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I. INTRODUCTION

An activity of many astrophysical sources (active galac-
tic nuclei, young stellar objects, galactic x-ray sources,
microquasars) is associated with the accretion. For this
reason, the accretion onto compact objects (neutron stars or
black holes) is the classical problem of modern astrophys-
ics (see, e.g., Lipunov [1] Shapiro and Teukolsky [2], and
references therein). At present the analytical approach,
whose foundation was laid back in the mid-twentieth
century [3,4], began to be supplanted by numerical sim-
ulations [5–9]. Analytical solutions were found only in
exceptional cases [10–16].
It should be emphasized that last time the focus of the

research has been shifted to numerical magnetohydrody-
namic simulations, within which framework it has become
possible to take into account the turbulent processes
associated with magnetic reconnection, magnetorotational
instability, etc. [17–19]. However, in our opinion, some
important features of the turbulent accretion can still be
understood on the ground of simple analytical model.
In our paper we discuss a problem of dynamics of a

solitary vortex against the background of spherical Bondi
flow. We consider the case of the vorticity similar to Sec. 5.1
from Kovalenko and Eremin [20] corresponding to the
second order of expansion in terms of our small parameter.
As to linear perturbations, their role was clarified by
Foglizzo [21,22]. Due to the isentropicity of the flow and
the specific case of the turbulence [v · ð∇ × ð∇ × vÞÞ ¼ 0 in
the linear approximation] described below linear perturba-
tions are absent.
In the first part, we formulate the basic equations of

ideal steady-state axisymmetric hydrodynamics, which are
known to be reduced to one second-order equation for the

stream function. Then, in the second part, the structure of
the solitary curl is discussed in detail. Finally, in the third
part we consider two toy models describing axisymmetric
turbulence. It is shown that the turbulence changes mainly
the effective gravity potential but not the effective pressure.

II. BASIC EQUATIONS

First of all, let us formulate basic hydrodynamical
equations describing axisymmetric stationary flows using
the spherical coordinate system. Then, as is well known (see
classical textbooks [23,24]), it is convenient to introduce the
potential Φðr; θÞ connected with the poloidal velocity vp
(which, by its definition, equals to ~v − ~vφ) and the number
density n as [25–27] [here and below we assume that all base
vectors ( ~er; ~eθ; ~eφ) are normalized to unity]

nvp ¼
∇Φ × eφ
2πr sin θ

: ð1Þ

This definition results in the following properties:
(i) The continuity equation ∇ · ðnvÞ ¼ 0 is satisfied

automatically.
(ii) Multiplying both sides of Eq. (1) by the area element

dS ¼ err2 sin θdθdφ and integrating over the spheri-
cal element of radius r, strained on a circle that
intersects the point ðr; θÞ, it is easy to verify that the
potential Φðr; θÞ has the meaning of the particle flux
through the circle r; θ; 0 < φ < 2π. In particular, the
total flux through the surface of the sphere of radius
r is Φtot ¼ Φðr; πÞ.

(iii) As v · ∇Φ ¼ 0, the velocity vectors v are located on
the surfaces Φðr; θÞ ¼ const.

In this case, three conserved quantities for energyEn, angular
momentum Ln, and the entropy s can be formulated as

En ¼ EnðΦÞ ¼
v2

2
þ wþ φg; ð2Þ*beskin@lpi.ru
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Ln ¼ LnðΦÞ ¼ vφr sin θ; ð3Þ

s ¼ sðΦÞ: ð4Þ

Here w is the specific enthalpy, and φg is the gravitational
potential.
In what follows we for simplicity consider the entropy

sðΦÞ to be constant. Then the equation for the stream
function Φðr; θÞ (which is no more than the projection of
the Euler equation onto the axis perpendicular to the
velocity vector v) looks like (cf. Beskin [25,26],
Heyvaerts [27] and classical textbooks [23,24])

ϖ2∇k

�
1

ϖ2n
∇kΦ

�
þ 4π2nLn

dLn

dΦ
− 4π2ϖ2n

dEn

dΦ
¼ 0;

ð5Þ
where ϖ ¼ r sin θ. This equation represents the balance of
forces in a normal direction to flow lines. In particular,
for spherically symmetric flow, i.e., for EnðΦÞ ¼ const,
LnðΦÞ ¼ 0, it has the solution

Φ ¼ Φ0ð1 − cos θÞ; ð6Þ
where Φ0 is the positive-valued constant in case of ejection
and negative-valued in case of accretion.
In the following, we deal with the linear angular operator

L̂θ ¼ sin θ
∂
∂θ

�
1

sin θ
∂
∂θ

�
; ð7Þ

originated from Eq. (5). It has eigenfunctions

Q0 ¼ 1 − cos θ; ð8Þ

Q1 ¼ sin2θ; ð9Þ

Q2 ¼ sin2θ cos θ; ð10Þ

� � �

Qm ¼ 2mm!ðm − 1Þ!
ð2mÞ! sin2θP0

mðcos θÞ; ð11Þ

and the eigenvalues

qm ¼ −mðmþ 1Þ: ð12Þ
Here PmðxÞ are the Legendre polynomials and the dash
indicates their derivatives.
Here and further we use the standard approach when the

small linear disturbances are analyzed on the background of
analytical solution, in our case—on the background of the
solution from Eq. (6). Let us consider now the small
disturbance of the spherically symmetric flow, so that one
can write down the flux function as

Φ ¼ Φ0½1 − cos θ þ ε2fðr; θÞ� ð13Þ

with the small parameter ε ≪ 1. Then Eq. (5) can be
linearized, while the equation for the perturbation function
fðr; θÞ is written as [25]

− ε2D
∂2f
∂r2 −

ε2

r2
ðDþ 1Þ sin θ ∂

∂θ
�

1

sin θ
∂f
∂θ

�
þ ε2Nr

∂f
∂r

¼ −
4π2n2r2

Φ2
0

sin θðDþ 1Þ dEn

dθ

þ 4π2n2

Φ2
0

ðDþ 1Þ Ln

sin θ
dLn

dθ
−
4π2n2

Φ2
0

cos θ
sin2θ

L2
n: ð14Þ

Here D ¼ −1þ c2s=v2, and Nr ¼ 2=r − 4π2n2r2GM=Φ2
0.

This equation allows us to seek the solution in the form

fðr; θÞ ¼
X∞
m¼0

gmðrÞQmðθÞ: ð15Þ

Introducing now dimensionless variables

x ¼ r
r�
; u ¼ n

n�
; l ¼ c2s

c2�
; ð16Þ

where the �-values correspond to the sonic surface (which
can be taken from the zero approximation), we can write
the ordinary differential equations describing the radial
functions gmðrÞ:

ð1 − x4lu2Þg00m þ 2

�
1

x
− x2u2

�
g0m þmðmþ 1Þx2lu2gm

¼ km
R2

r2�
x4lu4 − λm

R2

r2�
u2 − σmx6lu4: ð17Þ

Here g0m ¼ dgmðxÞ=dx, g00m ¼ d2gmðxÞ=dx2, and the
expansion coefficients σm, λm and km depend on the
disturbances as

sin θ
dEn

dθ
¼ ε2c2�

X∞
m¼0

σmQmðθÞ; ð18Þ

cos θ
sin2θ

L2
n ¼ ε2c2�r2�

X∞
m¼0

λmQmðθÞ; ð19Þ

Ln

sin θ
dLn

dθ
¼ ε2c2�r2�

X∞
m¼0

kmQmðθÞ: ð20Þ

Finally, the functions lðxÞ and uðxÞ correspond to the
spherically symmetric flow. For the polytropic equation of
state Pðn; sÞ ¼ AðsÞnΓ−1 we use here they are connected by
the relation l ¼ uΓ−1. As to the dimensionless number
density uðxÞ, it can be found from the ordinary differential
equation
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du
dx

¼ −2
u
x
ð1 − x3u2Þ
ð1 − x4lu2Þ ð21Þ

with the boundary conditions

uðxÞjx¼1 ¼ 1; ð22Þ

du
dx

����
x¼1

¼ −
4þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10 − 6Γ
p

Γþ 1
: ð23Þ

The second boundary condition from Eq. (23) could be
easily derived by L’Hopital expansion of (21). The choice
of sign corresponds to accretion, opposite to the case of
[28], where the process of ejection has been considered.
As for the boundary conditions for the system of

Eq. (20), they are taken analogous to the case of Bondi-
Hoyle accretion [25,28]:

ε2gmð1Þ ¼
ð2mÞ!

2mðmþ 1Þm!

�ðδEnÞm
c2�

−
ðL2

n=sin2θÞm
2c2�r2�

�
; ð24Þ

g0mðR=r�Þ ¼ 0; ð25Þ
where ð� � �Þm stands for the expansion in terms of the
Legendre polynomials, which can be found from energy
and angular momentum integral perturbations.

III. SOLITARY CURL

Now let us consider in detail the internal structure of the
quasispherical accretion with a small axisymmetric pertur-
bation localized near the axis θ ¼ π. In other words, we
suppose that the angular size of the vortex is small enough
(δθcurl ≪ 1). The main goal of this numerical calculation is
to find the disturbance function fðr; θÞ which gives us the
possibility to determine velocity components vθ and vφ,
i.e., the main characteristics of the perturbed flow.
To model the internal structure of the vortex, we

determine θ-dependent angular velocity ΩðθÞ in the form

ΩðθÞ ¼ Ω0 exp½−α2ð1þ cos θÞ�: ð26Þ
Here Ω0 gives the amplitude of considered curl and the
coefficient α≃ 10 (which are free parameters of our model)
is an inversed curl width. Certainly, we assume that the
perturbation is small in comparison with the main con-
tribution of the radial accretion.
Then the flow structure can be described by the system

(17), (21)–(25) formulated in the previous section. As to the
expansion coefficients km, λm and σm, they are to be
determined from Eqs. (18)–(20) and (24) on the outer
boundary of a flow r ¼ R. For our choice (26) the
disturbances have the form

δEnðθÞ ¼
Ω2

0 exp½−2α2ð1þ cos θÞ�R2sin2θ
2

; ð27Þ

δLnðθÞ ¼ Ω0 exp½−α2ð1þ cos θÞ�R2sin2θ: ð28Þ

As one can easily check, it gives ε ¼ Ω0R=c�.
Expansions (18)–(20) in terms of QmðθÞ contain some

numerical difficulties because the set of this functions is not
an orthogonal one, and, even though it converges, in our
case of very small curl width we can neglect just summands
with numbers larger than 50. Even in some trivial cases
like ΩðθÞ ∼ ð1 − θ2Þ these polynomials call a number of
numerical obstacles (e.g., bad-conditioned matrix of linear
equation for coefficients km, λm and σm, etc.).
In order to expand functions of integrals, we used the

auxiliary set of Chebyshev polynomials, which is orthogo-
nal and possesses a feature of generally faster convergence.
Using these polynomials, we could find all expansions with
the accuracy no worse than 10−3. As was shown in Sec. II,
the normalized density function uðxÞ can be derived from
Eq. (21) and boundary conditions (22) and (23). The results
of numerical calculations for different polytropic indices Γ
are shown in Fig. 1. In particular, as one can see, the density
is nearly constant in the subsonic regime (r ≫ r�).
An example of the numerical calculation of perturbation

function fðr; θÞ is shown in Fig. 2. We should stress that
fðr; θÞ turns actually zero outside the small region near the
axial curl. This statement allows us to assume as a zero
approximation that the turbulent accretion regime contain-
ing a number of curls can be considered as a set of
noninteracting ones.

FIG. 1. Dimensionless number density uðxÞ ¼ n=n� in region
1 ≤ x ≤ R=r� ¼ 10, Γ from 1.1 to 5=3.

FIG. 2. Normalized vθ in region 1 ≤ x ≤ R=r� ¼ 10,
0 ≤ θ ≤ π, Γ ¼ 4=3.
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Apart from the numerical solution, we can also find the
analytical asymptotic solutions in the supersonic region
x ≪ 1 where Eq. (17) can be rewritten as

g00m þ 3

2x
g0m þmðmþ 1Þ

2Γþ1
x−ð3Γþ1Þ=2gm þ λm

R2

r2�

1

4x3

¼ Oðx−3Þ: ð29Þ

Here we take into account that Γ < 5=3. Getting rid of all
parameters from the right part of this equation, one can
introduce a new function ym ¼ gm=ðλmR2=r2�Þ. Then
Eq. (29) can be rewritten as

y00m þ 3

2x
y0m þmðmþ 1Þ

2Γþ1
x−ð3Γþ1Þ=2ym þ 1

4x3
¼ Oðx−3Þ:

ð30Þ

Neglecting now all terms which are proportional to x−ν,
where ν > −3, we obtain that this equation has a universal
solution independent of the boundary conditions on the
outer boundary r ¼ R,

yðxÞ ¼ −
8

x
: ð31Þ

Remember that the same asymptotic behavior was obtained
by [11] for homogeneously rotating flow.
As was already stressed, numerical results allow us to

determine the vθ=vφ ratio around the curl. It is easy to show
that

vθ
vφ

¼ 2
ffiffiffi
2

p
επ

�
r�
R

�
7=2

pðr; θÞ; ð32Þ

where

pðr; θÞ ¼
P∞

m¼0 g
0
mðrÞQmðθÞ

uðrÞsin2θ exp½−α2ð1þ cos θÞ� : ð33Þ

In our calculation we put r�=R ¼ 0.1, so that the function
(33) is limited in area near the curl (jpðr; θÞj < 200).
Taking now into account that ε is a small parameter of
our expansion and jfðr; θÞj < 20, one can show that for
reasonable parameter ε the ratio jvθ=vφj in the area of
vortex has an order of ∼10−5 (see Fig. 3). Thus, we could
claim that vθ ≪ vφ, and then one can neglect all terms in
Navier-Stokes equations that consist of vθ.
In the same time, one can determine the vφ=vr ratio,

which will be useful in further consideration. Taking into
account (28) and deriving vr for transonic flow from the
zero order approximation, we get

vφ
vr

¼ n
n�

r
r�

R
r�

ε sin θ exp½−α2ð1þ cos θÞ�: ð34Þ

In the subsonic region r� ≤ r the absolute value of this ratio
has an order of 10−4. On the other hand, in the supersonic
region near the star (r ≈ rstar ≪ r�, where rstar is a star
radius) the value of (34) is approximately ðrstar=r�Þ−1=2
ðR=r�Þε sin θ expð−α2ð1þ cos θÞÞ, which sufficiently
depends on the accretor radius rstar.
Thus, according to (31), we cannot use our solution in

the limit r → 0. Indeed, analyzing the field line equation
rdθ=dr ¼ vθ=vr, we obtain that the asymptotic solution
survives until θ0 ≈ δθ, where θ0 ≪ 1 is an initial angular
size of a curl and δθ is a broadening parameter of the
streamline. Deriving the θ-component of the velocity from
(1) and taking vr of zero order, we get

dθ
dr

∼ ε2
∂f=∂r
sin θ

: ð35Þ

Assuming now that θ ≪ 1, one can expand Eq. (35) in θ
and neglecting all summands of m with m ≥ 2, we find

dθ
dr

∼ ε2θ
∂
∂r

R2

rr�
: ð36Þ

This equation can be simply integrated, and we obtain

ln
θ0 þ δθ

θ0
∼ ε2

R2

r�r
: ð37Þ

Hence, under the radius r ∼ ε2R2=r� we cannot use the
solution (31) as the disturbance becomes larger than unity.
In order to keep the solution up to star surface r ¼ rstar, we
should demand

ε2R2=r� < rstar: ð38Þ

It gives us the general condition of applicability of the
approach described above, unless we cannot use the
method of linear expansion of the Grad-Shafranov equa-
tion, and the turbulent flow is to be described in another

FIG. 3. vθ=vφ ratio in region 1 ≤ x ≤ 10; 19π=20 ≤ θ ≤ π.
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way which lies outside the consideration of the current
paper [20].

IV. TWO TOY MODELS

Let us suppose now that the turbulence in the accreting
matter can be described by the large number of axisym-
metric vortexes with different parameters Ω0 and α filling
all the accreting volume. Within this approach one can
construct two toy analytical models demonstrating how the
turbulence can affect the structure of the spherically
symmetric accretion.

A. Inviscous flow

The first model in which we neglect viscosity corre-
sponds to classical ideal spherically symmetric Bondi
accretion [3]. In this case one can consider the following
system of equations:

∇ðnvÞ ¼ 0; ð39Þ

ðv ·∇Þv ¼ −
∇P
ρ

−∇φg; ð40Þ

ðv ·∇Þs ¼ 0: ð41Þ

Following Bondi [3] we consider the polytropic equation
of state P ¼ Pðn; sÞ ¼ kðsÞnΓ resulting in polytropic index
Γ ≠ 1:

c2s ¼
Γk
mp

nΓ−1; ð42Þ

w ¼ c2s
Γ − 1

; ð43Þ

T ¼ mp

Γ
c2s : ð44Þ

Here again n (1=cm3) is the number density,mp (in g) is the
mass of particles (ϱ ¼ mpn is the mass density), s is the
entropy per one particle (dimensionless), w (in cm2=s2) is
the specific enthalpy, T (in erg) is the temperature in energy
units, and, finally, cs (cm=s) is the sound velocity.
As was demonstrated above, for a weak enough turbu-

lence level (38) for any individual curl one can neglect the θ-
component of the velocity perturbation in comparison with
the toroidal one vφ up to the central body r ¼ rstar. Thus, in
zero approximation one can put vθ ¼ 0, i.e., θ ¼ const. This
implies that, according to the angular momentum conserva-
tion law r sin θvφ ¼ const, we can write down

vφðr; θÞ ¼ ΩðθÞR
2

r
sin θ: ð45Þ

Here ΩðθÞ is a smooth function of θ that can be approx-
imately described as

ΩðθÞ ≈
�
Ω0; π − α−1 < θ < π;

0 0 < θ < π − α−1:
ð46Þ

In order to find the characteristic values of the accretion
flow we have to use energy and momentum integrals
conserving on streamlines. Taking into account an assertion
vr ≫ vφ ≫ vθ, we can neglect the θ-component of velocity
which gives

EnðθÞ ¼
v2rðrÞ
2

þ ωðrÞ þ φgðrÞ þ
L2ðθÞ

2r2sin2θ
; ð47Þ

LnðθÞ ¼ vφr sin θ ¼ ΩðθÞr2sin2θ: ð48Þ

Averaging now these integrals in θ and introducing a new
value

L2
av ≡

	
L2ðθÞ
sin2θ



ð49Þ

we obtain for the averaged energy integral

Eav ≡ hEnðθÞi ¼
v2rðrÞ
2

þ ωðrÞ þ φgðrÞ þ
L2
av

2r2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
φeffðrÞ

: ð50Þ

As we see, the two last terms can be considered as an
effective gravitational potential, as has also been proposed
in a number of papers [29,30].
Further calculations are quite similar to the classical

Bondi problem for the spherical flow. In other words, using
another integrals of motion, i.e., the total particle flux

Φ ¼ 4πr2nðrÞvrðrÞ ¼ const; ð51Þ

and the entropy s, one can rewrite the energy integral (50)
as

Eav ¼
Φ2

32π2n2r4
þ ΓkðsÞ

Γ − 1

nΓ−1

mp
−
GM
r

þ L2
av

2r2
: ð52Þ

It gives the following expression for the logarithmic
r-derivative of the number density

η1 ¼
r
n
dn
dr

¼
2 − GM

v2rr
þ L2

av
v2rr2

−1þ c2s
v2r

: ð53Þ

As for Bondi accretion, this derivative has a singularity on
the sonic surface vr ¼ cs ¼ c�. This implies that for a
smooth transition through the sonic surface r ¼ r�, the
additional condition is to be satisfied:
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2 −
GM
c2�r�

þ L2
av

c2�r2�
¼ 0: ð54Þ

Solving now (54) in terms of r� in this approximation,
we find

r� ¼
GM
2c2�

�
1 −

4L2
avc2�

G2M2

�
; ð55Þ

c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

5 − 3Γ

r
c∞

�
1þ 12ðΓ − 1Þ

ð5 − 3ΓÞ2
L2
avc2∞

G2M2

�
; ð56Þ

where c∞ is evaluated from

Eav ¼
c2∞

Γ − 1
: ð57Þ

Accordingly, we obtain for r�=r�B and c�=c�B ratios

r�
r�B

¼ 1 −
16

ð5 − 3ΓÞ2
L2
avc2∞

G2M2
; ð58Þ

c�
c�B

¼ 1þ 12ðΓ − 1Þ
ð5 − 3ΓÞ2

L2
avc2∞

G2M2
; ð59Þ

where c�B and r�B correspond to the classical Bondi
accretion.
The presence of vorticity not only changes sonic surface

parameters, but also effectively diminishes accretion rate:

_M
_MB

¼ r2�c�
r2�Bc�B

¼ 1 −
4ð11 − 4ΓÞ
ð5 − 3ΓÞ2

L2
avc2∞

G2M2
ð60Þ

in our order of precision. The similar expression for Bondi-
Hoyle accretion can be found in Krumholz et al. [31].
Finally, using the definition (49) for L2

av, we can rewrite
our criteria of the applicability (38) as L2

av ≪ GMrstar.
As rstar < r�, it can be finally rewritten as

Lav ≪
GM
c�

: ð61Þ

To sum up, one can conclude that the nonzero angular
momentum effectively decreases the gravitational force. In
other words, the presence of the angular momentum does
not allow matter to fall down as easy as in its absence.
Roughly speaking, we substitute our gravitating center with
one that possesses less mass. So, in the case of Bondi
accretion with a small angular momentum perturbation we
should modify the relations for sonic surface radius and
velocity—they decrease and rise respectively [32]. It is
important to note that we can consider the turbulent
accretion regime as one with a modified gravity potential.

B. Viscous flow

It this subsection we consider stationary axisymmetric
quasispherical flow of viscous fluid. Using the condition
jvrj ≫ jvφj ≫ jvθj, and neglecting all the terms containing
vθ, we obtain for the φ-component of the Euler equation [33]

vr
∂vφ
∂r þ vrvφ

r
¼ ν

�
∇2vφ −

vφ
r2sin2θ

�
: ð62Þ

For viscous flow it is convenient to determine the toroidal
component of the velocity vφ as

vφ ¼ Ωðr; θÞr sin θ; ð63Þ

wherewewill use the following form for the angular velocity
Ωðr; θÞ:

Ωðr; θÞ ¼ Ω0ðrÞ exp
�
−

θ2

2δðrÞ
�
: ð64Þ

Here Ω0 ¼ Ω0ðrÞ is an amplitude, and δ ¼ δðrÞ is a square
of effective angular width of an individual curl. Substituting
now vφ into Eq. (62), we obtain

_M
d
dr

ðΩr2 sin θÞ ¼ 4πr2η
sin2θ

d
dθ

�
sin3θ

dΩ
dθ

�
; ð65Þ

where

_M ¼ 4πr2ρvr ð66Þ

is the accretion rate remaining constant in stationary flow,
and η ¼ ρν is a dynamic viscous coefficient which can be
considered as a constant as well [33].
Using now Eq. (65), one can easily show that the total

angular momentum of an individual vortex conserves
(dL=dr ¼ 0). Indeed, internal friction connecting with
viscosity cannot change the total angular momentum of
the accreting matter. For this reason, together with (66), the
angular momentum

dL ¼ ρΩr2sin2θdφ sin θdθr2dr ð67Þ

can be rewritten as a full θ-derivative. This implies that the
right-hand side of Eq. (67) integrated over θ becomes zero.
Further, to determine the radial dependence of the curl

amplitude Ω0ðrÞ and the squared width δðrÞ, we substitute
the angular velocity Ω0ðr; θÞ (64) into ([33]) and expand it
in terms of θ near the axis, neglecting all the terms with the
power more than 3. As a result, we obtain two equations for
Ω0ðrÞ and δðrÞ:

_M
2πη

rΩ0ðrÞ þ
4r2Ω0ðrÞ

δðrÞ þ
_M

4πη
r2Ω0

0ðrÞ ¼ 0; ð68Þ
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− 18r2Ω0ðrÞ −
3 _M
2πη

rδðrÞΩ0ðrÞ − 10r2δðrÞΩ0ðrÞ

−
_M

2πη
rδ2ðrÞΩ0ðrÞ þ

3 _M
4πη

r2δ0ðrÞΩ0ðrÞ

−
_M

4πη
r2δ2ðrÞΩ0

0ðrÞ ¼ 0; ð69Þ

which have simple solutions

δðrÞ ¼ δ0 þ
8πηðr − r0Þ

_M
; ð70Þ

Ω0ðrÞ ¼ Ω0

r20
r2

�
8πηðr − r0Þ

_Mδ0
þ 1

�
−2
: ð71Þ

Introduction of a small vortex turbulence can be again
treated by modifying a gravitational potential as

φeff ¼ −
GM
r

þΩ2
0r

4
0δ0

4πr2

�
1þ 8πη

_Mδ0
ðr − r0Þ

�
−3
: ð72Þ

Thus, viscosity results in increasing of the vortex width
(δ0 < 0 for _M < 0 corresponding to accretion) and dimin-
ishing of the angular rotation. On the other hand, the role of
viscosity will be small if

8πηr0
j _Mjδ0

≪ 1: ð73Þ

For η → 0 we return to the previous result δðrÞ ¼ const,
Ω0ðrÞ ∝ r−2. Introducing now the Reynolds number as

Re ¼ ρvl
η

; ð74Þ

where ρ; v and l ¼ r0δ1=2 are characteristic values of a flow
and using expression (66), we can rewrite (73) as

Re ¼ j _Mj
4πr0η

≫ δ−1=20 : ð75Þ

This implies that the role of viscosity is small for turbu-
lent flow.
Certainly, the analysis presented above allows us to take

into consideration only an isolated set of curls. In reality,
the dense cellular turbulent structure possesses a number of
collective effects [34], which is to be described in another
way. The easiest method to proceed with the minimal
number of additional assumptions is to choose another
angular velocity profile.
As the total angular momentum of the accreting matter is

supposed to be zero, we will use the following expression
for the angular velocity:

Ωðr; θÞ ¼ Ω0ðrÞ exp
�
−
θ2

2δ

��
1 −

γ2

2δ
θ2
�
: ð76Þ

Here the parameter γ is to be chosen from the condition of
the zero total angular momentum

Z
j~rj≤R

dL ¼ 0; ð77Þ

which is equivalent to

Z
π

0

dθsin3θΩðr; θÞ ¼ 0: ð78Þ

One of its realizations can be seen in Fig. 4 where the
dashed line shows zero angular velocity level. A configu-
ration like this one represents the unit of cellular turbulent
structure, fulfilling the main requirements of its nature. To
simplify our calculations, we hold γ and δ on constant
values in order to get a simple equation on Ω0ðrÞ. Again,
we expand Eq. (65) in terms of θ to the first order. As a
result, we obtain for Ω0ðrÞ

Ω0ðrÞ ¼ Ω0

�
r0
r

�
2

exp

�
16πη
_M

ð1þ γ2Þ
δ

ðr0 − rÞ
�
: ð79Þ

In this case, the effective gravitational potential cannot be
derived for arbitrary parameters without special functions.
It can be written as

φeff ¼ −
GM
r

þ C ·
Ω2

0r
4
0

r2
exp

�
−
16πη

j _Mj
ð1þ γ2Þ

δ
ðr0 − rÞ

�
;

ð80Þ

where

C ¼ 1

2π

Z
π

0

dθ expð−θ2=δÞ
�
1 −

γ2θ2

2δ

�
2

sin2θ: ð81Þ

Choosing, for instance, γ ¼ 1=
ffiffiffi
2

p
and δ ¼ 10−4, it

gives C ≈ 3.4 × 10−8.

FIG. 4. Ratio Ω=Ω0 ¼ FðθÞ for 0 ≤ θ ≤ π=30.
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The expression under the exponential function in (79) is
always lower than zero, so the criterion of the importance of
viscosity effects can be formulated as

16πη

j _Mj
ð1þ γ2Þ

δ
r0 ≫ 1; ð82Þ

which is more convenient to discuss in terms of Reynolds
number

δ−1=2 ≫ Re: ð83Þ
Thus, for narrow vortex (i.e., for δ < 10−2) the viscosity
effects must be taken into account.

V. DISCUSSION AND CONCLUSION

We have considered the dynamics of a solitary axisym-
metric vortex against the background of Bondi accretion
flow. It was shown that if condition (38) is not satisfied, the
level of turbulence is high enough and the flow cannot be
considered as radial [35–37]. It is necessary to stress that

we consider the special case of the turbulence which is
nontrivial from the second order of the expansion only.
Scott and Lovelace [29] have already proposed an idea of

the inclusion of vortex terms into the effective gravitational
potential. In this paper the same approach is discussed
along with the impact of the vorticity on the quasispheri-
cally symmetric accretion.
Further, we described two analytical toy models that show

how the turbulence affects the structure of the spherically
symmetric flow. In particular, it was shown that the sonic
surface moves inwards because of effective diminishing of
gravitational force. Finally, a criterion to analyze the
importance of viscosity effects in the adiabatic flow filled
either by isolated or dense set of curls was formulated.
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