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The self-induced collapse hypothesis was introduced by D. Sudarsky and collaborators to explain the
origin of cosmic structure from a perfect isotropic and homogeneous universe during the inflationary
regime. In this paper, we calculate the power spectrum for the tensor modes, within the semiclassical
gravity approximation, with the additional hypothesis of a generic self-induced collapse of the inflaton’s
wave function; we also compute an estimate for the tensor-to-scalar ratio. Based on this calculation, we
show that the considered proposal exhibits a strong suppression of the tensor modes amplitude;
nevertheless, the corresponding amplitude is still consistent with the joint BICEP/KECK and Planck
Collaboration’s limit on the tensor-to-scalar ratio.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) radiation are one of the most powerful tools to
study the early Universe. Before the formation of neutral
hydrogen, photons and electrons were coupled by
Thomson scattering. Once photons were decoupled from
matter, they traveled freely through the Universe almost
without interacting with matter. Accordingly, the CMB
radiation provides information about the physical param-
eters of the Universe at recombination and also about the
content of matter and energy density inside it. In the past
two decades there has been a major improvement in the
measurement of CMB fluctuations: a large number of
experiments have been performed including a mix of
ground-, balloon- and space-based receivers.
Furthermore, from the estimation of the spectrum of

initial perturbations, the CMB spectrum also provides an
indirect evidence of the early Universe physics. Different
inflationary models proposed in the literature make distinct
predictions of the primordial spectrum [1,2] and, thus, the
CMB radiation is an excellent observational tool to test
them. Temperature fluctuations are the result of perturba-
tions in the gravitational potentials, which contribute
directly to the fluctuations via gravitational redshifting
and which also drive acoustic oscillations of the primordial
plasma. These processes result in temperature fluctuations
that are of the same order of magnitude as the metric
perturbations. On the contrary, CMB polarization is not
directly generated by metric perturbations: a net polariza-
tion arises from Compton scattering only when the incident
radiation field possesses a nonzero quadrupole moment.
Polarization is only originated very near to the last
scattering surface as the photons begin to decouple from

the electrons generating a quadrupole moment through
free-streaming. The tensor nature of CMB polarization
allows a separation of scalar fluctuations from tensor
ones. CMB polarization maps can be decomposed into
two terms—often called E and B modes in analogy with
the electric and magnetic field. Gravitational waves
generated during inflation, in contrast to adiabatic scalar
perturbations, imprint a unique divergence-free pattern of
polarization on the sky, namely, the B mode. Scalar
perturbations have no handedness so the B-mode compo-
nent at low angular multipole scales exists only if there is a
tensor perturbation generated by primordial gravitational
waves. On the other hand, detection of B modes at large
angular multipoles has been reported by the Polarbear
experiment [3]. However, it is known, that the source for
this detection is gravitational lensing of the CMB radi-
ation. In such a way, the detection of the B-mode signal at
low angular multipoles provides the cleanest window into
the unique predictions of the inflationary cosmological
paradigm.
Last year, the BICEP Collaboration reported a measure-

ment of the B-mode polarization consistent with the
prediction of standard inflationary models with tensor
modes [4]. However, it was pointed out that, without an
accurate dust map, it is not possible to discern between dust
polarization and polarization due to primordial gravity
waves [5–7]. In turn, an estimation of the dust present
in BICEP2 experiment made by the Planck Collaboration
(extrapolating information from the 353 GHz map) showed
that the detection informed by BICEP2 may be due to dust
polarization [8]. Finally, a joint analysis of the BICEP/Keck
and Planck collaborations [9] showed that the detection
made by the BICEP Collaboration is consistent with dust
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polarization and that there is no statistically significant
evidence for tensor modes.
According to the standard inflationary scenario, the onset

of all cosmic structures is explained by considering a
featureless stage described by a background Friedmann-
Robertson-Walker (FRW) cosmology with a nearly expo-
nential expansion driven by the potential of a single scalar
field.1 Additionally, the field’s quantum fluctuations are
characterized by a simple vacuum state, which is homo-
geneous and isotropic (for a proof of this statement see
Appendix A of Ref. [10]). In particular, the quantum
fluctuations transmute into the classical statistical fluctua-
tions that represent the seeds of the current cosmic structure
like galaxies and galaxy clusters. However, there is an issue
regarding the usual explanation for the origin of cosmic
structure; that is, the standard inflationary paradigm lacks a
physical mechanism capable of generating the inhomoge-
neity and anisotropy of our Universe, from an exactly
homogeneous and isotropic initial state characterizing both:
the background spacetime and the quantum state of the
inflaton. This problem has been analyzed in previous works
[10–12] and one key aspect of the problem is that there is
no satisfactory solution within the standard physical
paradigms of quantum unitary evolution because this kind
of dynamics is not capable of breaking the initial sym-
metries of the system. To handle this shortcoming, a
proposal has been developed by D. Sudarsky and collab-
orators [10,11,13–21]. In this scheme, a new ingredient is
introduced into the inflationary scenario: the self-induced
collapse hypothesis. The main assumption is that, at a
certain stage in the cosmological evolution, there is an
induced jump from the original quantum state character-
izing the particular mode of the quantum field; after the
jump, the quantum state is inhomogeneous and anisotropic,
namely, it must not be an eigen-state of the linear and
angular momentum operators. Therefore, by considering a
self-induced collapse (in each mode) of the inflaton wave
function, the inhomogeneities and anisotropies emerge at
each particular length scale; i.e., the quantum collapse acts
a source for the primordial curvature perturbation. As a
consequence of this modification to the inflationary sce-
nario, the predicted primordial power spectrum is changed
as well as the CMB fluctuation spectrum. Previous works
[10–12,17] have extensively discussed both the conceptual
and formal aspects of this new proposal, and we refer the
reader to the references. In this paper, motivated by the
discussion generated around BICEP2’s claim, we compute
the tensor power spectrum and the tensor-to-scalar ratio
corresponding to the amplitude of primordial gravitational
waves resulting from considering a generic self-induced
collapse. Furthermore, in the theoretical framework of the
self-induced collapse, the inflationary era is more accu-
rately described by the semiclassical Einstein equations,

namely, the perturbations of the scalar field are quantized
and the metric perturbations remain always classical. In this
paper, we calculate the prediction for tensor primordial
power spectrum generated by gravitational waves and find
that the self-induced collapse hypothesis, plus semiclassical
gravity, predicts a strong suppression of the amplitude of
the tensor modes.
It is worthwhile to mention that our result is consistent

with the findings presented in Ref. [22], i.e. that the
semiclassical gravity approximation plus a collapse of
the inflaton’s wave function lead those authors to qualita-
tively argue that the amplitude of the primordial gravita-
tional waves is undetectable; however, those authors
consider a possible nonminimally coupling between gravity
and the inflaton, and also that the state collapses on a
spacelike hypersurface for all wavelengths modes, this
contrasts with our view in which the time of collapse
depends on the mode’s wavelength. Also, in the present
manuscript, we provide a detailed calculation of the tensor-
to-scalar ratio (in Ref. [22] the calculations involved only
scalar perturbations).
The paper is organized as follows: In Sec. II, we review

the semiclassical gravity approximation and its relation
with the self-induced collapse; in Sec. III, we briefly review
the proposal of the collapse of the wave function in the case
where only scalar perturbations were considered; in
Sec. IV, we present how the scalar perturbations, generated
by the self-induced collapse, originates the tensor modes; in
Sec. V, we compute the power spectrum for the tensor
modes; in Sec. VI we provide an estimate of the tensor-to-
scalar ratio, and finally in Sec. VII, we present our
conclusions. We have also included an Appendix in which
we present the explicit form of some functions used in the
calculations.

II. THE SEMICLASSICAL GRAVITY
APPROXIMATION AND THE COLLAPSE

OF THE WAVE FUNCTION

Our analysis of the inflationary Universe considers the
corresponding regime in a way that a quantum treatment of
the matter fields is appropriate, while a classical description
of gravitation would be justified simply because the
measures of curvature are all well below the Planck scale.
That is the realm of semiclassical gravity characterized by
(c ¼ 1)

Gab ¼ 8πGhT̂abi: ð1Þ

The left-hand side of this equation, namely the Einstein’s
tensor, contains the gravitational degrees of freedom that
are always treated in a classical way. The right-hand side, is
the expectation value of a quantum operator, T̂ab describing
the quantum matter degrees of freedom.
Let us consider first how a self-induced collapse of the

wave function fits into the semiclassical gravity framework1In the simplest models of inflation: ϕ, the inflaton.
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(extended discussion can be found in Refs. [17,23]). It is
known, that gravity is perhaps the most complicated
component of our Universe to fit with the general para-
digms offered by a quantum theory. There exists an
extensive literature on this subject and the present manu-
script does not even attempt to describe all the technical
and/or conceptual problems associated with it. However,
one aspect to consider is that, according to general
relativity, the structure of the spacetime is the core of
gravitation, meanwhile, quantum theory seems to fit most
easily in contexts where the spacetime is already present (or
given). In other words, quantum states are associated with
objects that “live” in spacetimes. Evidently, deep concep-
tual modifications are in order if one aspires to provide a
characterization of spacetime itself in a quantum language.
For instance, the canonical approach to quantum gravity
[24,25], suffers from the so called problem of time [26]. It
seems thus natural to speculate that in this setting a
dramatic departure from the quantum orthodoxy, such as
a dynamical reduction of the wave function might find its
origin, i.e. it is possible that a more fundamental description
of quantum gravity would take the form of deviations form
the standard unitary evolution that characterize quantum
theory as we know it (for a particular example how these
ideas can be implemented in the black hole information
paradox see Refs. [27–29]).
In other words, it seems a plausible conjecture that a

variation of standard quantum theory, that we have referred
to here as described effectively by the “collapse of the wave
function,” corresponds to lasting features of the fundamen-
tal timeless (and probably spaceless) theory of quantum
gravity. If that is the case, the emergence of spacetime itself
would be tied to the incorporation of such effective
quantum description of matter fields living on a spacetime,
and evolving approximately according to standard quantum
field theory on curved spaces, with some small deviations
that might include our collapse hypothesis. Similar ideas of
this kind regarding gravity as an emergent phenomenon
have been considered previously (e.g. Refs. [30,31]). This
seems to suggest that, in the context where we consider the
collapse of the wave function, the spacetime itself must be
considered as an approximate phenomenological charac-
terization, and, therefore, something that cannot be sub-
jected to quantization. For a more pictorial example, we can
consider the following analogy: the propagation of heat in a
medium. This phenomenon can be described by the heat
equation ∂T=∂t −∇2T ¼ S, where T is the temperature of
the medium and S the heat sources. It is quite clear that
despite the fact that this equation resembles an equation for
some field, it would be meaningless to quantize it.
Furthermore, we can consider some situation in which
the source of heat requires a quantum mechanical treat-
ment, i.e. taking S as a quantum operator. Under such
conditions, it seems natural that to the extent that the
temperature description is still relevant and of interest, the

right-hand side of the equation above should be replaced by
something like hŜi. Evidently, there will be situations that
are so far removed from the context where the heat equation
was derived that even the notion of temperature itself would
become meaningless. We equally expect that in the
fundamental quantum theory of gravity we will be able
to find several situations where the semiclassical gravity
approximation would fail completely, but in following with
our line of thought and previous analogy, it seems quite
possible that those would correspond to situations where
the concept of spacetime itself becomes meaningless.
Clearly, all these arguments above are filled with

“educated guesses” and conjectures, and we only take
them as guidances. Nevertheless, as we will show in the rest
of this manuscript, when considering these ideas within the
context of the inflationary Universe and, in particular, using
them to analyze the emergence of primordial gravitational
waves, we are able to provide an observational constraint. If
it happens that our proposal does not match the observa-
tional data, then clearly we should find another way to
incorporate our self-induced collapse proposal in the tradi-
tional inflationary setting, namely, the one involving the
quantization of metric perturbations (some preliminary
steps in that direction can be found in Refs. [32,33]).
After the previous digression, we turn our focus on the

generation of the primordial perturbations provided by the
self-induced collapse.
The starting point provided by inflation corresponds to

an homogeneous and isotropic state for the gravitational
and matter degrees of freedom; that is, the background
spacetime is symmetric and the quantum state character-
izing the inflaton is an eigen-state of the linear and angular
momentum operators. The self-induced collapse proposal,
states that at some stage during inflation, the quantum state
of the matter fields, normally associated to the inflaton,
undergoes a spontaneous collapse (evidently without rely-
ing on any external entities such as “observers,” “meas-
urement devices,” etc.). The resulting state of the matter
fields no longer needs to share the symmetries of the initial
state, and, its coupling to the gravitational degrees of
freedom, through Einstein’s semiclassical equation, leads
to a geometry that is no longer homogeneous and isotropic.
Thus, the quantum collapse acts as a source for the
inhomogeneities and anisotropies in the Universe, that is,
the main role for introducing the collapse of the wave
function.
The idea of a self-induced collapse of the wave function,

in a noncosmological setting, has been analyzed in great
detail in the past (for a review of objective collapse models,
see Ref. [34]). Furthermore, R. Penrose and L. Diósi have
long advocated for gravity as the main agent triggering the
collapse [35,36]; the reasoning is that a self-induced
collapse occurs when the matter fields are in a quantum
superposition that would lead to corresponding spacetime
geometries that are “too distinct among themselves.” This
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kind of gravity-induced collapse would be happening in
fairly common situations, providing a resolution of the
measurement problem in quantum mechanics. In our view,
which can be thought as an attempt to apply these ideas to
the cosmological context, in order to address the short-
coming mentioned in the Introduction, the present formal-
ism must be regarded as an effective description of
the fundamental collapse mechanism, possibly as conse-
quence of a successful quantum gravity theory, which in the
present situation leads to a transition from the symmetric
vacuum state to the nonsymmetrical latter state (the
symmetry being homogeneity and isotropy). We will not
discuss further these motivations here and instead our
analysis should be regarded as a purely phenomenological
scheme, in the sense that it does not seek to provide a
physical mechanism for the collapse, but merely to present
a generic parametrization of the collapse. The main
formalism and conceptual framework can be consulted
in Refs. [10–12,17].
There is also an issue regarding the semiclassical

approximation during the collapse. It is well known that
introducing a dynamical collapse generically violates the
conservation of energy, so the divergence of the energy-
momentum tensor ∇ahT̂abi does not vanish. If that hap-
pens, then of course the divergence of the Einstein tensor
does not vanish either, which evidently is a problem since
we know that this divergence must be zero. Therefore,
during the collapse, we cannot say how the modified
dynamics, provided by a dynamical reduction of the wave
function associated to the quantum fields, affects the
classical metric perturbations that are directly related to
the observables, that is, the temperature anisotropies.
However, this shortcoming does not necessarily mean that
we cannot implement a collapse mechanism in our for-
malism; the semiclassical gravity approximation is valid
before and after the collapse and these will be the two
regimes of interest for the present work. Before the
collapse, the source for the metric perturbations is zero
and only after the collapse (where there is no violation of
energy conservation) the expectation values of the operator
T̂ab evaluated at the postcollapse state, act as a source for
the metric perturbations.
As we mentioned, the principal role for the collapse of

the wave function is to act as the main agent for breaking
the symmetries (homogeneity and isotropy) of the primor-
dial Universe. At first order, the scalar metric perturbations
are generated, via the semiclassical approximation, by the
expectation value of the matter scalar perturbations in the
postcollapse state. Nevertheless, the matter perturbations—
at this order—do not act as a source for the tensor metric
perturbations; thus, within our model, the amplitude for
first-order tensor modes is zero. In turn, second-order
tensor modes can be generated via first-order scalar
perturbations (of both metric and matter perturbations)
[37–42]. As a consequence, one naively expects that the

tensor to scalar ratio computed within the semiclassical
gravity approximation will be much smaller than the one
computed in the standard case. On the other hand, as shown
in Refs. [10,11,13–19], the self-induced collapse modifies
the scalar power spectrum in a very particular way, namely
by including a function of the time of collapse, and in
principle, we would not know a priori if the same
modification to the tensor power spectrum might result
in a detectable amplitude of primordial gravitational waves
even if the tensor power spectra is generated at second-
order in the perturbations. This is different from the
standard procedure where the Mukhanov-Sasaki variable
(which mixes metric and inflaton’s perturbations) is quan-
tized. In that case, tensor modes are generated at the
first-order approximation; however, as analyzed in
Refs. [40–42], one can also compute the second-order
contribution to the tensor modes provided by scalar
perturbations.
We would like to emphasize the fact that tensor pertur-

bations are exactly zero at first order because we are
considering the semiclassical Einstein equations and not
because the assumption of a self-induced collapse of the
inflaton’s wave function. In fact, in recent papers, one of us
has calculated the tensor power spectrum and the tensor-to-
scalar ratio working in terms of a joint metric-matter
quantization and including the self-induced collapse of
the inflaton’s wave function leading to different results as
the ones reported here [32,33]. In particular, wewill assume
that the collapse of the wave function of each mode of the
inflaton field has occurred creating first-order scalar metric
perturbations; then, we will use such perturbations as a
source of second-order tensor modes, i.e. as the origin
of the primordial gravitational waves. In the following
sections, we will estimate the amplitude of the second-
order tensor modes generated by the process described
above.

III. INFLATION AND THE COLLAPSE OF THE
WAVE FUNCTION: SCALAR PERTURBATIONS

In this section we present a very brief review of
the implementation of the collapse proposal to the infla-
tionary Universe; in particular, we will focus on the
first-order scalar perturbations of the metric. Since this
subject has been extensively discussed in previous works
[10–12,14,15,17,18], we will only present the main results,
and refer to the reader to the aforementioned works for
more details.
We start with the standard inflationary model charac-

terized by the action (c ¼ 1)

S½ϕ; gab� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R½g�
16πG

−
1

2
∇aϕ∇aϕ − V½ϕ�

�
;

ð2Þ
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with ϕ a scalar field representing the inflaton. The metric
and scalar field are separated into background plus pertur-
bations. The background is represented by a spatially flat
FRW spacetime with line element ds2 ¼ aðηÞ½−dη2 þ
δijdxidxj� and the homogeneous part of the scalar field
ϕ0ðηÞ in the slow-roll regime. The scale factor correspond-
ing to the inflationary era is aðηÞ≃ −1=ðHηÞ with H the
Hubble factor which, during inflation, is related to the
inflaton potential as H2 ≃ ð8πG=3ÞV ≃ constant. From
these considerations, one infers that the conformal time
η is in the range η ∈ ð−∞; ηrÞ, where ηr is very small in
absolute terms, ηr ≃ −10−22 Mpc. The slow-roll regime, is
characterized by ϕ0

0 ≃ −ða3=3a0Þ∂ϕV, and the slow-roll
parameter is ϵ≡ 1 −H0=H2 ≃ 1

2
M2

Pð∂ϕV=VÞ2 ≪ 1; here,
a prime denotes partial derivative with respect to conformal
time η and MP is the reduced Planck’s mass defined as
M2

P ≡ 1=ð8πGÞ (ℏ ¼ 1). Furthermore, we will work with
the approximation ϵ ¼ constant.
Let us focus on the first-order scalar perturbations, as

these will be the ones of interest for the present work. We
will be working in the so-called longitudinal gauge,2 the
perturbed metric is, thus, represented by

ds2 ¼ aðηÞ2½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞδijdxidxj�: ð3Þ

In the absence of anisotropic stress, Φ ¼ Ψ. The quantity
Ψð~x; ηÞ is called the “Newtonian potential” and it also
represents the curvature perturbation in the longitudinal
gauge.
Turning our attention to the inflaton’s perturbations, it is

convenient to work with the quantum field ŷ ¼ aδ̂ϕ, and its

canonical conjugate momentum π̂ ¼ aδ̂ϕ0 ¼ ŷ0 − ŷa0=a.
For each Fourier component of the perturbations,

Einstein’s semiclassical equations at first-order δGð1Þ
ab ¼

8πGhδT̂ð1Þ
ab i yield

ΨkðηÞ ¼
ffiffiffi
ϵ

2

r
H

MPk2
hπ̂kðηÞi: ð4Þ

It is clear from Eq. (4) that if the state of the field is the
vacuum state, all modes associated to the metric perturba-
tion vanish, and, thus the spacetime is homogeneous and
isotropic.
As discussed in Ref. [11,14,16], as a result of the

collapse, each mode jumps to a new state jΘi characterized
by the expectation value of a certain operator, which is
determined by the precollapse uncertainties and a random
number. In the scheme we consider here, the state will be
(partially) characterized by

hŷR;I~k
ðηckÞiΘ ¼ 0; hπ̂R;I~k

ðηckÞiΘ ¼ xR;I~k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Δπ̂R;I~k

ðηc~kÞ�
2
0

q
;

ð5Þ

where R; I denotes the real and imaginary parts of the
operators, respectively; ηc~k represents the time of collapse

for each mode. The precollapse state is the Bunch-Davies
vacuum and ½Δπ̂R;I~k

�20 is the corresponding uncertainty. This
scheme is motivated by the fact that the variable which is
directly related with the Newtonian potential Ψ is the
expectation value of π̂, but it also serves to simplify,
without loss of generality, the second-order calculation
of the next section.
The xR;Ik are numbers selected randomly from a Gaussian

distribution centered at 0 and with unit dispersion. In our
approach, our Universe corresponds to a single realization
of these random variables, and, thus, each of these
quantities has a single specific value. Some statistical
aspects concerning these quantities can be studied using
as a tool an imaginary ensemble of “possible universes,”
but we should in principle distinguish those from the
statistics of such quantities for the particular Universe
we inhabit.
In terms of the random variables, Eq. (4) can be rewritten

as [11,14,16]

ΨkðηÞ ¼
ffiffiffi
ϵ

p
H

MP

�
L
2k

�
3=2

�
cos½kη − zk� þ

sin½kη − zk�
zk

�
Xk;

ð6Þ

where Xk ≡ xRk þ ixIk, zk ≡ kηc~k and ηc~k
is the time of

collapse of each mode k, also L is the side length of the
cubic box in which we are performing the quantization of
the fields. In other words, the Fourier’s modes Ψk

2The analysis is done by choosing a specific gauge and not in
terms of the so -called “gauge invariant quantities.” This is
because in the picture followed here, the metric and field
fluctuations are treated on a different footing. The inflaton’s
field perturbations, are given a standard quantum field (in curved
spacetime) treatment, while the metric is considered as a classical
object that describes in an effective manner the deeper funda-
mental degrees of freedom of the quantum gravity theory that one
is believed to lie underneath; the two descriptions are related
through Einstein’s semiclassical equations. The choice of gauge
implies that the time coordinate is attached to some specific
slicing of the perturbed spacetime, and thus, our identification of
the corresponding hypersurfaces (those of constant time) as the
ones associated with the occurrence of collapses—something
deemed as an actual physical change—turns what is normally a
simple choice of gauge into a choice of the distinguished
hypersurfaces, tied to the putative physical process behind the
collapse. This naturally leads to tensions with the expected
general covariance of a fundamental theory, a problem that
afflicts all known collapse models, and which in the nongravita-
tional settings becomes the issue of compatibility with Lorentz or
Poincare invariance of the proposals. We must acknowledge that
this generic problem of collapse models is indeed an open issue
for the present approach. One would expect that its resolution
would be tied to the uncovering the actual physics behind what
we treat here as the collapse of the wave function (we which we
view as a merely an effective description).
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correspond to Ψðη; ~xÞ ¼ 1=L3
P

k≠0ΨkðηÞeik·~x, where the
sum is over wave vectors k satisfying kiL ¼ 2πni for i ¼
1; 2; 3 with ni integer; at the end of calculations we can take
the limit L → ∞ thus making k continuous.
This result expresses the Newtonian potential, after the

collapse, in terms of the random variables that determine
the postcollapse state. One of the advantages of our
approach is that the origin of the randomness, which
one usually attributes to quantum theory, becomes trans-
parent and specific: the variables Xk characterize, once and
for all, every kind of stochasticity involved. The Newtonian
potential is closely related with the observational quantity
i.e., the temperature anisotropies. Therefore, the set of all
the random variables fXk1

; Xk2
; Xk3

…g corresponding to
our Universe fixes the value of the observed temperature
anisotropies. Naturally, we cannot give a definite prediction
for those values; however, as we will show next, the fact

that a large number of modes ~k contribute to the observed
temperatures anisotropies justifies a statistical analysis that
leads to a theoretical estimate for the observational
quantities.
Furthermore, Ψk also depends on the time of collapse ηc~k

(recall the definition zk ≡ kηc~k), which is the additional

parameter introduced by our model.
In previous works [14,18] it has been shown that if zk is

independent of k our model yields the same prediction for
the scalar primordial power spectrum as the standard
inflationary models and, thus, the predictions for the
CMB temperature, E mode and TE cross-correlation
spectrum is also the same as in the standard scenario. In
fact, in [43], it is shown that the prediction for the scalar
power spectrum, which is obtained from Eq. (6), is

PSðk; ηÞ≃ H2

64π2M2
Pϵ

�
cos½zk� −

sin½zk�
zk

�
2

kns−1: ð7Þ

Moreover, in Ref. [18] some of us have also performed a
statistical analysis using WMAP 7-year data together with
other CMB data and constrained the possible departures of
the assumption zk independent of k. On the other hand, this
shows that implementing the collapse hypothesis to the
inflationary Universe, translates into adding a new degree
of freedom, namely the time of collapse ηc~k

. Therefore, in

what follows, we will assume that zk is a constant which
implies kηc~k ¼ z with z a free parameter of the collapse

model. In other words, the relation between k and ηc~k is just

phenomenological, since at present there is no workable
covariant formulation of the collapse mechanism that could
give us a physical justification for such relation. In
summary, from now on we will use the relation
ηc~k

∝ k−1, which is equivalent to zk ≡ kηc~k ¼ z independent

of k.

IV. COLLAPSE-INDUCED GRAVITATIONAL
WAVES

Let us now turn to the case of the tensor perturbations. In
this section, we will be following closely the mathematical
results presented in Refs. [40–42,44] but bearing in mind
that the physical situation in our case differs from the
previous works.
The line element associated to the metric at first-order in

the tensor perturbations, is given by

ds2 ¼ a2ðηÞ½−dη2 þ ðδij þ hð1Þij Þdxidxj�: ð8Þ

Relying on Einstein’s (first-order) perturbed equations,

δGð1Þ
ij ¼ 8πGhδT̂ð1Þ

ij i, one can obtain the motion equation
for the tensor perturbations

hð1Þ
00

ij þ 2Hhð1Þ
0

ij −∇2hð1Þij ¼ 0: ð9Þ

Comparing Eqs. (4) and (9), we observe that the
collapse of the wave function does not affect equally
the first-order scalar and tensor perturbations. The expect-
ation value (in a postcollapse state) of the momentum of
the inflaton generates the first-order scalar perturbations,
while, the first-order tensor perturbations does not contain
a similar source (i.e. there are no terms such as

∂ihδ̂ϕi∂jhδ̂ϕ0i); hence, hð1Þij ¼ 0 even after the collapse
has taken place.
Focusing now on the second-order metric perturbations

and working in the generalized longitudinal gauge [44], the
metric’s components can be described by

g00 ¼ −aðηÞ2ð1þ 2Φð1Þ þ Φð2ÞÞ ð10aÞ

g0i ¼ 0 ð10bÞ

gij ¼ aðηÞ2
�
ð1 − 2Ψð1Þ −Ψð2ÞÞδij þ

1

2
ð∂iV

ð2Þ
j

þ ∂jV
ð2Þ
i Þ þ 1

2
hð2Þij

�
; ð10cÞ

where Ψð1Þ;Φð1Þ, Ψð2Þ;Φð2Þ correspond to the first and

second-order scalar perturbations, respectively, while hð2Þij

corresponds to the second-order tensor perturbations; we
have also included the second-order vector perturba-

tions Vð2Þ
i .

As we mentioned previously, by assuming anisotropic
stress one has Ψð1Þ ¼ Φð1Þ. Einstein’s second-order per-

turbed equations, δGið2Þ
j ¼ 8πGδTið2Þ

j yields [41,42,44]
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�
1

4
ðhið2Þ00j þ 2Hhið2Þ

0
j − ∂k∂khið2Þj Þ þ 4Ψð1Þ∂i∂jΨð1Þ þ 2∂iΨð1Þ∂jΨð1Þ þ ðΨð2Þ;Φð2Þ; Vð2Þ

i termsÞ

þðDiag part including termsΨð1Þ;Ψð2Þ;Φð2ÞÞδij
�

¼ 4πG

��
δϕð2Þ0ϕ0

0 − δϕð2Þ ∂V
∂ϕ a2 þ ðδϕð1Þ0 Þ2 − ∂kδϕ

ð1Þ∂kδϕð1Þ þ 4ðΨð2ÞÞ2ϕ02
0

− ðδϕð1ÞÞ2 ∂
2V

∂ϕ2
a2 − 4Ψð1Þδϕð1Þ0ϕ0

0

�
δij þ 2∂iδϕð1Þ∂jδϕ

ð1Þ
�
: ð11Þ

We note that hð2Þij corresponds to a symmetric, transverse
and traceless tensor. Consequently, in order to obtain the
equations for the second-order tensor perturbations, one
can construct a projection tensor Pij

lm [41,42] (to be
defined explicitly next) that extracts the transverse, trace-
less part of any tensor. Applying the projection tensor Pij

lm

on both sides of Einstein’s second-order perturbed equa-
tions eliminates the contribution from the diagonal terms

and from the objects Ψð2Þ;Φð2Þ; Vð2Þ
i .

From now on we will change the notation slightly: We
will omit the index ð1Þ from first-order scalar perturbations,
and since we are interested in second-order tensor pertur-

bations, we will also omit the index ð2Þ from hð2Þij .
Consequently, the operation Pij

lmδGð2Þ
lm ¼ 8πGPij

lm×

hδ̂Tð2Þ
lm i, yields

h00ij þ 2Hh0ij −∇2hij ¼ −4Plm
ij Slm; ð12Þ

with Sij defined as

Sij ≡ 4Ψ∂i∂jΨþ 2∂iΨ∂jΨ − 8πG∂ihδ̂ϕi∂jhδ̂ϕi: ð13Þ

Thus, unlike Eq. (9), the equation for second-order
tensor perturbations, Eq. (12), contains a source term
provided by Sij. That is, after the collapse, Ψ is no longer
zero, and acts as source for hij; also, the source term Sij
contains the expectation value of the quantum degrees of
freedom, i.e. the quantum inhomogeneities of the infla-
ton hδ̂ϕi.
We will proceed to solve Eq. (12); in order to show

explicitly how the collapse proposal comes into play. Let us
recall that Einstein’s first-order perturbed equations with
components ð0iÞ yield

∂iðHΨþΨ0Þ ¼ 4πGϕ0
0∂ihδ̂ϕi: ð14Þ

Using Friedmann’s equations and the slow-roll approxi-
mation, one shows that 4πGϕ0

0 ¼ −
ffiffiffiffiffiffiffi
ϵ=2

p
H=MP; accord-

ingly, the last equation yields

∂ihδ̂ϕi ¼ −
ffiffiffi
2

ϵ

r
MP

H
ðH∂iΨþ ∂iΨ0Þ: ð15Þ

Then, by substituting Eq. (15) into Eq. (13), Sij is given by

Sij ¼ −2∂iΨ∂jΨ

�
1þ 1

ϵ

�
−

4

ϵH
∂iΨ∂jΨ0 −

2

ϵH2
∂iΨ0∂jΨ0:

ð16Þ

We define the Fourier transform of the tensor metric
perturbations as

hijð~x; ηÞ ¼
Z

d3k

ð2πÞ3=2 e
ik·~x½hkðηÞeijðkÞ þ h̄kðηÞēijðkÞ�;

ð17Þ

where we defined two time-independent polarization ten-
sors eij and ēij that may be expressed in terms of
orthonormal basis vectors ei, ēj orthogonal to k, explicitly

eijðkÞ≡ 1ffiffiffi
2

p ½eiðkÞejðkÞ − ēiðkÞējðkÞ�; ð18Þ

ēijðkÞ≡ 1ffiffiffi
2

p ½eiðkÞējðkÞ þ ēiðkÞejðkÞ�: ð19Þ

In terms of these polarization tensors, the projection
tensor Pij

lm is defined as

Pij
lmSlm ≡

Z
d3k

ð2πÞ3=2 e
ik·~x½eijðkÞelmðkÞ

þ ēijðkÞēlmðkÞ�SlmðkÞ; ð20Þ

where

SlmðkÞ ¼
Z

d3~x0

ð2πÞ3=2 e
−ik·~x0Slmð~x0Þ: ð21Þ

Therefore, in Fourier space, the equation of motion for the
amplitude of the tensor mode hk is

h00k þ 2Hh0k þ k2hk ¼ Sðk; ηÞ; ð22Þ

where
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Sðk; ηÞ ¼ 4

Z
d3 ~k

ð2πÞ3=2 e
lmðkÞ~kl ~km

×

�
2

�
1þ 1

ϵ

�
Ψ ~kðηÞΨk− ~kðηÞ

þ 4

ϵH
Ψ ~kðηÞΨ0

k− ~k
ðηÞ þ 2

ϵH2
Ψ0

~k
ðηÞΨ0

k− ~k
ðηÞ

�
:

ð23Þ

By performing a change of variables vk ≡ ahk, Eq. (22)
becomes

v00k þ
�
k2 −

a00

a

�
vk ¼ aSðk; ηÞ: ð24Þ

In order to solve Eq. (24), we can rely on the Green’s
function method; thus,

hkðηÞ ¼
1

aðηÞ
Z

∞

−∞
d~ηgkðη; ~ηÞað~ηÞSðk; ~ηÞ: ð25Þ

The Green’s function gkðη; ~ηÞ satisfies

g00k þ
�
k2 −

a00

a

�
gk ¼ δðη − ~ηÞ; ð26Þ

where η > ~η and the primes indicate derivative with respect
to η.
One can find exact solutions to Eq. (26) by using that

during inflation a≃ −1=ðHηÞ, in this way, a00=a≃ 2=η2.
Thereupon, the retarded Green’s function is

gkðη; ~ηÞ ¼ −kη~η½j1ðkηÞy1ðk~ηÞ − j1ðk~ηÞy1ðkηÞ�Θðη − ~ηÞ;
ð27Þ

with Θðη − ~ηÞ the step function and j1; y1 the spherical
Bessel’s functions of first and second kind of order one,
respectively.
Furthermore, by making use of the Green’s solution and

the fact that during inflation H≃ −1=η, 1þ 1=ϵ≃ 1=ϵ,
then Eq. (25) is

hkðηÞ ¼ −kη2
Z

η

ηc
~k

d~ηSðk; ~ηÞ½j1ðkηÞy1ðk~ηÞ − j1ðk~ηÞy1ðkηÞ�;

ð28Þ
and Sðk; ~ηÞ is rewritten

Sðk; ~ηÞ ¼ 8

ϵ

Z
d3 ~k

ð2πÞ3=2 e
lmðkÞ~kl ~km½Ψ ~kð~ηÞΨk− ~kð~ηÞ

− 2Ψ ~kð~ηÞΨ0
k− ~k

ð~ηÞ þ ~η2Ψ0
~k
ð~ηÞΨ0

k− ~k
ð~ηÞ�: ð29Þ

Note that the range of integration in Eq. (28) is from ηc~k
to

η (additionally, during inflation −∞ < η < 0). We remind

the reader that before the time of collapse ηc~k, there are no

perturbations of the metric at any scale and the spacetime is
exactly homogeneous and isotropic. That is, for η < ηc~k

the

source term Sðk; ηÞ is zero and, consequently, hkðηÞ is also
zero. It is only after the self-induced collapse has taken
place that the scalar perturbations of the metric are born
(hence Sðk; ηÞ ≠ 0) and, in turn, they act as a source for the
(second-order) tensor perturbations.
At this point, we insert our expression for Ψk given by

the collapse proposal, namely Eq. (6) [the derivativeΨ0
k can

be calculated also from Eq. (6)] into Eq. (29). Therefore,
the amplitude of the gravitational wave hk is

hkðηÞ ¼ −2kη2
H2

M2
P

Z
d3 ~k

ð2πÞ3=2 e
lmðkÞ~kl ~km

X ~kX~qL3

~k3=2q3=2

×
Z

η

ηc
~k

d~ηGðkη; k~ηÞFð~k ~η; q~η; zÞ; ð30Þ

where q≡ k − ~k, thus, q ¼ jk − ~kj,

Gðkη; k~ηÞ≡ j1ðkηÞy1ðk~ηÞ − j1ðk~ηÞy1ðkηÞ; ð31Þ

Fð~k ~η; q~η; zÞ≡ cos½q~η� cos½~k ~η�ðR1ðzÞ2 þ R2ðzÞ2 ~kq~η2Þ
þ sin½q~η� sin½~k ~η�ðR1ðzÞ2 ~kq~η2 þ R2ðzÞ2Þ
þ 2q~ηfR1ðzÞ2 cos½~k ~η� sin½q~η�
− R2ðzÞ2 sin½~k ~η� cos½q~η�g
þ R1ðzÞR2ðzÞf−2q~η cos½ð~kþ qÞ~η�
þ ð1 − ~kq~η2Þ sin½ð~kþ qÞ~η�g; ð32Þ

and

R1ðzÞ≡ cos½z� − sin½z�
z

R2ðzÞ≡ sin½z� þ cos½z�
z

: ð33Þ

We have also abused the notation becauseΨk, as expressed
in Eq. (6), was obtained by performing the quantization for
the inflaton field in a cubic box of side L with discrete k;
so, there is an L3 in the expression for hk. However, in the
following sections, when we compute the observational
quantities, we will take the limit L → ∞, which assure us
that k becomes continuous.
Equation (30) is the main result of this section. It

explicitly relates the parameters characterizing the collapse,
i.e. the random variables Xk and the time of collapse z≡
kηc~k (through the functions R1ðzÞ, R2ðzÞ). We recall that

hkðηÞ is related to the metric perturbation corresponding to
second-order tensor modes; as argued previously, first-
order tensor modes are zero within the semiclassical gravity
approximation.
We note that the random variables Xk are fixed once the

collapse has occurred (or to be more precise, once a given
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collapse mechanism has ended). If we somehow knew how
the collapse mechanism is related to each mode k, we could
perform the integral over ~k, and give a definite prediction
for hk. However, even if we cannot give such definite
prediction, we can use the statistical properties of the
random variables Xk to make contact with the observations,
namely, the power spectrum for the gravitational waves,
this will be the subject of the next section. Nevertheless, we
can see clearly how the randomness of the metric pertur-
bations is inherited by the stochasticity of the collapse of
the wave function codified in the random variables Xk.
Focusing now on the function Fð~k ~η; q~η; zÞ, we note that

it includes the functions R2
1ðzÞ, R2

2ðzÞ and R1ðzÞR2ðzÞ. We
remind the reader that if one assumes zk ≡ kηc~k independent

of k (i.e. ηc~k ∝ k−1), then the prediction for the scalar power

spectrum is the same as the standard one, see Eq. (7), which
fits very well the recent observational data. Hence, from
now on, we will use zk ¼ z independent of k.

V. THE POWER SPECTRUM FOR
GRAVITATIONAL WAVES WITHIN THE

COLLAPSE MODEL

In this section, we will make contact with the observa-
tional quantities. That is, we will calculate the power
spectrum for the gravitational waves PTðk; ηÞ, defined as

hkðηÞh�k0 ðηÞ≡ 2π2

k3
PTðk; ηÞδðk − k0Þ: ð34Þ

The bar appearing in hkðηÞh�k0 ðηÞ denotes an average
over possible realizations of hk. In our approach, hk
depends directly on the random variables Xk, thus, in
the collapse framework, a realization of hk is provided by
the self-induced collapse, which in turn yields a single
realization for Xk, the stochasticity is naturally inherited by
the randomness of the collapse. Moreover, the set of all
modes associated to the random field fhk1

; hk2
; hk3

;…g
characterizes a particular Universe U. Thus, the average is
over possible realizations describing different universes
U1;U2;…. Our Universe is just one particular materiali-
zation U�. We want to remark that this is different form the
standard inflationary account, in which the power spectrum
is normally obtained from the Fourier’s transform of the
quantum two-point function h0jĥkðηÞĥk0 ðηÞj0i. Then, in
the traditional approach, somehow (e.g. by invoking
decoherence, squeezing of the vacuum, many-world inter-
pretation of quantum mechanics, etc.) occurs the transition
ĥk → hk ¼ Aeiαk with αk a random phase and A is
identified with the quantum uncertainty of ĥk, i.e.
A2 ¼ h0jĥ2kj0i, but the random nature of hk remains
unclear. In our approach, hk is always a classical quantity,
before the collapse is zero, it is only after the collapse that

hk ≠ 0, but the metric perturbation never undergoes a sort
of quantum-to-classical transition that needs to be justified.
Therefore, by using hkðηÞ from Eq. (30), we have

hkðηÞh�k0 ðηÞ ¼ 4k0kη4
H4

M4
P

Z
d3 ~k

ð2πÞ3=2
Z

d3 ~k0

ð2πÞ3=2

× elmðkÞ~kl ~kmersðk0Þ~k0r ~k0s
1

ð~kq~k0q0Þ3=2

×
Z

η

ηc
~k

d~η1

Z
η

ηc
~k

d~η2Gðkη; k~η1ÞGðk0η; k0 ~η2Þ

× Fð~k~η1; q~η1; zÞFð~k0 ~η2; q0 ~η2; zÞ
× L6X ~kXqX�

~k0X�
~q0 : ð35Þ

Since we have assumed that the variables Xk are
Gaussian distributed, then

X ~kXqX�
~k0X�

q0 ¼ X ~~k
Xq × X�

~~k
0X�

q0 þ X ~~k
X�

~~k
0 × XqX�

q0

þ X ~~k
X�

~q0 × Xq:X�
~~k
0 : ð36Þ

Moreover, XkX�
k0 ¼ 2δk;k0 and XkXk0 ¼ X�

kX
�
k0 ¼ 2δk;−k0 .

We note that δk;k0 refers to Kronecker’s delta, which
reflects the fact that we have performed the quantization
of the inflaton in a cubic box with volume L3. We proceed
to take the limit L → ∞ making k continuous. In this limit
the Kronecker’s delta goes to a Dirac’s delta, i.e.
L3δk;k0 → δðk − k0Þ. Thus,

L6X ~kXqX�
~k0X�

q0 → 2½δð ~kþ qÞδð ~k0 þ q0Þ
þ δð ~k − ~k0Þδðq − q0Þ
þ δð ~k − q0Þδðq − ~k0Þ�: ð37Þ

Substituting Eq. (37) into Eq. (35) and integrating over
~k0 yields

hkðηÞh�k0 ðηÞ ¼ 8k2η4
H4

M4
P

Z
d3 ~k
ð2πÞ3

ðelmðkÞ~kl ~kmÞ2
ð~kqÞ3

Z
η

ηc
~k

d~η1

×
Z

η

ηc
~k

d~η2Gðkη; k~η1ÞGðkη; k~η2ÞFð~k~η1; q~η1; zÞ

× ½Fð~k~η2; q~η2; zÞ þFðq~η2; ~k~η2; zÞ�δðk−k0Þ:
ð38Þ

From this last expression, we can extract the power
spectrum for the gravitational waves. After a change of
variables,3 the power spectrum is given by

3The change of variables corresponds to x≡ kη, z≡ kηc~k,
~x1 ≡ k~η1, ~x2 ≡ k~η2, v≡ ~k=k, u≡ q=k.
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PTðk; ηÞ ¼ x4
H4

8π4M4
P

Z
x

z
d~x1d~x2Gðx; ~x1ÞGðx; ~x2Þ

×
Z

∞

0

dv
Z jvþ1j

jv−1j
du

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× Fðv~x1; u~x1; zÞ½Fðv~x2; u~x2; zÞ
þ Fðu~x2; v~x2; zÞ�; ð39Þ

where we have multiplied by a factor of 2 the power
spectrum by taking into account the polarization of the
gravitational wave and we have used that elmðkÞ~kl ~km ¼
~k2ð1 − cos θÞ, with θ the angle between k and ~k. By taking
into account the change of variables, the expressions for G
and F are

Gðx; ~xÞ ¼ j1ðxÞy1ð~xÞ − j1ð~xÞy1ðxÞ; ð40Þ

and

Fðv~x; u~x; zÞ ¼ cos½u~x� cos½v~x�ðR1ðzÞ2 þ R2ðzÞ2uv~x2Þ
þ sin½u~x� sin½v~x�ðR1ðzÞ2uv~x2 þ R2ðzÞ2Þ
þ 2u~xfR1ðzÞ2 cos½v~x� sin½u~x�
− R2ðzÞ2 sin½v~x� cos½u~x�g
þ R1ðzÞR2ðzÞf−2u~x cos½ðvþ uÞ~x�
þ ð1 − vu~x2Þ sin½ðvþ uÞ~x�g: ð41Þ

VI. ESTIMATION OF THE TENSOR-TO-SCALAR
RATIO

The goal of this section is to obtain an estimation for the
amplitude of the power spectrum.
We begin by rearranging expression (39); that is,

PTðk; ηÞ ¼ x4
H4

8π4M4
P

Z
∞

0

dv

×
Z jvþ1j

jv−1j
du

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× I1ðv; u; x; zÞI2ðv; u; x; zÞ; ð42Þ

where

I1ðv; u; x; zÞ ¼
Z

x

z
d ~x1Gðx; ~x1ÞFðv ~x1; u ~x1; zÞ; ð43aÞ

I2ðv; u; x; zÞ ¼
Z

x

z
d ~x2Gðx; ~x2ÞF2ðv ~x2; u ~x2; zÞ; ð43bÞ

and F2ðv~x; u~x; zÞ≡ Fðv~x; u~x; zÞ þ Fðu~x; v~x; zÞ.
The tensor power spectrum obtained in Eq. (42) is exact;

no approximations have been made. On the other hand, we
will be interested in the value of the power spectrum at a
conformal time near the end of inflation, that is, at
x≡ kη → 0−. It is clear that the real measurement, say
the amplitude of the B modes from CMB observations, is
associated to the power spectrum evaluated at the time of
decoupling. However, as we will show next, the amplitude
of the power spectrum near the end of inflation is too low
that it would be very hard to conceive that some physical
process, occurring during the transition from the infla-
tionary regime to the radiation dominated epoch, would
amplify the power spectrum for several orders of magnitude
in order to make it detectable by recent experiments.
We will consider the following two cases: (i) the time of

collapse occurs when the proper wavelength of the mode is
larger than the Hubble radius, i.e. when k < aðηc~kÞHðηc~kÞ or
equivalently when −kηc~k ¼ jzj < 1 and (ii) the time of

collapse occurs when the proper wavelength of the mode is
smaller than the Hubble radius, i.e. when k > aðηc~kÞHðηc~kÞ
or equivalently when z ¼ kηc~k → −∞. We will show that

both cases lead to similar conclusions.
We start with the first case, that is, the time of collapse is

such that jzj < 1 and focus on the integral I1ðv; u; x; zÞ,

I1ðv; u; x; zÞ ¼ j1ðxÞ
Z

x

z
d ~x1y1ð ~x1ÞFðv ~x1; u ~x1; zÞ − y1ðxÞ

×
Z

x

z
d ~x1j1ð ~x1ÞFðv ~x1; u ~x1; zÞ: ð44Þ

Therefore, since we are interested in x → 0− and since we
are assuming that jzj < 1, we can approximate

I1ðv; u; x; zÞ≃ j1ðxÞ
Z

x

z
d ~x1

�
−R1ðzÞ2

~x12
þ R1ðzÞR2ðzÞ

~x1
ðu − vÞ

�
− y1ðxÞ

Z
x

z
d ~x1

�
R1ðzÞ2 ~x1

3
þ R1ðzÞR2ðzÞ

3
ðv − uÞ ~x12

�

≃ j1ðxÞ
�
R1ðzÞ2

�
1

x
−
1

z

�
þ R1ðzÞR2ðzÞðv − uÞ ln z

x

�

− y1ðxÞ
�
R1ðzÞ
6

ðx2 − z2Þ þ R1ðzÞR2ðzÞ
9

ðv − uÞðx3 − z3Þ
�

≃ R1ðzÞ2
3

�
3

2
−
x
z
−

z2

2x2

�
þ R1ðzÞR2ðzÞ

3
ðv − uÞz

�
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
; ð45Þ
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where in the last line we have used the first nonvanishing term of the series for j1 and y1 (spherical Bessel’s functions of the
first and second and kind of order one) when x → 0−. Turning our attention now to I2, we have

I2ðv; u; x; zÞ ¼ j1ðxÞ
Z

x

z
d ~x2y1ð ~x2ÞF2ðv ~x2; u ~x2Þ − y1ðxÞ

Z
x

z
d ~x2j1ð ~x2ÞF2ðv ~x2; u ~x2Þ: ð46Þ

Once again, by taking into account x → 0−, we can approximate

I2ðv; u; x; zÞ≃ j1ðxÞ
Z

x

z
d ~x2

�
−2R1ðzÞ2

~x22
−

2

~x2
ðv− uÞR1ðzÞR2ðzÞ

�
− y1ðxÞ

Z
x

z
d ~x2

�
2R1ðzÞ2 ~x2

3
þ 2

3
ðv − uÞR1ðzÞR2ðzÞ ~x22

�

≃ j1ðxÞ2
�
R1ðzÞ2

�
1

x
−
1

z

�
þ R1ðzÞR2ðzÞðv− uÞ ln z

x

�

− y1ðxÞ
�
R1ðzÞ2

3
ðx2 − z2Þ þ 2

9
R1ðzÞR2ðzÞðv− uÞðx3 − z3Þ

�

≃ R1ðzÞ3
3

�
3−

2x
z
−
z2

x2

�
þ 2

3
R1ðzÞR2ðzÞðv− uÞz

�
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
: ð47Þ

Figures 1 and 2 show that the approximations used in both integrals I1ðv; u; x; zÞ and I2ðv; u; x; zÞ are viable when
x → 0− and u, v and z are fixed (we have found that for different values of v, u and z, the graphics are not significantly
modified). Moreover I2ðv; u; x; zÞ≃ 2I1ðv; u; x; zÞ; consequently, substituting Eqs. (45) and (47) into Eq. (39) yields

PTðk; ηÞ≃ x4
H4

8π4M4
P

Z
∞

0

dv
Z jvþ1j

jv−1j
du

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× 2

�
R1ðzÞ2

3

�
3

2
−
x
z
−

z2

2x2

�
þ R1ðzÞR2ðzÞ

3
ðv − uÞz

�
x
z
ln
z
x
þ x
3z

−
z2

3x2

��
2

: ð48Þ

We can rewrite the above expression in the following way,

PTðk; ηÞ≃ x4
H4

8π4M4
P

2

9

�
R1ðzÞ4

�
3

2
−
x
z
−

z2

2x2

�
2

M1 þ 2R1ðzÞ3R2ðzÞz
�
3

2
−
x
z
−

z2

2x2

��
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
M2

þ R1ðzÞ2R2ðzÞ2z2
�
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
2

M3

�
; ð49Þ

with M1, M2 and M3 defined explicitly in the Appendix.
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FIG. 1 (color online). The left figure shows a plot of the first term of the integrand of Eq. (44) for fixed values u ¼ 1, v ¼ 0.5,
z ¼ −0.01, i.e. fðxÞ≡ y1ðxÞF½0.5x; 1x;−0.01� with x ∈ ½z; 0�. The right figure shows a plot of the second term of the integrand of
Eq. (44) for fixed values u ¼ 1, v ¼ 0.5, z ¼ −0.01, i.e. fðxÞ≡ j1ðxÞF½0.5x; 1x;−0.01� with x ∈ ½z; 0� The blue-dashed curves
represent the total functions, while the orange ones represent the first two non-null terms of the approximations.
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Furthermore, with the expressions for the tensor and scalar power spectra at hand, Eqs. (49) and (7), respectively, we can
estimate the tensor-to-scalar ratio defined as r≡ PT=PS; thus,

r≃ 16x4H2ϵ

9π2M2
P

�
R1ðzÞ2

�
3

2
−
x
z
−

z2

2x2

�
2

M1 þ 2R1ðzÞR2ðzÞz
�
3

2
−
x
z
−

z2

2x2

��
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
M2

þ R2ðzÞ2z2
�
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
2

M3

�
: ð50Þ

Note that in expression above, we have made use of Eq. (7), with ns ≃ 1, i.e. PSðk; ηÞ≃H2=ð64π2M2
PϵÞR1ðzÞ2; also note

that the function involving the time of collapse in the scalar power spectrum is exactly the same as R1ðzÞ2.
Now we can use the fact that the observational data constrain the value of the scalar power spectrum to be 10−9. That is, in

our approach, this constraint implies that PSðk; ηÞ≃H2=ð64π2M2
PϵÞR1ðzÞ2 ≃ 10−9; thus,

H2

π2M2
P
≃ 10−982ϵ

R1ðzÞ2
: ð51Þ

Equation (51) means that, in order to our approach to be consistent with the observations associated to the scalar power
spectrum, the time of collapse must satisfy H2=ð64π2M2

PϵÞR1ðzÞ2 ≃ 10−9.
Substituting Eq. (51) in Eq. (50) yields

r≃ 1024

9
10−9ϵ2x4

��
3

2
−
x
z
−

z2

2x2

�
2

M1 þ 2
R2ðzÞz
R1ðzÞ

�
3

2
−
x
z
−

z2

2x2

��
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
M2

þ R2ðzÞ2z2
R1ðzÞ2

�
x
z
ln
z
x
þ x
3z

−
z2

3x2

�
2

M3

�
: ð52Þ

Finally, since we have assumed that the time of collapse
occurs when the proper wavelength of the mode is bigger
than the Hubble radius, i.e. jzj ¼ −kηc~k < 1, then we can

expand in series the functions R2ðzÞz=R1ðzÞ and
R2ðzÞ2z2=R1ðzÞ2 around z ¼ 0; additionally we will use
that jzj ¼ −kηc~k > −kη ¼ jxj with x ¼ kη → 0−, and retain

the leading terms in x=z. Thus, Eq. (52) is approximated by

r≃ 1024

9
10−9ϵ2

�
z4

4
M1 − z2M2 þM3

�
: ð53Þ

Equation (53) is the first main result of this section. We
can see that the prediction for r given by the collapse
hypothesis within the semiclassical gravity framework, is
suppressed by a factor of 10−9ϵ2 and by powers of jzj < 1.
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FIG. 2 (color online). The left figure shows a plot of the first term of the integrand of Eq. (46) for fixed values u ¼ 1, v ¼ 0.5,
z ¼ −0.01, i.e. fðxÞ≡ y1ðxÞF2½0.5x; 1x;−0.01� with x ∈ ½z; 0�. The right figure shows a plot of the second term of the integrand of
Eq. (44) for fixed values u ¼ 1, v ¼ 0.5, z ¼ −0.01, i.e. fðxÞ≡ j1ðxÞF2½0.5x; 1x;−0.01� with x ∈ ½z; 0� The blue-dashed curves
represent the total functions, while the orange ones represent the first two non-null terms of the approximations.
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In other words, the generically predicted tensor-to-scalar
ratio is extremely small making it practically undetectable
by recent or future experiments. However, it is still within
the observational bounds provided by the latest Planck
results [9,45], which set r < 0.12. Moreover, Eq. (53)
shows a degeneration between the slow roll parameter ϵ and
the time of collapse. Therefore, if future experiments
confirm a possible detection of primordial gravitational
waves, in clear contrast to the standard approach, the
measured value of r would not fix the value of the
slow-roll parameter ϵ, it would only fix a combination
of ϵ and the value of the time of collapse z. Consequently,
the confirmed detection of primordial Bmodes would make
this whole scenario, i.e. the self-induced collapse hypoth-
esis within the semiclassical gravity, extremely unlikely.
We will focus now on the second case, that is, the time of

collapse occurs when the proper wavelength of the mode is
smaller than the Hubble radius z ¼ kηc~k → −∞ i.e. at the
very beginning of the inflationary regime.
We begin this case with Eq. (42) which corresponds

to the tensor power spectrum and proceed to calculate
the tensor-to-scalar ratio r≡ PT=PS where PSðk; ηÞ≃
H2=ð64π2M2

PϵÞR1ðzÞ2, Eq. (7); additionally, by con-
sidering that the time of collapse must satisfy
H2=ð64π2M2

PϵÞR1ðzÞ2 ≃ 10−9, the prediction for r is

r≃ 8310−9ϵ2
x4

R1ðzÞ4
Z

∞

0

dv

×
Z jvþ1j

jv−1j
du

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× I1ðv; u; x; zÞI2ðv; u; x; zÞ: ð54Þ

Next, we focus on the integrals I1ðv; u; x; zÞ; I2ðv; u; x; zÞ.
These integrals can be rewritten as

I1ðv; u; x; zÞ ¼
Z

x

−∞
d ~x1Gðx; ~x1Þ½R1ðzÞ2f1ðv ~x1; u ~x1Þ

þ R1ðzÞR2ðzÞf2ðv ~x1; u ~x1Þ
þ R2ðzÞ2f3ðv ~x1; u ~x1Þ�; ð55aÞ

I2ðv; u; x; zÞ ¼
Z

x

−∞
d ~x2Gðx; ~x2Þ½R1ðzÞ2 ~f1ðv ~x2; u ~x2Þ

þ R1ðzÞR2ðzÞ ~f2ðv ~x2; u ~x2Þ
þ R2ðzÞ2 ~f3ðv ~x2; u ~x2Þ�: ð55bÞ

Note that the lower limit of integration takes into account
that we are considering the case z → −∞. The explicit
forms of the functions f1; f2; f3 and ~f1; ~f2; ~f3 can be found
in the Appendix. The advantage of writing the integrals
I1ðv; u; x; zÞ; I2ðv; u; x; zÞ in the form of Eqs. (55) is that
the dependence on the time of collapse is totally contained
in the functions R1ðzÞ and R2ðzÞ.

Substituting Eqs. (55) in Eq. (54), we have

r≃ 10−9ϵ2
�
C0ðxÞ þ C1ðxÞ

R2ðzÞ
R1ðzÞ

þ C2ðxÞ
�
R2ðzÞ
R1ðzÞ

�
2

þ C3ðxÞ
�
R2ðzÞ
R1ðzÞ

�
3

þ C4ðxÞ
�
R2ðzÞ
R1ðzÞ

�
4
�
: ð56Þ

Note that r written in this form exhibits explicitly the
dependence on the time of collapse z ¼ kηc~k. The explicit

form of the functions C0ðxÞ; C1ðxÞ; C2ðxÞ; C3ðxÞ; C4ðxÞ
can be found in the Appendix; also, it should be noted
that such functions should be evaluated at x → 0− i.e. at a
time near the end of inflation.
Next, using that R2ðzÞ=R1ðzÞ ¼ ðsin z þ cos z=zÞ=

ðcos z − sin z=zÞ and since we are interested in the case
z → −∞, then we can approximate

R2ðzÞ
R1ðzÞ

≃ tanðzÞ≡ ζ; ð57Þ

hence, −∞ < ζ < ∞. Consequently, Eq. (56) is given by

r≃ 10−9ϵ2½C0ðxÞ þ C1ðxÞζ þ C2ðxÞζ2 þ C3ðxÞζ3
þ C4ðxÞζ4� with x → 0−: ð58Þ

Equation (58) is the second main result of this section. It
shows the prediction for r in the case when the time of
collapse occurs near the beginning of the inflationary era.
As in the previous case, the generic prediction for r, within
our approach, is suppressed by a factor of 10−9ϵ2. Note also
that, even if ζ is in the range ð−∞;∞Þ, its value starts to
grow only near z ¼ −nπ=2 [with n a (large) odd number],
that is, for a generic value of z, the function ζ ¼ tanðzÞ does
not grows arbitrarily large. Therefore, the prediction for r in
this case is also consistent with recent observational data
given that it is suppressed by the square of the slow-roll
parameter.
As in the case when jzj < 1, a hypothetical measurement

of r would translate into a bound on a combination of the
slow-roll parameter ϵ and the time of collapse. Consequently,
the same discussion about the plausibility of the collapse
model in the case when the time of collapse satisfies
−kηc~k < 1 also applies in the present case, i.e. when the

time of collapse is such that kηc~k → −∞.

To end this section, let us summarize the general
conditions and motivations under which results (53) and
(58) were achieved and their extension to specific infla-
tionary models.
Our collapse proposal is meant to serve as a possible

explanation to the generation of primordial perturbations,
in particular the primordial gravitational waves. In a broad
sense, we are considering the standard inflationary para-
digm with the addition of the self-induced collapse
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hypothesis and the semiclassical gravity framework. In the
present article, we have focused on the simplest inflationary
model (and also the one favored by recent Planck data
[45]), namely a single adiabatic Gaussian scalar field (the
inflaton) minimally coupled to gravity with canonical
kinetic term in the slow-roll approximation.
As regards the characteristics of the self-induced col-

lapse, the only assumption we have made is that the time of
collapse ηc~k

is proportional to k−1; this relation was
phenomenologically inferred from previous works by
comparing the theoretical predictions (specifically the
scalar angular power spectrum) with the observational
data. Therefore, the relation kηc~k implies a specific depend-

ence of the time of collapse: ηc~k
¼ z=k, being z a free

parameter of the collapse model.
In fact, any inflationary model satisfying the previous

conditions (with the inclusion of the self-induced collapse
and the semiclassical Einstein equations) would yield a
similar suppression for r that is compatible with results (53)
and (58). For example, Starobinsky’s inflationary model
[46–48] (also known as Rþ R2 inflation) can be charac-
terized by the action of a single-scalar field with canonical
kinetic term, and a potential with a region in which the
slow-roll approximation is valid; Starobinsky’s model
predicts a value [49] for the slow-roll parameter
jϵj≃ 3=ð4N2Þ, with N the number of e-foldings character-
istic of inflation; thus, for N ≃ 60, one has jϵj≃ 10−4. That
is, for the Starobinsky’s model, the value of r, within our
approach, would be suppressed by a factor 10−9ϵ2 ¼ 10−17

Thus, the conclusions drawn from the results (53) and (58)
apply to generic single-field slow-roll models within the
semiclassical gravity framework and the self-induced
collapse.

VII. SUMMARY AND CONCLUSIONS

In this paper we have computed the tensor primordial
power spectrum and the tensor-to-scalar ratio r by making
use of semiclassical Einstein equations and also including a
self-induced collapse of the inflaton’s wave function.
Within the semiclassical gravity approximation there is
no source for tensor modes at the first-order perturbation
theory; to calculate the tensor power spectrum the second
order has to be considered.
We have considered two cases: (1) the time of collapse

occurs when the proper wavelength of the mode is greater
than the Hubble radius, that is, −kηc~k < 1, and (2) the time
of collapse occurs when the proper wavelength of the mode
is smaller than the Hubble radius, that is, kηc~k → −∞. In

both cases a generic value for z results in a prediction of r
that is suppressed by a factor of 10−9ϵ2, that is, a very small
value; nevertheless, it is still consistent with the limit
obtained by the joint analysis performed by the BICEP/
KECK and PLANCK collaborations.

On the contrary, if a detection of primordial B modes is
confirmed, then the self-induced collapse hypothesis plus
the semiclassical gravity approach would face severe issues
given the degeneration between the slow roll parameter ϵ
and the time of collapse in the prediction of r [see Eqs. (53)
and (58)].
However, we have also discussed in this paper, that the

discrepancy with standard inflationary model prediction’s
arises in considering the semiclassical approximation and
not the self-induced collapse of the inflaton’s wave func-
tion. Within the semiclassical approximation, tensor modes
are different from zero only at second-order perturbation
theory, while in the standard procedure (where a joint
quantization of the metric and field is performed) the tensor
modes can be generated at first order in the perturbation
theory. Furthermore, a recent calculation of the tensor-to-
scalar ratio using the Mukhanov-Sasaki variable and
including the collapse of the wave function [32,33] gives
a prediction of the value of r closest to the upper bound
given by the joint BICEP/KECK and Planck collabora-
tion’s analysis.
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APPENDIX: EXPRESSIONS USED IN SEC. VI

In this appendix we provide the explicit form of the
expression used in Sec. VI.
The quantities M1, M2 and M3 are defined as

M1 ≡
Z

∞

0

dv
Z jvþ1j

jv−1j
du

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

; ðA1aÞ

M2 ≡
Z

∞

0

dv
Z jvþ1j

jv−1j
du

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

ðv − uÞ;

ðA1bÞ

M3 ≡
Z

∞

0

dv
Z jvþ1j

jv−1j
du

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

ðv − uÞ2:

ðA1cÞ

The functions f1ðv ~x1; u ~x1Þ, f2ðv ~x1; u ~x1Þ and f3ðv ~x1;
u ~x1Þ used in Eqs. (55) are defined as
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f1ðv ~x1; u ~x1Þ≡ cosðu ~x1Þ cosðv ~x1Þ þ uv ~x12 sinðu ~x1Þ sinðv ~x1Þ þ 2u ~x1 cosðv ~x1Þ sinðu ~x1Þ; ðA2aÞ

f2ðv ~x1; u ~x1Þ≡ −2u ~x1 cos½ðuþ vÞ ~x1� þ ð1 − uv ~x12Þ sin½ðuþ vÞ ~x1�; ðA2bÞ

f3ðv ~x1; u ~x1Þ≡ uv ~x12 cosðu ~x1Þ cosðv ~x1Þ þ sinðu ~x1Þ sinðv ~x1Þ − 2u ~x1 sinðv ~x1Þ cosðu ~x1Þ: ðA2cÞ

Meanwhile, the functions ~f1ðv ~x1; u ~x1Þ, ~f2ðv ~x1; u ~x1Þ and ~f3ðv ~x1; u ~x1Þ also used in Eqs. (55) are defined as

~f1ðv ~x2; u ~x2Þ≡ 2½cosðu ~x2Þ cosðv ~x2Þ þ uv ~x22 sinðu ~x2Þ sinðv ~x2Þ þ 2u ~x2 cosðv ~x2Þ sinðu ~x2Þ þ 2v ~x2 cosðu ~x2Þ sinðv ~x2Þ�;
ðA3aÞ

~f2ðv ~x2; u ~x2Þ≡ ð−2u ~x2 − 2v ~x2Þ cos½ðuþ vÞ ~x2� þ 2ð1 − uv ~x22Þ sin½ðuþ vÞ ~x2�; ðA3bÞ

~f3ðv ~x2; u ~x2Þ≡ 2½uv ~x22 cosðu ~x2Þ cosðv ~x2Þ þ sinðu ~x2Þ sinðv ~x2Þ − u ~x2 sinðv ~x2Þ cosðu ~x2Þ − v ~x2 cosðv ~x2Þ: sinðu ~x2Þ� ðA3cÞ

The functions C0ðxÞ, C1ðxÞ, C2ðxÞ, C3ðxÞ and C4ðxÞ used in Eqs. (56) and (58) are defined as

C0ðxÞ≡ 83x4
Z

∞

0

dv
Z jvþ1j

jv−1j
du

Z
x

−∞
d ~x1

Z
x

−∞
d ~x2Gðx; ~x1ÞGðx; ~x2Þ

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× f1ðv ~x1; u ~x1Þ ~f1ðv ~x2; u ~x2Þ; ðA4aÞ

C1ðxÞ≡ 83x4
Z

∞

0

dv
Z jvþ1j

jv−1j
du

Z
x

−∞
d ~x1

Z
x

−∞
d ~x2Gðx; ~x1ÞGðx; ~x2Þ

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× ½f2ðv ~x1; u ~x1Þ ~f1ðv ~x2; u ~x2Þ þ f1ðv ~x1; u ~x1Þ ~f2ðv ~x2; u ~x2Þ�; ðA4bÞ

C2ðxÞ≡ 83x4
Z

∞

0

dv
Z jvþ1j

jv−1j
du

Z
x

−∞
d ~x1

Z
x

−∞
d ~x2Gðx; ~x1ÞGðx; ~x2Þ

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× ½f3ðv ~x1; u ~x1Þ ~f1ðv ~x2; u ~x2Þ þ f1ðv ~x1; u ~x1Þ ~f3ðv ~x2; u ~x2Þ þ f2ðv ~x1; u ~x1Þ ~f2ðv ~x2; u ~x2Þ�; ðA4cÞ

C3ðxÞ≡ 83x4
Z

∞

0

dv
Z jvþ1j

jv−1j
du

Z
x

−∞
d ~x1

Z
x

−∞
d ~x2Gðx; ~x1ÞGðx; ~x2Þ

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× ½f3ðv ~x1; u ~x1Þ ~f2ðv ~x2; u ~x2Þ þ f2ðv ~x1; u ~x1Þ ~f3ðv ~x2; u ~x2Þ�; ðA4dÞ

C4ðxÞ≡ 83x4
Z

∞

0

dv
Z jvþ1j

jv−1j
du

Z
x

−∞
d ~x1

Z
x

−∞
d ~x2Gðx; ~x1ÞGðx; ~x2Þ

½4v2 − ðu2 − v2 − 1Þ2�2
u2v2

× f3ðv ~x1; u ~x1Þ ~f3ðv ~x2; u ~x2Þ: ðA4eÞ
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