliminary studies of the CMB signa-

tures generated by domain walls have been done in the past
[2,12–14]), detailed studies of the anisotropies generated
by these networks are yet to be performed. In this paper, we
develop a numerical tool to compute the angular power
spectrum generated by domain wall networks (in both the
temperature and polarization channels), by adapting and
extending the publicly available CMBACT code [15–17] in
order to accommodate these networks.
This paper is organized as follows. In Sec. II, we briefly

review the dynamics of infinitely thin and featureless
domain walls. In Sec. III, we adapt the unconnected
segment model (USM) to describe domain wall networks.
We compute the energy-momentum tensor of a domain
wall section in Sec. IV. In Sec. V, we present and discuss
the temperature and polarization power spectra obtained
using this method. We then conclude in Sec. VI.

II. DOMAIN WALL DYNAMICS

The equation of motion of a domain wall is determined
by the underlying field theory. However, if its thickness is
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negligible when compared to its curvature radii and if the
domain wall is featureless—as is often the case in cosmo-
logical scenarios—the domain wall may be treated as a
two-dimensional surface. While moving in spacetime, an
infinitely thin and featureless domain wall sweeps an
effectively three-dimensional world volume. The world
history of a domain wall may thus be represented by

xμ ¼ xμðξaÞ; a ¼ 0; 1; 2; ð1Þ

where ξ0 is a timelike parameter and ξ1 and ξ2 are spacelike
parameters. These parameters may be regarded, at least
locally, as coordinates on the world volume. The action of
such a domain wall is given by [1]

S ¼ −σ
Z

d3ξ
ffiffiffiffiffiffi
−h

p
; ð2Þ

where σ is the mass per unit area of the domain wall,
h ¼ detðhabÞ, and

hab ¼ gμνx
μ
;axν;b ð3Þ

is the metric induced on the world volume by the back-
ground (or pull-back metric).
By varying the Nambu-Goto action in Eq. (2) with

respect to xμ, one obtains the following equation of motion
for the dynamical variables xμ:

1ffiffiffiffiffiffi
−h

p ð
ffiffiffiffiffiffi
−h

p
habxμ;bÞ;a þ Γμ

νλh
abxν;axλ;b ¼ 0: ð4Þ

Let us now consider a domain wall in a flat Friedmann-
Robertson-Walker (FRW) universe, whose line element is
given by

ds2 ¼ a2ðτÞ½−dτ2 þ dr2 þ r2ðdθ2 þ sin2 θd2ϕÞ�; ð5Þ

where dτ ¼ dt=aðtÞ is the conformal time, t is the physical
time, a is the cosmological scale factor, and ðr; θ;ϕÞ are
spherical coordinates.
The domain wall equation of motion should be invariant

under reparametrization of the world volume. In an
expanding background, the temporal-transverse gauge,
with

x0 ¼ τ; and _x · x0ðiÞ ¼ 0; ð6Þ

would be a natural choice. Note that, since domain walls
are assumed to be featureless, their physical velocity is
purely orthogonal. Let us choose, for simplicity, a set of
spacial parameters for the domain wall that are also
orthogonal in the vicinity of the point under consideration,
so that

x0ðiÞ · x0ðjÞ ¼ 0: ð7Þ

Here, xμ ¼ ðτ;xÞ, dots and 0ðiÞ represent derivatives with
respect to conformal time and the ith spatial parameter of
the world volume, respectively, and the Latin indices in
parentheses refer to the spatial parameters of the wall.
In this gauge, Eq. (4) yields

ẍþ 3Hð1− _x2Þ _x¼ 1

ϵ

��
x0ð1Þx0ð2Þ

ϵ

�0ð1Þ
þ
�
x0ð1Þx0ð2Þ

ϵ

�0ð2Þ�
;

ð8Þ

_ϵ ¼ 3Hϵ _x2; ð9Þ

where

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ð1Þ2x0ð2Þ2

1 − _x2

s
ð10Þ

is the coordinate energy per unit area, and H ¼ _a=a.

III. MODELING THE DOMAIN WALL NETWORK

The main objective of this paper is to devise a numerical
tool to compute the temperature and polarization power
spectra generated by domain wall networks. In order to
attain this goal, different approaches might be followed (as
was done for cosmic strings): one may either use numerical
simulations of domain wall networks, or use a phenom-
enological model to describe the network dynamics. Here,
we choose to follow the latter option, given the adaptability
of this model based approach: it allows for the description
of different scenarios (by calibration of its free parameters),
and it is not as constrained in terms of dynamical range as
simulations often are.
For cosmic strings, this approach lead to the develop-

ment of a publicly available tool for the computation of the
temperature and polarization power spectrum generated by
these networks—the CMBACT code [15,16]—which is
based on the phenomenological unconnected segment
model (USM) [18–20] to describe the energy-momentum
tensor of the cosmic string networks. This tool was proven
successful in predicting the general shape of the angular
power spectrum generated by cosmic string networks
obtained using other models (see e.g. [21–26]). It is the
standard tool to compute the CMB anisotropy generated by
Nambu-Goto cosmic strings (although comparison with
recent results obtained directly from Nambu-Goto simu-
lations seem to indicate that this approach may have some
shortcomings [27]). It may also be calibrated in such a way
as to mimic the spectra obtained in Abelian-Higgs simu-
lations (by calibrating it to match the field theory unequal
time correlators predicted by field theory simulations)—the
so-called Abelian-Higgs mimic models described in [10].
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Moreover, the bispectrum of cosmic string induced matter
fluctuations predicted by CMBACT is in good agreement
with that computed using perturbation theory [28]. The
USM and CMBACT are, then, a flexible and robust frame-
work to compute CMB anisotropies generated by cosmic
strings, and, for this reason, we choose to extend them for
domain wall networks.

A. The velocity-dependent one-scale model
for domain walls

Let us now consider a domain wall network in a FRW
universe, and assume that the network is statistically
homogeneous on sufficiently large scales. In this case,
two variables are sufficient to describe the large-scale
cosmological evolution of the domain wall network. One
such variable is the root-mean-squared (rms) velocity of the
network, v̄ ¼

ffiffiffiffiffiffiffiffiffi
hv2i

p
, defined as

v̄2 ¼
R
v2ϵd2ξR
ϵd2ξ

; ð11Þ

where v ¼ j _xj is the microscopic velocity. The other
dynamical variable is the characteristic length scale of
the network, L, defined as

ρ ¼ σ

L
; ð12Þ

where ρ is the average domain wall energy density.
The velocity-dependent one-scale (VOS) model provides

a quantitative description of the large-scale dynamics of
domain wall networks, by following the cosmological
evolution of these two variables. The evolution equation
for the rms velocity may be obtained by averaging the
microscopic equation of motion for a domain wall in
Eq. (8). On the other hand, one may obtain an equation
of motion for the characteristic length scale of the network
by differentiating the total energy density in domain
walls—given by

E ¼ σaðτÞ
Z

ϵd2ξ; ð13Þ

—and using Eqs. (9)–(12). These equations assume the
form

_̄v ¼ ð1 − v̄2Þ
�
κ

l
− 3Hv̄

�
; ð14Þ

_l ¼ 3v̄2Hlþ ~c v̄; ð15Þ

and were derived in [29–31]. (See also Refs. [32,33] for a
unified framework for the description of topological defects
of arbitrary dimensionality.) Here, and for the rest of this
paper, we choose to work with the comoving characteristic

length, l ¼ L=a. Moreover, we have introduced the phe-
nomenological parameters ~c and κ that quantify, respec-
tively, the energy loss caused by domain wall interactions
and the effect of wall curvature on their dynamics. In this
paper, we will assume these parameters take the values

~c ¼ 0.34 and κ ¼ 0.98; ð16Þ

as indicated by the latest calibration of the VOS model
against field theory simulations of standard domain wall
networks [34], during both the radiation and matter eras.
Note that nonstandard domain wall networks, such as
networks with junctions, may also be described by this
model [5]. In that case, however, these parameters would
need to be recalibrated.

B. An unconnected section model for domain walls

The VOS model merely provides a description of the
large scale dynamics of a domain wall network. However,
this is not sufficient to compute the cosmic microwave
signature generated by domain walls: one also needs to
characterize the energy-momentum tensor of the network in
order to do so. To achieve this, we follow closely the USM
for cosmic strings [18–20], and adapt it in order to describe
domain walls. We preserve the essential elements of this
framework and, therefore, we will only briefly review its
essential features. In this model, the network of domain
walls is represented by a collection of uncorrelated, flat and
square domain walls, which have been produced simulta-
neously at some early time. The VOS model is used to set
the comoving length of the network at any given time—so
that each wall has a comoving area l2ðtÞ—and to fix the
magnitude of the velocity of the segments.
The positions of the domain walls are drawn from a

uniform distribution in space. Moreover, the direction of
their velocity is chosen from a uniform distribution on a
two sphere and, since we are assuming that the domain
walls are featureless and, consequently, that their velocities
are purely orthogonal, this direction also determines the
orientation of the domain wall.
Throughout cosmic history, a fraction of domain walls

decays at each epoch, so that the energy loss caused by
domain wall interactions is taken into account. As is the
case with the USM for cosmic strings, all domain walls that
decay at the same time are consolidated in a single section.
The number of sections that decay between instants τi−1
and τi is given by

N ðτiÞ ¼ V½nðτi−1Þ − nðτiÞ�; ð17Þ

where V is the simulation volume, and nðτÞ is the number
density of domain walls,

nðτÞ ¼ CðτÞ
l3ðτÞ : ð18Þ
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Here CðτÞ is determined by requiring that the number of
walls is given by V=l3ðτÞ at any given time. In this way, at
any given epoch, the number density of domain wall
sections in the USM is in agreement with that predicted
by the VOS model.
The decay of domain walls must necessarily be accom-

panied by a turning off of the energy momentum of that
fraction. As is the case for the USM for cosmic strings, this
effect is included by expressing the Fourier transform of the
total energy momentum as

Θμνðk; τÞ ¼
XN
i¼1

½N ðτiÞ�ð1=2ÞΘi
μνToffðτ; τi; LfÞ; ð19Þ

where the sum runs over all the N domain wall sections,
Θi

μν is the Fourier transform of the energy-momentum
tensor of the ith domain wall section. Furthermore,
Toffðτ; τi; LfÞ is a function that controls domain wall decay
and turns off their energy-momentum contribution:

Toffðτ; τi; LfÞ ¼
8<
:

1 for τ < Lfτi
1
2
þ 1

4
ðy3 − 3yÞ for Lfτi < τ < τi

0 for τi < τ;

ð20Þ
where

y ¼ 2
lnðLfτiÞ=τ
lnðLfÞ

− 1; ð21Þ

and Lf is a parameter that controls the speed of domain
wall decay.

IV. THE ENERGY-MOMENTUM TENSOR OF A
DOMAIN WALL

With the USM for domain wall networks set up, the only
other ingredient missing is the energy-momentum tensor of
the domain wall sections. The energy-momentum tensor of
an infinitely thin and featureless domain wall may be
obtained by varying the action in Eq. (2) with respect to the
metric tensor gμν:

Tμν
ffiffiffiffiffiffi
−g

p ¼ σ

Z
d3ξδð4Þ½xμ − xμðξaÞ�f

ffiffiffiffiffiffi
−h

p
habxμ;axν;bg:

ð22Þ
In the temporal-transverse gauge, it assumes the form

Tμνðτ;xÞ

¼ σ

Z
dτd2ξδð4Þ½xμ − xμðτ; ξ1; ξ2Þ�

× fϵ_xμ _xν − ϵ−1ðx0ð2Þ2x0ð1Þμx0ð1Þν þ x0ð1Þ2x0ð2Þμx0ð2ÞνÞg;
ð23Þ

where δð4ÞðxÞ is the four-dimensional Dirac delta function.
Returning to the USM for domain walls, the Fourier
transform of the energy-momentum tensor of a domain
wall section is, then, given by

Θμνðk; τÞ

¼
Z

d3xeik·xTμνðτ; ξ1; ξ2Þ

¼ σ

Z
l=2

−l=2
dξ1

Z
l=2

−l=2
dξ2eik·x

× fϵ_xμ _xν − ϵ−1ðx0ð2Þ2x0ð1Þμx0ð1Þν þ x0ð1Þ2x0ð2Þμx0ð2ÞνÞg:
ð24Þ

The spatial coordinates of a domain wall section may be
expressed, in this gauge, as

x ¼ x0 þ ξ1x̂0ð1Þ þ ξ2x̂0ð2Þ þ vτ _̂x; ð25Þ

where x0 is the (random) position of its center of mass, _̂x
and x̂0ðiÞ are unitary vector with the direction of the velocity
and of the spatial directions of the domain wall. Assuming,
without loss of generality that k ¼ kê3, we have that

Θ00 ¼ 4σγ
ffiffiffi
2

p
cos ðk · xþ vkτ _̂x3Þ

×
sin ðklx̂0ð1Þ3 =2Þ sin ðklx̂0ð2Þ3 =2Þ

k2x̂0ð1Þ3 x̂0ð2Þ3

; ð26Þ

Θij ¼ Θ00½v2 _̂xi _̂xj − ð1 − v2Þðx̂0ð1Þi x̂0ð1Þj þ x̂0ð2Þi x̂0ð2Þj Þ�; ð27Þ

where the
ffiffiffi
2

p
factor was included to compensate for the

fact that we are only considering the real part of Θμνðk; τÞ,
and _̂xj ¼ _̂x · êj and x̂0ðiÞj ¼ x̂0ðiÞ · êj are, respectively, the

projections of vector _̂x and x̂0ðiÞ along the jth spatial
direction (defined by the unitary vector êj).
For this choice of k, the Boltzmann integrator CMBFAST

—which is the basis of CMBACT—requires five components
of the energy-momentum tensor [19]. The first three are the
scalar, vector and tensor components of the anisotropic
stress, given by

2ΘS ¼ 2Θ33 − Θ11 − Θ22; ð28Þ

ΘV ¼ Θ13; ð29Þ

ΘT ¼ Θ12: ð30Þ

For single domain wall section, these yield

2ΘS ¼ Θ00fv2ð3_̂x3 _̂x3 − 1Þ
− ð1 − v2Þð3x̂0ð1Þ3 x̂0ð1Þ3 þ 3x̂0ð2Þ3 x̂0ð2Þ3 − 2Þg; ð31Þ
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ΘV ¼ Θ00fv2 _̂x1 _̂x3
− ð1 − v2Þðx̂0ð1Þ1 x̂0ð1Þ3 þ x̂0ð2Þ1 x̂0ð2Þ3 Þg; ð32Þ

ΘT ¼ Θ00fv2 _̂x1 _̂x2
− ð1 − v2Þðx̂0ð1Þ1 x̂0ð1Þ2 þ x̂0ð2Þ1 x̂0ð2Þ2 Þg: ð33Þ

The remainder components—the velocity field ΘD (given
byΘD ¼ Θ03 for this choice of k), and the trace or isotropic
pressure Θ ¼ Θii—may be obtained from the covariant
conservation of energy-momentum:

_ΘD ¼ −2
_a
a
ΘD −

k2

3

�
a
_a
ðΘD − _Θ00Þ − Θ00 þ 2ΘS

�
¼ 0;

ð34Þ

Θ ¼ a
_a
ðΘD − _Θ00Þ − Θ00: ð35Þ

V. RESULTS AND DISCUSSION

The CMB has a nearly perfect blackbody radiation
spectrum [35], with an approximately constant temperature
across the sky. For this reason, the basic CMB observables
are its anisotropies, characterized by the temperature
fluctuations

Δðx;n; τ0Þ≡ jTðx;n; τ0Þ − TCMBj
TCMB

; ð36Þ

where x is the position of the observer, n is the line of sight
direction, and TCMB is the average temperature of the CMB.
The contributions of the different angular scales may be
separated by doing a decomposition into spherical har-
monics,

ΔðnÞ ¼
X
lm

almYlmðnÞ; ð37Þ

where Ylm are spherical harmonic functions. The angular
power spectrum, Cl, is defined as

Cl ≡ 1

2lþ 1

Xl
m¼−1

ha�lmalmi; ð38Þ

where angled brackets represent an ensemble average.
We calculate the CMB anisotropies generated by domain

wall networks by implementing the changes described in
Sec. IV to the publicly available CMBACT code (version
4.0). This code is based on CMBFASTwhich integrates the
Einstein and Boltzmann equations using the line of sight
method [36]. CMBACT also computes the cold dark matter
(CDM) linear power spectrum generated by active sources,

PðkÞ≡ jδ2ðkÞj; ð39Þ

where δðkÞ is the Fourier transform of the density contrast,

δðxÞ≡ ρðxÞ − hρi
hρi ; ð40Þ

ρðxÞ is the matter density at a given position x, and hρi is its
average value.
Our results are found by averaging over 1000 different

realizations of a Brownian domain wall network, however
200 realizations would be sufficient to reproduce most of
the results presented here. We use the Planck 2015
cosmological parameters—Ω0

bh
2 ¼ 0.0225 and Ω0

mh2 ¼
0.1427 for the baryon and matter density parameters,
respectively, and H0 ¼ 100h kms−1Mpc−1, with h ¼
0.6727, for the value of the Hubble parameter at the
present time—and fix the domain wall tension to GσL0 ¼
10−7 (where L0 is the characteristic length scale of the
domain wall network at the present time).
In Fig. 1, we plot the CDM linear power spectrum

generated by domain wall networks along that of cosmic
string networks forGμ ¼ GσL0 ¼ 10−7. The power spectra

FIG. 1 (color online). Comparison between the linear CDM
power spectrum generated by domain wall (purple line) and
cosmic string (red line) networks. We have averaged over 1000
realizations of both string and wall networks, and chose
Gμ ¼ GσL0 ¼ 10−7.

FIG. 2 (color online). Evolution of the linear CDM power
spectrum generated by domain wall networks. We include the
CDM power spectra generated by domain walls until a ¼ 10−4

(yellow line), a ¼ 10−3 (orange line), a ¼ 10−2 (red line),
a ¼ 10−1 (blue line), and a ¼ 1 (purple line). We have averaged
over 1000 realizations of domain wall networks, and chose
GσL0 ¼ 10−7.
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for cosmic strings was obtained using the unaltered
CMBACT code with the standard calibration used for
Nambu-Goto strings, and cosmic strings where assumed
to be featureless (by setting the effective wiggliness
parameter to 1) to allow for a more direct comparison
with domain wall network results. As this figure illustrates,
the matter power spectrum generated by domain walls is
strongly suppressed on small scales (or large k), when
compared to that of cosmic strings. Domain walls only
become cosmologically relevant at late cosmological times,
when the correlation length of the network is large. For this
reason, these networks should be expected to contribute

mostly to the matter power spectrum on large scales.
Figure 2—where the evolution of the power spectrum
generated by domain wall networks is plotted—shows that
this is indeed the case: the dominant contribution to the
matter power spectrum at low k is generated at late
cosmological times, while the large k contributions are
mostly generated at earlier times (for a < 10−1). Note
however that, even on large scales, the CDM power
spectrum generated by domain walls has an amplitude
that is significantly smaller than that generated by cosmic
strings. Domain walls have a correlation length that is
slightly larger than that of cosmic strings at late times,

FIG. 3 (color online). Comparison between the angular power spectra generated by domain wall (purple lines) and by cosmic string
(red lines) networks. From top to bottom, we plot the TT, EE, TE and BB power spectra, as a function of the multipole moment l. The
left, middle and right panels represent the scalar, vector and tensor components, respectively. In the case of the TE power spectra, we
chose to plot the absolute value and we use a dashed line to represent the parts in which Cl is negative. We have averaged over 1000
realizations of both string and wall networks, and chose Gμ ¼ GσL0 ¼ 10−7.
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which corresponds to a smaller energy density at the
present time if Gμ ¼ GσL0. This difference accounts for
a factor of about 2 in the amplitude of the CDM power
spectrum. However, the observed difference is slightly
larger because cosmic strings become cosmologically
relevant earlier than domain walls, thus contributing
significantly to the CDM power spectrum at large scales
over a longer period of time.
These differences in the shapes of the matter power

spectra generated by domain walls and cosmic strings must
necessarily translate into significant differences in the CMB
signatures of these defects. In Fig. 3, we plot the TT, EE,
TE and BB angular power spectra generated by domain
wall networks along that generated by cosmic strings. First
of all, the overall magnitude of the angular power spectra
generated by domain wall networks on large angular scales
(or small l) is lower than that of cosmic strings. Moreover,
the strong suppression of the CDM power spectrum on
small scales also results in a significantly reduced angular
power spectra at large l when compared to that of cosmic
string networks. In particular, the peak that is observed in
the cosmic string temperature power spectrum at inter-
mediate scales is absent in the case domain walls. Unlike
cosmic strings—which exhibit the aforementioned peak
around l ∼ 200—domain walls contribute to the temper-
ature power spectrum mostly on large scales. For domain
walls, then, the multipole modes around l ¼ 2 have the
highest constraining power on their fractional contribution
to the observed temperature power spectrum. Note that the
uncertainties at low l are very large due to cosmic variance.
For this reason, as discussed in [37], observational data
allows, on large angular scales, for a fractional contribution
of cosmic strings to the TT power spectrum around 10
times larger than the upper limit obtained using the full data
set (which is more constraining mainly due to the peak
located at intermediate angular scales, where the observa-
tional uncertainties are very small). Current Planck data
allows for a fractional contribution of cosmic strings of
about 1%–2% [10,38], and therefore one may conclude that
the upper limit for the fractional contribution of cosmic
strings in the TT channel using low l data only should be
around 10%–20%. One should expect the maximum
contribution of domain walls to the TT power spectrum
allowed by observational data to be similar to that allowed
for cosmic strings at large scales. By taking the
conservative approach and assuming the fractional contri-
bution of domain walls to temperature power spectrum at
l ¼ 2 to be around 20%, we obtain a constraint on the
domain wall mass per unit area of σ < 3.52 × 10−5 kgm−2,
which corresponds to a constraint on the domain wall-
forming symmetry breaking scale of η < 0.92 MeV (which
was derived assuming that σ ¼ η3). This estimate, despite
being conservative, is in good agreement with the
Zel’dovich bound [2]—which constrained η to be smaller
than 1 MeV—and even constitutes a slight improvement.

Note however that the large cosmic variance associated to
the CMB anisotropies generated by standard domain wall
networks on large cosmological scales must necessarily be
dealt with in a more rigorous study.
The aforementioned overall suppression of the temper-

ature power spectra of domain walls (that becomes more
accentuated with increasing l) is also observed in the
polarization power spectra, and it is slightly more accen-
tuated on large scales in the EE and BB channels. However,
since the upper bounds on GσL0 are less stringent than
those on Gμ, the contribution of domain walls to the
polarization power spectrum at large scales may in fact be
significant. In Fig. 4, we plot the total BB power spectrum
generated by domain wall networks and cosmic string
networks that have the maximum fractional contribution to
the TT power spectrum allowed by current observational
data. We chose σ ¼ 3.52 × 10−5kgm−2 (or equivalently
GσL0 ¼ 5.6 × 10−6) for the domain wall networks, and the
weakest constraint on cosmic string tension obtained using
Planck data [38], Gμ ¼ 2.4 × 10−7 (which corresponds to
the constraint on Abelian-Higgs strings). This figure shows
that the B-mode polarization signal generated by domain
wall networks that have a fractional contribution to the
temperature power spectrum that is close to the allowed
observational limit may dominate over that generated by
cosmic strings (and the same is also true for the EE signal).
The TT, EE and TE signals generated by topological
defects are expected to be subdominant, when compared
to that generated by primordial fluctuations. However, their
contribution in the B-mode channel may be dominant, due
to the presence of a vector component contribution that is
absent in inflationary scenarios. Our results seem to
indicate, therefore, that domain walls could be the dom-
inant contributor in the BB channel for low multipole
modes. Moreover, the fact that domain walls and cosmic
strings have spectra with different shapes and that these

FIG. 4 (color online). Comparison between the total BB power
spectra generated by domain wall (purple line) and cosmic string
(red line) networks with the maximum tension allowed by current
observational data. For domain walls, we have used the upper
limit obtained in this paper GσL0 ¼ 5.6 × 10−6, while for cosmic
string we took the upper limit obtained using Planck data Gμ ¼
2.4 × 10−7 [38]. We have averaged over 1000 realizations of both
string and wall networks.
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defects contribute mostly at different scales should, in
principle, allow to distinguish between these contributions
if a signal is detected.
As is the case for the matter power spectrum, the

dominant contributions to the CMB anisotropies are
generated in the matter era. In Fig. 5, we plot the evolution
of the TT, EE, TE and BB power spectra generated by a
domain wall network. These plots show that domain walls
contribute to the temperature anisotropies on progressively
larger angular scales (or lower multipoles) as time

progresses and their correlation length increases (as was
the case for the CDM power spectrum). For the polarization
power spectra, however, the picture that emerges is slightly
different. Polarization may be created in two narrow
windows in the history of the universe: very close to
recombination and during the reionization epoch (because
it requires the presence of a temperature quadrupole and the
universe to be ionized). Figure 5 illustrates this fact: most of
the contributions to the small scale peak are generated
around the last scattering epoch (while a ∼ 10−3), while the

FIG. 5 (color online). Evolution of the angular power spectrum generated by domain wall networks. From top to bottom, we plot the
TT, EE, TE and BB power spectra, as a function of the multipole moment l. The left, middle and right panels represent the scalar, vector
and tensor components, respectively. In each of the plots we include the angular power spectra generated by domain walls until a ¼ 10−4

(yellow line), a ¼ 10−3 (orange line), a ¼ 10−2 (red line), a ¼ 10−1 (blue line), and a ¼ 1 (purple line). In the case of the TE power
spectra, we chose to plot the absolute value and we use a dashed line to represent the parts in which Cl is negative. We have averaged
over 1000 realizations domain wall networks, and chose GσL0 ¼ 10−7.
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large scale (dominant) peak is mostly generated at more
recent cosmological times, around the time the scale factor
was a ∼ 10−1.

VI. CONCLUSIONS

In this paper, we have expanded CMBACT to allow for the
numerical computation of the CMB anisotropies generated
by domain wall networks. This was done by adapting the
USM for cosmic strings in order to also allow for the
description domain wall networks, and by implementing
the necessary changes on CMBACT (version 4.0). Note that,
within this framework, the VOS model is used to set the
correlation length and average velocity of the domain wall
sections. This phenomenological model includes the essen-
tial aspects of domain wall dynamics, and it has the
advantage of having two free parameters that may be used
to calibrate the model in order to describe different types of
domain wall networks. Our approach, thus, has the advan-
tage of not being limited to a specific domain wall scenario.
We have also used this tool to study the angular power

spectra generated by standard domain wall networks, in
both the temperature and polarization channels, and to
derive a conservative constraint on the energy scale of
formation of the domain wall network of η < 0.92 MeV.
Note, however, that this only applies to standard domain
wall networks. Other domain wall scenarios—such as
networks whose dynamics is friction dominated or domain
wall networks with junctions—would be characterized by a

smaller correlation length. L determines in which multipole
mode the networks contribute dominantly to the temper-
ature power spectrum. One should therefore expect con-
straints on nonstandard networks to be stronger than the
one obtained here, since they would be constrained by
higher multipole modes which have smaller observational
uncertainties and which are less affected by cosmic
variance. The study of these different scenarios will be
the subject of future work.
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Note added.—While this manuscript was in preparation,
results related to the ones presented here appeared in
Ref. [39]. The shape of the power spectra obtained in this
paper seems to be in good qualitative agreement with our
results and the constraint on η presented by the authors is
very similar to the one we have obtained. However, their
constraint on σ is 4 orders of magnitude smaller than the
constraint we have obtained and it seems to be inconsistent
with their upper limit of η.
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