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Statistical isotropy (SI) is one of the fundamental assumptions made in cosmological model building.
This assumption is now being rigorously tested using the almost full sky measurements of the CMB
anisotropies. A major hurdle in any such analysis is to handle the large biases induced due to the process of
masking. We have developed a new method of analysis, using the bipolar spherical harmonic basis
functions, in which we semianalytically evaluate the modifications to SI violation induced by the mask.
The method developed here is generic and can be potentially used to search for any arbitrary form of SI
violation. We specifically demonstrate the working of this method by recovering the Doppler boost signal
from a set of simulated, masked CMB skies.
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I. INTRODUCTION

Cosmic microwave background (CMB) observations
have ushered in the precision era in cosmology. This
enables us to test the basic premises on which the standard
cosmology rests, such as the assumption of statistical
isotropy via the cosmological principle. Some claims of
statistical isotropy (SI) breakdown that appeared in CMB
literature were revisited by WMAP and Planck satellite
science teams; see Refs. [1–3] and the references therein.
The bipolar spherical harmonic (BipoSH) formalism

[4,5] is a powerful tool to identify and study SI violation.
This has been one of the methods used to search for
deviation from isotropy in the CMB data [1,2,6].
The idea behind searching for SI violation is simple: it

involves searching for nonvanishing BipoSH coefficients.
This is made nontrivial due to the presence of a mask, as it
induces spurious correlations that alias the measurements.
In this article, we present a new methodology based on
the BipoSH formalism, to estimate signals of SI violation
from a masked CMB sky. The algorithm presented here is
generic and can be potentially applied to recover any signal
of SI violation, such as weak lensing, etc. We have already
applied the method described here to Planck 2015 data to
recover low-l dipole modulation and Doppler boost signals,
and the results are part of Ref. [3]. The current paper
elaborates the method employed there in detail.
In this article we demonstrate our procedure by recov-

ering Doppler boost field from a Doppler-boosted CMB
sky in the presence of a mask. Doppler boost is a well
known and guaranteed isotropy violation in CMBmaps at a

challenging level of subtlety. So, we choose to apply our
machinery to estimate the Doppler signal, whose faithful
recovery would establish the reliability of our method.
The paper is structured as follows. We briefly recap the

BipoSH formalism in Sec. II. In Sec. III we first discuss the
SI violation induced due to Doppler boosting and masking
separately and finally the resultant SI violation when both
the effects are considered together. In Sec. IV we discuss
the minimum variance estimator that takes into account the
effects of masking for an arbitrary signal. The performance
of the new estimator is discussed in Sec. V, with the specific
example of Doppler boost. Finally our conclusions are
presented in Sec. VI.

II. BIPOSH: A BRIEF SUMMARY

ACMB anisotropy map Tðn̂Þ defined on a sphere is con-
ventionally decomposed in terms of spherical harmonics
ðYlmÞ as

Tðn̂Þ ¼
X∞
l¼1

Xþl

m¼−l
almYlmðn̂Þ; ð1Þ

where n̂ denotes position coordinates on the sphere,Tðn̂Þ are
the temperature anisotropies observed in the direction n̂ and
alm are the spherical harmonic coefficients of expansion.
The two-point correlation function is defined as

Cðn̂1; n̂2Þ ¼ hTðn̂1ÞTðn̂2Þi; ð2Þ
where h� � �i denotes an in principle average over an
ensemble of statistically independent CMB realizations.
If the field T is statistically isotropic, then it can be argued
that the correlation function cannot have any explicit
directional dependence and that it can only be a function
of the separation θ between the two directions n̂1 and n̂2,
where cos θ ¼ n̂1 · n̂2. As a result of this simplification, the
two-point correlation function is given by
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Cðn̂1; n̂2Þ≡ CðθÞ ¼ 1

4π

X∞
l¼1

ð2lþ 1ÞClPlðcos θÞ; ð3Þ

where Pl are the Legendre polynomials and Cl is the well-
known angular power spectrum. When expressed in terms
of the harmonic space covariance matrix

halma�l0m0 i ¼ Clδll0δmm0 ; ð4Þ

Cl’s are the diagonal and the only nonvanishing elements of
the matrix. Hence for a statistically isotropic Gaussian
random field, Cl completely characterize the statistical
properties of the field.
In the absence of statistical isotropy, Cl do not com-

pletely describe the CMB sky and the BipoSH basis
functions [4] are better suited for this case. BipoSH forms
a complete orthonormal basis for an S2 × S2 space and
hence can be used to describe any two-point correlation
function for a field defined on a sphere as

Cðn̂1; n̂2Þ ¼
X

L;M;l1;l2

ALM
l1l2

fYl1ðn̂1Þ ⊗ Yl2ðn̂2ÞgLM; ð5Þ

without making assumptions about statistical isotropy
of the field. Here ALM

l1l2
are the coefficients of expan-

sion and fYl1 ⊗ Yl2gLM ¼ P
m1m2

CLM
l1m1l2m2

Yl1m1
Yl2m2

are
the bipolar spherical harmonic basis functions [7].
CLM
l1m1l2m2

are the Clebsch-Gordan coefficients whose
indices satisfy the properties (a) jl1 − l2j ≤ L ≤
jl1 þ l2j, (b) m1 þm2 ¼ M, (c) −l1 ≤ m1 ≤ l1, and
(d) −l2 ≤ m2 ≤ l2.
The harmonic space covariance matrix for a statistically

anisotropic field is fully described in terms of the BipoSH
coefficients as

hal1m2
al2m2

i ¼
X
LM

ALM
l1l2

CLM
l1m1l2m2

; ð6Þ

in complete analogy with Eq. (4). Therefore the BipoSH
coefficients completely characterize the statistical proper-
ties of a Gaussian, statistically anisotropic random field. It
can be shown that A00

ll ¼ ð−1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
Cl. Hence the

BipoSH coefficients are a generalization of the commonly
studied angular power spectrum. Note that Eq. (6) can also
be used to define an estimator for the BipoSH coefficients
as follows:

ÂLM
l1l2 ¼

X
m1m2

CLM
l1m1l2m2

al1m1
al2m2

: ð7Þ

It is easy to see that this is an unbiased estimator, since
it converges to the true BipoSH coefficients on averag-
ing over an ensemble of CMB skies. These BipoSH
coefficients have the following symmetry properties:

(i) exchange symmetry: Cðn̂1; n̂2Þ ¼ Cðn̂2; n̂1Þ

ALM
l2l1

¼ ð−1Þl1þl2−LALM
l1l2

; ð8Þ
(ii) reality condition: C�ðn̂1; n̂2Þ ¼ Cðn̂1; n̂2Þ

ALM
l1l2

� ¼ ð−1ÞMð−1Þl1þl2−LAL;−M
l1l2

: ð9Þ

Alternatively, following the triangularity condition
between fl1; l2; Lg, it is convenient to define the BipoSH
coefficients as ALM

l;lþD, where we set l1 ¼ l, and l2 ¼ lþD,
with the constraint that jDj ≤ L. Needless to say, following
the above-mentioned properties of theBipoSHcoefficients,
determining the BipoSH coefficients for 0 ≤ D ≤ L and
0 ≤ M ≤ L will amount to computing all the BipoSH
coefficients, ALM

l1l2
.

BipoSH has been a powerful tool in exploring isotropy
violation in a blind as well as honed manner [8]. It has
earlier been used to probe SI violation as induced due to
specific models of isotropy violation (phenomenological),
cosmic topology (cosmological) and beams (systematic)
[1,2,9–11].

III. EFFECT OF ISOTROPY-VIOLATING
PHENOMENA

Here we analytically derive the form of BipoSH coef-
ficients as a function of multipole l, induced by Doppler
boosting of the CMB sky. Following this, we derive the
effect of masking on BipoSH coefficients, in addition to the
anisotropy due to Doppler boost. Based on these analytic
studies, a new estimator is obtained to recover the Doppler
boost vector from a masked CMB sky.

A. BipoSH coefficients due to Doppler boosting
of CMB anisotropies

One of the known phenomena that leads to breakdown of
statistical isotropy is our relative motion (~v) with respect to
the CMB rest frame (i.e. the frame in which an observer
does not see a dipole). The strongest anisotropy in an
otherwise uniform background temperature of T 0 ¼
2.7255 K [12,13] is an excess (deficit) temperature in
the direction (opposite direction) of this relative motion.

The Doppler boost (~β ¼ ~v=c) that induces this large scale

dipole temperature anisotropy (=T 0
~β · n̂) has a well-

measured amplitude and direction given by j~βj ¼ 1.23 ×
10−3 and β̂ ¼ ð264°; 48°Þ in galactic coordinates, respec-
tively [14,15]. In addition to this dipole anisotropy, the
velocity boost also modulates and aberrates the CMB
temperature fluctuations leading to SI violation [16–21].
These aberration and modulation effects can be used to
make an independent measurement of the velocity of our
local motion. It has been measured with ESA’s Planck
satellite data also [3,22,23].
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Doppler-boosted CMB temperature anisotropies are
given by [22]

Tðn̂Þ ¼ T 0
~β · n̂þ Θðn̂ −∇ð~β · n̂ÞÞð1þ bν~β · n̂Þ; ð10Þ

where T and Θ correspond to boosted and unboosted

temperature anisotropies, respectively, and ~β ¼ ~v=c is the
Doppler boost vector. From Eq. (10) we see that, in addition
to the dominant dipole component due to the Doppler
effect, Doppler boosting also aberrates and modulates the
CMB anisotropies. The modulation component has a
frequency-dependent factor bν ¼ ðν=ν0Þ cothðν=2ν0Þ − 1,
where ν0 ¼ kBT 0=h ≈ 57 GHz.
For the rest of the discussion we will not bother with the

first term in Eq. (10) since we often work with dipole
subtracted maps. Evaluating the two-point correlation
function for the temperature anisotropies of a Doppler-
boosted CMB sky described in Eq. (10) and ignoring the
dipole term, it can be shown that the resultant BipoSH
coefficients can be cast in the following form:

ALM
l1l2

¼ ðALM
l1l2

Þ
ub:cmb

þ βLMHL
l1l2

; ð11Þ

up to first order in the isotropy-violating Doppler boost
field, βðn̂Þ ¼ ~β · n̂. Note that Doppler boosting generates
only the L ¼ 1 BipoSH modes. The term ðALM

l1l2
Þ
ub:cmb

corresponds to BipoSH coefficients due to unboosted
CMB anisotropies, βLM are the spherical harmonic coef-
ficients of βðn̂Þ, andHL

l1l2
is the shape function correspond-

ing to Doppler boosting given by

HL
l1l2

¼ bνðGL
l1l2

Þ
mod

− ðGL
l1l2

Þ
abr
; ð12Þ

where

ðGL
l1l2

Þ
mod

¼ Cl1 þ Cl2ffiffiffiffiffiffi
4π

p Πl1Πl2

ΠL
CL0
l10l20

; ð13aÞ

ðGL
l1l2

Þ
abr

¼ ½Cl1Fðl1; L; l2Þ þ Cl2Fðl2; L; l1Þ�ffiffiffiffiffiffi
4π

p

×
Πl1Πl2

ΠL
CL0
l10l20

; ð13bÞ

Fðl1; L; l2Þ ¼
l1ðl1 þ 1Þ þ LðLþ 1Þ − l2ðl2 þ 1Þ

2
; ð13cÞ

where Πl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
and ðGL

l1l2
Þ
mod

and ðGL
l1l2

Þ
abr

are
the shape functions due to modulation and aberration
effects, respectively, and are completely specified by the
angular power spectrum Cl.
A full sky minimum variance estimator for the velocity

boost can then be defined as a weighted linear combination
of the observed BipoSH coefficients, ALM

l1l2
. See Appendix A

for details.

B. Effect of masking on BipoSH coefficients

Even though an ideal CMB sky is isotropic, masking the
sky to avoid foregrounds makes it highly anisotropic. In this
section we derive the BipoSH coefficients arising due to the
process of masking. Let a masked CMB sky be defined as

~Tðn̂Þ ¼ Wðn̂ÞTðn̂Þ; ð14Þ

where ~T and T denote the masked and unmasked CMB sky,
respectively, and Wðn̂Þ denotes the mask used for the
analysis. Evaluating the two-point correlation function for
the masked CMB sky, it can be shown that the resultant
BipoSH coefficients are given by

~ALM
l1l2 ¼

X
l3l4

Πl3Πl4ffiffiffiffiffiffi
4π

p
X
l5l6

Πl5Πl6ffiffiffiffiffiffi
4π

p Cl10
l30l50

Cl20
l40l60

×
X

L0M0JK

8<
:

L l1 l2
L0 l3 l4
J l5 l6

9=
;

× ΠL0ΠJAL0M0
l3l4

WJK
l5l6

CLM
L0M0JK; ð15Þ

where ~ALM
l1l2 denotes the BipoSH coefficient for the masked

CMB sky, AL0M0
l3l4

denote the BipoSH coefficients of the full
sky map, which is not assumed to be statistically isotropic for
generality,WJK

l5l6
are the BipoSH coefficients of the mask and

fg3×3 denotes the 9j symbol. The mask BipoSH coefficients
are defined in the sameway as the CMB sky. This equation is
a generalization of the MASTER kernel [24] which
describes how the angular power spectrum (Cl) is modified
by mask. In the special case of L ¼ 0 and L0 ¼ 0, this
equation exactly reduces to the MASTER equation relating
full sky power spectrumCl to partial sky power spectrum ~Cl.

C. BipoSH of a masked anisotropic sky

The full sky BipoSH coefficients of an anisotropic
Doppler-boosted CMB sky are given by Eq. (11). Thus the
BipoSH coefficients of a masked Doppler-boosted CMB sky
can be obtained by substituting Eq. (11) in Eq. (15) to get

~ALM
l1l2 ¼ ð ~ALM

l1l2 Þub:cmb þ
X
L0M0

βL0M0KL0M0
LMl1l2

; ð16Þ

where

ð ~ALM
l1l2 Þub:cmb ¼ ð−1Þl1þl2þL

X
l3

ð−1Þl3Cl3

Π2
l3ffiffiffiffiffiffi
4π

p

×
X
l5l6

Πl5Πl6ffiffiffiffiffiffi
4π

p Cl10
l30l50

Cl20
l30l60

WLM
l5l6

×

�
l5 l6 L

l2 l1 l3

�
ð17Þ
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denotes the BipoSH coefficients generated due tomasking an
unboosted CMB sky characterized by Cl. βL0M0 are the

harmonic coefficients of the Doppler field βðn̂Þ ¼ ~β · n̂,
and the term fg2×3 denotes the 6j symbol. The modified
shape function (MSF) KL0M0

LMl1l2
, of the Doppler signal, is the

masked analogue of the full sky shape function HL
l1l2

in
Eq. (12) and is given by

KL0M0
LMl1l2

¼
X
l3l4

ΠL0HL0
l3l4

Πl3Πl4ffiffiffiffiffiffi
4π

p
X
l5l6

Πl5Πl6ffiffiffiffiffiffi
4π

p Cl10
l30l50

Cl20
l40l60

×
X
JK

8><
>:

L l1 l2
L0 l3 l4
J l5 l6

9>=
>;ΠJWJK

l5l6
CLM
L0M0JK: ð18Þ

Themodified shape functionKL0M0
LMl1l2

incorporates themixing
of modes fJKg due to the mask and the intrinsic anisotropic
modes fL0M0g, giving rise to the observed modes fLMg.
This coupling is captured by the Clebsch-Gordan coefficient
CLM
L0M0JK and the 9j symbol.
Hence, from Eq. (16), it can be seen that masking may

leak power from an intrinsic anisotropic mode L0 to any
observed mode L. Further note that the modified shape
function due to masking is now phase (M,M0) dependent
unlike in Eq. (12). Here we emphasize that the formalism
discussed in this section is very generic [8], since we
assumed no particular form of isotropy violation.

IV. PARTIAL SKY ESTIMATOR

A. Approximations

In general, masking leads to highly entangled modes as
seen from Eqs. (16) and (18). We now specifically consider
the case of BipoSH coefficients generated due to a Doppler-
boosted CMB sky. Though in a full sky Doppler-boosted
CMB sky the signal is only in L0 ¼ 1 mode of BipoSH
coefficients, the masked Doppler-boosted sky can have
power leaked to L ≠ 1 modes. The mode coupling of the
intrinsic anisotropic signal (L0 ¼ 1) with the mask indices
(J) giving rise to the observed modes (L) is tabulated in
Table I.
We now argue that, even though there is coupling between

different modes, it is reasonable to assume that only modes
with L0 ¼ L ¼ 1 and M ¼ M0, which we refer to as the
diagonal approximation, are sufficient to evaluate Eq. (16).
Most masks used in CMB analysis can at first order be

approximated as a band along the galactic equator where
the astrophysical emission from our own Galaxy is the
highest and hence have a significant azimuthal symmetry. It
can be argued that, for such a mask, the mixing kernel is
primarily diagonal in fM;M0g, motivated by the fact that
for a band mask, which has perfect azimuthal symmetry,

the fM;M0g coupling can be shown to be identically zero.
For mask BipoSH coefficients it is seen that the J ¼ 0
mode is the most dominant mode. Observing the various
couplings in Table I it can be seen that only the L ¼ 1mode
couples to L0 ¼ 1 mode via J ¼ 0, while all higher L > 1
modes couple to L0 ¼ 1 via J > 0, suggesting that the
contribution from terms where L ≠ L0 will be subdominant.
We follow these heuristic arguments by quantitatively

showing that the off-diagonal terms are in fact subdominant
by explicitly evaluating the kernel KL0M0

LMll0 . In Fig. 1 we
compare the full sky shape function HL

ll0 of Doppler

boosting with the modified shape function KL0M0
LMll0 ,

TABLE I. Illustrated here are the observed BipoSH indices (L)
that result from the mixing of an intrinsically anisotropic signal in
L0 ¼ 1 with the mask BipoSH indices (J). For a mask which is
largely azimuthally oriented, the dominant mask modes contrib-
uting to the mixing kernel are highlighted in bold.

Intrinsic anisotropic signal, L0 ¼ 1

Observed BipoSH
index, L

Mask BipoSH index, J ¼ jL − L0j to
Lþ L0

L ¼ 1 J ¼ 0; 1; 2
L ¼ 2 J ¼ 1; 2; 3
L ¼ 3 J ¼ 2; 3; 4

FIG. 1 (color online). In this figure we compare the full sky
shape function H1

l;lþ1 and the modified shape function KL0;M0
L;M;l;lþ1,

modified due to the mask, for the Doppler-boosted CMB sky. The
full sky shape function is independent of phase as it does not
depend on M. The most dominant term of the modified shape
function is the diagonal denoted by KL;M

L;M;l;lþ1, i.e. when L ¼ L0

and M ¼ M0. Also plotted are some of the off-diagonal terms of
the shape function, i.e. L ≠ L0 and M ≠ M0, which are seen to be
negligible when compared to the diagonal and hence ignored in
the analysis. Further note that, for the diagonal terms, there is an
M-dependent suppression of power as compared to H1

l;lþ1. The
varying suppression of power between modes corresponding to
different M is determined by the morphology of the mask.
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evaluated using the apodized version of the mask shown in
Fig. 2 (used for all analyses presented in this article). They
are plotted using WMAP normalization for even parity
BipoSH coefficients [1]. Note that the diagonal terms are
nearly 2 orders of magnitude larger than the off-diagonal
terms. This justifies the approximations suggested above.
Here it is also important to note that the modified shape

function is different for different phase modes (M ¼ 0; 1).
This distinction is purely determined by the details of the
mask. As we will see in the following sections, this
difference in MSF corresponding to different phase modes
(M) naturally compensates for the differential loss of signal
in these modes while recovering the Doppler field
harmonics.
Note that in Eq. (16) it is fairly complicated to alge-

braically solve for the Doppler field harmonics βLM, since it
appears inside a summation. By making the approxima-
tions discussed in this section, we have simplified Eq. (16)
to the form

~ALM
l1l2 ¼ ð ~ALM

l1l2 Þub:cmb þ βLMKLM
LMl1l2

: ð19Þ

This is particularly useful, since it can be used to define a
partial sky estimator, similar to the full sky estimator.

B. Weighted variance modified shape function
estimator (WVMSFE)

In this section we briefly discuss the Doppler estimator.
Equation (19) can be inverted to arrive at an estimator for
the Doppler field harmonics:

β̂LM ¼
~ALM
l1l2 − h ~ALM

l1l2 iub:cmb

KLM
LMl1l2

; ð20Þ

where ~ALM
l1l2 denotes the BipoSH coefficients derived from

the data maps and h ~ALM
l1l2 iub:cmb is the expected bias due to

mask and spatially varying noise in an observed map. The
expected bias is estimated from an ensemble of simulations

which are not Doppler boosted. This naive estimator can be
optimized by minimizing its variance arising due to cosmic
variance and instrument noise. The derivation of the
estimator is discussed in Appendix B. The estimator used
to reconstruct the Doppler boost vector is given by

β̂LM ¼
X
l1l2

ŵL
l1l2

ÂLM
l1l2

KLM
LMl1l2

; ð21Þ

where ÂLM
l1l2 ¼ ~ALM

l1l2 − h ~ALM
l1l2 iub:cmb are the bias-corrected

BipoSH coefficients. The weights ŵL
l1l2

which minimize the
variance are given by the expression

ŵL
l1l2

¼ 1P
M

�
σ̂LMl1l2

KLM
LMl1l2

�2

2
64
X

l0
1
l0
2

1

P
M

�
σ̂LM
l0
1
l0
2

KLM
LM0 l0

1
l0
2

�
2

3
75
−1

; ð22Þ

where

ðσ̂LMl1l2 Þ2 ¼ hj ~ALM
l1l2 j2iub:cmb − jh ~ALM

l1l2 iub:cmbj2 ð23Þ

is the variance of the unboosted map’s BipoSH coefficients.
We see that the effective weights areM dependent owing

to theM-dependent shape function in Eq. (21), unlike in the
full sky estimator. Since the estimator is weighed by the
modified shape function which accounts for loss of power
due to the mask, it naturally corrects for the reduced
amplitude of the Doppler vector due to masking.

V. DEMONSTRATION OF THE WVMSFE

We demonstrate the working of this newly proposed
method for reconstructing the Doppler boost, by evaluating
it on an ensemble of Doppler-boosted simulations. We also
run a parallel analysis on full skies to allow direct
comparison of its efficiency.

A. Generating simulations

We generated a set of 1000 simulations with character-
istics of the Planck 217 GHz instrument using the best fit
theoretical Cl corresponding to the cosmological parame-
ters from Planck 2013 data [25]. The isotropic simulations
were generated using the SYNFAST facility of HEALPix

[26,27]. The Doppler-boosted simulations are generated
using the Code for Non-Isotropic Gaussian Sky (CoNIGS)
algorithm [28]. We injected Doppler boost with amplitude

j~βj ¼ 1.23 × 10−3, pointing towards the galactic coordi-
nates ðl; bÞ ¼ ð264°; 48°Þ. Since these simulations are
specific to the 217 GHz channel, we set the frequency-
dependent modulation factor to bν ¼ 3.
The noise simulations were generated separately and

added to the CMB simulations. In our analysis, we first
worked with isotropic noise approximation and then with

FIG. 2 (color online). The unapodized galactic mask used in the
analysis is shown here. This f1; 0g mask has an available sky
fraction of fsky ≈ 0.78, which remains practically the same on
apodization.
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realistic spatially varying noise, so as to progressively
increase the complexity of the data. The isotropic noise
simulations were generated using a white Gaussian noise
spectrum corresponding to the 217 GHz instrument
(θfwhm ¼ 5 arcmin and σ ¼ 4.8 μK=K), as quoted in the
Planck Bluebook [29]. To simulate the full mission (five
surveys) noise levels, we divide the nominal (two surveys)
noise standard deviation by

ffiffiffiffiffiffiffiffi
5=2

p
.

The realistic, spatially varying noise maps were gen-
erated using the noise variance map (no cross-pixel
correlations) corresponding to Planck 217 GHz channel
available in the public archives [30].

B. Mask and modified shape function

We use the common analysis mask used in the Planck
analysis shown in Fig. 2. Sharp f0; 1g masks are not ideal
for any band-limited analysis as they result in heavy ringing
at the edges of the mask. To avoid this unnecessary
complication we apodize the mask with a Gaussian beam
of θfwhm ¼ 30 arcmin. The apodized mask has an effective
sky fraction of fsky ≈ 0.78 which is practically the same as
the sky fraction available with the unapodized mask.
Given the apodizedmask and the fiducial power spectrum

used to generate the simulations, we numerically evaluate
the modified shape function KLM

LMl1l2
using the expression in

Eq. (18). The 3j and 6j symbols are calculated using
standard routines available in the SLATEC numerical library
[31]. The modified shape functions evaluated and used in
our analysis are depicted in Fig. 1.

C. Analysis and results

In this section we test the recovery of the Doppler boost
vector from simulated data using the new estimator
presented in Sec. IV B. We perform the analysis using
the full sky simulations in addition to the analysis on
masked maps to allow direct comparison.
For the masked analysis, we first evaluate the ensemble-

averaged BipoSH coefficients and their variance from the
unboosted, noise-added, masked simulations. While the
average is used to subtract the biases due to the mask
and spatially varying noise, the variance is used in the
evaluation of the minimum variance estimator in Eq. (21).
The Doppler boost estimator is evaluated on each realiza-
tion of Doppler-boosted simulations, yielding an ensemble
of estimates of the Doppler field βðn̂Þ ¼ ~β · n̂. While the
direction of the Doppler boost is determined using the
HEALPix subroutine REMOVE_DIPOLE, the Doppler boost
amplitude is recovered by first estimating the power in the

reconstructed Doppler field: j~βj ¼ 1.5
ffiffiffiffiffiffiffiffiffiffi
β1=π

p
, where

β1 ¼
P

Mjβ1Mj2=3.
The Doppler power is not expected to vanish when

estimated from an unboosted sky, and this bias is termed
reconstruction noise. In order to have an unbiased estimate
of the Doppler amplitude, the reconstruction noise βN1

needs to be subtracted from the estimated Doppler power.
This bias can be dealt with semianalytically in the full sky
case (see Appendix A). For the masked analysis we
estimate the mean reconstruction noise by applying the
Doppler estimator on a set of masked unboosted simu-
lations. The unbiased estimate of the Doppler boost

amplitude is given by j~βj ¼ 1.5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðβ1 − βN1 Þ=π

p
. The full

sky analysis follows the same procedure as above, except
that we do not have to bias subtract the BipoSH coef-
ficients, since we only run the full sky analysis on
simulations with isotropic noise. Note that one still needs
to bias subtract the power in the Doppler field to arrive at
the correct Doppler boost amplitude.
Finally we run the analysis on two multipole ranges,

[2, 1000] and [2, 2000]. At high multipoles l≳ 1000, the
results can be potentially affected by point source masks.
By demonstrating robustness against a range of multipoles
used in the analysis, we have shown that our results are not
affected by the presence of point source masks.
Results of the reconstruction of Doppler boost vector are

summarized in Fig. 3. Table II lists the mean recovered
Doppler amplitude and direction from different multipole
bins. Note that the injected amplitude and direction are
consistently recovered from the masked as well as full sky
simulations with isotropic and anisotropic noise. We find
that the error on the recovered Doppler amplitude and
direction is larger when using smaller multipole range
l ∈ ½2; 1000� as compared to estimates from using the larger

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0 5×10-07

3×10-07 6×10-07 9×10-07 1.2×10-06 1.5×10-06 1.8×10-06

1×10-06 1.5×10-06 2×10-06 2.5×10-06

l=[2,2000]

Recovered mean
 
 

 0

 0.1

 0.2

 0.3

 0.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

Full sky/isotropic noise
Masked sky/isotropic noise

Masked sky/anisotropic noise

 0

 0.05

 0.1

 0.15

β1/π

 0

 0.1

 0.2

 0.3

0.8 0.85 0.9 0.95  1

β0.β

F
ra

ct
io

na
l C

ou
nt

s

l=[2,1000]

FIG. 3 (color online). This figure depicts the recovered Doppler
boost parameters from analysis on simulated CMB skies masked
with the apodized Planck common mask. While the left column
depicts the histogram of the recovered Doppler power corrected
for reconstruction noise bias, the right column depicts the
histogram of the cosine of angular separation β̂0 · β̂, where β̂0
and β̂ denote the injected and recovered direction, respectively.
The top and bottom row denote the results from analysis in the
multipole bins l ¼ ½2; 1000� and [2, 2000], respectively. The
injected Doppler power is denoted by a vertical gray line.
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multipole range l ∈ ½2; 2000� as expected. Similarly the
error on estimates from the masked sky is larger than the
error on estimate from the full sky, as expected due to
the reduced sky fraction owing to the mask. Finally we
reiterate that we do not have to perform any fsky corrections
to the Doppler amplitude as is usually required by other
methods.

VI. CONCLUSIONS

For any reliable cosmological analysis, masking the CMB
maps is inevitable to avoid biases due to galactic foregrounds.
The effects of masking on the angular power spectrum are
easy to reverse using the MASTER algorithm [24].
Here we developed a formalism similar to the MASTER

algorithm but extended to all BipoSH coefficients which
are a generalization of the well-known angular power
spectrum. Using this formalism, we derived an expression
which describes how masking modifies an arbitrary isot-
ropy-violating signal. Though we write down the mask
coupling matrix for the BipoSH coefficients, we do not try
to invert the equation as done in the MASTER algorithm.
We simplified the equation using the symmetry properties
of the mask and properties of Clebsch-Gordan coefficients.
As a very specific example, we studied how the Doppler

boost signal is modified due to the presence of the mask.
We showed that by making reasonable assumptions it is
possible to cast the BipoSH coefficients of a masked
Doppler-boosted sky in a form similar to the BipoSH
coefficients of Doppler-boosted full CMB sky, where the
full sky shape function is replaced by the modified shape
function. Eventually we obtained an estimator which
recovers the Doppler signal from a masked CMB sky.
This estimator naturally accounts for the loss of power due
to masking and hence does not require an additional fsky
correction as required by other quadratic estimators.
We generated a set of simulations whose statistical

properties are tailored to match the 217 GHz Planck maps.
We used an apodized form of Planck 2015 common mask
for our analysis. Finally we evaluated the newly derived
estimator on masked CMB skies to demonstrate its
unbiased recovery of the injected signal.

The Doppler amplitude from Planck 2013 data [22] is
estimated as projected Doppler amplitude along the known
dipole direction to obtain β∥ ¼ 0.75� 0.19 (in units of the
expected amplitude ¼ 1.23 × 10−3) from the 217 GHz
observed map. To allow for a direct comparison with this

estimate, we translate our ~β estimates from our current
simulations to projected Doppler amplitude to find
β∥ ¼ 1.0� 0.18. While we use the same multipole range
l ¼ ½500; 2000� as was used in the Planck 2013 analysis
and use the Planck noise model, we however use a different
mask. Note that, at face value, we get a slightly better error
bar. For a robust, direct comparison between the two
analysis methods, we would need to run our analysis on
the exact same data used for the Planck 2013 analysis.
While it is difficult to draw any strong conclusions with

this information, we find that our method is comparable to,
if not better than, the previous method used to estimate the
Doppler boost signal. Further this method has also been
used to estimate the dipole modulation signal from Planck
2015 data [3], demonstrating its versatility.
Finally we note that the method developed here is

generic and can be used to reconstruct any arbitrary form
of SI violation [32,33].
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APPENDIX A: FULL SKY STATISTIC

Many isotropy-violating signals can be written in the
generic form [8]

ÂLM
l1l2 ¼ ALM

l1l2
þ βLMHL

l1l2
; ðA1Þ

where ÂLM
l1l2 denote the BipoSH coefficients measured from

the data, ALM
l1l2

denote the BipoSH coefficients of the
statistically isotropic CMB sky, βLM denote the parameters

TABLE II. The mean recovered Doppler amplitude and direction obtained from 1000 simulations are tabulated
here. The boosted simulations were generated with a Doppler boost amplitude j~βj ¼ 1.23 × 10−3 pointing towards
the galactic coordinates ðl; bÞ ¼ ð264°; 48°Þ. The errors quoted are the standard deviation computed from
probability density function inferred from the ensemble of reconstructed Doppler power and direction ðl; bÞ.
Mask Δl jβj (×10−3) b∘ l∘

Full sky [2, 1000] 1.23� 0.33 46� 14 266� 26
(Isotropic noise) [2, 2000] 1.23� 0.18 47.7� 8.2 266� 13
Common mask [2, 1000] 1.28� 0.38 45� 15 262� 32
(Isotropic noise) [2, 2000] 1.28� 0.20 46.6� 9.2 262� 14
Common mask [2, 1000] 1.27� 0.38 44� 15 263� 30
(Anisotropic noise) [2, 2000] 1.28� 0.21 46.2� 9.2 262� 15
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of the isotropy-violating field, and HL
l1l2

denotes the
spectral shape function induced by the particular form of
isotropy violation.
For a statistically isotropic CMB field, hALM

l1l2
i ¼ 0 for

L > 0. Following Eq. (A1), we can define a naive estimator
for the parameters βLM as follows:

β̂LM ¼ 1P
l1l2

X
l1l2

ÂLM
l1l2

HL
l1l1

: ðA2Þ

However, the above estimator is not optimized to reduce
the variance due to noise. It is possible to recover a signal
with a better signal to noise ratio by redefining the
estimator as

β̂LM ¼
X
l1l2

ŵL
l1l2

ÂLM
l1l2

HL
l1l1

; ðA3Þ

where the weights ŵL
l1l2

are to be chosen so as to minimize
the quantity

Ĉββ
L ¼ hβ̂LMβ̂�LMi ðA4aÞ

¼
X
l0
1
l0
2

ðŵL
l0
1
l0
2
Þ2 2Cl0

1
Cl0

2

ðHL
l0
1
l0
2
Þ2 þ Cββ

L ðA4bÞ

¼ NL þ Cββ
L ; ðA4cÞ

where NL is the reconstruction noise that is minimized by
choosing appropriate weights and, Ĉββ

L and Cββ
L denote the

reconstructed and true power in the multipole L, respec-
tively, of any isotropy-violating field βðn̂Þ. Minimizing
the reconstruction noise results in down weighting the
noisy modes while giving more weightage to the signal-
dominated modes. In arriving at Eq. (A4b) we used the
covariance of BipoSH coefficients given by [5]

hALM
l1l2

AL0M0�
l0
1
l0
2

i ¼ Cl1Cl2 ½δl1l01δl2l02 þ δl1l02δl01l2 �δLL0δMM0 ; ðA5Þ

which is valid when L ≠ 0 and Lþ l1 þ l2 is even.
This minimization of power is evaluated subject to the

constraint
P

l1l2ŵ
L
l1l2

¼ 1, resulting in a constrained min-
imization problem, which is solved using the method of
Lagrange multipliers. The weights are determined by
minimizing the function

L ¼ Ĉββ
L − α

	X
l1l2

ŵL
l1l2

− 1



; ðA6Þ

where α is the Lagrange multiplier. Note that the weights
for each BipoSH mode are assumed to be independent of
each other in the following sense:

∂wL
l1l2

∂wL0
l1 0l2 0

¼ δLL0δl1l1 0δl2l2 0 : ðA7Þ

On setting the derivative of L with respect to the weights
ŵL0
l0
1
l0
2
to zero and simplifying the resultant equation it can be

shown that the weights that minimize the reconstruction
noise are given by

ŵL
l1l2

¼ ðHL
l1l2

Þ2
Cl1Cl2

	X
l0
1
l0
2

ðHL
l0
1
l0
2
Þ2

Cl0
1
Cl0

2


−1
: ðA8Þ

Finally the reconstruction noise of the minimum variance
estimator is given by

NL ¼
	X

l1l2

ðHL
l1l2

Þ2
2Cl1Cl2


−1
: ðA9Þ

APPENDIX B: PARTIAL SKY STATISTIC

We follow a procedure similar to the one described in
Appendix A, to arrive at a minimum variance estimator in
the presence of a mask. Following Eq. (19), we can define a
minimum variance estimator for any isotropy-violating
field βðn̂Þ as

β̂LM ¼
X
l1l2

ŵL
l1l2

ÂLM
l1l2

KLM
LMl1l2

; ðB1Þ

where ÂLM
l1l2 ¼ ÂLM

l1l2 − hALM
l1l2

i, ÂLM
l1l2 are the BipoSH coef-

ficients measured from masked data map and hALM
l1l2

i
denotes the bias due to all known systematic effects in
the data like masking, anisotropic noise, noncircular beam,
etc., estimated from masked simulated skies which incor-
porate all these systematic effects, other than the isotropy
violating phenomena in question. It is nontrivial to evaluate
the covariance of the BipoSH coefficients ÂLM

l1l2 analytically,
as can be done in the case of ideal full sky CMB. So we
approximate the BipoSH covariance to be diagonal, i.e.

hÂLM
l1l2 Â

LM�
l0
1
l0
2
iub:cmb ≈ ðσ̂LMl1l2 Þ2δl1l01δl2l02 ; ðB2Þ

where ðσ̂LMl1l2 Þ2 is the variance of BipoSH coefficients which
is estimated from simulations. This approximation has been
verified using simulations. We find that the off-diagonals
are at a few percent level or smaller compared to the
diagonal terms. Note that the covariance of BipoSH
coefficients have an explicit M dependence which was
absent in the full sky BipoSH covariance given in Eq. (A5).
We also assume that the weights for the different BipoSH
modes are independent of each other as in Eq. (A7). Using
these approximations and following the same procedure
discussed in Appendix A, one finds that the weights that
minimize the variance of the estimator are given by
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ŵL
l1l2

¼ 1P
M

�
σ̂LMl1l2

KLM
LMl1l2

�2

2
64
X

l0
1
l0
2

1

P
M

�
σ̂LM
l0
1
l0
2

KLM
LMl0

1
l0
2

�
2

3
75
−1

: ðB3Þ

Note that even though the weights themselves do not have an explicit M dependence, the effective weighting of the
BipoSH coefficients inferred from data isM dependent owing to the presence of the modified shape function [see Eq. (B1)].
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