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We test a model of inflation with a fast-rolling kinetic-dominated initial condition against data from
Planck using Markov chain Monte Carlo parameter estimation. We test both an m2ϕ2 potential and the
Rþ R2 gravity model and perform a full numerical calculation of both the scalar and tensor primordial
power spectra. We find a slight (though not significant) improvement in fit for this model over the standard
eternal slow-roll case.

DOI: 10.1103/PhysRevD.92.083506 PACS numbers: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

One of the greatest sources of data for modern cosmol-
ogy is the cosmic microwave background radiation (CMB).
This has been measured to extreme precision and the
concordance model of cosmology has achieved tremendous
success in matching the data. However, there are still small
anomalies, one of which is a deficit of power in the CMB at
low multipoles. A cutoff in the primordial power spectrum
from inflation at small k translates into a reduction of power
in the CMB at low multipoles. This low-l anomaly consists
mainly of a slight dip in the power spectrum at l ∼ 20–40
and a slightly reduced quadrupole, though because of
cosmic variance the significance of the anomaly is not
high. In light of this low-l anomaly, there has been a great
deal of interest in theories that predict a cutoff in the power
spectrum [1,2]. One of these theories is a kinetic-dominated
(or fast-roll) start to slow-roll inflation, studied in [3–12].
The standard slow-roll model of inflation works by

positing a new field, ϕ, the inflaton, with some potential
VðϕÞ. One of the most common choices of potential and the
one we use here is V ¼ 1

2
m2ϕ2. The field rolls down the

inflaton potential, obeying the equation of motion

ϕ̈þ 3H _ϕþ dVðϕÞ
dϕ

¼ 0; ð1Þ

where H ¼ _a
a is the Hubble parameter and a is the scale

factor. The second term in this equation can be viewed as a
friction term, and so the field can approach a terminal
velocity and the field is in slow roll. If the field starts very
high up on a suitably chosen potential, it will rapidly
approach slow roll, and then will have a long period of
slow-roll inflation until the field exits the slow-roll regime
as it nears the minimum of the potential.
It is possible that the effective field theory description of

inflation breaks down near the Planck scale. In some
models this manifests itself as a cutoff on the minimum
value of the wave number k in the primordial power
spectrum [1]. This cutoff in the primordial power spectrum
also appears in theories with a finite number of total

e-foldings of inflation. Our work is partially motivated
by holographic ideas that suggest an upper bound to the
total number of e-foldings of inflation [13–17], and in
Sec. IV we discuss how our model relates to those bounds.
In this work, we start the motion of the inflaton field on

the potential in a period of fast roll before slow-roll
inflation, and vary the initial conditions of the field. We
solve for the predicted CMB power spectrum using a full
numerical approach, and determine which parameters are
the best fit to the Planck data by varying them with a
Markov chain Monte Carlo (MCMC) sampler.
The Planck collaboration has just published its latest data

and results [3], and has included an analytic model [6]
intended to be an approximation to the numerical model we
analyze here. Our model is very similar, but more complete
by not making as many approximations, and performing
the full calculations for both the scalar and tensor primor-
dial power spectra. Our more accurate model better tests the
underlying theory and a comparison of our model to theirs1

can be found in Sec. IV. Unfortunately, the improvements
introduced in our model do not yield a significant improve-
ment in the fit to the Planck data.

II. BACKGROUND

We first consider a model of inflation with a potential
V ¼ 1

2
m2ϕ2. We numerically calculate the primordial

power spectrum using the Mukhanov-Sasaki equation
[18,19] with a Bunch-Davies vacuum [20] at early times
and kinetic-dominated initial conditions to start inflation.
Evolution of perturbations and the primordial power

spectrum are given by the Friedmann equations and the
Mukhanov-Sasaki equation:

H2 þ K
a2

¼ 1

3

�
1

2
_ϕ2 þ VðϕÞ

�
ð2Þ

1The authors of Ref. [6] also perform an exact numerical
calculation of the scalar primordial power spectrum to fit data
from WMAP using a grid method but this exact numerical
solution is not used by the Planck team.
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ϕ̈þ 3H _ϕþ dVðϕÞ
dϕ

¼ 0 ð3Þ

ξ00k þ
�
k2 −

z00

z

�
ξk ¼ 0 ð4Þ

y00k þ
�
k2 −

a00

a

�
yk ¼ 0 ð5Þ

z ¼ ϕ0

H
¼ a

_ϕ

H
; ð6Þ

where K is the curvature which we set to zero to require a
flat universe, ξk and yk are the scalar and tensor mode
functions respectively for a mode of wave number k, and a
prime represents the derivative with respect to conformal
time η, while a dot represents the derivative with respect to
proper time t. Here we are working in units where
ℏ ¼ c ¼ 8πG ¼ 1.
For the quadratic inflation potential in a flat universe

with a fast-roll start where _ϕ2 ≫ m2ϕ2, we choose the
initial conditions of the background for the fast-roll start to
inflation as in [6]. We set the scale factor a ¼ 1 and the
conformal time η ¼ 0 at the start of the numerical integra-
tion in the fast-roll regime:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2hη

p
ð7Þ

z00

z
¼ a00

a
¼ −h2

ð1þ 2hηÞ2 ; ð8Þ

where h is the conformal time Hubble parameter at η ¼ 0.
We assume initial conditions for the scalar and tensor

mode functions as done in [6]:

ξk ¼ yk ¼
ffiffiffiffiffiffi
π

8h

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2hη

p
Hð2Þ

0

�
kηþ k

2h

�
; ð9Þ

where Hð2Þ
0 denotes the Hankel function of the second kind

with index zero. These initial conditions have been
obtained by solving Eqs. (4)–(5) assuming Eq. (8) and
requiring that we must have consistency with the predic-
tions of inflation without a kinetic stage in the limit that the
kinetic stage is pushed infinitely far into the past.
To make the calculation easier for large k, we make the

reparametrization

ξ → Xe−ikη ð10Þ

y → Ye−ikη; ð11Þ

which results in a set of transformed Mukhanov-Sasaki
equations

X00 − 2ikX0 −
z00

z
X ¼ 0 ð12Þ

Y 00 − 2ikY 0 −
a00

a
Y ¼ 0; ð13Þ

with initial conditions

X0 ¼ ξ0 ð14Þ

_X0 ¼ _ξ0 þ
ik
a0

ξ0 ð15Þ

Y0 ¼ y0 ð16Þ

_Y0 ¼ _y0 þ
ik
a0

y0: ð17Þ

We choose to start the numerical integration in the
kinetic-dominated regime when _ϕ0 is one hundred times
the value of mϕ0. For convenience, in several equations we

use rinit ≡ _ϕ0

mϕ0
.2 In order to set up the numerical integration,

we take the limit η → 0 and the initial conditions are

að0Þ ¼ a0 ¼ 1 ð18Þ

ϕð0Þ ¼ ϕ0 ð19Þ

_ϕð0Þ ¼ _ϕ0 ¼ rinitmϕ0 ð20Þ
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FIG. 1 (color online). Comoving Hubble length as a function of
scale factor from the numerical code for a universe with an initial
period of kinetic-dominated fast roll (KD), followed by slow-roll
inflation and reheating. In this plot, modes with wave number
k can be represented as horizontal lines, and a range of observable
scales is shown. We have chosen this plot to correspond to
the best fit parameters to the Planck data, ϕ0 ¼ 20.65, and
m ¼ 6 × 10−6 corresponding to roughly 65 total e-foldings of
inflation.

2Equations (7)–(8) are correct in the r → ∞ limit. In practical
terms, the error caused by using these equations for r ¼ 100 is
negligible.
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h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2init þ 1

6

r
mϕ0 ð21Þ

X0 ¼ Y0 ¼
ffiffiffiffiffiffi
π

8h

r
Hð2Þ

0

�
k
2h

�
ð22Þ

_X0 ¼ _Y0 ¼
ffiffiffiffiffiffi
πh
8

r
f

�
k
2h

�
ð23Þ

fðxÞ ¼ ð1þ 2ixÞHð2Þ
0 ðxÞ − 2xHð2Þ

1 ðxÞ: ð24Þ
We solve the Friedmann equations to get the background

geometry (shown in Fig. 1), and then use the results of this
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FIG. 2 (color online). The power in modes ofR (shown for the
best fit values ofm andϕ0) as a function of scale factor for selected
modes with log10ðk=Mpc−1Þ ∈ f−6;−5;−4;−3;−2;−1; 0g
from lower to upper. The features near lnðaÞ ≈ 2 − 3 originate
from the transition between the kinetic stage and slow roll. We
see from this plot that power is suppressed in modes with
log10ðk=Mpc−1Þ≲ −3.5. We show the case of standard slow-roll
inflation in Fig. 3 for comparison.
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FIG. 3 (color online). The power in modes of R for standard
slow-roll inflation as a function of scale factor for selected modes
with log10ðk=Mpc−1Þ ∈ f−6;−5;−4;−3;−2;−1; 0g from lower
to upper. The convergence of the curves to approximately the
same value shows the approximate scale-invariance of the power
spectrum.
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FIG. 4 (color online). The primordial power spectrum
for scalars and tensors from the best fit numerical solution of
the Mukhanov-Sasaki equation. Here mϕ ¼ 6 × 10−6 and
ϕ0 ¼ 20.65.
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FIG. 5 (color online). A comparison with data of different
predicted CMB power spectra with varying cutoffs (Calculated
using the CLASS Boltzmann code). The plots are all generated
with mϕ ¼ 6 × 10−6 and where ϕ0 ∈ f20.5; 20.6; 20.7; 20.9g
(From the lowest curve to the highest on the left-hand side).
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FIG. 6 (color online). A comparison with data of different
predicted CMB power spectra with varying cutoffs (calculated
using the CLASS Boltzmann code). The plots of the numerical
primordial power spectra (solid) are all generated with mϕ ¼
6 × 10−6 and where ϕ0 ∈ f20.5; 20.6; 20.7; 20.9g (from the
lowest curve to the highest on the left-hand side). The dashed
curves show the ansatz of Ref. [6], with lnðkc=Mpc−1Þ ∈
f−7;−8;−9g. Though all curves are capable of suppressing
the lower multipoles, they are unable to reproduce the deficit of
power seen in the data at l ≈ 20 − 40 while preserving the good
fit to the rest of the power spectrum.
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to find z00=z, from which we solve the Mukhanov-Sasaki
equation where we use ordinary time, not conformal time,
as the independent variable. Finally, we obtain the scalar
and tensor power spectra for primordial perturbations:

PR ¼ k3

2π2

���� ξkz
����
2

ð25Þ

Pt ¼
k3

π2

���� 2yka
����
2

: ð26Þ

The evolution of modes of k can be seen from Fig. 2
and for comparison the same plot for standard slow-roll
inflation is shown in Fig. 3. When k2 ≫ z00=z, jξkj does
not evolve, but z does, and is roughly proportional to a in
both the fast-roll and slow-roll cases (though not during
the transition between them), causing the downward

slope of the large k modes on Fig. 2. When
k2 ≪ z00=z, R ¼ ξk

z does not evolve, and we say that
the modes have frozen out. The integration may be
stopped when the curvature perturbation R stops evolv-
ing (see Fig. 2), which in the standard slow-roll model is
usually assumed to happen after k=aH ≪ 1, which is a
good approximation for modes larger than the cutoff. For
modes k smaller than the cutoff, freeze-out of modes can
be well approximated by the condition that the slow-roll
parameter obeys η ≪ 1 [21].3 For these small k modes in
our model, we find that η ≪ 1 when t ≫ 1=m and stop
the integration accordingly.
The end of inflation is assumed to occur when 1=aH

reaches a minimum. At this time, we assume instant

FIG. 7 (color online). The MCMC likelihood distributions of parameters. The mean values of parameters are displayed along with one
and two sigma confidence intervals. The parameter ϕ0 is not sufficiently constrained. Small values of ϕ0 are ruled out as they would give
too much power suppression, and large values would be observationally indistinguishable from standard slow-roll inflation (shown by
the flat part of likelihood for ϕ0). One can see in the one-dimensional ϕ0 plot that the likelihood for the best fit (at ϕ0 ¼ 20.65) is only a
factor of two larger than for the standard slow-roll inflation.

3The general condition for freeze-out is always k2 ≪ z00=z.
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reheating into a radiation-dominated universe as shown in
Fig. 1. A longer period of reheating would impact the
matching of the solution for the power spectrum from
inflation onto the subsequent evolution of the Universe. As
such, it would result in a shift in the relationship between
ϕ0 and the value of the cutoff in k. A longer period of
reheating would correspond to fewer e-foldings of infla-
tion, and hence a decrease in the effective value of ns for the
part of the power spectrum with k greater than the cutoff.4

An example of the power spectra for both scalars and
tensors is shown in Fig. 4.

III. NUMERICAL IMPLEMENTATION

We solve the full Mukhanov-Sasaki equation starting
from initial conditions, and solve for exact primordial
power spectra for both scalars and tensors, and use this
as numeric input for the Boltzmann code CLASS
[22,23] to calculate the Cl s. We perform a full
MCMC calculation, solving for the exact numerical
solution at every choice of parameters. We find that the
speed of the program is roughly halved by adding the
numerical computation of scalar and tensor primordial
power spectra.
We split the equations for the perturbations X and Y into

real and imaginary parts, and integrate these equations
together with the Friedmann equations for the evolution of
the background simultaneously. For this purpose, we use a
C implementation of a numerical differential equation
solver that automatically switches between methods suit-
able for stiff and nonstiff equations (LSODA) [24] and run

this solver from the command line in the external PðkÞ
module [25] of CLASS.
A comparison of our model to the data for the CMB

power spectrum is shown in Figs. 5–6.

IV. MCMC

We run the MCMC using the CosmoSLik sampler [26],
and vary over the values of m and ϕ0, in addition to the
standard ΛCDM parameters using the likelihoods for the
temperature and low-l polarization CMB power spectra
from the Planck 2013 data. The results of the MCMC are
shown in Fig. 7. Because large values for ϕ0 are observa-
tionally indistinguishable from standard slow-roll inflation
and in order for the chain to converge, we impose an upper
bound on the value of ϕ0 shown in Fig. 7. We find a slight
preference for a kinetic start to inflation with the m2ϕ2

potential as opposed to always being in slow roll. However,
the likelihood is only a factor of two larger for the best fit
cutoff model, and hence the improvement is not significant.
The Planck collaboration [3] showed that in a similar model
[6], the expected improvement in log likelihood is not
significant compared to the expected improvement from
fitting an ensemble of cosmologies with perfect power laws
as initial conditions and departures due solely to cosmic
variance. The model used for the power spectrum in that
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FIG. 9 (color online). Comoving Hubble length as a function of
scale factor from the numerical code evolved from the fast-roll
start to the end of inflation joined with the analytic solution for
instantaneous reheating into radiation domination followed by
matter domination and cosmological constant domination (solid).
Increasing the initial value of the scalar field causes slow-roll
inflation to begin earlier as shown by the dotted lines where
ϕ0 ∈ f20.0; 20.5; 21.0; 21.5g, and m ¼ 6 × 10−6. Changing the
value of m in a manner consistent with the observed perturbation
amplitude results in subtle differences that are too small to be
seen on the scale of this plot. Modes with wave number k can be
represented as horizontal lines, and the holographic bounds of
Banks-Fischler (lower) and from de Sitter equilibrium (upper) are
shown as dashed lines. The solid line corresponds to the best fit
value of ϕ0 ≈ 20.65 from the MCMC, and this value almost
exactly saturates the Banks-Fischler bound.
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FIG. 8 (color online). The primordial power spectrum for
scalars from the numerical solution of the Mukhanov-Sasaki
equation (dotted), compared to the ansatz (lower solid) and the
analytic model from Contaldi et al. used in the Planck paper
(upper solid). The dotted numerical curve hasmϕ ¼ 6 × 10−6 and
ϕ0 ¼ 20.5.

4Since the constraints on ϕ0 are found to be weak in Sec. IV, a
full analysis of the impact of uncertainties in reheating was not
performed.
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case is similar to our exact numerical solution. Our
numerical solution shows that there is a sharper suppression
of power at small k, and more narrow oscillations of greater
amplitude in the cutoff region as compared to the model of
[6] used in the Planck paper as shown in Fig. 8. Also it
appears that the kinetic start to inflation is unable to
reproduce the shape of the observed dip in the CMB
power spectrum in the neighborhood of l ≈ 20–40.
Interestingly, our best fit value of ϕ0 ≈ 20.65 is very close
to saturating the holographic bounds of Banks-Fischler [17]
and de Sitter equilibrium [14–16] shown in Fig. 9.

V. Rþ R2 INFLATION

We also adapt the method utilized for the m2ϕ2 potential
to an Rþ R2 gravity model [27]. This model is the first

inflationary model proposed, and is still an excellent fit to
the Planck data.5 It has an action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
pl

2

�
Rþ R2

6M2

�
: ð27Þ

We work in the Einstein frame where the inflationary
potential becomes

FIG. 10 (color online). The MCMC likelihood distributions of parameters for the Rþ R2 inflation model. The mean values of
parameters are displayed along with one and two sigma confidence intervals. The parameters Λ and ϕ0 together determine both the
amplitude of primordial perturbations and their effective spectral index. The parameter kc is not sufficiently constrained. Small values of
kc are ruled out as they would give too much power suppression, and large values would be observationally indistinguishable from
standard slow-roll inflation. As with m2ϕ2 inflation, the presence of a cutoff can at best increase the likelihood by a small factor relative
to standard slow-roll inflation.

5Interestingly, by putting in a kinetic transient we deviate from
the original spirit of [27]. That paper offered a single solution for
cosmology and explicitly rejected other solutions, such as the
ones to which our transients belong, as uninteresting. None of the
other changes affect the meaning of the paper.
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VðϕÞ ¼ Λ4ðe−
ffiffi
2
3

p
ϕ − 1Þ2: ð28Þ

This model is attractive due to its prediction of reduced
tensor power. For this model, we also accommodate a
variable length of reheating through varying an additional
parameter kc corresponding to the minimum value of aH
which occurs during the transition from kinetic domination
to slow roll. We incorporate the same formalism used for
the m2ϕ2 model and obtain parameter constraints on Λ, kc,
and ϕ0 as shown in Fig. 10. Because of the reduced tensor
power, this potential is a better fit to the Planck data than
the m2ϕ2 potential; however we still do not obtain a
significant improvement in the fit due to the presence of
a fast-roll start to inflation.

VI. DISCUSSION

Our work suggests that adding in a kinetic-dominated
start to inflation does not significantly improve the fit to the

CMB data from Planck. Despite this, there is a slight
(though not significant) preference for a cutoff at approx-
imately the value expected from a theory of finite inflation
such as in [28].
Though our model has many similarities to the

analytical model of Ref. [6] used to fit the Planck data
in [3], we had hoped that by correcting for these
differences in the MCMC we would improve the fit to
the Planck data. However, it appears that the Planck data
are not able to distinguish these differences, and thus our
results do not significantly favor a cutoff in the primor-
dial power spectrum.
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