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We study the magnetic field generation in a neutron star within the model based on the magnetic field
instability in the nuclear matter owing to the electron-nucleon parity violating interaction. We suggest that
the growing magnetic field takes the energy from thermal background fermions in the neutron star matter.
The system of kinetic equations for the spectra of the magnetic helicity density and magnetic energy density
as well as the chiral imbalance are solved numerically accounting for this energy source. We obtain that, for
the initial conditions corresponding to a typical neutron star, the large scale magnetic field ∼1015 G is
generated during ð104 − 105Þ yr. We suggest that the proposed model describes strong magnetic fields
observed in magnetars.
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The most plausible explanation of radiation of soft
gamma repeaters [1] and anomalous X-ray pulsars [2] is
the presence of strong magnetic fields B≳ 1015 G in a
neutron star (NS). Such highly magnetized NSs are called
magnetars. Various models, explaining the origin of such
strong astrophysical magnetic fields, were reviewed in
Ref. [3]. Nevertheless, the issue of the magnetic fields
generation in magnetars still remains open.
Recently in Refs. [4,5] we proposed the new model for

the generation of strong magnetic fields in magnetars based
on the instability of magnetic fields in dense degenerate
matter composed of nonrelativistic neutrons and ultra-
relativistic electrons interacting by parity violating electro-
weak forces. The idea that electroweak interaction can
induce the magnetic field instability was put forward first
in Ref. [6]. Within our model, basing on quite natural
assumptions about the neutron star structure, we could
describe the generation of large scale magnetic fields, with
magnitudes predicted in magnetars, during time intervals
comparable with magnetars ages.
Despite the plausibility of the model developed in

Refs. [4,5], it has a significant disadvantage. The instability
of a magnetic field, proposed in Refs. [4,5], is a necessary
but not a sufficient condition for the magnetic field growth.
To describe the magnetic field generation in magnetars one
should indicate the source which feeds the magnetic field
growth. This issue is addressed in the present work.
In this paper we further develop the model in Refs. [4,5].

We start with a brief description of the basic features of our
model. Then we propose that magnetic fields can take the
energy from the thermal motion of particles in the NS

matter. We modify the kinetic equations, derived in
Refs. [4,5], to account for the magnetic field saturation,
and numerically solve them. Finally, we discuss our results.
In our work we use natural units in which ℏ ¼ c ¼ kB ¼ 1.
Our model is based on the parity violating electroweak

electron-nucleon interaction (the eN interaction). We shall
take that the background nuclear matter consists of neu-
trons and protons. This matter is supposed to be unpolar-
ized and nonmoving macroscopically. In Ref. [4] we
derived the averaged effective Lagrangian of the eN
interaction in the Fermi approximation as

Lint ¼ −ψ̄eγ
0ðVLPL þ VRPRÞψe;

VL ¼ GFffiffiffi
2

p ½nn − npð1 − 4ξÞ�ð1 − 2ξÞ;

VR ¼ −
GFffiffiffi
2

p ½nn − npð1 − 4ξÞ�2ξ; ð1Þ

where GF ≈ 1.17 × 10−5 GeV−2 is the Fermi constant,
nn;p are the constant and uniform densities of neutrons
and protons, ψe is the bispinor electron wave function,
ξ ¼ sin2θW ≈ 0.23 is the Weinberg parameter, PL;R ¼
ð1∓γ5Þ=2 are the chiral projectors, γ5 ¼ iγ0γ1γ2γ3, and
γμ ¼ ðγ0; γÞ are the Dirac matrices.
Now let us consider the interaction of ultrarelativistic

electrons with background matter, described by Eq. (1), and
an external magnetic field B ¼ ð0; 0; BÞ. The total
Lagrangian has the form, L ¼ Lem þ Lint, where Lem ¼
ψ̄eγ

μði∂μ þ eAμÞψe is the Lagrangian for the interaction of
an ultrarelativistic electron with the electromagnetic field
Aμ ¼ ð0; 0; Bx; 0Þ, and e > 0 is the absolute value of the
electron charge.
The Dirac equation generated by L was solved in

Refs. [4,5]. Using this solution, exactly accounting for
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both the matter interaction and the magnetic field, one can
compute the induced electric current along the magneic
field Jz ¼ −ehψ̄eγ

3ψei þ positron contribution, averaged
using the Fermi-Dirac distribution. This current, which is
additive to the ohmic current Johm ¼ σcondE, where σcond is
the matter conductivity and E is the electric field, turns out
to be nonzero. If we restore the vector notations, one gets
for the induced electric current J ¼ ΠB. The parameter Π
reads

Π ¼ 2αem
π

ðμ5 þ V5Þ;

μ5 ¼
1

2
ðμR − μLÞ;

V5 ¼
1

2
ðVL − VRÞ ≈

GF

2
ffiffiffi
2

p nn; ð2Þ

where αem ¼ e2=4π ≈ 7.3 × 10−3 is the fine structure con-
stant. Note that, since we consider ultrarelativistic elec-
trons, we can assume that right and left chiral projections of
the electron-positron field behave independently and pos-
sess different chemical potentials: μR and μL. To obtain
Eq. (2) we assume that nn ≫ np inside NS.
Using Eq. (2), in Ref. [5] we derived the system of

kinetic equations for the spectra of the magnetic helicity
densiy hðk; tÞ and magnetic energy density ρBðk; tÞ as well
as the chiral imbalance μ5ðtÞ in the form,

∂hðk; tÞ
∂t ¼ −

2k2

σcond
hðk; tÞ þ

�
4Π
σcond

�
ρBðk; tÞ;

∂ρBðk; tÞ
∂t ¼ −

2k2

σcond
ρBðk; tÞ þ

�
Π

σcond

�
k2hðk; tÞ;

dμ5ðtÞ
dt

¼ παem
μ2σcond

Z
dk½k2hðk; tÞ − 2ΠρBðk; tÞ� − Γfμ5;

ð3Þ

where μ is the chemical potential of electrons in NS,
Γf ¼ 4αemm2

e=3πσcond is the chirality flip rate in the
electron-proton (ep) collisions, and me is the electron
mass. Note that the chirality flipping term in Eq. (3) should
contain μ5 since the equilibrium in the system of right and
left electrons is achieved when μR ¼ μL.
The total magnetic helicity H and the magnetic

field strength B can be found on the basis of hðk; tÞ and
ρBðk; tÞ as

HðtÞ ¼
Z

d3xðA ·BÞ ¼ V
Z

hðk; tÞdk;
1

2
B2ðtÞ ¼

Z
dkρBðk; tÞ; ð4Þ

where V is the normalization volume and the integration is
over all the range of the wave number k variation. It should

be mentioned that in Eqs. (3) and (4) we assume the
isotropic spectra.
In Ref. [5] we found that the model described by Eq. (3)

reveals the potential growth of the seed magnetic field
B0 ¼ 1012 G up to B≳ 1017 G, i.e. the strengths predicted
in magnetars. However, the energy source feeding the
magnetic field growth was not specified in Ref. [5]. We
demonstrate below that the magnetic field can take the
energy from thermal motion of nucleons and electrons,
which NS is composed of. For this purpose we shall
calculate the temperature corrections to the energy density
of degenerate fermions in NS as a possible source for the
growth of the magnetic field.
We shall start with the electron component of NS matter.

Using the expansion of the integral in Ref. [7],

Z
∞

0

dε
fðεÞ

exp½ðε − μÞ=T� þ 1
¼

Z
μ

0

fðεÞdεþ π2

6
T2

dfðεÞ
dε

����
ε¼μ

þOðT4Þ; ð5Þ

one gets for the energy density

ρe ¼ 2

Z
d3p
ð2πÞ3

p
exp½ðp − μÞ=T� þ 1

¼ ρe0 þ δρe;

ρe0 ¼
μ4

4π2
; δρe ¼

μ2T2

2
; ð6Þ

and the number density

ne ¼ 2

Z
d3p
ð2πÞ3

1

exp½ðp − μÞ=T� þ 1
¼ ne0 þ δne;

ne0 ¼
μ3

3π2
; δne ¼

T2μ

3
; ð7Þ

of degenerate ultrarelativistic electrons including temper-
ature corrections. In Eqs. (6) and (7) we keep only the
leading terms in the temperature T. To derive Eqs. (6) and
(7) we neglect the magnetic fields correction to ρe and ne,
studied in Ref. [8], since eB ≪ μ2 for B ¼ ð1012–1017Þ G
we consider here.
One can see in Eqs. (6) and (7) that the mean energy of a

thermal electron hεeiT ¼ δρe=δne ¼ 3μ=2 exceeds the
Fermi level μ. The cooling of such electrons proceeds
independently of the main contribution in degenerate
electron gas with 0 ≤ εe ≤ μ since both the energy density
of electrons and their number density are proportional to
T2. This cooling does not violate the Pauli principle for
them either. That is why the decreasing of the temperature
of such thermal electrons can feed the magnetic field
growth.
Now let us consider degenerate nonrelativistic nucleons

N, i.e. neutrons N ¼ n and protons N ¼ p, as the energy
source for the magnetic field growth. These particles have
the Fermi energy μN ¼ p2

FN
=2MN ≫ T, where pFN

is the
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nucleons Fermi momentum and MN is the nucleon mass.
Analogously to Eqs. (6) and (7), as well as using Eq. (5),
we get the energy and number densities for degenerate
nucleons, including thermal corrections, as

ρN ¼ 2

Z
d3p
ð2πÞ3

ε

exp½ðε − μNÞ=T� þ 1
¼ ρN0 þ δρN;

ρN0 ¼
p5
FN

10π2MN
; δρN ¼ T2MNpFN

4
; ð8Þ

and

nN ¼ 2

Z
d3p
ð2πÞ3

1

exp½ðε − μNÞ=T� þ 1
¼ nN0 þ δnN;

nN0 ¼
p3
FN

3π2
; δnN ¼ T2M2

N

6pFN

; ð9Þ

where we account for the energy-momentum relation for a
nonrelativistic nucleon ε ¼ p2=2MN and again keep only
the leading terms in T.
Basing on Eqs. (8) and (9), one obtains the mean energy

of thermal nucleons hεNiT ¼ δρN=δnN ¼ 3p2
FN
=2MN ,

which is above the Fermi surface: hεNiT > μN . Hence,
like electrons, these nucleons can transfer their thermal
energy to the magnetic field in their cooling without
violation of the Pauli principle.
Summing up the thermal energy density corrections

of electrons, protons, and neutrons, we can define the
equipartition magnetic field strength Beq as

B2
eq

2
¼ δρe þ δρp þ δρn ¼

�
MnpFn

þMppFp

2
þ μ2

�
T2

2
:

ð10Þ

Accounting for MN ≈ 940 MeV, pFn
¼ ð3π2nnÞ1=3 ≈

339 MeV for the NS density nn ¼ 0.18 fm−3, and pFp
≈

μ ¼ 125 MeV for the electron density ne ¼ 9 × 1036 cm−3,
one gets that the neutron contribution to Beq is the greatest
one. We can consider the quantity ρT ¼ B2

eq=2 in Eq. (10)
as the inexhaustible energy source requiring that B2

eq ≫ B2.
Thus we do not violate the total energy conservation for the
extended system which includes the background matter and
the magnetic field. Since the values of nn;e are typical for
NS we shall later use them in the numerical simulations.
In Refs. [4,5] we simulated magnetic fields in magnetars

solving Eq. (3) and using B0 ¼ 1012 G as the initial
magnetic field. Assuming T ¼ 108 K and the above
parameters of the NS matter, we get that B2

0 ≪ B2
eq.

However, if B ¼ 1017 G, one obtains that B2 ≫ B2
eq.

Thus strong magnetic fields, predicted in Refs. [4,5], will
influence the background matter in NS.

To avoid a backreaction on matter from such a strong
magnetic field we should modify Eq. (3). As known from
the solar dynamo theory [9], one can avoid the infinite
growth of the magnetic field by quenching of the dynamo
α-parameter. Thus we can introduce the quenching of the
parameter Π, given in Eq. (2), as

Π →
Π

1þ B2=B2
eq
; ð11Þ

where B2 and B2
eq can be found in Eqs. (4) and (10). Again

referring to the solar dynamo theory, Beq is equivalent to
B⊙ ∼ 1 kG, which is the magnetic field strength in a solar
spot. Now the excessive growth of the magnetic field is
eliminated from our model since it is the parameter Π
which is responsible for the magnetic field instability.
To analyze the magnetic field generation in a magnetar

on the basis of Eq. (3) we should adopt an appropriate
initial condition. The detailed discussion of the initial
condition is provided in Ref. [5]. Here we just make a
few comments on it.
We shall consider the evolution of a thermally relaxed

NS at t > t0, where t0 ¼ 102 yr. As obtained in Ref. [10],
at t0 < t≲ 106 yr, NS cools down by the neutrino emission
in modified Urca processes. The time dependence of the NS
temperature obeys the differential equation [11],

dTðtÞ
dt

¼ −
TðtÞ

ðnT − 2Þt ; ð12Þ

where the index nT ¼ 8 for modified Urca processes. Using
Eq. (12) and the results of Ref. [5], one gets that the NS
temperature and the NS conductivity will depend on time as
T2 ¼ T2

0F and σcond ¼ σ0=F, where F ¼ ðt=t0Þ−1=3,
T0 ¼ 108 K, and σ0 ¼ 2.7 × 108 MeV is given by the
electron (or proton) density ne ¼ np ¼ 9 × 1036 cm−3.
We shall study the generation of the magnetic field

without specifying its direction, which can be random.
Moreover we suggest that a seed magnetic field appears due
to a turbulence which can be of a hydrodynamic origin. In
this case one can choose the initial Kolmogorov spectrum
for the magnetic energy density ρBðk; t0Þ ¼ Ck−5=3 [12].
Here we correct the initial spectrum chosen in Ref. [5].
The constant C can be found from Eq. (4) setting
Bðt0Þ ¼ B0 ¼ 1012 G, which is a seed field typical for a
young pulsar. The wave number runs in the interval
kmin < k < kmax, where kmin ¼ R−1

NS ¼ 2 × 10−11 eV,
RNS ¼ 10 km is the NS radius, kmax ¼ Λ−1

B , and ΛB is
the free parameter specifying the scale of the magnetic field
generated.
The initial spectrum of the helicity density can be chosen

as hðk; t0Þ ¼ 2qρBðk; t0Þ=k, where the parameter 0≤q≤1
defines the initial helicity. The case q ¼ 0 corresponds to
the initially nonhelical field and q ¼ 1 to the magnetic field
with a maximal helicity. Therefore, besides magnetic fields

ENERGY SOURCE FOR THE MAGNETIC FIELD GROWTH … PHYSICAL REVIEW D 92, 083007 (2015)

083007-3



we can also study the generation of the magnetic helicity in
our model.
The initial value of the chiral imbalance can be taken

as μ5ðt0Þ ¼ 1 MeV. Note that μ5ðt0Þ ≠ 0 is generated in
direct Urca processes at the early stages of the NS evolution
at t < t0. The energy scale of these processes is governed
by the mass difference between a neutron and a proton:
Mn −Mp ∼ 1 MeV. This fact substantiates our choice
of μ5ðt0Þ.
At the first glance one can imagine that, for the chosen

parameters, the contribution of the electroweak interactions
∼V5 to Eq. (3) is negligible compared to the electrody-
namic contribution ∼μ5. As shown in Refs. [4,13], almost
any initial μ5ðt0Þ ≠ 0 tends to zero very rapidly because of
the high rate of ep collisions, whereas V5 is a steady source
for the growth of the magnetic helicity and the magnetic
energy density. Moreover, the electroweak term is not
affected by ep collisions since V5 depends on the differ-
ence of the interaction potentials of left and right electrons
with background matter, which are constant parameters of
the model [see Eqs. (1) and (2)], unlike μ5, which is a
dynamic variable.
We also mention the recent Ref. [14], where another

steady source for the magnetic field instability, different
from V5, was used to explain strong magnetic fields in
magnetars. It is based on the generation of the chiral
imbalance in direct and modified Urca processes, e−L þ
p → nþ νeL and e−L þ pþ N → nþ νeL þ N, which are
not in the equilibrium with inverse reactions. This situation
can happen during ∼10 s after the onset of the supernova
collapse outside the neutrinosphere.
Short scale, ΛB ≲ 1 cm, magnetic fields with the

strength B≲ 1014 G were demonstrated in Ref. [14] to
be generated in this situation. However, as shown in
Ref. [15], short scale chaotic magnetic fields in a supernova
explosion are subject to the reconnection with the typical
time of several seconds. This time scale is comparable with
the time interval for magnetic field generation in Ref. [14].
Thus, magnetic fields predicted in Ref. [14] will transform
effectively into heat because of the magnetic reconnection.
Below we present the results of numerical solution

of Eq. (3) accounting for Eq. (11) and the chosen
initial conditions. In Fig. 1 one can see the growth of
magnetic fields of different length scales and initial

helicities. We study the two main minimal scales: ΛðminÞ
B ¼

1 km in Figs. 1(a) and 1(b) as well as ΛðminÞ
B ¼ 100 m in

Figs. 1(c) and 1(d). Thus we predict the generation of
strong large scale magnetic fields.
To compare the behavior of magnetic fields in the present

work with that in Ref. [5], in Figs. 1(a) and 1(c) we also
show the results of the numerical solution of Eq. (3)
without quenching in Eq. (11). One can see that
unquenched magnetic fields, shown by blue lines, slow
down the growth rate after ∼105 yr in Fig. 1(a) and ∼104 yr
in Fig. 1(c), but continue growing [5]. On the contrary, the

quenched magnetic fields, shown by red lines, are satu-
rated. For both ΛðminÞ

B we start with B0 ¼ 1012 G and
magnetic fields reach the saturated value Bsat ∼ 1015 G.
For example, in Fig. 1(b), Bsat ≈ 1.1 × 1015 G. This Bsat is
close to magnetic fields observed in magnetars [16].
Magnetic fields in Fig. 1(a) grow up to Bsat for t≳ 105 yr

and in Fig. 1(c) for t≳ 104 yr. These time intervals are
comparable with the ages of young magnetars [16].
Note that the smaller the scale of the magnetic field is,
the faster this magnetic field grows and the stronger Bsat is.
One gets from Eq. (4) that ρB ∼ k2A2, where A is the typical
vector potential. Hence, a bigger kmax corresponds to
stronger Bsat.
We also analyze the evolution of magnetic fields with

different initial helicities. One can see in Figs. 1(b) and 1(d)
that there is a difference in the behavior of magnetic
fields for initially nonhelical (solid lines) and maximally
helical (dashed lines) fields for relatively small evolution
times. At later times this difference is washed out;
cf. Figs. 1(a) and 1(c). It means that, in frames of our
model, we can generate both strong magnetic fields and the
magnetic helicity.
Note that the behavior of quenched and unquenched

magnetic fields is almost indistinguishable at small
evolution times. Indeed, if t ≪ tsat, where tsat ¼
ð104–105Þ yr is the saturation time depending on the
scale of the magnetic field, then B ≪ Beq in Eq. (10).
Thus in this time interval it is sufficient to consider the
evolution of quenched magnetic fields, which is shown in
Figs. 1(b) and 1(d).
Comparing the results of Ref. [5] with the evolution

of magnetic fields in Figs 1(b) and 1(d), one can notice that
in the present work magnetic fields grow several times
slower. This discrepancy can be attributed to the fact that
now we use the correct initial Kolmogorov’s spectrum
ρBðk; t0Þ ¼ CkνB with νB ¼ −5=3 vs. νB ¼ 1=3 in Ref. [5].
Indeed, since C ∼ νB þ 1, the greater νB is, the faster
ρBðk; tÞ will grow.
Along with growing magnetic fields, shown in Fig. 1, it

is important to consider the evolution of the magnetic
helicity density hðtÞ ¼ HðtÞ=V to illustrate its generation in
a magnetar. In Fig. 2 we demonstrate how the magnetic
helicity grows in our model. We consider the cases of
initially helical and nonhelical magnetic fields as well as
quenched and unquenched parameter Π in Eq. (11) to
compare our results with those in Ref. [5]. One can see in
Figs. 2(b) and 2(d) that the difference in the evolution of
initially helical and nonhelical magnetic fields is sizable
only at early evolution times. Later this difference is
washed out; cf. Figs. 2(a) and 2(b). Therefore we extend
the result of Ref. [5], that the magnetic helicity can be
generated in our model, to the case of the quenched
parameter Π in Eq. (11).
In conclusion we mention that we have further developed

the model, recently proposed in Refs. [4,5], for the
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magnetic fields generation in magnetars. We have
improved our approach pointing out that the magnetic
field, growing owing to the instability caused by the parity
violating eN interaction, can take the energy mostly from
thermal neutrons, as well as electrons and protons, which
are present in the NS matter.
We have started with the evaluation of thermal correc-

tions to the number densities and the energy densities of
background fermions in NS. We have shown that, by
cooling, these particles can pass their thermal energy to
the magnetic field without violating the Pauli principle.
Then, in the analogy with the solar dynamo, we have
generalized the kinetic equations, derived in Ref. [5], by

quenching of the parameterΠ; cf. Eq. (11). This procedure
allowed us to treat background fermions as the large
energy reservoir feeding the magnetic field. Moreover
we have avoided the infinite growth of the magnetic
field.
We have numerically solved the system of kinetic

Eqs. (3) with the modified parameter Π. For the initial
conditions corresponding to a typical NS (nn;e and B0), we
have obtained the growth of the seed magnetic field by
three orders of magnitude to Bsat ≈ 1015 G. Although
this value of Bsat is smaller than that obtained in
Refs. [4,5], this Bsat is close to the magnetic field predicted
in magnetars [16].
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FIG. 1 (color online). The growth of quenched and unquenched magnetic fields in magnetars versus t − t0 for different kmax,
corresponding to different length scales ΛB. Red and blue lines in panels (a) and (c) are the solutions of Eq. (3) for quenched and
unquenched Π in Eq. (11), respectively. Solid lines correspond to initially nonhelical fields with q ¼ 0 and dashed lines to maximally

helical fields with q ¼ 1. (a) The magnetic field evolution for kmax ¼ 2 × 10−10 eV or ΛðminÞ
B ¼ 1 km. (b) The behavior of the quenched

magnetic field with the parameters as in panel (a) for shorter evolution time t0 < t < 5 × 103 yr. (c) The magnetic field growth for

kmax ¼ 2 × 10−9 eV or ΛðminÞ
B ¼ 100 m. (d) The behavior of the quenched magnetic field with the parameters as in panel (c) for shorter

evolution time t0 < t < 5 × 102 yr.
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The time of the magnetic field growth to Bsat is tsat ¼
ð104–105Þ yr depending on the scale of the magnetic field.
We have analyzed the two scales of the magnetic field in the
range ΛB ¼ ð102–103Þ m, i.e. we predict the generation of
large scale magnetic fields. Comparing the obtained results
for tsat with the ages of magnetars [16], one concludes that
our model is a quite plausible explanation of magnetic
fields in magnetars.
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FIG. 2 (color online). The evolution of the magnetic helicity in magnetars versus t − t0 for quenched and unquenched parameter Π as
well as for different kmax, corresponding to different length scales ΛB. Red and blue lines in panels (a) and (c) are the solutions of Eq. (3)
for quenched and unquenched Π in Eq. (11), respectively. Solid lines correspond to initially nonhelical fields with q ¼ 0 and dashed

lines to maximally helical fields with q ¼ 1. (a) The magnetic helicity density evolution for kmax ¼ 2 × 10−10 eV or ΛðminÞ
B ¼ 1 km.

(b) The behavior of the magnetic helicity density for the quenched Π with the parameters as in panel (a) for shorter evolution time

t0 < t < 5 × 103 yr. (c) The magnetic helicity density growth for kmax ¼ 2 × 10−9 eV or ΛðminÞ
B ¼ 100 m. (d) The behavior of the

magnetic helicity density for the quenched Π with the parameters as in panel (c) for shorter evolution time t0 < t < 5 × 102 yr.
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