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In this paper we compute models for relativistic white dwarfs in the presence of strong magnetic fields.
These models possibly contribute to superluminous SNIa. With an assumed axisymmetric and poloidal
magnetic field, we study the possibility of the existence of super-Chandrasekhar magnetized white dwarfs
by solving numerically the Einstein-Maxwell equations, by means of a pseudospectral method. We obtain a
self-consistent rotating and nonrotating magnetized white dwarf model. According to our results, a
maximum mass for a static magnetized white dwarf is 2.13 M⊙ in the Newtonian case, and 2.09 M⊙ when
taking into account general relativistic effects. Furthermore, we present results for rotating magnetized
white dwarfs. The maximum magnetic field strength reached at the center of white dwarfs is of the order of
1015 G in the static case, whereas for magnetized white dwarfs, rotating with the Keplerian angular
velocity, it is of the order of 1014 G.
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I. INTRODUCTION

White dwarfs (WDs) are stellar remnants of stars with
masses of up to several solar masses. With a mass
comparable to that of the Sun ∼2 × 1033 g, which is
distributed in a volume comparable to that of the Earth,
the central mass density in these objects can reach values of
about 1011 g=cm3. Together with neutron stars and black
holes, they are end points of stellar evolution and play a key
role in astrophysics [1,2].
The existence of white dwarfs was one of the major

puzzles in astrophysics until Fowler [3], based on the
quantum-statistical theory developed by Fermi and Dirac
[4,5], showed that white dwarfs are supported by the
pressure of a degenerate electron gas. In addition,
Chandrasekhar in Ref. [6] found that there is a limit in
the stellar mass, beyond which degenerate white dwarfs are
unstable. This critical mass is the so-called Chandrasekhar
limit and is about 1.4 M⊙.
White dwarfs are mostly composed of electron-

degenerate matter. The mass of the star is essentially given
by the total mass of the nuclei, whereas the main con-
tribution to the pressure is produced by the electrons. For
typical WDs, thermonuclear reactions terminate at lighter
nuclei, like carbon, helium, or oxygen [2,7].
Some white dwarfs are also associated with strong

magnetic fields. Observations show that the surface mag-
netic field of these stars can reach values from 106 G to
109 G [8–12]. However, the internal magnetic field in
magnetic stars is very poorly constrained by observations
and can be much stronger than the one at the surface.
For example, white dwarfs might have internal magnetic
fields as large as 1012–16 G according to Refs. [1,13,14].

Moreover, self-consistent calculations of strongly magnet-
ized neutron stars have suggested that the stars can possess
central magnetic fields as large as 1018 G [15–18].
Therefore, the overall task of understanding and estimating
magnetic fields inside compact objects is one of the key
problems in astrophysics.
Motivated by observations of a thermonuclear super-

nova, which appears to be more luminous than expected
(e.g. SN 2003fg, SN 2006gz, SN 2007if, SN 2009dc), it
has been argued [19–23] that the progenitor of such a
supernova should be a white dwarf with mass above the
well-known Chandrasekhar limit, in other words, a super-
Chandrasekhar white dwarf.
Progenitors with masses M > 2.0 M⊙ were considered

in the literature as a result of a merger of two massive white
dwarfs, or alternatively due to fast rotation [24]. In addition,
super-Chandrasekhar white dwarfs were investigated in a
strong magnetic field regime as in Refs. [25–27]. In the
Newtonian framework, models for white dwarfs including
magnetic fields and/or rotation were investigated in a
series of papers [28–31]. Recently, a study of differentially
rotating and magnetized white dwarfs, performed within
the ideal magnetohydrodynamic regime, has shown that
differential rotation might increase the mass of magnetized
white dwarfs up to 3.1 M⊙ [32].
Previous studies showed that magnetic white dwarfs can

have their masses increased up to 2.58 M⊙ for a magnetic
field strength of 1018 G at the center of the star [26].
Nonetheless, such an approach violates not only macro-
physics aspects, as for example, the breaking of spherical
symmetry due to the magnetic field, but also microphysics
considerations, which are relevant for a self-consistent
calculation of the structure of these objects [33–35].
Besides, a self-consistent Newtonian structure calculation
of strongly magnetized white dwarfs has shown that these
stars exceed the traditional Chandrasekhar mass limit
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significantly ðM ∼ 1.9 M⊙Þ for a maximum field strength
of the order of 1014 G [14].
In this paper, we model static and rotating magnetized

white dwarfs in a self-consistent way by solving Einstein-
Maxwell equations in the same way as it was originally
done for neutron stars in Refs. [15,36]. We also follow our
recent work on highly magnetized hybrid stars [18], where
both general relativistic effects and the anisotropy of
the energy momentum tensor caused by the magnetic field
were taken into consideration to calculate the star structure.
The presence of such a strong magnetic field can locally
affect the microphysics of the stellar matter, as for example,
due to Landau quantization. However, as shown in
Ref. [14], Landau quantization does not affect the global
properties of white dwarfs. Furthermore, the authors in
Ref. [14] solved the structure equations in a Newtonian
form, but, as we will see, effects of general relativity are
essential for determining the maximummass of such highly
magnetized white dwarfs.
Globally, the magnetic field can affect the structure of

WDs since it contributes to the Lorenz force, which acts
against gravity. In addition, it contributes also to the
structure of spacetime, since the magnetic field is now a
source for the gravitational field through the Maxwell
energy-momentum tensor. In the following, as we are
interested in global effects that magnetic fields and the
rotation can induce in WDs, we simplify the discussion
assuming white dwarfs that are predominately composed
by 12C (A=Z ¼ 2) in an electron background.

II. BASIC EQUATIONS AND FORMALISM

In this paper, we consider rotating and nonrotating
magnetized white dwarfs. In this context, the formalism
used here was first applied to rotating and nonrotating
magnetized neutron stars in Refs. [15,16,36], and more
recently in Ref. [18]. Details of the gravitational equations,
numerical procedure and other properties of the equations
can be found in the references cited above and in Ref. [37].
For the sake of completeness and readability, we present
the basic electromagnetic equations that, together with the
gravitational equations, are solved numerically. The
energy-momentum tensor of the system reads

Tαβ ¼ ðeþ pÞuαuβ þ pgαβ þ
1

μ0

�
FαμF

μ
β −

1

4
FμνFμνgαβ

�
;

ð1Þ

with Fαμ being the antisymmetric Faraday tensor defined
as Fαμ ¼ ∂αAμ − ∂μAα, where Aμ is the electromagnetic
four-potential. The system energy density is e, the isotropic
contribution to the pressure is denoted by p, the fluid
velocity is given by uα, and the metric tensor is gαβ. The
first term in Eq. (1) represents the isotropic matter con-
tribution to the energy momentum tensor, while the second

term is the anisotropic electromagnetic field contribution.
Due to the symmetry of the system, a polar-spherical type
coordinate system is chosen (for a review see Ref. [37]):

ds2 ¼ −N2dt2 þΨ2r2sin2θðdϕ − NϕdtÞ2
þ λ2ðdr2 þ r2dθ2Þ; ð2Þ

with N, Nϕ, Ψ and λ being functions of the coordinates
ðr; θÞ. The electromagnetic contribution (EM) to the
energy-momentum tensor is obtained within the so-called
3þ 1 decomposition [36,37]. The energy density becomes

EðEMÞ ¼ 1

2μ0
ðEiEi þ BiBiÞ; ð3Þ

and the momentum-density flux can be written as

JðEMÞ
ϕ ¼ λ2

μ0
ðBrEθ − ErBθÞ: ð4Þ

The stress 3-tensor components are given by

SðEMÞr
r ¼ 1

2μ0
ðEθEθ − ErEr þ BθBθ − BrBrÞ; ð5Þ

SðEMÞθ
θ ¼ 1

2μ0
ðErEr − EθEθ þ BrBr − BθBθÞ; ð6Þ

SðEMÞϕ
ϕ ¼ 1

2μ0
ðEiEi þ BiBiÞ; ð7Þ

being the electric field components, as measured by the
Eulerian observer O0, written as [38]

Eα ¼
�
0;

1

N

�∂At

∂r þ Nϕ
∂Aϕ

∂r
�
;
1

N

�∂At

∂θ þ Nϕ
∂Aϕ

∂θ
�
; 0

�
;

ð8Þ

and the magnetic field given by

Bα ¼
�
0;

1

Ψr2 sin θ

∂Aϕ

∂θ ;−
1

Ψ sin θ

∂Aϕ

∂r ; 0

�
; ð9Þ

with At and Aϕ the two nonzero components (for a poloidal
magnetic field) of the electromagnetic four-potential
Aμ ¼ ðAt; 0; 0; AϕÞ. As in Ref. [36], the equation of motion
(∇μTμν ¼ 0) reads

Hðr; θÞ þ νðr; θÞ − lnΓðr; θÞ þMðr; θÞ ¼ const; ð10Þ

with Hðr; θÞ being the logarithm of the dimensionless
relativistic enthalpy per baryon:
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H ≔ ln

�
eþ p
mbnbc2

�
; ð11Þ

where mb ¼ 1.66 × 10−27 kg is the mean baryon mass and
nb is the baryon number density. The second term in
Eq. (10) is defined as ν ¼ νðr; θÞ ≔ lnðNÞ, the Lorenz
factor Γ is written as Γ ¼ ð1 − U2Þ−1

2, the physical fluid
velocity U in the ϕ direction is given by

U ¼ Ψr sin θ
N

ðΩ − NϕÞ; ð12Þ

and the magnetic potential Mðr; θÞ associated to the
Lorentz force becomes

Mðr; θÞ ¼ MðAϕðr; θÞÞ ≔ −
Z

0

Aϕðr;θÞ
fðxÞdx; ð13Þ

with fðxÞ being a current function as defined in Ref. [36]
[see Eq. (5.29)]. In this paper, we use a current function
fðxÞ ¼ f0 ¼ const, which is proportional to the intensity of
the magnetic field, i.e., with a larger current function f0,
the magnetic field in the star increases proportionally.
As shown in Ref. [15], other choices are possible for fðxÞ,
however, they do not alter the conclusions.

III. MASS-RADIUS DIAGRAM FOR STATIC
HIGHLY MAGNETIZED WHITE DWARFS

In this section we present the mass-radius (MR) diagram
for static magnetized white dwarfs. The relation between
mass and radius of nonmagnetized white dwarfs was first
determined by Chandrasekhar [7]. Recently, studies of
modified mass-radius relations of magnetic white dwarfs
were proposed, for example, in Refs. [14,25,39]. As we
also found in this work, these authors show that the mass of
white dwarfs increases in the presence of magnetic fields.
In Fig. 1, we show the isocontours in the ðx; zÞ plane of

the poloidal magnetic field lines for a static star with central
enthalpy of Hc ¼ 0.0063c2. As we will see in Fig. 4, this
value of the enthalpy results in the maximum gravitational
mass of relativistic, static and magnetized white dwarfs
achieved with the code, namely, 2.09 M⊙, which corre-
sponds to a central mass density of 2.79 × 1010 g=cm3.
It is known that at sufficiently high densities reactions as
inverse β-decay or pycnonuclear fusion can take place in the
interior of white dwarfs [34,40]. As estimated in Ref. [40],
for the maximum mass configuration obtained in this paper,
i.e., for a central magnetic field of 1.03 × 1015 G, the onset
of electron capture by carbon-12 nuclei is 4.2 × 1010 g=cm3

with electron-ion interactions, and 3.9 × 1010 g=cm3 with-
out electron-ion interactions. Therefore, in our calculation,
the maximummass density reached by the most massive and
nonrotating magnetized white dwarf lies below the threshold
density for the onset of electron captures by carbon-12 nuclei
as calculated in Ref. [40].

In Fig. 2, we show the mass density distribution for the
same star as in Fig. 1. As expected, the mass density is not
spherically distributed and the maximum mass density is not
at the center of the star anymore. In this case, the central
magnetic field reaches a value of 1.03 × 1015 G, whereas the
surface magnetic field was found to be 2.02 × 1014 G.

FIG. 1. Isocontours of the magnetic field strength in the ðx; zÞ
plane, with a gravitational mass of 2.09 M⊙ and a magnetic
dipole moment of 1.30 × 1034 Am2. The ratio between the
magnetic pressure and the matter pressure at the center of the
star is about 1, and the magnetic field at the center reaches
1.03 × 1015 G.

FIG. 2. Isocontours of the baryon number density in the
ðx; zÞ plane for the same star as shown in Fig. 1. The central
baryon density for this model is 1.679 × 10−5 fm−3
(2.79 × 1010 g=cm3).
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The figure illustrates that the Lorentz force exerted by the
magnetic field breaks the spherical symmetry of the star
considerably and acts as a centrifugal force that pushes the
matter off center. For a better understanding of this aspect,
we use the equation of motion (10) for the static case, Γ ¼ 0,

Hðr; θÞ þ νðr; θÞ þMðr; θÞ ¼ C; ð14Þ

and plot these quantities in the equatorial plane as shown in
Fig. 3. This same analysis was presented for magnetized
neutron stars in Ref. [17]. The constant C can be calculated
at every point in the star. We have chosen the center, since
the central value of the magnetic potential Mðr; θÞ is zero
and the central enthalpy Hc is our input to construct
solutions. The Lorentz force is the derivative of the magnetic
potentialMðr; θÞ in Eq. (14) and reaches its maximum value
off center (req ∼ 350 km, see Fig. 3). As already discussed
in Ref. [17], the direction of the magnetic forces in the
equatorial plane depends on the current distribution inside
the star. In addition, the magnetic field changes its direction
in the equatorial plane and, therefore, the Lorenz force
reverses the direction inside the star. In our case, this can be
seen from the qualitative change in behavior of the function
Mðr; θÞ around req ∼ 350 km in Fig. 3.
In order to compare our results with those in the literature,

we compute the mass-radius diagram for magnetized white
dwarfs shown in Fig. 4. As pointed out in Ref. [41], a fully
consistent equilibrium configuration for magnetized white
dwarfs is still lacking. The same authors have used a
relativistic framework with cylindrical coordinates and the
splitting of the pressure into parallel and perpendicular
components to show that the maximum magnetic field
inside these objects cannot exceed 1.5 × 1013 G. Their
solutions also indicate that it is not possible to have stable
magnetized WDs with super-Chandrasekhar masses. The
maximum magnetic field strength obtained in Ref. [41] is

less than the value obtained by a self-consistent solution of
Newtonian white dwarfs as presented in Ref. [14], and
orders of magnitude less than predicted in Ref. [25].
However, as discussed in Refs. [33–35], the paper [25]
has been criticized above all because their calculation
violates both macro-/microphysics properties essential for
the stability of these objects.
In Fig. 4, the maximum white dwarf masses are obtained

when the ratio between the magnetic and the matter
pressure at the center of the star is less than or about 1.
For such a strong magnetic field, the magnetic force has
pushed the matter off center and a topological change to a
toroidal configuration can take place [17]. This gives a limit
for the magnetic field strength that can be computed within
this approach, since our current numerical tools do not
enable us to handle toroidal configuration.
The maximum masses of white dwarfs increase with

stronger magnetic field. In our calculation, we found a mass
for a relativistic white dwarf of 2.09 M⊙ for almost the
same magnetic field strength at the center, B ∼ 1014 G, as
in Ref. [14]. The same authors presented configurations
with magnetic fields up to 1016 G, which we have not
found in our calculations. In the Newtonian case, we found
a mass of 2.13 M⊙ for the most massive magnetized white
dwarf. In both cases, the masses are well above the
Chandrasekhar limit of 1.4 M⊙.

IV. ROTATING MAGNETIZED WHITE DWARFS

Besides magnetic fields, rotation is a crucial observable
in stellar astrophysics. Typically, white dwarfs can rotate
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FIG. 3 (color online). Behavior of the different terms of the
equation of motion as a function of the equatorial coordinate
radius for the same star as shown in Fig. 1.
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FIG. 4 (color online). Mass-radius diagram for magnetized
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for which numerical convergence is achieved. This diagram is quite
similar to the MR diagram calculated in Ref. [14]. However, those
authors have evaluated only Newtonian white dwarfs. All curves in
this figure were calculated for a ratio between the magnetic and
matter pressure less than or quite close to 1 at the center of the star.
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with periods of days or even years. On the other hand,
according to Ref. [42], one of the fastest observed WDs
possesses a spin period of 13.2s, a value similar to the ones
observed in soft gamma repeaters (SGRs) and anomalous
x-ray pulsars (AXPs), known as magnetars [43,44]. A
relation between white dwarfs and magnetars was
addressed in Ref. [45], where the authors speculated that
SGRs and AXPs with low magnetic field on the surface
might be rotating magnetized white dwarfs.
Rigidly rotating nonmagnetized white dwarfs were

already studied a long time ago in the Newtonian frame-
work [46–51]. In addition, the structure of rapidly rotating
white dwarfs was performed in general relativity as in
Ref. [52], and more recently in Ref. [53], where the authors
used Hartle’s formalism [54] to solve the approximate
Einstein equations. It is obvious that all rotating stars have
to satisfy the mass shedding, or Keplerian limit, as a
condition of stability. This limit is reached when the
centrifugal force due to rotation does not balance gravity
anymore and the star starts to lose particles from the
equator, defining an upper limit to the angular velocity
of uniformly rotating stars.
In the same way that rotation provides a natural limit for

the stability of stars, in the case of WDs, there are also
microphysics aspects, as for example, the inverse β-decay
and pycnonuclear fusion reactions [33,34,40], which need
to be taken into account for a complete and self-consistent
description of these stars. In this paper, however, we restrict
ourselves to the study of the combined effect of rotation and
magnetic fields on the global structure of WDs and we do
not address these microphysics aspects.
In Fig. 5, we depict the Tolman-Oppenheimer-Volkoff

(TOV) solution for the structure of a spherically symmetric

white dwarf and the mass-shedding frequency limit. The
centrifugal force exerted by the rotation acts against gravity,
which allows the star to support higher masses compared to
the static case. In the first place, by comparison of Figs. 4
and 5, one sees that magnetic fields are more efficient than
rotation in increasing the maximum mass of stars. The
maximum mass obtained for a relativistic and magnetic
white dwarf is 2.09 M⊙, whereas the maximum mass
achieved by rotation is ∼1.45 M⊙.
The relation between the Keplerian frequency (fK) and

the central density of the star is displayed in Fig. 6. With
higher angular velocity, the centrifugal forces increase,
pushing the matter outward, therefore acting against
gravity. As a result, the stars are allowed to have more
mass, increasing the central density. This is possible,
because the centrifugal forces due to rotation (fc ∝ rΩ2)
have much more effect on the outer layers of the star. On the
other hand, for nonrotating magnetized stars, the Lorenz
force acts mainly in the inner layers of the star, reducing,
and not increasing, the central densities in these objects as
shown in Ref. [18].
Henceforth we investigate the role played by the mag-

netic field in uniformly rotating white dwarfs. For a star
with central enthalpy of Hc ¼ 0.005c2, whose mass is
close to the maximum mass in the static case, we present
results for three different calculations: (A) static and
nonmagnetized; (B) rotating (with the Keplerian frequency)
and nonmagnetized and (C) rotating (with the Keplerian
frequency) and magnetized. Cases (A) and (B) are pre-
sented in the mass-radius diagram in Figs. 4 and 5. For case
(B), the star rotates with its Keplerian frequency of 0.99 Hz.
In addition, in order to compute stellar solutions for the
case (C), we turn on the magnetic field until the limit of
numerical convergence is reached. The resulting magnetic
field lines and the electric isopotential lines At ¼ const are
depicted in Fig. 7. In order to study how the Keplerian
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FIG. 6 (color online). Keplerian frequency as a function of the
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frequency changes with the magnetic field, we perform a
calculation for different current functions f ¼ f0 ¼ const,
from zero [case (B)] to the maximum value of the magnetic
field as shown in Fig. 7. As a result, the Keplerian
frequency increases with the magnetic field as shown in
Fig. 8. In this way, equilibrium configurations are obtained
for higher centrifugal forces and, therefore, if the star can
rotate faster, in consequence it can support higher masses,
which explains the behavior observed in Fig. 9.
According to Fig. 6, nonmagnetized white dwarfs can

reach a maximum Keplerian frequency of 1.52 Hz.
However, in the magnetic case (Fig. 8), the maximum

Keplerian frequency is reduced to 1.13 Hz, which corre-
sponds to a white dwarf with gravitational mass of
∼1.57 M⊙ and a central magnetic field of 1.87 × 1014 G.

V. CONCLUSIONS

We computed perfect-fluid magnetized white dwarfs in
general relativity by solving the coupled Einstein-Maxwell
equations. We have applied a formalism that was developed
for neutron stars to rotating magnetized white dwarfs. In
our case, the equilibrium solutions are axisymmetric and
stationary, including a strong poloidal magnetic field.
The observation of superluminous Ia supernovae

suggests that their progenitors are super-Chandrasekhar
white dwarfs, whose masses are higher than 1.4 M⊙. The
increase in mass may be a consequence of ultrastrong

FIG. 7. Magnetic field lines (up) and electromagnetic potential
lines (down) for a star with Hc ¼ 0.005c2 and gravitational mass
of ∼1.57 M⊙, with a Keplerian frequency of 1.13 Hz. The dipole
magnetic moment reaches 6.93 × 1033 Am2 and the magnetic
field intensity at the center of this white dwarf is 1.87 × 1014 G.
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white dwarfs.
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shown in Fig. 8.
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magnetic field inside the white dwarfs. The relevance of
magnetic fields in enhancing the maximum mass of a white
dwarf was studied and the results were obtained in a fully
relativistic framework. We have shown that white dwarfs
masses increase up to 2.09 M⊙ for a maximum magnetic
field strength of ∼1015 G in the stellar center. Thus,
magnetic fields can, potentially, be responsible for super-
massive white dwarfs.
The structure of relativistic, axisymmetric and uniformly

rotating magnetized white dwarfs were investigated self-
consistently and all effects of the electromagnetic fields on
the star equilibrium were taken into account. Unsurprisingly,
nonmagnetized configurations at the mass shedding limit
support higher masses than their static counterparts.
However, we have seen that the magnetic field is much
more efficient in increasing the mass of WDs than rotation.
For example, the Keplerian sequence has a maximum mass
of ∼1.45 M⊙, whereas for the maximum magnetic field
configuration achieved in this calculation, the maximum
mass of relativistic WDs is 2.09 M⊙, i.e., 33% larger than
the Chandrasekhar limit, and 2.13 M⊙ in the Newtonian
framework.
We have also shown the increase of the Keplerian

frequency (fK) with the magnetic field. For stronger
magnetic fields the Lorenz force increases, which, in turn,
helps the star to support more mass than in the non-
magnetized case. As a result, as these stars are more massive,
they can rotate faster (see Figs. 8 and 9). In this case, the
maximum mass obtained for rotating magnetized white
dwarfs is ∼1.57 M⊙, with a Keplerian frequency of 1.13 Hz.
Note that purely poloidal or purely toroidal magnetic

field configurations undergo intrinsic instabilities as

suggested years ago in Refs. [55–58]. The nature of this
instability was confirmed both in Newtonian numerical
simulations in Refs. [59–62] and in a general relativity
framework in Refs. [63–66]. Analytical and numerical
calculations have also shown that stable equilibrium
configurations are obtained for magnetic fields composed
not only by a poloidal component, which extends through-
out the star and to the exterior, but also a toroidal one,
which is confined inside the star [61,67–70]. In addition,
the magnetic field might decay due to Ohmic effects and,
thereby, change its strength and distribution in the star [71].
In this study we have modeled magnetized white dwarfs
with a purely poloidal magnetic field, which is not the most
general case. However, using these restrictive assumptions
we have shown, in a fully general relativity way, that
magnetic field effects can considerably increase the star
masses and, therefore, might be the source of superlumi-
nous SNIa. In future work, in order to have a more
complete description of the stars presented here, we intend
to take into account magnetic field configurations with both
poloidal and toroidal components, a B-field dependent
equation of state and effects of the anomalous magnetic
moment.
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