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Approximating nonlinear dynamics with a truncated perturbative expansion may be accurate for a while,
but it, in general, breaks down at a long time scale that is one over the small expansion parameter. There are
interesting cases inwhich such breakdown does not happen.We provide amathematically general and precise
definition of those cases, in which we prove that the validity of truncated theory trivially extends to the long
time scale. This enables us to utilize numerical results, which are only obtainable within finite times, to
legitimately predict the dynamicswhen the expansion parameter goes to zero, and thus the long time scale goes
to infinity. In particular, this shows that existing noncollapsing solutions in the AdS (in)stability problem
persist to the zero-amplitude limit, opposing the conjecture by Dias, Horowitz, Marolf, and Santos
that predicts a shrinkage to measure zero [O. J. Dias et al., Classical Quantum Gravity 29, 235019
(2012)]. We also point out why the persistence of collapsing solutions is harder to prove, and how the recent
interesting progress by Bizon, Maliborski, and Rostoworowski has not yet proven this [P. Bizon, M.
Maliborski, and A. Rostworowski, arXiv:1506.03519].
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I. INTRODUCTION AND SUMMARY

A. Truncated perturbative expansion

A linear equation of motion Dϕ ¼ 0 often has close-
form analytical solutions. A nonlinear equation, Dϕ ¼
FnonlinearðϕÞ, on the other hand, usually does not. One can
attempt to expand Fnonlinear when ϕ is small. For example,

Dϕ ¼ FnonlinearðϕÞ ¼ ϕ2 þOðϕ3Þ: ð1:1Þ
When the amplitude is small, jϕj < ϵ ≪ 1, one can solve
the truncated equation of motion that includes the ϕ2 term
as a perturbative expansion of jϕ2=ϕj < ϵ from the linear
solutions. For a small enough choice of ϵ, this can be a
good enough approximation to the fully nonlinear theory.
Unfortunately, this will only work for a short amount of
time. After some time T ∼ ϵ−1, the correction from the first
nonlinear order accumulates and becomes comparable to
the original amplitude. Thus, the actual amplitude can
exceed ϵ significantly to invalidate the expansion.1

A slightly more subtle question arises while applying
such a truncated perturbation theory. Occasionally, there
can be accidental cancellations while solving it. Thus,
during the process, the amplitude may stay below ϵ for
T ∼ ϵ−1. Are we then able to trust these solutions?
It is very tempting to directly answer “no” to the above

question. When T ∼ ϵ−1, not only does the accumulated
contribution from ϕ2, which the theory does take into
account, modify ϕ significantly, but the ϕ3 term that the

theory discarded also modifies ϕ2, and so on. Since we
have truncated all those even higher order terms that may
have significant effects, the validity of the expansion
process seems to unsalvageably break down.
The above logic sounds reasonable but not entirely

correct. In this paper, we demonstrate that at exactly the
T ∼ ϵ−1 time scale, the opposite is true. These “nice”
solutions we occasionally find in the truncated theory
indeed faithfully represent similar solutions in the full
nonlinear theory. This idea is not entirely new. We are
certainly inspired by the application of the two-time
formalism and the renormalization flow technique in the
AdS-(in)stability problem, and both of them operate under
this same concept [1,2].2 However, one may get the
impression from those examples that additional techniques
are required to maintain the approximation over the long
time scale. One main point of this paper is to establish that
the validity of truncated theory extends trivially in those
cases. As long as the truncated theory is implemented
recursively, which is the natural way to solve any time
evolution anyway, it remains trustworthy in those cases.3

In Sec. II, we state and prove a theorem that guarantees a
truncated perturbative expansion, implemented recursively,

1The notion of “time” here is just to make connections to
practical problems for physicists. The general idea is valid
whenever one tries to solve perturbation theory from some
limited boundary conditions to a far-extended domain.

2We thank Luis Lehner for pointing out that some post-
Newtonian expansions to general relativity also show validity
at this long time scale [3].

3It is extremely likely that a capable mathematician can
directly point to a textbook material to back up this claim.
However, such a reference is difficult for us to find and may not
be very transparent to physicists. Furthermore, the actual math-
ematical proofs are quite simple, so we will simply construct and
present them in this paper. Any suggestion to include a math-
ematical reference is welcomed.
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to approximate the full nonlinear theory accurately in the
long time scale in the relevant cases. More concretely, this
theorem leads to the following two facts:

(i) If one solves the truncated theory and finds solutions
in which the amplitude remains small during the
long time scale, then similar solutions exist in the
full nonlinear theory.4

(ii) If numerical evolution of the full nonlinear theory
provides solutions in which the amplitude remains
small during the long time scale, then a truncated
theory can reproduce similar solutions.

Formally, the meaning of “similar” in the above state-
ments means that the difference between two solutions goes
to zero faster than their amplitudes in the zero amplitude
limit. This theorem provides a two-way bridge between
numerical and analytical works. Anything of this nature can
be quite useful. For example, numerical results are usually
limited to finite amplitudes and times, while the actual
physical questions might involve taking the limit of zero
amplitude and infinite time. With this theorem, we can start
from known numerical results and extend them to the
limiting case with analytical techniques.
In Sec. III, we prove another theorem that enables us to do

just that in the AdS (in)stability problem. The key is that the
truncated theory does not need to be exactly solved to be
useful. Since its form is simpler than the full nonlinear theory,
it can manifest useful properties, such as symmetries, to
facilitate further analysis. Since it is a truncated theory, the
symmetry might be an approximation itself, and it might be
naïvely expected to break down at the long time scale. Not
surprisingly, using a similar process, we can again prove that
such symmetry remains trustworthy in the relevant cases.
It is interesting to note that the conventional wisdom,

which suggested an unsalvageable breakdown at T ∼ ϵ−1, is
not entirely without merits. We can prove that both
theorems hold for T ¼ αϵ−1 an arbitrarily but ϵ-indepen-
dent value of α. However, pushing it further to a slightly
longer, ϵ-dependent time scale, for example, T ∼ ϵ−1.1, the
proofs immediately become obsolete. The situation for T ∼
ϵ−1ð− ln ϵÞ is also delicate and will not always hold.
Naturally, for time scales longer than T ∼ ϵ−1, one needs
to truncate the theory at an even higher order to maintain its
validity. A truncated theory up to the ϕm term will only be
valid up to T ∼ ϵ1−m.

B. AdS (in)stability problem

In Sec. IV,we apply both theorems to theAdS-(in)stability
problem [1,2,4–20]. Currently, the main focus of this
problem is indeed the consequence of the nonlinear

dynamics of gravitational self-interaction, at the time scale
that the leading-order expansion should generically break
down. Some have tried to connect such a breakdown to the
formation of black holes and further advocate that such
instability of AdS space is generic. In particular, Dias,
Horowitz, Marolf, and Santos made the stability island
conjecture [4]. Although at finite amplitudes, there are
numerical evidence and analytical arguments to support
measure-nonzero sets of noncollapsing solutions, they
claimed that the sets of these solutions shrink to measure
zero at the zero amplitude limit.
Since the relevant time scale goes to infinity at the zero

amplitude limit, such a conjecture cannot be directly tested
by numerical efforts. Nevertheless, by the two theorems we
prove in this paper, it becomes straightforward to show that
such a conjecture is in conflict with existing evidence. The
physical intuition of our argument was already outlined in
Ref. [18], and here we establish the rigorous mathematical
structure behind it.

(i) Theorem I allows us to connect noncollapsing
solutions [1,4,11,13] to analogous solutions in a
truncated theory, both at finite amplitudes.

(ii) Theorem II allows us to invoke the rescaling
symmetry in the truncated theory and establish those
solutions at arbitrarily smaller amplitudes.

(iii) Using Theorem I again, we can establish those
noncollapsing solutions in the full nonlinear theory
at arbitrarily smaller amplitudes.

Thus, if noncollapsing solutions form a set of measure
nonzero at finite amplitudes as current evidence implies,
then they persist to be a set of measure nonzero when
the amplitude approaches zero. Since the stability island
conjecture states that stable solutions should shrink
to sets of measure zero, it is in conflict with existing
evidence.
It is important to note that defeating the stability island

conjecture is not the end of the AdS (in)stability problem.
Another important question is whether collapsing solutions,
which likely also form a set of measure nonzero at finite
amplitudes, also persist down to the zero-amplitude limit. It is
easy to see why that question is harder to answer. Truncated
expansions of gravitational self-interaction, at least all those
that have been applied to the problem, do break down at a
certain point during black hole formation. Thus, theorem I
does not apply, one cannot establish a solid link between the
truncated dynamics to the fully nonlinear one, and the AdS
(in)stability problem remains unanswered.
In order to make an equally rigorous statement

about collapsing solutions, one will first need to pose a
weaker claim. Instead of arguing for the generality of black
hole formation, one should be content with “energy density
exceeding certain bounds” or something similar. This type
of claim is then more suited to be studied within the validity
of theorem I, and it is also a reasonable definition of
AdS instability. If arbitrarily small initial energy always

4Note that sometimes, especially in gauge theories, the full
nonlinear theory might impose a stronger constraint on accept-
able initial conditions. One should start from those acceptable
initial conditions in order to apply our theorem. We thank Ben
Freivogel for pointing this out.

FOTIOS DIMITRAKOPOULOS AND I-SHENG YANG PHYSICAL REVIEW D 92, 083013 (2015)

083013-2



evolves to have finite energy density somewhere, it is a
clear sign of a runaway behavior due to gravitational
attraction.5

Finally, we should note that the truncated theory is
already nonlinear and may be difficult to solve directly. If
one invokes another approximation while solving the
truncated theory, such as time averaging, then the process
becomes vulnerable to an additional form of breakdown,
such as the oscillating singularity seen in [22]. Even if
numerical observations in some cases demonstrate a
coincidence between such breakdown and black hole
formation, the link between them is not yet as rigorous
as the standard established in this paper for noncollapsing
solutions.

II. THEOREM I: CONDITIONALLY
EXTENDED VALIDITY

Consider a linear space H with a norm satisfying
triangular inequality,

kxþ yk ≤ kxk þ kyk; for all x; y ∈ H: ð2:1Þ

Then consider three smooth functions L, f, g all fromH to
itself. We require that LðxÞ ¼ 0 if and only if x ¼ 0, and it
is “semi-length-preserving,”

kLðxÞk ≤ kxk: ð2:2Þ

Note that this condition on the length is at no cost to
generality. Given any smooth function L̄ meeting the first
requirement, we can always rescale it so that it is exactly
length preserving and that it maintains its smoothness,

LðxÞ≡ kxk
kL̄ðxÞk L̄ðxÞ; if x ≠ 0;

LðxÞ≡ 0; when x ¼ 0: ð2:3Þ

Within some radius r < 1, f and g are two functions that
are both close to L but even closer to each other.
(1) Close to L: ∀kxk < r,

kfðxÞ−LðxÞk<akxjjm;
kgðxÞ−LðxÞk<akxkm; for some a> 0; m> 1:

ð2:4Þ

Doing so smoothly: ∀kxk, kyk < r and some
b > 0,

k½fðxÞ − LðxÞ� − ½fðyÞ − LðyÞ�k
< bkx − ykMaxðkxk; kykÞm−1;

k½gðxÞ − LðxÞ� − ½gðyÞ − LðyÞ�k
< bkx − ykMaxðkxk; kykÞm−1: ð2:5Þ

(2) Even closer to each other: ∀kxk < r,

kfðxÞ−gðxÞk<ckxkl; for some c> 0; l >m:

ð2:6Þ

Since this is a physics paper, we make the analogy to the
physical problem more transparent by using an example.
Choose a finite time Δt to evolve the linear equation of
motion Dϕ ¼ 0; L is given by L½ϕðtÞ� ¼ ϕðtþ ΔtÞ.
Similarly, evolving the full nonlinear theory Dϕ ¼
FnonlinearðϕÞ leads to a different solution ϕ that defines
f½ϕðtÞ� ¼ ϕðtþ ΔtÞ, and Dϕ ¼ ϕ2 defines g½ϕðtÞ� ¼
ϕðtþ ΔtÞ. Furthermore, the norm can often be defined
as the square root of conserved energy in the linear
evolution, which satisfies both the triangular inequality
and the semipreserving requirement.
From this analogy, evolution to a longer time scale is

naturally given by applying these functions recursively. We
thus define three sequences accordingly.

f0 ¼ g0 ¼ L0 ¼ x; Ln ¼ LðLn−1Þ;
fn ¼ fðfn−1Þ; gn ¼ gðgn−1Þ: ð2:7Þ

We prove a theorem which guarantees that after a time long
enough for both gn and fn to deviate significantly from Ln,
they can still stay close to each other.
Theorem I: For any finite δ > 0 and α > 0, there

exists 0 < ϵ < r such that if kfnk < ϵ for all
0 ≤ n < αϵ1−m, then kfn − gnk < δϵ.
Since fn is known to be of order ϵ, when its difference

from gn is arbitrarily smaller than ϵ, one remains a good
approximation of the other.
Proof: First, we define

Δn≡cϵl
Xn−1
i¼0

ð1þbϵm−1Þi¼ cϵl
ð1þbϵm−1Þn−1

bϵm−1 : ð2:8Þ

Within the range of n stated in theorem I, it is easy to
see that

Δn ≤ Δbαϵ1−mc < cϵl
ð1þ bϵm−1Þαϵ1−m − 1

bϵm−1

<
cϵ1þl−m

b
ðebα − 1Þ: ð2:9Þ

Since l > m, there is always a choice of ϵ such that
Δn < δϵ. We choose an ϵ small enough for that case,
and also small enough such that

5It is then natural to believe that black hole formation follows,
though it is still not guaranteed and it is hard to prove. For
example, a Gauss-Bonnet theory can behave the same up
to this point, but its mass gap forbids black hole formation
afterward [21].
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kfnk þ aϵm < ϵþ aϵm < r; ð2:10Þ
kfnk þ Δn < ϵþ δϵ < r: ð2:11Þ

Next, we use mathematical induction to prove that given
such choice of ϵ,

kfn − gnk ≤ Δn: ð2:12Þ
For n ¼ 0, this is trivially true,

kf0 − g0k ¼ 0 ≤ Δ0 ¼ 0: ð2:13Þ
Assume this is true for (n − 1),

kfn−1 − gn−1k ≤ Δn−1: ð2:14Þ
Combining it with Eqs. (2.6) and (2.5), we can derive the
next term in the sequence,

kfn − gnk ≤ kfðfn−1Þ − gðfn−1Þk þ kgðfn−1Þ − gðgn−1Þk
≤ cϵl þ ð1þ bϵm−1ÞΔn−1 ¼ Δn: ð2:15Þ

Thus, by mathematical induction, we have proven the
theorem.
Note that although in the early example for physical

intuitions we took f as the full nonlinear theory and g as
the truncated theory, their roles are actually interchangeable in
theorem I. Thus, we can use the theorem in both ways. If a
fully nonlinear solution, presumably obtained by numerical
methods, stays below ϵ, then theorem I guarantees that a
truncated theory can reproduce such a solution. The reverse is
also true. If the truncated theory leads to a solution that stays
below ϵ, then theorem I guarantees that this is a true solution
reproducible by numerical evolution of the full nonlinear
theory.
Also note that the truncated theory might belong to an

expansion that does not really converge to the full nonlinear
theory. It is quite common in field theories that a naive
expansion is asymptotic instead of convergent. Theorem I is
not concerned with whether such a full expansion is con-
vergent or not. It only requires that the truncated theory is a
good approximation to the full theory up to some specified
order, as stated in Eq. (2.6). Divergence of an expansion
scheme at higher orders does not invalidate our result.6

Finally, if one takes a closer look at Eq. (2.8), one can see
that if n is allowed to be larger than the ϵ1−m time scale, for
example, n ∼ ϵ−s with s > m − 1, then Δn fails to be
bounded from above in the ϵ → 0 limit. Since the upper
bound we use is already quite optimal, we believe that the
truncated theory breaks down at any longer time scale. In
particular, the theory does not concern l. Namely, inde-
pendent of how small the truncated error is, accumulation
beyond the ϵ1−m time scale always makes the truncated
dynamics a bad approximation for the full theory. Thus, the
conventional wisdom only requires a small correction.

Usually, the truncated theory breaks down at the ϵ1−m time
scale. Occasionally, it can still hold at exactly this time
scale but breaks down at any longer time scale.

III. THEOREM II: CONDITIONALLY
PRESERVED SYMMETRY

We consider an example in which the truncated theory
has an approximate scaling symmetry. Let LðxÞ ¼ x,
gðxÞ ¼ LðxÞ þ GðxÞ, such that for all kxk, kyk < r,

kGðxÞk < akxkm; ð3:1Þ

kGðxÞ −GðyÞk < b · kx − ykMaxðkxk; kykÞm−1; ð3:2Þ

kGðxÞ − NmGðx=NÞk < dkxkp; ð3:3Þ

for a given p > m and any N > 1. Namely, the linear
theory is trivial where Ln ¼ x does not evolve with n. The
only evolution for gn comes from the function GðxÞ, which
is for many purposes effectively an “xm term.” In this case,
it is reasonable to expect a rescaling symmetry: Reducing
the amplitude by a factor of N, but evolving for a time
longer by a factor ofNm−1, leads to roughly the same result.
Theorem II: For any finite δ > 0 and α > 0, there

exists 0 < ϵ < r such that if kgnðxÞk < ϵ for all
0 ≤ n < αϵ1−m, then

kNgnðx=NÞ − ð1 − βÞgn0 ðxÞ − βgn0þ1ðxÞk < δϵ: ð3:4Þ

Here, n0 ¼ bðnN1−mÞc is the largest integer smaller than or
equal to (nN1−m), and β ¼ ðnN1−mÞ − n0. This should be
valid for any N > 1 and for 0 ≤ n < αðϵ=NÞ1−m.
The physical intuition is as follows. Every term in the

rescaled sequence stays arbitrarily close to some weighted
average of the terms in the original sequence, which exactly
corresponds to the appropriate “time” (number of steps) of
the rescaling. We first prove this for a special case,
N ¼ 2

1
m−1. This case is particularly simple since such

rescaling exactly doubles the length of the sequence, and
β will be either 0 or 1=2, which leads to two specific
inequalities to prove:

����2 1
m−1g2n−1ðx=2 1

m−1Þ − gn−1ðxÞ þ gnðxÞ
2

���� ≤ C · ϵq; ð3:5Þ

k2 1
m−1g2nðx=2 1

m−1Þ − gnðxÞk ≤ C · ϵq; ð3:6Þ
for some C > 0 and q > 1. This will again be done by a
mathematical induction.
During the process, it should become clear that the proof

can be generalized to any N > 1. We will not present such a
proof because the larger variety of β values makes it more
tedious, although it is still straightforward. However, for the
self-completeness of this paper, what we need next is for N
to be arbitrarily large. Through another mathematical

6We thank Jorge Santos for pointing out the importance of this
point.
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induction, we can easily prove theorem II for N ¼ 2
k

m−1 an
arbitrarily positive integer k. It is still a bit tedious, so we
will present this in the Appendix.
Proof for N ¼ 2

1
m−1: We start by defining the mono-

tonically increasing function

Δn ¼
�
d
b
2m−1ϵp−mþ1 þ a

2
ϵm

���
1þ b

2
ð2ϵÞm−1

�
n
− 1

�
;

ð3:7Þ
with the properties

Δn < Δαðϵ=NÞ1−m ð3:8Þ

¼
�
d
b
2m−1ϵp−mþ1þa

2
ϵm

���
1þb

2
ð2ϵÞm−1

�
αðϵ=NÞ1−m

−1
�

<

�
d
b
2m−1ϵp−mþ1þa

2
ϵm

�
½e2m−1αb=4−1�<C ·ϵq;

Δnþ1¼Δn

�
1þb

2
ð2ϵÞm−1

�
þd
2
ϵpþab

4
ϵmð2ϵÞm−1: ð3:9Þ

The meaning of Eq. (3.8) is that, in the range we are
concerned with, Δn is bounded from above by a power

of ϵ higher than 1 since q ¼ Minfp −mþ 1; mg.
Therefore, we can always choose ϵ small enough such
that

kgnðxÞk þ Δn < ϵþ C · ϵq < r: ð3:10Þ

Given our choice of ϵ, we can employ mathematical
induction to prove that

����Ng2n−1ðx=NÞ − gn−1ðxÞ þ gnðxÞ
2

���� ≤ Δ2n−1 ð3:11Þ

kNg2nðx=NÞ − gnðxÞk ≤ Δ2n; ð3:12Þ

which proves Eqs. (3.5) and (3.6).
First, we observe that for n ¼ 0,

kNg0ðx=NÞ − g0ðxÞk ¼
����n x

N
− x

���� ¼ 0 < C · ϵq ð3:13Þ

is obviously true. Then, we assume that Eq. (3.12) is true
for n in the original sequence and for 2n in the rescaled
sequence. We can next prove the (2nþ 1) term in the
rescaled sequence,

����Ng2nþ1ðx=NÞ−gnðxÞþgnþ1ðxÞ
2

����¼
����Ng2nðx=NÞþNGðg2nðx=NÞÞ−gnðxÞ−

1

2
GðgnðxÞÞ

����
¼
����Ng2nðx=NÞþNGðg2nðx=NÞÞ−gnðxÞ−

1

2
GðgnðxÞÞþNGðgnðxÞ=NÞ−NGðgnðxÞ=NÞ

����
<kNg2nðx=NÞ−gnðxÞkþNkGðg2nðx=nÞÞ−GðgnðxÞ=NÞk

þ 1

Nm−1kGðgnðxÞÞ−NmGðgnðxÞ=NÞk<Δ2nþΔ2n
b

Nm−1 ðkΔ2nkþkgnðxÞkÞm−1þd
2
ϵp

<Δ2nþΔ2n
b
2
ðΔ2nþϵÞm−1þd

2
ϵp <Δ2nþΔ2n

b
2
ð2ϵÞm−1þd

2
ϵp <Δ2nþ1: ð3:14Þ

Similarly, we can prove the (2nþ 2) term in the rescaled sequence, which is the (nþ 1) term in the original sequence,

kNg2nþ2ðx=NÞ − gnþ1ðxÞk ¼
����Ng2nþ1ðx=NÞ þ NGðg2nþ1ðx=NÞÞ − 1

2
gnþ1ðxÞ

−
1

2
gnðxÞ −

1

2
GðgnðxÞÞ þ NG

�
gnðxÞ þ gnþ1ðxÞ

Nm

�
− NG

�
gnðxÞ þ gnþ1ðxÞ

Nm

�

þ NG

�
gnðxÞ
N

�
− NG

�
gnðxÞ
N

�����
<

����Ng2nþ1ðx=NÞ − gnþ1ðxÞ þ gnðxÞ
2

����þ N

����Gðg2nþ1ðx=NÞÞ − G

�
gnðxÞ þ gnþ1ðxÞ

Nm

�����
þ N

����G
�
gnðxÞ þ gnþ1ðxÞ

Nm

�
−G

�
gnðxÞ
N

�����þ N

����G
�
gnðxÞ
N

�
−

1

Nm−1GðgnðxÞÞ
����

< Δ2nþ1 þ Δ2nþ1

b
2
ð2ϵÞm−1 þ d

2
ϵp þ ab

4
ϵmð2ϵÞm−1 ¼ Δ2nþ2: ð3:15Þ

This completes the mathematical induction.
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Equation (3.9) takes basically the same form as Eq. (2.8).
Thus, theorem II also only holds up to exactly the ϵ1−m time
scale, but not any longer.

IV. APPLICATION: PERSISTENCE OF
STABILITY ISLANDS

First, we review the “stability island conjecture” argued
by Dias, Horowitz, Marolf, and Santos in Ref. [4].
Numerical simulations suggest that given a small but finite
initial amplitude ϕinit ∼ ϵ in AdS space with the Dirichlet
boundary condition, dynamical evolution can lead to black
hole formation at the long time scale T ∼ ϵ−2 [5].7

Meanwhile, some initial conditions do not lead to black
holes at the same time scale. In particular, there are special
solutions (set of measure zero) that stay exactly as they are
and do not collapse. These especially stable solutions are
called geons (in pure gravity) or boson stars or oscillons
(scalar field)[6,11,14].8 At finite amplitudes, they are not
only stable themselves, but they also stabilize an open
neighborhood in the phase space, forming stability islands
that prevent nearby initial conditions from collapsing into
black holes in the ∼ϵ−2 time scale.
Dias, Horowitz, Marolf, and Santos argued that such a

stabilization effect can be understood as breaking the AdS
resonance.9 It should lose strength as the geon’s own
amplitude decreases. Thus, such stability islands disappear
in the limit of zero amplitude. The easiest way to summarize
their conjecture is shown in the cuspyphase-space diagram in
Fig. 1. Other than the measure-zero set of exact geons or
boson stars, noncollapsing solutions at finite amplitude will
all end up collapsing as the amplitude goes to zero.
Next, we show that the requirements of both theorems I

and II are applicable to the AdS (in)stability problem. For
simplicity, we present the analysis on a massless scalar field
in global AdS space of the Dirichlet boundary condition.
The metric fluctuation in pure gravity will also meet the
requirements [4,16]. We avoid going into specific details of
the AdS dynamics, but we provide the relevant papers
where those details can be found.

(i) The linear space H we used to state both theorems
(see the beginning of Sec. II) contains all smooth
functions ϕð~rÞ on the domain of the entire spatial
slice of the AdS space with one global time between.

(ii) The function L evolves one such function forward
for one “AdS period,” namely, T ¼ 2πRAdS in the
explanation right below Eq. (2.6), using the fixed
background equation of motion. It includes no
gravitational self-interaction and is a linear function.
Actually, since the AdS spectrum has integer eigen-
values, the evolution is exactly periodic [25,26].
LðxÞ ¼ x is trivial, automatically conserves length,
and also meets the requirement for theorem II.

(iii) The definition of the norm is trickier. We first evolve
x, using the fixed-background evolution, for exactly
2πRAdS, and examine the maximum local energy
density that occurred during such an evolution. The
norm is defined to be the square root of this value,ffiffiffiffiffiffiffiffiffi
ρmax

p
. The evolution is linear, and the quantity is

both a maximum and effectively an absolute value;
thus, it satisfies the triangular inequality.10

(iv) The actual dynamics, including Einstein equations,
is clearly nonlinear. When the maximum energy
density is small, the gravitational backreaction is
well bounded. One can perform a recursive expan-
sion in which the leading-order correction to the
linear dynamics comes from coupling to its own
energy, ρϕ ∝ ϕ3 [5,18,27]. A theory truncated at
this order and the full nonlinear theory can be our f
and g, interchangeably, in theorem I with m ¼ 3.11

(v) The ϕ3 contributions calculated in different approxi-
mation methods might be different [5,18,27], but
they all satisfy the approximate rescaling symmetry
required for the function G in theorem II.

Now that we have established the applicability of both
theorems in this paper, the stability island conjecture can be
disproved in three simple steps.
(1) At a small but finite amplitude where measure-

nonzero sets of noncollapsing solutions exist (the
outermost thick arc in Fig. 1), apply theorem I to
translate them into solutions in the truncated theory.

(2) Use theorem II to scale down the above solutions to
arbitrarily small amplitudes. That means projecting
radially in Fig. 1 into an arc of the same angular span.

(3) Use theorem I again to translate these rescaled
solutions in the truncated theory back to the full
nonlinear theory. This establishes the existence of
noncollapsing solutions as a set of measure nonzero
(an arc of finite angular span in Fig. 1).127Note that for this purpose, m ¼ 3; thus, ϵ−2 is the relevant

time scale.
8There are also quasiperiodic solutions that do not stay exactly

the same but demonstrate a long-term periodic behavior, and the
energy density never gets large [1].

9In some sense, this argument [4] provides stronger support for
noncollapsing solutions to have a nonzero measure because it
goes beyond spherical symmetry. Current numerical results are
limited to spherical symmetry; thus, strictly speaking, we cannot
establish a nonzero measure for either collapsing or noncollaps-
ing results. This is why controversies over some numerical results
[23,24] should not undermine the belief that noncollapsing
solutions form a set of nonzero measure at a finite amplitude.

10The reason why we adopt this tortuous definition of norm is
to guarantee that the gravitational interaction during one AdS
time stays weak when the norm is small; thus, we can apply both
theorems. Note that defining total energy as the norm would not
serve this purpose.

11Such expansion, continued to higher orders, is likely to be
only asymptotic instead of convergent. As explained in Sec. II,
that does not cause a problem for our theorems.

12This only works for rescaling down to smaller amplitudes.
Rescaling to larger amplitudes can easily exceed the radius of
validity of perturbative expansion even at short time scales.
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Thus, we have established that the measure-nonzero
neighborhood stabilized by a geon at finite amplitude,
provided that it never evolves to high local energy density
during the long time scale, directly guarantees the same
measure-nonzero, noncollapsing neighborhood at arbitrar-
ily smaller amplitudes. This directly contradicts the stabil-
ity island conjecture.
It is interesting to note that the collapsing solutions

always have large energy density at a certain point; thus,
neither theorem we proved here is applicable. As a result,
one cannot establish their existence at arbitrarily small
amplitudes through a similar process. Therefore, the
opposite possibility to the stability island conjecture, that
collapsing solutions disappear into a set of measure zero at
zero amplitude, is still consistent with current evidence.
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APPENDIX: ARBITRARILY SMALL RESCALING

In Sec. III, we have proven theorem II for N ¼ 2
1

m−1.
Now, we generalize it to arbitrary N0 ¼ 2

k
m−1 ¼ Nk, for any

k ∈ Nþ:

kNkgnðx=NkÞ − ð1 − βkðnÞÞgb n
2k
cðxÞ − βkðnÞgb n

2k
cþ1ðxÞk

≤ C0 · ϵq; ðA1Þ

where we have written down explicitly the dependence of β
on k and n:

βkðnÞ ¼
2

nk
−
j n
2k

k
; ðA2Þ

which possesses the following properties for positive
integers j and l:

βkþ1ð2lÞ ¼ βkðlÞ; this is always true; ðA3Þ

βkþ1ð2lþ1Þ¼1

2
βkðlÞþ

1

2
βkðlþ1Þ; for lþ1≠ j ·2k; ðA4Þ

βkþ1ð2lþ1Þ¼ 1

2
βkðlÞþ

1

2
½1−βkðlþ1Þ�; for lþ1¼ j ·2k:

ðA5Þ
These follow naturally from the properties of the floor

function that

�
2lþ 1

2kþ1

	
¼

�
l
2k

	
is always true; ðA6Þ

and

�
2lþ 1

2kþ1

	
¼

�
lþ 1

2k

	
; when l ≠ j · 2k − 1; ðA7Þ

�
2lþ 1

2kþ1

	
¼

�
lþ 1

2k

	
− 1; when l ¼ j · 2k − 1: ðA8Þ

We now define

Fk ≡ C · ϵq
Xk
i¼0

Nið1−qÞ ¼ C · ϵq

1 − N1−q ð1 − Nkð1−qÞÞ ≤ C0 · ϵq;

ðA9Þ

for C0 ¼ C=ð1 − N1−qÞ. This converges as k → ∞, since
1 − q < 0, and satisfies the recursive relation

Fkþ1 ¼ Fk þ C · Nkð1−qÞ: ðA10Þ

Now we prove Eq. (A1) by induction. We have already
shown that it holds for k ¼ 1 in Sec. III; hence, assuming
that it holds for arbitrary k, we want to show that it holds for
kþ 1 as well.
It is helpful to split the proof into three parts: one for

n ¼ 2l, one for n ¼ 2lþ 1, with l ≠ j · 2k − 1, and one for
n ¼ 2lþ 1, with l ¼ j · 2k − 1.

FIG. 1 (color online). Phase-space diagrams of small initial
perturbations around empty AdS (central black dot) according to
the stability island conjecture. The radial direction represents field
amplitude (total energy), and the angular direction represents field
profile shape (energy distribution). Initial perturbations in the
shaded (blue) region will collapse into black holes at the∼ϵ−2 time
scale, while those in the unshaded region, around the exactly stable
geons (thick black line), will not. The unshaded region is cuspy,
showing that according to the conjecture, the angular span of
noncollapsing perturbations goes to zero as the amplitude goes to
zero. The right panel demonstrates the usage of both theorems we
proved in this paper. We can transport the known, noncollapsing
solutions, directly in the radial direction, to an arc of identical
angular span at an arbitrarily smaller radius. This is in direct
contradiction with the cuspy nature of the unshaded region.
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(1) Part 1: n ¼ 2l

kNkþ1g2lðx=Nkþ1Þ − ð1 − βkþ1ð2lÞÞgb 2l
2kþ1cðxÞ − βkþ1ð2lÞgb 2l

2kþ1cþ1ðxÞk

¼
����N · Nkg2l

�
x=Nk

N

�
− ð1 − βkðlÞÞgb 2l

2kþ1cðxÞ − βkðlÞgb 2l
2kþ1cþ1ðxÞ

���� < Nk

����Ng2l

�
x=Nk

N

�
− glðx=NkÞ

����
þ kNkglðx=NkÞ − ð1 − βkðlÞÞgb l

2k
cðxÞ − βkðlÞgb l

2k
cþ1ðxÞk < C · Nkð1−qÞ þ Fk ¼ Fkþ1: ðA11Þ

(2) Part 2: n ¼ 2lþ 1, with l ≠ j · 2k − 1

kNkþ1g2lþ1ðx=Nkþ1Þ − ð1 − βkþ1ð2lþ 1ÞÞgb2lþ1

2kþ1cðxÞ − βkþ1ð2lþ 1Þgb2lþ1

2kþ1cþ1ðxÞk

¼
����N · Nkg2lþ1

�
x=Nk

N

�
−
�
1 −

1

2
βkðlÞ −

1

2
βkðlþ 1Þ

�
gb2lþ1

2kþ1cðxÞ

−
1

2
ðβkðlÞ þ βkðlþ 1ÞÞgb2lþ1

2kþ1cþ1ðxÞ
���� < Nk

����Ng2lþ1

�
x=Nk

n

�
−
glðx=NkÞ þ glþ1ðx=NkÞ

2

����
þ 1

2
kNkglðx=NkÞ − ð1 − βkðlÞÞgb2lþ1

2kþ1cðxÞ − βkðlÞgb2lþ1

2kþ1cþ1ðxÞk

þ 1

2
kNkglþ1ðx=NkÞ − ð1 − βkðlþ 1ÞÞgb2lþ1

2kþ1cðxÞ − βkðlþ 1Þgb2lþ1

2kþ1cþ1ðxÞk < C · Nkð1−qÞ þ 2
1

2
Fk ¼ Fkþ1:

ðA12Þ

(3) Part 3: n ¼ 2lþ 1, with l ¼ j · 2k − 1

kNkþ1g2lþ1ðx=Nkþ1Þ − ð1 − βkþ1ð2lþ 1ÞÞgb2lþ1

2kþ1cðxÞ − βkþ1ð2lþ 1Þgb2lþ1

2kþ1cþ1ðxÞk

¼
����N · Nkg2lþ1

�
x=Nk

N

�
−
�
1 −

1

2
βkðlÞ −

1

2
ð1 − βkðlþ 1ÞÞ

�
gb2lþ1

2kþ1cðxÞ

−
1

2
ðβkðlÞ þ ð1 − βkðlþ 1ÞÞÞgb2lþ1

2kþ1cþ1ðxÞ
����

< Nk

����Ng2lþ1ðx=NkÞ − glðx=NkÞ þ glþ1ðx=NkÞ
2

����
þ 1

2

����Nkglðx=NkÞ − βkðlÞgb l
2k
cþ1ðxÞ − ð1 − βkðlÞÞgb l

2k
cðxÞ

����
þ 1

2
kNkglþ1ðx=NkÞ − βkðlþ 1Þgblþ1

2k
c−1ðxÞ − ð1 − βkðlþ 1ÞÞgblþ1

2k
cðxÞk

< C · Nkð1−qÞ þ 2
1

2
Fk ¼ Fkþ1: ðA13Þ

Here, we have used the fact that

βkðlþ 1Þgblþ1

2k
c−1ðxÞ ¼ βkðlþ 1Þgblþ1

2k
cþ1ðxÞ; ðA14Þ

since βkðj · 2kÞ ¼ 0.
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