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We formulate a generic Newtonian-like analogous potential for static spherically symmetric general
relativistic (GR) spacetime and subsequently derived proper Newtonian-like analogous potential
corresponding to Janis-Newman-Winicour (JNW) and Reissner-Nordström (RN) spacetimes, both
exhibiting naked singularities. The derived potentials were found to reproduce the entire GR features
including the orbital dynamics of the test particle motion and the orbital trajectories, with precise accuracy.
The nature of the particle orbital dynamics including their trajectory profiles in JNW and RN geometries
show altogether different behaviors with distinctive traits as compared to the nature of particle dynamics in
Schwarzschild geometry. Exploiting the Newtonian-like analogous potentials, we found that the radiative
efficiency of a geometrically thin and optically thick Keplerian accretion disk around naked singularities
corresponding to both JNW and RN geometries, in general, is always higher than that for Schwarzschild
geometry. The derived potentials would thus be useful to study astrophysical processes, especially to
investigate more complex accretion phenomena in active galactic nuclei (AGNs) or in x-ray binaries
(XRBs) in the presence of naked singularities and thereby to explore any noticeable differences in their
observational features from those in the presence of black holes (BHs) to ascertain outstanding debatable
issues relating to gravity—whether the end state of gravitational collapse in our physical Universe renders
BH or naked singularity.
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I. INTRODUCTION

An inevitable feature of exact solutions in general
relativity under different general physical conditions is
the occurrence of singularities. Whether such singularities
will always be covered (by the event horizon) to distant
observers or not is an interesting unresolved question. The
cosmic censorship conjecture [1] prevents the development
of a naked singularity generically in realistic gravitational
collapse. However, the question of cosmic censorship is
still open due to lack of any rigorous proof of the
conjecture.
If naked singularities exist in nature as real astrophysical

objects, it is worthwhile to explore whether the naked
singularities give different observational predictions than
those due to black holes (BHs), which could be utilized
to discriminate these two objects observationally.
Gravitational lensing by naked singularities, particularly
in the strong field regime, is found to have some interesting
characteristics different from those by BHs [2]. The time
delay between successive relativistic images in gravitational
lensing also exhibit different behaviors for naked singularity
and BH lens. Even the time delays of relativistic images are
found to be negative for strongly naked singularity solutions
[3]. The fluxes of escaping particles produced in an ultra-
high energy collision of particles in the vicinity of a naked

singularity also bear the characteristics of a naked singu-
larity [4]. The properties of stable circular orbits around a
naked singularity solution are significantly different from
those around a Schwarzschild BH with the same mass, and
thus the accretion disk around the naked singularity could
be observationally distinguished from that around a BH [5].
It has been argued innumerable times in the literature

about the necessity of using pseudo-Newtonian potentials
(PNPs) [6–8] to study complex accretion phenomena
around BHs/compact object, ever since the seminal work
of Paczyński and Witta [9]. Series of PNPs or Newtonian-
like analogous potentials of the corresponding relativistic
geometries to date that exist in the literature [6–20],
however, are mostly proposed for corresponding BH
solutions. In this work we construct PNPs for the naked
singularity solutions, corresponding to two “static non-
vacuum solutions” to Einstein’s field equations: the Janis-
Newman-Winicour (JNW) metric [21], which is an exact
solution of general relativistic (GR) field equations in the
presence of a minimally coupled massless scalar field
exhibiting naked singularity, and the Reissner-Nordström
(RN) solution, which is the well known unique asymptoti-
cally flat solution of the Einstein-Maxwell equations
describing a charged nonrotating metric that also exhibits
naked singularity for certain choices of solution parame-
ters. We formulate the corresponding PNPs proceeding
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directly from the conserved Hamiltonian of the system
following [7,8,20]. We refer to these PNPs as Newtonian-
like analogous potentials (NAP).
Note that NAP for the RN geometry could also be

obtained from a generic expression given in [22] but the
formulation could not be applicable to JNW spacetime.
Therefore we first deduce a proper potential analogue in the
Newtonian framework corresponding to a most generalized
form of static GR spacetime, which is therefore applicable
to JNW metric. We study the complete orbital dynamics of
the test particle motion exploiting NAPs for JNW and RN
geometries and compare them with the results for the
Schwarzschild geometry as well as among themselves. We
also study extensively the general orbital trajectory profiles
for both these geometries, in the modified Newtonian
analogue. Apart from the use of these potentials to
investigate the dynamical nature of accretion flows, the
Newtonian analogous potentials could be comprehensively
used for generic astrophysical purposes relevant to JNW
and RN geometries. In recent times, some properties of the
circular orbit dynamics of test particle motion have been
investigated in both JNW and RN spacetimes [23–25] in
GR framework that can be reproduced employing
relevant NAPs.
In the next section, we derive a generic Newtonian

analogous potential for a general class of static GR
spacetime. Subsequently in Secs. III and IV, we analyze
particle trajectories for the JNW and RN metrics, respec-
tively, in the Newtonian analogous framework, laying
emphasis on circular orbital dynamics. In Sec. V, we
investigate the behavior of the trajectory profiles of the
test particle corresponding to both JNWand RN geometries
comprehensively, with a comparison among themselves and
that with the Schwarzschild case. In Sec. VI, we apply the
NAPs corresponding to JNWand RN geometries to analyze
a simplistic accretion flow system. In Sec. VII we furnish a
general discussion on our methods and results. Finally, we
culminate in Sec. VIII with a summary and conclusion.

II. FORMULATION OF A NEWTONIAN
ANALOGOUS POTENTIAL CORRESPONDING

TO THE MOST GENERAL STATIC
GR SPACETIME

In general relativity, static spacetimes are among the
simplest class of Lorentzian manifolds with a nonvanishing
timelike irrotational Killing vector field Kα. As we intend
to study both JNW and RN metrics, in a standard spherical
coordinates system, we choose to write the static GR
spacetime represented by the form

ds2 ¼ −fðrÞβc2dt2 þ 1

fðrÞβ dr
2 þ fðrÞ1−βr2dΩ2; ð1Þ

where fðrÞ is the generic metric function and β is an
arbitrary constant; dΩ2 ¼ dθ2 þ sin2θdϕ2. With β ¼ 1,

ds2 reduces to the usual static geometries like
Schwarzschild or Schwarzschild–de Sitter or RN with a
suitable choice of fðrÞ. The Lagrangian density of the
particle of mass m in this spacetime is then given by

2L¼−fðrÞβc2
�
dt
dτ

�
2

þ 1

fðrÞβ
�
dr
dτ

�
2

þfðrÞ1−βr2
�
dΩ
dτ

�
2

:

ð2Þ

From the symmetries, the two constants of motion corre-
sponding to two ignorable coordinates t and Ω are given by

Pt ¼
∂L
∂~t ¼ −c2fðrÞβ dt

dτ
¼ const ¼ −ϵ ð3Þ

and

PΩ ¼ ∂L
∂ ~Ω

¼ r2fðrÞ1−β dΩ
dτ

¼ const ¼ λ; ð4Þ

where ϵ and λ are the specific energy and the specific
generalized angular momentum of the orbiting particle,
respectively. Here ~t ¼ dt=dτ and ~Ω ¼ dΩ=dτ, the deriva-
tives with respect to the proper time τ. Using Eq. (3) we can
write

dt
dτ

¼ ϵ

c2
1

fðrÞβ : ð5Þ

We can write L, given by

2L ¼ gνμpνpμ ¼ −m2c2; ð6Þ

which is itself a constant in the local inertial frame. Using
the above equations, we obtain

�
dr
dτ

�
2

¼
�
ϵ2

c2
− c2

�
− c2ðfðrÞβ − 1Þ − fðrÞ2β−1 λ

2

r2
: ð7Þ

We define EGN ¼ ðϵ2 − c4Þ=2c2 in the local inertial frame
of the test particle motion, which is also the conserved
Hamiltonian of the system (see [8,9] for a discussion).
“GN” symbolizes “GR Newtonian.” In the low energy limit
of the test particle motion, i.e., ϵ=c2 ∼ 1, using Eqs. (5)
and (6), we obtain dr=dt as given by

dr
dt

¼ fðrÞβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EGN − c2ðfðrÞβ − 1Þ − _Ω2 r2

fðrÞ2γ−1

s
; ð8Þ

where _Ω ¼ dΩ=dt ¼ fðrÞ2β−1λ=r2 is the derivative with
respect to coordinate time t. In the low energy limit of the
test particle motion, which is our necessary condition
for the potential formulation, we write the generalized
conserved Hamiltonian using Eq. (8), given by
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EGN ¼ 1

2

�
_r2

f2β
þ r2 _Ω2

f2β−1

�
þ c2

2
ðfβ − 1Þ: ð9Þ

Thus the generalized Hamiltonian EGN in the low energy
limit should be equivalent to the Hamiltonian in the
Newtonian regime. In the spherical polar geometry, the
Hamiltonian in the Newtonian regime with a generalized
potential will be equivalent to Eq. (9), as given by

EGN ≡ 1

2
ð_r2 þ r2 _Ω2Þ þ VGN − _r

∂VGN

∂ _r − _Ω
∂VGN

∂ _Ω
; ð10Þ

where T ¼ 1=2ð_r2 þ r2 _Ω2Þ is the nonrelativistic specific
kinetic energy of the test particle. VGN in Eq. (10) is the
Newtonian analogous potential that would then be given by

VGN ¼ c2ðfβ − 1Þ
2

−
�
1 − f2β−1

2f2β−1

�

×

�
f2β − 1

fðf2β−1 − 1Þ _r
2 þ r2 _Ω2

�
: ð11Þ

Overdots here always denote the derivative with respect to
coordinate time t. Thus, VGN in Eq. (11) is the most
generalized three-dimensional potential in spherical geom-
etry in the modified Newtonian analogue corresponding to
any generalized static GR metric in the form given by
Eq. (1), in the low energy limit of the test particle motion.
The first term of the Newtonian analogous potential
contains the explicit information of the source along with
the extra field coupled with the curvature. Without any
contribution from the external coupling terms, this term

reproduces the classical Newtonian gravity for a purely
spherically symmetric mass distribution of the source. The
second term contains the explicit information of the test
particle velocity, accountable for the approximate relativ-
istic modification of the classical Newtonian gravity. In the
next two sections we will analyze complete orbital dynam-
ics of the test particle motion in the gravitational field of
two generalized nonvacuum static spacetimes: JNW and
RN geometries, in the Newtonian analogous framework.

III. ORBITAL DYNAMICS AROUND
JNW SPACETIME

We first analyze the test particle dynamics around JNW
geometry in the modified Newtonian analogue and compare
that with the corresponding GR results. The JNW metric is
the static spherically symmetric solution of the GR field
equations in the presence of a minimally coupled scalar field.
It exhibits naked singularity having a constant scalar charge
q. For JNW geometry, the arbitrary constant in Eq. (1) is
β ¼ γ, and the metric function of JNW geometry is
fðrÞ ¼ 1 − 2rs

γr , where rs ¼ GM=c2 and γ is a constant

parameter. The scalar field is φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−γ2Þ
16π

q
ln ð1 − 2GM

γc2r Þ. The
real scalar field demands 0 < γ ≤ 1 where γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þq2=r2s
p .

The metric function corresponding to JNW geometry
diverges at γr − 2rs ¼ 0 exhibiting naked singularity when
γ ≠ 1. Using the relation of fðrÞ, and γ, the three-
dimensional generalized potential in spherical geometry in
the Newtonian analogue corresponding to JNW geometry in
the low energy limit is obtained using Eq. (11), given by

VJNW ¼ c2

2

��
1 −

2rs
γr

�
γ

− 1

�
−
�ðγrÞ2γ−1 − ðγr − 2rsÞ2γ−1

2ðγr − 2rsÞ2γ−1
�� ðγr − 2rsÞ2γ − ðγrÞ2γ

ðγr − 2rsÞ½ðγr − 2rsÞ2γ−1 − ðγrÞ2γ−1� _r
2 þ r2 _Ω2

�
; ð12Þ

The Newtonian analogous potential in Eq. (12) would be referred to as JNW analogous potential. The timelike circular
geodesics which we would be interested in are possible only for r > 2rs=γ. With γ ¼ 1, we recover the usual Schwarzschild
BH solution and the corresponding Newtonian analogous potential. The Lagrangian per unit mass corresponding to this
potential is given by

LJNW ¼ ðγrÞ2γ−1
2

�
γr_r2

ðγr − 2rsÞ2γ
þ r2 _Ω2

ðγr − 2rsÞ2γ−1
�
−
c2

2

��
1 −

2rs
γr

�
γ

− 1

�
; ð13Þ

where _Ω2 ¼ _θ2 þ sin2 θ _ϕ2. We next compute the conserved specific angular momentum and specific Hamiltonian using
VJNW, which are given by

λJNW ¼ ðγrÞ2γ−1r2 _Ω
ðγr − 2rsÞ2γ−1

ð14Þ

and

EJNW ¼ ðγrÞ2γ−1
2

�
γr_r2

ðγr − 2rsÞ2γ
þ r2 _Ω2

ðγr − 2rsÞ2γ−1
�
þ c2

2

��
1 −

2rs
γr

�
γ

− 1

�
; ð15Þ
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respectively. Using Eqs. (14) and (15), _r is given by

dr
dt

¼
�
1 −

2rs
γr

�
γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EJNW − c2

ðγr − 2rsÞγ − ðγrÞγ
ðγrÞγ −

ðγr − 2rsÞ2γ−1
ðγrÞ2γ−1

λ2JNW
r2

s
; ð16Þ

which is exactly equivalent to _r in general relativity in the low energy limit. Next we furnish the JNWanalogous potential in
terms of conserved Hamiltonian EJNW and angular momentum λJNW, given by

VJNW ¼ c2

2

��
1 −

2rs
γr

�
γ

− 1

�
−
1

2

�
1 −

�
1 −

2rs
γr

�
2γ−1
��

λ2JNW
r2

ðγr − 2rsÞ2γ−1
ðγrÞ2γ−1

�
1 −

1

γr
ðγrÞ2γ − ðγr − 2rsÞ2γ

ðγrÞ2γ−1 − ðγr − 2rsÞ2γ−1
��

−
1

2

�
1 −

�
1 −

2rs
γr

�
2γ
��

2EJNW − c2
ðγr − 2rsÞγ − ðγrÞγ

ðγrÞγ
�
: ð17Þ

In Fig. 1 we depict the radial profiles of VJNW for different λJNW corresponding to different γ considering the low energy
limit as well as the semirelativistic energy of the test particle motion. With the increase in λJNW and simultaneously with the
decrease in γ (i.e., as one departs more from Schwarzschild BH solution), the natures of the profiles of VJNW show
contrasting behavior as compared to the scenario in the Schwarzschild case.
We next obtain the equation of the orbital trajectory using Eqs. (14) and (16), given by

�
dr
dΩ

�
2

¼ r4

λ2JNW

�
1 −

2rs
γr

�
2ð1−γÞ�

2EJNW − c2
ðγr − 2rsÞγ − ðγrÞγ

ðγrÞγ −
ðγr − 2rsÞ2γ−1

ðγrÞ2γ−1
λ2JNW
r2

�
; ð18Þ
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FIG. 1. Variation of VJNW [Eq. (17)] with radial distance r for different values of λJNW. Solid, long-dashed, short-dashed, dotted, and
long dot-dashed curves in all the plots are for γ ¼ ð0.1; 0.3; 0.5; 0.8; 1Þ, respectively. Parts (a), (b), (c), and (d) correspond to the low
energy limit of the test particle motion with EJNW ¼ 0.02. Although the nature of profiles is similar for semirelativistic energy
EJNW ¼ 0.5, however, for a comparison we show the profiles for EJNW ¼ 0.5 corresponding to two different values of λJNW in parts (e)
and (f). VJNW and EJNW are in units of c2, whereas λJNW is in units of GM=c.

SHUBHRANGSHU GHOSH, TAMAL SARKAR, AND ARUNAVA BHADRA PHYSICAL REVIEW D 92, 083010 (2015)

083010-4



which exactly matches the corresponding GR expression.
Equivalently, the equation of motion in spherical geometry
(from the Euler-Lagrange equations), which describes
the complete behavior of the test particle dynamics, is
given by

̈r ¼ −c2
�
1 −

2rs
γr

�
3γ−1 rs

r2
þ 2_r2�

1 − 2rs
γr

� rs
r2

þ
�
r −

rs
γ
ð1þ 2γÞ

�
ð_θ2 þ sin2θ _ϕ2Þ; ð19Þ

ϕ̈ ¼ −
2_r _ϕ

r

�
γr − rsð1þ 2γÞ

γr − 2rs

�
− 2 cot θ _ϕ _θ; ð20Þ

and

θ̈ ¼ −
2_r _θ
r

�
γr − rsð1þ 2γÞ

γr − 2rs

�
þ sin θ cos θ _ϕ2; ð21Þ

respectively. The ϕ̈ and θ̈ equations are exactly the same as
those in general relativity, whereas ̈r in Eq. (20) is similar to
that in general relativity in the low energy limit. The
corresponding ̈r equation in general relativity is given by

̈r ¼ −
c6

ϵ2

�
1 −

2rs
γr

�
3γ−1 rs

r2
þ 2_r2�

1 − 2rs
γr

� rs
r2

þ
�
r −

rs
γ
ð1þ 2γÞ

�
ð_θ2 þ sin2θ _ϕ2Þ: ð22Þ

A. Particle dynamics along circular orbit

We next study the dynamics of the test particle motion in
circular orbit in the presence of VJNW and compare the
behavior of the corresponding test particle dynamics in full
general relativity. Using the conditions for the circular orbit
_r ¼ 0 and ̈r ¼ 0, we obtain corresponding specific angular
momentum λCJNW, specific Hamiltonian EC

JNW, and specific
angular velocity _ΩC

JNW using VJNW, given by

λCJNW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2rrsðγrÞγ
ðγr − 2rsÞγ − ð2γ − 1Þðγr − 2rsÞγ−1rs

s
; ð23Þ

EC
JNW ¼ c2

2

�
1 − 2rs

γr

�
1þγ

−
�
1 − 2rs

γr

�
þ rs

γr

h
ð1 − γÞ

�
1 − 2rs

γr

�
γ þ ð2γ − 1Þ

i
�
1 − 2rs

γr

�
− ð2γ − 1Þ rs

γr

; ð24Þ

and

_ΩC
JNW ¼

�
1 − 2rs

γr

�
2γ−1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2rrsðγrÞγ

ðγr − 2rsÞγ − ð2γ − 1Þðγr − 2rsÞγ−1rs

s
; ð25Þ

respectively. With γ ¼ 1, the dynamical equations of
Schwarzschild geometry are recovered. The corresponding
“GR effective potential” and the specific energy ϵ are given
by the relations

VJNW
eff ðrÞ ¼

�
1 −

2rs
γr

�
γ
�
c2 þ

�
1 −

2rs
γr

�
γ−1 λ2

r2

�
ð26Þ

and

ϵ

c2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2rs

γr

�
2γ
− ðγ − 1Þ

�
1 − 2rs

γr

�
2γ−1 rs

γr�
1 − 2rs

γr

�
γ
− ð2γ − 1Þ

�
1 − 2rs

γr

�
γ−1 rs

γr

vuuut ; ð27Þ

respectively. Using Eqs. (26) and (27) with the usual
conditions, we obtain the specific angular momentum
and equivalent Hamiltonian in general relativity, which
are exactly the same as those derived from the potential
VJNW. The specific angular velocity in general relativity is
then given by

_ΩC ¼
ð1 − 2rs

γr Þ2γ−1
r2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2rrsðγrÞ2γ

ðγr − 2rsÞ2γ − ðγ − 1Þðγr − 2rsÞ2γ−1rs

s
; ð28Þ

where the expression is not exactly equivalent to that
obtained using VJNW. From Eq. (23), the photon orbit or
null hypersurface is obtained at r ¼ rsð1þ 2γÞ=γ. With
γ ¼ 1, the usual photon orbit in Schwarzschild geometry is
obtained. The timelike circular orbits corresponding to
JNW geometry occur only for r > rsð1þ 2γÞ=γ.
In Fig. 2 we show the radial variation of λCJNW and EC

JNW,
obtained using VJNW for various γ, corresponding to
timelike circular geodesics. For 0.5 ≤ γ, the nature of the
profiles of both λCJNW and EC

RN are similar to those around
Schwarzschild BH. λCJNW profiles show that for
0.4472≲ γ < 0.5, apart from a single minima, λCJNW con-
sists also of another maxima. However, for values of
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γ < 0.4472, the profiles of λCJNW do not show any maxima
or minima, implying that the particle in circular trajectory
would not have the last stable orbit for these values of γ,
corresponding to JNW geometry. The Hamiltonian EC

JNW,
too, does not attain a zero value for γ ≲ 0.4757 as may be
seen from Fig. 2(c), indicating that the circular orbits will
always remain bound for γ ≲ 0.4757. We also found that
the specific angular velocity _ΩC

JNW obtained using VJNW

resembles the GR results with good accuracy for the entire
range of γ, as exemplified in Fig. 3(a) for two values of γ.
It is necessary for us to investigate the perturbative

effects on the orbital dynamics as the perturbative effects
can have a substantial effect on the accretion flow stability
in the vicinity of compact objects. To study the orbital
perturbation of the particle orbit around JNW geometry, we
compute the epicyclic frequency for small perturbation of

the particle orbit in circular trajectory using VJNW, confin-
ing to the equatorial plane of test particle motion. It is to be
noted that unlike the case in Schwarzschild and Kerr
geometries having event horizons [26], to date, there is
no exclusive analytical expression of epicyclic frequency in
full general relativity for JNW geometry. Owing to naked
singularity behavior of JNW spacetime, it would be quite
interesting to study the orbital perturbation around these
events. The linearized perturbed equations of motion are
evaluated using Eqs. (19), (20), and (21), given by

δr̈¼
�
ðγr− 2rsÞ3γ−2½γr− rsð1þ 3γÞ� 2GM

r3ðγrÞ3γ−1þ
_ϕ2jC

�
δr

þ 2 _ϕjC
�
r− rs

1þ 2γ

γ

�
δ _ϕ; ð29Þ
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FIG. 2. Variation of λJNW and EJNW in r for different values of γ. (a) Solid, long-dashed, and short-dashed curves are for λJNW
corresponding to γ ¼ ð0.1; 0.3; 0.48Þ, respectively. (b) Solid, long-dashed, and short-dashed curves are for λJNW corresponding to
γ ¼ ð0.5; 0.8; 0.95Þ, respectively. (c), (d) Similar to those curves of (a) and (b), but for EJNW. λJNW and EJNW are in units ofGM=c and c2,
respectively.
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δϕ̈ ¼ −
2 _ϕjC
r

�
γr − rsð1þ 2γÞ

γr − 2rs

�
δ_r; ð30Þ

and

δθ̈ ¼ − _ϕ2jCδθ; ð31Þ

respectively. For the particle orbits in equatorial plane,
_ΩC
JNW ≡ _ϕjC. Using the expressions of perturbed quantities

for harmonic oscillations given by δr ¼ δr0 expıκt and δϕ ¼
δϕ0 expıκt in Eqs. (29) and (30), where κ is the radial epicyclic
frequency and δr0 and δϕ0 are amplitudes (see [8,9]), we
derive the radial epicyclic frequency κ after rigorous algebra
using JNW analogous potential VJNW, which is given by

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2r2 − 2γrrsð1þ 3γÞ þ 2ð1þ γÞð1þ 2γÞr2s

γr − rsð1þ 2γÞ
ðγr − 2rsÞ3γ−2

ðγrÞ3γ−1
GM
r3

s
: ð32Þ

The expression in Eq. (32) reduces to that for
Schwarzschild geometry with γ ¼ 1. Although the radial
epicyclic frequency has been derived using JNWanalogous
potential, nonetheless, based on the comparison of the
magnitude of κ between Schwarzschild analogous potential
and corresponding GR result, we too predict here that the
radial epicyclic frequency obtained with VJNW would
reproduce the GR result with precise/reasonable accuracy,
plausibly within a small error margin. For values of
γ < 0.4472, epicyclic frequency monotonically increases
in the inward radial direction. However, for γ ≳ 0.4472, the
profiles of epicyclic frequencies resemble the correspond-
ing profile in Schwarzschild geometry [see Fig. 3(b)].

B. Stability and boundedness of circular orbit

We obtain the last stable or marginally stable orbit ðrmsÞ
of the test particle using VJNW with the condition
dλCJNW=dr ¼ 0 or an equivalent relation

γ2r2 − 2rrsγð1þ 3γÞ þ 2r2sð1þ 3γ þ 2γ2Þ ¼ 0; ð33Þ

which is exactly the same as that obtained in general
relativity for γ ¼ 1. Similarly the marginally bound orbit
ðrmbÞ of the test particle can be obtained using VJNW with
the condition EC

JNW ¼ 0 or an equivalent relation
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FIG. 3. (a) The comparison of the radial variation of specific angular velocity for two values of γ using VJNW and those of
corresponding GR results, for timelike circular geodesics. Solid and long-dashed curves correspond to general relativity and VJNW,
respectively, for a small value of γð¼ 0.1Þ. Similarly, short-dashed and dotted curves correspond to general relativity and VJNW,
respectively, for a large value of γð¼ 0.8Þ. (b) The variation of radial epicyclic frequency κ with r using VJNW for various γ, for timelike
circular geodesics. Solid, long-dashed, short-dashed, and dot-dashed curves are for γ ¼ ð0.1; 0.3; 0.5; 0.8Þ, respectively. Specific angular
velocity and epicyclic frequency are expressed in units of c3=GM.
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ðγr − 2rsÞ1þγ − ðγr − 2rsÞðγrÞγ
þ rs½ð1 − γÞðγr − 2rsÞγ þ ð2γ − 1ÞðγrÞγ� ¼ 0; ð34Þ

which exactly matches that in general relativity for γ ¼ 1.
With γ ¼ 1, the familiar circular orbit stability limit and the
marginally bound circular orbit for the Schwarzschild
metric are recovered. Equation (33) renders two real and
positive roots furnishing two values of rms for γ < 0.5. The
two real and positive roots corresponding to rms, however,
coincide at γ ∼ 0.4472, below which we do not obtain any
real and positive value for rms, and consequently there
would be no last stable circular orbit for test particle motion
(see also Fig. 2). On the other hand, Eq. (34) renders only
one real and positive root corresponding to timelike circular
geodesics for γ < 0.5, thus obtaining only one real and
positive value for rmb. However, the curve for rmb gets
truncated at the corresponding value of γ ∼ 0.4757, imply-
ing that for values of γ < 0.4757, the circular orbits will
always remain bound.
Figure 4(a) shows the variation of rms and rmb with γ.

In Figs. 4(b) and 4(c), we display the variation of EC
JNW

and λCJNW obtained along rms and rmb, with γ. For
0.4757 < γ < 0.5, one of the solutions of the
Hamiltonian, obtained at rms, gives positive value inferring
that even at the last stable circular orbit the particle motion
may become unbound for such values of γ.
Following the similar procedure adopted here, in the

next section we analyze the test particle dynamics
around RN geometry in the modified Newtonian
analogue and compare that with the corresponding GR
results.

IV. ORBITAL DYNAMICS AROUND
RN SPACETIME

The RNmetric is a nonvacuum static GR counterpart of a
Schwarzschild solution in the presence of an electromag-
netic field, which describes the exterior gravitational and
electromagnetic of an arbitrary-static, oscillating, collaps-
ing or expanding spherically symmetric charged BH of
massM and chargeQ. The metric function of RN geometry

is fðrÞ ¼ 1 − 2rs
r þ r2Q

r2 , where r2Q ¼ Q2G=c4 with the arbi-
trary constant in Eq. (1) β ¼ 1. The metric diverges at
r − 2rs þ r2Q=r ¼ 0; for rQ ≤ rs it generates two horizons.
They are outer (event) horizon and the inner (Cauchy)

horizon given by the relation r� ¼ ðrs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − r2Q

q
Þ,

respectively. For rQ > rs, the above relation generates
naked singularities. Outer horizon properties corresponding
to normal BH with condition rQ < rs and extremal BH
with condition rQ ¼ rs. The motion on the other side of the
Cauchy horizon is only possible along spacelike geodesics.
Using the relation of fðrÞ in Eq. (11), the three-dimensional
generalized potential in the modified Newtonian analogue
corresponding to RN spacetime, in the low energy limit, in
spherical geometry, is given by

VRN ¼
�
−
GM
r

þ c2r2Q
2r2

�

−

0
@ 2rs −

r2Q
r

r − 2rs þ r2Q
r

1
A
0
@ r − rs þ r2Q
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r

_r2 þ r2 _Ω2
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FIG. 4. Variation of ðrmsÞ and ðrmbÞ with γ and the nature of dynamical variables along them, corresponding to JNW geometry,
obtained using VJNW. (a) The solid curve shows the variation of rms with γ in the range 1 ≤ γ ≤ 0.5, and solid and short-dashed curves
corresponding to γ ≤ 0.5 show the variation of rms for two real and positive roots of timelike circular geodesics. The long-dashed curve
shows the variation of rmb with γ. (b) The curves exhibit the variation of EC

JNW along rms for the curves in (a). (c) Similarly the curves
represent the variation of λCJNW along rms and rmb corresponding to curves in (a). rms and rmb are in units of rs, and EC

JNW and λCJNW are in
units of c2 and GM=c, respectively.
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which we would refer to as RN analogous potential. With
rQ ¼ 0, the usual Schwarzschild solution and its corre-
sponding properties are recovered. We confine ourselves
with the motion along timelike geodesics. The Lagrangian
per unit mass for this potential is then given by

LRN ¼ 1

2

2
64 r2 _r2�

r − 2rs þ r2Q
r

�
2
þ r3 _Ω2�

r − 2rs þ r2Q
r

�
3
75

þ GM
r

−
c2r2Q
2r2

; ð36Þ

where _Ω is described in Sec. III. As usual, all the relevant
dynamical quantities and the geodesic equations of motion
for RN analogous potential VRN can easily be evaluated/
computed using the Lagrangian described in Eq. (36),

following Sec. III. We do not show the explicit expressions
here. The corresponding dynamical expressions could also
be computed from the generic expressions given in [23].
Nonetheless, as mentioned earlier, the generic formulation
in that paper to derive Newtonian analogous potentials and
their dynamical properties corresponding to spherically
symmetric metric could not be extended to spacetime
geometries coupled to scalar fields describing naked
singularities. This is in contrast to the formulation pre-
sented in this work, which is the most generalized generic
formulation of the potential analogue of any static spheri-
cally symmetric GR geometry having vacuum or non-
vacuum solutions even with any arbitrary scalar field
describing event horizons and/or naked singularities.
In terms of conserved Hamiltonian ERN and angular

momentum λRN, the RN analogous potential in Eq. (35) can
be written as

VRN ¼
�
−
GM
r

þ c2r2Q
2r2

�
−
�
2rs −

r2Q
r

�"�
r − 2rs þ

r2Q
r

�
λ2RN
r4

 
1

2
−
r − rs þ r2Q

2r

r

!#

−
�
2rs −

r2Q
r

�"
1

r2

 
r − rs þ

r2Q
2r

! 
2ERN þ 2GM

r
−
c2r2Q
r2

!#
: ð37Þ

In Fig. 5, we depict the radial profiles for VRN as given in
Eq. (37) for rQ < rs, rQ ¼ rs, and rQ > rs for different
values of angular momentum λRN. The profiles for VRN
show sharp contrast in its behavior for BH solutions with
those of naked singularities.

A. Particle dynamics along circular orbit

We next study the dynamics of the test particle motion in
circular orbit in the presence of VRN and compare the

behavior of the corresponding test particle dynamics in full
general relativity, following the case of JNW geometry as in
Sec. III. The timelike circular orbits corresponding to RN

geometry occurs only for r > 1
2

�
3rs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r2s − 8r2Q

q �
and/

or r > r2Q=rs. r ¼ 1
2

�
3rs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r2s − 8r2Q

q �
is the null hyper-

surface or photon orbit. Specific angular momentum λCRN
and specific Hamiltonian EC

RN corresponding to timelike
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FIG. 5. Variation of VRN with radial distance r for different λRN. Solid, long-dashed, short-dashed, dotted, and long dot-dashed curves
in all the plots are for rQ=rs ¼ ð0.5; 1; 1.061; 1.8; 2.5Þ, respectively. Parts (a), (b), and (c) correspond to the low energy limit of the test
particle motion with ERN ¼ 0.02. Although the natures of profiles are similar for semirelativistic energy ERN ¼ 0.5, however, for a
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NEWTONIAN ANALOGUE OF STATIC GENERAL … PHYSICAL REVIEW D 92, 083010 (2015)

083010-9



circular geodesics are obtained using VRN, which exactly
match the corresponding GR results.
In Fig. 6 we show the radial variations of λCRN and EC

RN

for different γ. For rQ ≤
ffiffiffiffiffiffiffiffi
9=8

p
rs, the natures of the profiles

of both λCRN and EC
RN are similar to those around

Schwarzschild BH. However, for rQ >
ffiffiffiffiffiffiffiffi
9=8

p
rs (describ-

ing naked singularities), the λCRN profiles apart from a single
minima, consist of another maxima till rQ ∼ 1.118rs; at that
value of rQ, both the minima and the corresponding
maxima coincide. Beyond which, the profiles of λCRN do
not show any maxima or minima, implying that beyond this
value the particle in circular trajectory do not have the last
stable orbit corresponding to RN geometry. In a similar
fashion, beyond rQ ∼ 1.10887rs, EC

RN attains a zero value
indicating that the circular orbits will always remain bound
for rQ > 1.10887rs [Figs. 6(d) and 6(f)].
Figure 7(a) shows that for rQ ≤

ffiffiffiffiffiffiffiffi
9=8

p
rs, the natures of

angular velocity profiles are similar to those around

Schwarzschild BH, and _ΩC
RN (obtained using VJN)

resembles the corresponding GR counterparts well. For
rQ >

ffiffiffiffiffiffiffiffi
9=8

p
rs, the angular velocity profiles show different

behaviors, and the percentage deviation between _ΩC
RN and

the corresponding GR value becomes large (∼17% for
rQ ∼ 1.118rs); however, with the further increase in the
value of rQ the error margin between them diminishes
significantly (∼9%, for rQ ∼ 2.5rs) [Fig. 7(b)].
To study the orbital perturbation of the particle orbit

around RN geometry we compute the radial epicyclic
frequency using RN analogous potential VRN, restricting
ourselves in the equatorial plane of the test particle orbit in
the circular trajectory. Owing to RN spacetime having
three different solutions: ordinary BH solution (rQ < rs),
extremal BH (rQ ¼ rs), and naked singularity (rQ > rs), it
would be quite interesting to study the orbital perturbation
around these three respective events. Following the
similar procedure adopted in the case of JNW geometry
we derive the radial epicyclic frequency κ, which is
given by
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FIG. 6. Radial profile of λRN and ERN obtained from VRN for different rQ. (a) Solid and long-dashed curves are for λRN corresponding
to rQ=rs ¼ ð0.5; 1Þ, respectively. (b) For λRN corresponding to rQ=rs ¼ 1.061. (c) Solid, long-dashed, and short-dashed curves are for
λRN corresponding to rQ=rs ¼ ð1.118; 1.8; 2.5Þ, respectively. (d) Solid, long-dashed, and short-dashed curves are for ERN corresponding
to rQ=rs ¼ ð0.5; 1; 1.0887Þ, respectively. (e), (f) Similar to that of (b) and (c) but generated for ERN.
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κ ¼
 
r − 2rs þ r2Q

r

r − 3rs þ 2r2Q
r

!1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
GM
r5

ðr − 6rsÞðr − 2rsÞ þ
r2Qc

2

r5

�
2rs

�
5 − 12

rs
r

�
−
r2Q
r

�
4þ 4

r2Q
r2

− 17
rs
r

���s
: ð38Þ

The expression in Eq. (38) reduces to that in Schwarzschild
geometry with rQ ¼ 0. As argued in the case of JNW
geometry, it is expected that the radial epicyclic frequency
computed using VRN would also reproduce the GR result

with precise/reasonable accuracy. In Fig. 7(c), we show the
variation of radial epicyclic frequency κ with r for various
values of rQ corresponding to both BH solutions and naked
singularities, for timelike circular geodesics.
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FIG. 7. (a), (b) The comparison of the radial variation of specific angular velocity for different rQ (obtained using VRN) with the
corresponding GR results, for timelike circular geodesics. (a) Solid and long-dashed curves correspond to general relativity and VRN,
respectively, for rQ ¼ 0.5rs; short-dashed and dotted curves correspond to general relativity and VRN, respectively, for rQ ¼ ffiffiffiffiffiffiffiffi

9=8
p

rs.
(b) Solid and long-dashed curves correspond to general relativity and VRN, respectively, for rQ ¼ 1.118rs; short-dashed and dotted
curves correspond to general relativity and VRN, respectively, for rQ ¼ 2.5rs. (c) The variation of radial epicyclic frequency κ with r
using VRN for various rQ. Solid, long-dashed, short-dashed, dotted, short dot-dashed, and long dot-dashed curves in (c) are for
rQ=rs ¼ ð0.5; 1; 1.061; 1.118; 1.8; 2.5Þ, respectively. Specific angular velocity and epicyclic frequency are expressed in units of c3=GM.
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9=8

p
rs, and long-dashed and dotted curves show the variation of rmb with rQ=rs over rQ >
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p
rs for

two real and positive roots for timelike circular geodesics. (b) The curves represent the variation of EC
RN along rms corresponding to the
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B. Stability and boundedness of circular orbit

As usual, the last stable circular orbit ðrmsÞ and the
marginally bound circular orbit ðrmbÞ of the test particle
motion using RN analogous potential VRN can be obtained
from the relations dλCRN=dr ¼ 0 and EC

JNW ¼ 0, respec-
tively, which are exactly the same as the corresponding GR
expressions.
With rQ ¼ 0, the familiar circular orbit stability limit and

the marginally bound circular orbit for the Schwarzschild
metric are recovered. For rQ >

ffiffiffiffiffiffiffiffi
9=8

p
rs, both Eqs. (39)

and (40) render two real and positive roots corresponding to
timelike circular geodesics. Thus we obtain two values of rms

and rmb for rQ >
ffiffiffiffiffiffiffiffi
9=8

p
rs. The two real and positive roots

corresponding to rms, however, coincide at rQ ∼ 1.118rs,
beyond which we do not obtain any real and positive value
for rms. This signifies that for values of rQ > 1.118rs, there
would be no last stable circular orbit for particle motion.
Similarly for rmb, the two real and positive roots coincide
at rQ ∼ 1.10887rs, beyond which we do not obtain any
real and positive value for rmb, implying that for
rQ > 1.10877rs, the circular orbits will always remain
bound. Figure 8(a) shows the variation of rms and rmb with
corresponding values of rQ. In Figs. 8(b), 8(c), and 8(d), we
display the variation of EC

RN and λCRN obtained along rms and
rmb, with the corresponding values of rQ. For

ffiffiffiffiffiffiffiffi
9=8

p
rs <

rQ < 1.10887rs, one of the solutions for the Hamiltonian
obtained at rms gives a positive value [Fig. 8(b)], inferring
that even at the last stable circular orbit the particle motion
may become unbound for those values of rQ.

V. ORBITAL TRAJECTORIES

The dynamics of orbital trajectories for the JNW metric
in the modified Newtonian analogue can be obtained from

the relation for dΩ=dr as described in Eq. (18), which is
identical to that of general relativity. This implies that VJNW
will exactly reproduce the general relativistic trajectories of
particle orbits. Similarly, VRN would also exactly replicate
the general relativistic trajectories of particle orbits in RN
geometry. Consequently, GR apsidal precession and the
gravitational lensing would be accurately reproduced by
both JNW and RN analogous potentials, which are among
the few observational tests of general relativity. Following
[8,9], we show the trajectory profiles of the test particle
orbit using VJNW and VRN in the equatorial plane (x-y
plane), obtained from the equations of motion.
Figures 9 and 10 show the ellipticlike trajectories of the

particle orbits using VJNW and VRN corresponding to JNW
and RN geometries for different γ and rQ, respectively.
Those in Newtonian and Schwarzschild cases are also
given in Figs. 9 and 10 for a comparison. The ellipticlike
trajectory profiles show clear precession of orbits for all
values of γ and rQ. For both these JNWand RN geometries,
the test particle starts tangentially from a fixed apoapsis ra
with a fixed initial velocity vin ¼ 0.092c, for all corre-
sponding values of γ and rQ. However, to compute the
apsidal precession, instead of fixing vin, we fix a unique
value of eccentricity e for elliptical orbits, for all values
of γ and rQ.
Next we compute the apsidal precession or the perihelion

advancement Ψ of elliptical orbits for both JNW and RN
geometries using the corresponding expressions for dΩ=dr,
given by

Ψ ¼ Π − π ≡
Z

ra

rp

dΩ
dr

dr − π; ð39Þ

where Π is the usual half orbital period of the test particle.
rp and ra are periapsis and apoapsis of the orbit,
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FIG. 9. Comparison of ellipticlike trajectory of particle orbit in equatorial plane in JNW spacetime with those in Schwarzschild and
Newtonian cases projected in x-y plane. Solid and short-dashed lines in all parts are for Newtonian and Schwarzschild cases,
respectively. (a), (b), (c), (d) Long dotted-dashed curves are for γ ¼ 0.2; 0.5; 0.7; 0.95, respectively (using VJNW). The particle starts from
apogee with ra ¼ 40rs, with vx ¼ 0.0, and with vy ≡ vin ¼ 0.092. The velocities are expressed in units of c. We have restricted down to
γ ¼ 0.2, as for γ < 0.2, no proper well-defined ellipticlike orbits are produced with the preferred orbital parameters chosen here.
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respectively. Alternatively, Ψ can be computed directly
from the elliptical trajectory profiles. In Fig. 11, we show
the variation of Ψ with γ computed using VJNW for two
scenarios; in one scenario rp is kept fixed while ra is
allowed to vary, whereas in the other case ra is kept fixed
while rp is allowed to vary. For all the cases, the profiles
show that with the decrease in γ, i.e., as one departs from
the Schwarzschild BH solution, the magnitude of Ψ
continuously increases till γ ∼ 0.45; beyond this value of
γ, the particle trajectory does not produce well-defined
orbits. In Fig. 12, we show the variation of Ψ with rQ
computed using VRN, corresponding to the identical sce-
narios as investigated for JNW geometry. For all the cases

the profiles show that with the increase in rQ, i.e., as one
departs from the Schwarzschild BH solution, the magnitude
of Ψ decreases till Ψ attains a zero value (like that of the
Newtonian case) corresponding to a particular value of rQ
(say rQjN) describing naked singularity that depends on
orbital parameters ra and rp. However, beyond this value of
rQjN , the magnitude of Ψ again increases, with the particle
orbit showing retrograde precession.
This aspect of retrograde precession for particle orbit

around RN geometry for naked singularities can also be
found from Fig. 10(d). Interestingly it is found from Fig. 12

FIG. 11. Variation of apsidal precession Ψ with γ for JNW
geometry. Solid and short-dashed curves correspond to rp ¼ 6rs,
with the particle starting from apogee at ra ¼ ð40; 80Þrs,
respectively. Dotted curve corresponds to rp ¼ 10rs, with the
particle starting from apogee at ra ¼ 40rs. Ψ is expressed in
radians.

FIG. 12. Variation of apsidal precession Ψ with rQ correspond-
ing to RN geometry. Solid, long-dashed, and short-dashed
curves correspond to rp ¼ 6rs, with the particle starting from
apogee at ra ¼ ð20; 40; 80Þrs, respectively. The corresponding
values of rQjN ∼ ð1.803; 1.84; 1.853Þrs, respectively. Dotted
curve corresponds to rp ¼ 10rs, with the particle starting from
apogee at ra ¼ 40rs. The corresponding value of rQjN ∼ 1.99rs.
Ψ is expressed in radians. Dot-dashed curve represents
Newtonian case.
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FIG. 10. Comparison of ellipticlike trajectory of particle orbit in equatorial plane in RN spacetime with those in Schwarzschild and
Newtonian cases projected in x − y plane. Solid and short-dashed lines in all the figures are for Newtonian and Schwarzschild cases,
respectively. (a), (b), (c), (d) Long dot-dashed curves are for rQ=rs ¼ 0.5; 1; 1.8; 2.1, respectively, using VRN. Other parameters are
identical to those of Fig. 9.
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that at rQ ∼ 1.68rs, the magnitude of Ψ corresponding to
different values of orbital parameters ra and rp in RN
geometry become almost identical; i.e., for a particular
value of rQ (rQ ∼ 1.68rs), the value of Ψ becomes
independent of orbital parameters for elliptical orbits in
RN geometry.
In Figs. 13 and 14, we show the trajectory profiles of a

test particle for paraboliclike orbit using VJNW and VRN
corresponding to JNW and RN geometries for various
values of γ and rQ, respectively, with a comparison to those
in Newtonian and Schwarzschild cases. For both the JNW

and RN geometries, the test particle starts from an arbitrary
source Sðx;yÞ with an arbitrary fixed initial velocity. We
choose the initial velocity vin ≡ vy ¼ −0.1732c in our
studies, for all corresponding values of γ and rQ and also
for the Newtonian case. It is found that with the preferred
orbital parameters chosen here, no proper well-defined
orbits would be produced for values of γ < 0.2 for JNW
geometry as the particle will simply plunge into the naked
singularities [Fig. 13(a)]. In Table I, we furnish the
corresponding values of the particle’s least distance of
approach βp along with their transit time T tr, i.e., the time
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FIG. 13. Comparison of paraboliclike trajectory of particle orbit in equatorial plane in JNW spacetime with that in Schwarzschild and
Newtonian case using VJNW with vx ¼ 0.0 and vy ¼ −0.1732. The particle starts from Sðx;yÞ ¼ ð60; 400Þrs. Solid and long-dashed
curves in all the figures denote Newtonian and Schwarzschild cases, respectively. (a), (b) Short-dashed, dotted, and long dot-dashed
curves correspond to γ ¼ ð0.1; 0.2; 0.3Þ and γ ¼ ð0.4; 0.5; 0.7Þ, respectively. (c) Short-dashed and dotted curves correspond to
γ ¼ ð0.8; 0.95Þ, respectively. The velocities are expressed in units of c.
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FIG. 14. Comparison of paraboliclike trajectory of particle orbit in equatorial plane in RN spacetime with that in Schwarzschild and
Newtonian cases using VRN. Solid and long-dashed curves in all the figures denote Newtonian and Schwarzschild cases, respectively.
(a), (b), (c) Short-dashed and dotted curves correspond to rQ=rs ¼ ð0.5; 0.1Þ, rQ=rs ¼ ð1.116; 1.8Þ, and rQ=rs ¼ ð2.1; 2.5Þ,
respectively. Other parameters are identical to that in Fig. 13.

SHUBHRANGSHU GHOSH, TAMAL SARKAR, AND ARUNAVA BHADRA PHYSICAL REVIEW D 92, 083010 (2015)

083010-14



taken by the particle to traverse the distance from Sðx;yÞ to
the locations of their corresponding βp, around both JNW
and RN geometries. βpjNT and T trjNT correspond to the
Newtonian case. It is found that, corresponding to JNW
geometry, the magnitude of βp continuously decreases
from that of the corresponding value in Schwarzschild
geometry as one departs more from the Schwarzschild BH
solution, i.e., with the decrease of γ. This is in contrast to
the situation in RN geometry, where βp always increases as
one departs from the Schwarzschild BH solution, i.e., with
the increase of rQ having naked singularities. Equivalently,
this implies that in JNW geometry if the test particle starts
from a fixed source with a fixed initial velocity, then, as one
departs more from the Schwarzschild BH solution, the
bending angle corresponding to a paraboliclike trajectory
steadily decreases. On the contrary, for RN geometry as one
departs more from the Schwarzschild BH solution, an
exactly opposite thing occurs. This opposite behavior of the
particle trajectory profiles corresponding to JNW and RN
geometries can be attributed to the opposite nature of the

variation of the terms ð1 − 2GM
γc2r Þγ and ð1 − 2rs

r þ r2Q
r2Þ in the

corresponding metrics of JNW and RN geometries, as one
departs from the Schwarzschild solution. From these two
terms, one can see that to the first order they resemble
Schwarzschild geometry. However, if we analyze these
terms to the second order, it reveals that the net effect of the

decrease in the value of γ as one departs from the
Schwarzschild solution corresponding to JNW geometry,
is to effectively diminish the curvature effect of gravity. On
the contrary, corresponding to RN geometry, the net effect
of the increase in the value of rQ as one departs from the
Schwarzschild solution is to effectively enhance the cur-
vature effect of gravity. Owing to which, for JNW geom-
etry, the bending angle for a paraboliclike trajectory
steadily decreases as one departs from the Schwarzschild
BH solution, while the bending angle for a paraboliclike
trajectory steadily increases in RN geometry as one departs
more from the Schwarzschild solution. Similar behavior
can also be seen for photon trajectories in the presence
JNW and RN geometries. Nonetheless, for both these
geometries, the corresponding transit time T tr always
increases as one departs from the Schwarzschild BH
solution.
The change in the initial value of the orbital parameters

like vin or the location of the source Sðx;yÞ do not
fundamentally alter the nature of paraboliclike particle
trajectories corresponding to both JNWand RN geometries;
the qualitative nature of the variation of βp or the bending
angle and T tr with γ and rQ remains independent of the
choice in the value of vin or Sðx;yÞ, and is similar to that
depicted in Table I. Nonetheless, with the decrease in the
magnitude of jvinj, corresponding to all values of γ and rQ,
there is a steady increase in the corresponding values of βp
or the bending angle. And with a further decrease in the
value jvinj, the unbound paraboliclike particle orbits tend to
become eventually bound or elliptical in nature. Moreover,
with the decrease in the value of vin in JNW geometry, well-
defined orbits are formed only for γ > 0.2. On the other
hand, with the decrease in the distance of the location of the
source (in the y direction) from the central gravitating mass,
here too, corresponding to all γ and rQ, there is a marginal
increase of βp or the bending angle.
In the next scenario, we study the trajectory profiles of a

test particle for the paraboliclike orbit, keeping the loca-
tions of both the source Sðx;yÞ and the observer Oðx;yÞ fixed,
unlike the previous case where only the location of the

TABLE I. Sðx;yÞ ¼ ð60; 400Þrs, vx ¼ 0, vy ¼ −0.1732c,
βpjNT ¼ 36.922rs, T trjNT ¼ 2149.8rs=c.

JNW βpðrsÞ T trðrs=cÞ RN βpðrsÞ T trðrs=cÞ
γ ¼ 1.0 39.027 2163 rQ ¼ 0.0rs 39.027 2163
γ ¼ 0.95 38.891 2163.4 rQ ¼ 0.5rs 39.081 2163.1
γ ¼ 0.8 38.375 2165.1 rQ ¼ 1.0rs 39.242 2163.3
γ ¼ 0.7 37.895 2166.6 rQ ¼ 1.116rs 39.295 2163.4
γ ¼ 0.5 36.273 2171.9 rQ ¼ 1.8rs 39.724 2164
γ ¼ 0.4 34.721 2177.2 rQ ¼ 2.1rs 39.976 2164.4
γ ¼ 0.3 31.745 2188.5 rQ ¼ 2.5rs 40.372 2164.9
γ ¼ 0.2 20.79 2272.8

TABLE II. Sðx;yÞ ¼ ð60; 400Þrs, Oðx;yÞ ¼ ð−400.04;−282.25Þrs, vy ¼ −0.1732c, βpjNT ¼ 36.922rs, T trjNT ¼ 2149.8rs=c,
T totjNT ¼ 4799.5rs=c.

JNW vxðcÞ βpðrsÞ T trðrs=cÞ T totðrs=cÞ RN vxðcÞ βpðrsÞ T trðrs=cÞ T totðrs=cÞ
γ ¼ 1.0 6.11 × 10−4 37.737 2160.4 4820 rQ ¼ 0.0rs 6.11 × 10−4 37.737 2160.4 4820
γ ¼ 0.95 −3.64 × 10−4 38.123 2161.9 4823 rQ ¼ 0.5rs −7.4 × 10−4 37.522 2159.9 4819
γ ¼ 0.8 5.41 × 10−4 39.527 2167.3 4834.5 rQ ¼ 1.0rs −1.137 × 10−3 36.857 2158.4 4816
γ ¼ 0.7 1.327 × 10−3 40.747 2172.1 4844 rQ ¼ 1.116rs −1.27 × 10−3 36.633 2157.9 4815
γ ¼ 0.5 3.687 × 10−3 44.391 2186.3 4873.5 rQ ¼ 1.8rs −2.435 × 10−3 34.677 2153.4 4805.5
γ ¼ 0.4 5.598 × 10−3 47.324 2197.80 4897 rQ ¼ 2.1rs −3.202 × 10−3 33.387 2150.2 4799
γ ¼ 0.3 8.552 × 10−3 51.828 2215.4 4933.5 rQ ¼ 2.5rs −4.596 × 10−3 31.044 2144.3 4786.5
γ ¼ 0.2 1.387 × 10−2 59.839 2247 4998.5
γ ¼ 0.1 2.2735 × 10−2 79.534 2324.6 5158
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source was fixed. Owing to which the test particle needs to
start from an arbitrary source Sðx;yÞ obliquely with different
initial velocities, corresponding to different values of γ and
rQ, in order to reach the fixed location of the observer
Oðx;yÞ. Here we choose the similar values of Sðx;yÞ and the
initial velocities for vy as that in the previous case for all
values of γ and rQ, however, with different initial velocities
for vx. In the x − y coordinate plane, the central object is
considered to be situated at (0,0). In Table II we display the
computed values of βp, T tr, and the time taken by the
particle to traverse the distance from Sðx;yÞ to Oðx;yÞ ðT totÞ,
for all values γ and rQ corresponding to JNW and RN
geometries. The corresponding different values for vx for
JNW and RN geometries are shown in Table II. T totjNT in
Table II denotes the total time traverse in the Newtonian
case. Interestingly it is found from Table II that in the JNW
geometry the magnitude of βp or equivalently the bending
angle continuously increases as one departs more from the
Schwarzschild BH solution, while in RN geometry βp or
equivalently the bending angle continuously decreases as
one departs from the Schwarzschild BH solution, even
attaining less value than that in the Newtonian case for
naked singularities. This is in sharp contrast to the scenario
in the previous case, where exactly opposite behavior
prevails. On the other hand, both the magnitudes of T tr
and T tot steadily increase with the decrease of γ in JNW
geometry. On the contrary, in RN geometry, both T tr and
T tot continuously decrease as one departs more from the
Schwarzschild BH solution; the time taken by the particle
to reach Oðx;yÞ for naked singularities becomes even less as
compared to the Newtonian case.
The kinds of trajectories we have studied here are

important in probing the gravitational field around the
naked singularities in a strong field regime. Such studies
can be exploited to evaluate gravitational bending of light
and perihelion precession of test particles, which may offer
the opportunity to distinguish between naked singularity
solutions and BHs observationally.

VI. ACCRETION DISK

In this section we analyze a simplistic accretion flow
system in JNW and RN geometries using their respective
analogous potentials described in Eqs. (12) and (35). The
JNW and RN analogous potentials quite precisely mimic
the corresponding GR features in their entirety. For this we
consider the simple model of a stationary, geometrically
thin and optically thick Keplerian accretion disk, also called
the standard accretion disk model of Shakura and Sunyaev
[27]. Although this analytic model has been initially
developed in context to Newtonian gravitational potential,
however, later modifications using PNPs corresponding to
other relativistic geometries have also been accomplished
(e.g., [9]), in order to model geometrically thin and
optically thick accretion flow studies around BHs/compact

objects. The two most important results obtained from the
standard accretion disk model are the amount of radiative
flux (Frad) and the luminosity (Lrad) generated from the
optically thick Keplerian accretion disk, whose expressions
are given by (see [9])

Frad ¼
Qþ

2
¼ ð− _MÞ

�
−
dΩK

dr

�
ðλK − λKinÞ ð40Þ

and

Lrad ¼ 2

Z
∞

rin

ð−FradÞ2πrdr; ð41Þ

respectively.Qþ is the total heat generated due to turbulent
viscosity in the column of the disk, and _M is the usual mass
accretion rate. ΩK and λK are Keplerian angular velocity
and Keplerian angular momentum, respectively. rin is the
radius of the inner edge of the disk, which in this case
would be the radius of the marginally stable orbit rms. For a
Keplerian accretion flow, we use the conditions _r ¼ 0 and
_Ω ¼ ΩK in the expressions for potential V in Eqs. (12) and
(37), corresponding to JNW and RN geometries, respec-
tively. Using the relations ΩK ¼ ð1r dVdrÞ1=2 and λK ¼
ðr3 dV

drÞ1=2 corresponding to Keplerian accretion flow, we
eventually obtain the relations forΩK and λK corresponding
to Keplerian accretion flow in JNW and RN spacetimes,
which is given by

ΩKjJNW ¼
ð1 − 2rs

γr Þ2γ−1
r2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2rrsðγrÞγ

ðγr − 2rsÞγ − ð2γ − 1Þðγr − 2rsÞγ−1rs

s
;

ð42Þ

λKjJNW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2rrsðγrÞγ
ðγr − 2rsÞγ − ð2γ − 1Þðγr − 2rsÞγ−1rs

s
; ð43Þ

ΩKjRN ¼ r − 2rs þ r2Q
r

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − c2r2Q

r

r − 3rs þ 2r2Q
r

vuuut ; ð44Þ

and

λKjRN ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − c2r2Q

r

r − 3rs þ 2r2Q
r

vuuut : ð45Þ

It should be noted that corresponding to JNW and RN
geometry, for 0.4472≲γ<0.5 and

ffiffiffiffiffiffiffiffi
9=8

p
rs <rQ≲1.118rs,

respectively, we will have two values of rin corresponding
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to two values of rms represented by outer ðrmsjoutÞ and inner
ðrmsjinÞ loci, respectively. The orbit of rmsjout is separated
from rmsjin by a zone of instability. The formulation of a
geometrically thin Keplerian accretion disk model in the
framework of the Shakura and Sunyaev model would only
be compatible with rmsjout, which will then be the inner
edge (rin) of the accretion disk. Using Eqs. (42)–(45), we
compute the magnitude of the radiative flux jFradj for
different values of γ and rQ corresponding to JNW and RN
geometries, respectively, using appropriate values of
rinð≡rmsjoutÞ, and show the radial profiles of jFradj in
Fig. 15. In RN geometry, with the increase of rQ up to
rQ ¼ rs, there is a steady decrease in the magnitude of the
peak of the jFradj profiles, which is in sharp contrast to the
profiles for naked singularities corresponding to both RN
and JNW geometries with rms as outer loci.

In Table III, we furnish the radiative efficiency
ηð¼ Lrad= _Mc2Þ for relevant values of γ and rQ with rms

corresponding to ðrmsjoutÞ. For both JNW and RN naked
singularity geometries, as one deviates more from the
Schwarzschild solution the radiative efficiency η continu-
ously increases. This nature of the variation of the radiative
efficiency η for different γ and rQ can be well accounted
from the radiative flux profiles in Fig. 15.
Note that while analyzing the Keplerian accretion flow

problem in JNW and RN geometries as shown in Fig. 15
and Table III, we have restricted up to γ ¼ 0.4472 and rQ ¼
1.118rs as for γ < 0.4472 or rQ > 1.118rs, and no stable
Keplerian accretion disk will be formed.

VII. DISCUSSION

Naked singularities may occur as an alternative end state
of gravitational collapse instead of BH solutions, where a
significant departure from BH solutions could occur
through a permeating scalar field or spontaneous scalari-
zation due to continuous matter distribution [28] or even
through very strong electromagnetic field. If naked singu-
larities are indeed present in the nature, it is important to
figure out the observationally distinguishing features, at
least in principle at this stage, of naked singularities in
comparison to black holes. The general relativity so far has
been tested in solar system measurements as well as by
accurate radio observations of binary pulsars. However, in

TABLE III. Table III Radiative efficiency.

JNW η RN η

γ ¼ 1.0 ∼0.056 rQ ¼ 0.0rs ∼0.056
γ ¼ 0.8 ∼0.057 rQ ¼ 0.5rs ∼0.019
γ ¼ 0.5 ∼0.067 rQ ¼ 0.8rs ∼0.046
γ ¼ 0.48 ∼0.069 rQ ¼ 1.0rs ∼0.12
γ ¼ 0.46 ∼0.073 rQ ¼ 1.08rs ∼0.163
γ ¼ 0.45 ∼0.076 rQ ¼ 1.1rs ∼0.18
γ ¼ 0.4472 ∼0.078 rQ ¼ 1.118rs ∼0.195
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FIG. 15. Variation of the radiative flux jFradj generated from a geometrically thin and optically thick Keplerian accretion disk with
radial distance r for various γ and rQ corresponding to Keplerian accretion flow around JNWand RN geometry, respectively. (a) Various
γ over 1 ≤ γ ≤ 0.4472 corresponding to rms of outer loci. (b) Similarly, various rQ in the range 0 ≤ rQ ≤ 1.118rs corresponding to rms of
outer loci. We considered _M ¼ 1, G ¼ M ¼ C ¼ 1.
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all such cases, the gravitational field is weak, and it appears
from the detailed studies over the past few decades that
naked singularities cannot be discriminated from black
holes from weak field observations; one has to look for
strong field tests instead.
The characteristics of the radiation emitted from the

accretion disk are supposed to provide useful details about
the spacetime geometry around the compact object. We
studied a very simple accretion model exploiting
Newtonian-like analogous potential of the corresponding
naked singularity geometries. The very premise with which
the Newtonian-like analogous potential of the correspond-
ing static GR geometries have been derived in the present
work ensures reproduction of identical or near identical
geodesic equations of motion. Not only the orbits like
marginally stable or marginally bound are exactly repro-
duced, dynamical profiles like conserved angular momen-
tum, conserved energy, the temporal features like angular
and epicyclic frequencies are reproduced with precise
accuracy. Most importantly, the adopted method guarantees
the replication of the orbital trajectory of test particle
motion accurately, consequently, reproducing the exper-
imentally tested GR effects like perihelion advancement,
gravitational bending of light, or gravitational time delay
with precise accuracy. The generality of the procedure then
ensures that not only static GR geometries with event
horizons can be comprehensively mimicked through this
kind of potential; GR features corresponding to naked
singularities can also be reproduced comprehensively with
precise accuracy and can be used to analyze relevant
astrophysical processes in strong field gravity around
corresponding naked singularities.
It is found from the present analysis that accretion disk

properties around naked singularities show clear notable
differences, with the geometrically thin Keplerian disk
more luminous than that around equivalent BHs. Out of
the two possible locations of rms (rmsjin and rmsjout) for a
certain range in the values of γ and rQ corresponding to
naked singularity solutions, the inner edge of the Keplerian
accretion disk around a naked singularity would be located
at rmsjout. However, gaseous particles reaching rmsjout
would then simply plunge to reach either the singularity
or rmsjin where stable circular orbits occur. Nonetheless, for
non-Keplerian accretion flow around a naked singularity,
this inner region (r < rmsjout) may become very important
where the dynamical behavior of the accretion disk may be
significantly different from that around equivalent BH
solutions; consequently the corresponding spectrum from
the accretion flow around a naked singularity may show
certain distinctive features as compared to the similar
accretion flow around BH solutions. Thus x-ray binaries
or active galactic nuclei would be the most likely regions
where distinguishable differences in the observational
features between BHs and naked singularities can, in
principle, be made.

An important point is that, of whether the derived
potentials contain the naked singularity features of the
concerned spacetime geometries. Let us first consider the
case of the JNW solution. The Ricci, the Kretschmann, and
the Weyl scalars for the JNW are known to diverge at
singularities. The derived modified Newtonian analogous
potential corresponding to the JNW metric is also found to
diverge at r ¼ 2rs=γ, but the radial velocity remains finite
as follows from Eq. (16) and radial infall to the singularity
is admissible. Being a globally naked singularity solution,
there exists a future directed causal curve with one end on
the singularity and the other end on future null infinity for
the JNW geometry in the GR treatment. After recovering
test particle mass (m), for radial motion Eq. (16) reads
dr
dt ¼ fðrÞγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0

GN −m2c2ðfðrÞγ − 1Þ
p

, which for photons
(m ¼ 0) becomes dr

dt ¼ fðrÞγ ffiffiffiffiffiffiffiffiffiffiffi
2E00

GN

p
[where E0

GN, the
constant of motion for test particle of mass m is the
conserved energy (not the specific energy), and E00

GN is
the equivalent term corresponding to the photon]. Therefore
we get the same expression of radial velocity as given by
the GR treatment in the low energy limit. For an observer at
a finite distance R, the solution of the outgoing null
geodesic from the singularity is

lim
ϵ→0

Z
R

2rs=γþϵ
f−γdr < Rlim

ϵ→0

Z
R

2rs=γþϵ

dr
ðr − 2rs=γÞγ

¼ R
ðR − 2rs=γÞ1−γ

1 − γ
; ð46Þ

which is finite for γ < 1, where ϵ is a small perturbation
along radial distance r. Hence the modified Newtonian
analogous potential corresponding to the JNW metric
admits an outgoing null geodesic from the singularity
(i.e., the singularity is visible to external observers), and
thus the derived potential contains the globally naked
singularity features of the original spacetime. The same
argument can be extended for the RN case with rQ > rs.

VIII. CONCLUSION

In this work, we have formulated a generic Newtonian-
like analogous potential corresponding to static spherically
symmetric general GR spacetime, and subsequently
derived proper Newtonian-like analogous potential for
JNW and RN spacetimes. The derived PNPs were found
to reproduce the entire GR features with precise accuracy.
We also studied orbital dynamics around these two geom-
etries extensively in the modified Newtonian analogue,
including the detailed analysis of their corresponding test
particle trajectories.
Our findings employing the modified Newtonian analo-

gous potentials for the naked singularity solutions show
that as one departs more from the Schwarzschild solution,
i.e., with the increase in the value of γ and rQ, the nature of
the test particle dynamics along the circular orbit in JNW
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and RN spacetimes tends to show altogether different
behavior with distinctive traits as compared to the nature
of particle dynamics in the Schwarzschild geometry.
Interestingly we found two values of rms for a certain
range in the value of γ (0.4472≲ γ < 0.5) and rQ
(
ffiffiffiffiffiffiffiffi
9=8

p
rs < rQ ≲ 1.118rs), which are unique features of

JNW and RN geometries. For values of Γ < 0.4472 and
rQ > 1.118rs, the particle in circular trajectory would not
have last stable orbit; consequently if the particle motion is
perturbed in the inner region corresponding to JNWand RN
geometries with these values of γ and rQ, the particle would
eventually plunge into the naked singularities.
The magnitude of the apsidal precession in the JNW

geometry increases continuously as one departs more from
the Schwarzschild BH solution, irrespective of the orbital
parameters up to the value of γ ∼ 0.45, beyond which the
particle trajectory does not produce well-defined orbits. On
the contrary, for the RN geometry, the magnitude of the
apsidal precession decreases as one departs from the
Schwarzschild BH solution; however, beyond a certain
value of rQ depending on the orbital parameters, the
magnitude of the apsidal precession increases, with the
particle orbit showing retrograde precession. For particular
value of rQ (rQ ∼ 1.68rs) in RN geometry, the value of
apsidal precession becomes almost independent of orbital
parameters for the elliptical orbits. If the test particle starts
from a fixed source with a fixed initial velocity irrespective
of the location of the source and magnitude of the initial
velocity, as one departs more from the Schwarzschild BH
solution, the bending angle of the particle’s paraboliclike
orbital trajectory in JNW geometry steadily decreases, even
attaining less value then that of the Newtonian case, while
there is a steady increase in the bending angle in RN
geometry. On the contrary, if the test particle starts with a
different initial velocity corresponding to different values of
γ or rQ from a fixed source to reach the fixed location of the
observer, as one departs more from the Schwarzschild BH
solution, the bending angle of the particle’s paraboliclike
orbital trajectory along with the total time taken by the
particle to reach the observer corresponding to JNW
geometry increases, in contrast to the case in RN geometry
where the bending angle as well as the time taken by the
particle to reach the observer steadily decreases, even
becoming less as compared to that of the Newtonian case.
One can then infer that the gravitational bending of light
would also show a similar kind of behavior in the presence
of these geometries having naked singularities.

We applied the Newtonian-like analogous potentials to
model a simple geometrically thin and optically thick
Keplerian accretion disk in the presence of JNW and RN
geometries. We found that the radiative efficiencies of the
Keplerian accretion disk around both JNW and RN naked
singularities are always higher than that around
Schwarzschild geometry. Although our analysis has been
performed for a simplistic geometrically thin Keplerian
accretion disk, however, the nature of the variation of the
radiative efficiency with γ or rQ for JNW and RN
geometries is likely to remain similar even for complex
accretion flow processes in the presence of these geom-
etries. More extensive study of accretion flow processes
including the detailed modeling of geometrically thick and/
or advective accretion flow in these geometries will be
pursued in a later work. The accreting system in the strong
field regime, thus, appears to provide a natural laboratory to
ascertain the presence of either naked singularities or BHs.
Here it is worthwhile to mention that in reality BHs

probably have almost no electric charge because a charged
BH is expected to quickly neutralize by attracting the
charge of the opposite sign [29]. Hence RN BHs/naked
singularities might not have much astrophysical relevance.
On the other hand, Price theorem [30] suggests that the
asymptotically flat scalar fields around a BH should radiate
away quickly, leaving only its constant asymptotic value
and the Schwarzschild BH, thereby raising doubt on the
physical reality of the JNW spacetime. However, the Price
theorem is not strictly applicable to the JNW metric as the
metric has no horizon and the scalar field diverges at
curvature singularity [31]. Here it is worthwhile to mention
that there are several claims in the literature for formation of
naked singularity in generic gravitationally spherical col-
lapse of an inhomogeneous dust ball but whether the JNW
solution will occur in a generic gravitational collapse is not
yet known. It would be interesting if the present approach
can be extended to the recently found stationary BH
solutions with long-lived (complex) scalar field [32] to
study the influence of the scalar field in accretion related
phenomena.
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