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A stationary distribution function that describes the entire process of the propagation of relativistic
particles, including the transition between the ballistic and diffusion regimes, is obtained. The spacial
component of the constructed function satisfies the first two moments of the Boltzmann equation.
The angular part of the distribution provides accurate values for the angular moments derived from the
Boltzmann equation, and gives a correct expression in the limit of the small-angle approximation. Using the
derived function, we study the gamma-ray images produced through the pp interaction of relativistic
particles with gas clouds in the proximity of the accelerator. In general, the morphology and the energy
spectra of gamma rays significantly deviate from the “standard” results corresponding to the propagation of
relativistic particles strictly in the diffusion regime.
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I. INTRODUCTION

The propagation of cosmic rays in turbulent magnetic
fields can proceed in different regimes depending on the
scales under consideration. On small scales, when the
particles move coherently, their propagation is ballistic.
This usually occurs close to the source, just after the
particles escape the sites of their acceleration. With time,
the multiple stochastic scattering in turbulent magnetic
fields leads to the isotropization of the directions of cosmic
rays. The complete isotropization implies that the propa-
gation proceeds in the diffusion regime.
The limiting cases of the small-angle and isotropic

particle distributions allow for solutions of the problem
of particle propagation on small and large scales, respec-
tively [1–3]. The small-angle approximation fails when the
deflection of particles becomes large, typically larger than
one radian. The solution of the diffusion equation, in
addition to its inability to be applied to small spacial scales,
faces the so-called problem of superluminal propagation
[4]. In this regard, the apparent requirement r2=D≳ r=c
implies that the diffusionworks at distances r≳D=c, where
D is the diffusion coefficient and c is the speed of light.
In the small-angle approximation, the evolution of

the angular distribution has a diffusive character [1,2].
However, since the pitch angle changes within the limited

interval, −1 ≤ μ ≤ 1 (μ is the cosine of the pitch angle), the
mean square displacement of the pitch angle deviates from
diffusive behavior as the average deflection angle grows.
For the isotropic turbulence, the moments of the pitch-angle
distribution on large time scales have an exponential
behavior [5]. This means that the isotropization becomes
fast after the characteristic time which is determined by the
pitch-angle Fokker-Planck coefficient Dμμ. On the other
hand, a slower isotropization can happen if the turbulent
magnetic field has a slab geometry.
In this work we use the method of moments. It allows us

to eliminate the angular dependence at the expense of the
introduction of an isotropization function that determines
the dynamics of isotropization. The final results depend on
the form of the isotropization function. However, as we
demonstrate below, for a reasonable choice of the form of
the function, the results remain quite stable.
To avoid the problem of superluminal motion, Aloisio

et al. [4] have introduced the so-called Jüttner function,
which describes the evolution of the cosmic-ray density.
Although this function is obtained phenomenologically
from the formal similarity between the diffusion propagator
and the Maxwellian distribution, it gives correct results in
the limiting cases of diffusion and the ballistic regime.
Below we will show that the Jüttner function integrated
over time is close to our stationary solution, which proceeds
from the Boltzmann equation.*Anton.Prosekin@mpi‑hd.mpg.de
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In many cases, especially for the problems related to the
radiation of cosmic rays, it is necessary to know not only
the cosmic-ray density but also their angular distribution.
Indeed, the part of radiation emitted by particles with a
strongly anisotropic distribution can have a strong impact
on the morphology and spectrum of radiation, or even be
simply missed by the observer.
To demonstrate the importance of the angular distribu-

tion for the apparent gamma-ray morphology, we calculate
the gamma-ray intensity maps of the regions surrounding
the cosmic-ray accelerator. The most distinct features can
be seen for the clumps of matter close to the source. The
anisotropy changes the radiation spectrum significantly and
leads to a fast decrease of the intensity at high energies.
This results in a suppression or a disappearance of radiation
from nearby clouds located away from the line of sight
towards the cosmic-ray source. Moreover, even in the case
of a homogeneous matter distribution, the effects of
anisotropy and the transition from the ballistic to the
diffusion regime play an important role in the formation
of gamma-ray morphology.
The paper is organized as follows. In Sec. II we describe

the formalism based on the Boltzmann equation, and obtain
the stationary distribution function, which is valid for all
scales from the ballistic to the diffusion regime. In Sec. III,
this distribution function is used for calculations of the
gamma-ray morphology of nearby clouds irradiated by
cosmic rays. The conclusions are summarized in Sec. IV.

II. ANALYTICAL DESCRIPTION

A. Method of moments

Let us consider the evolution of the distribution function
in the case of multiple stochastic scatterings. Here we do
not specify the mechanism of the scattering, and describe
the processes only by the generic probability of the particle
to be scattered. The evolution of the distribution function
fðt; r; nÞ is determined by the Boltzmann transport
equation

∂f
∂t þ n

∂f
∂r ¼ Stf þ δðtÞδðrÞ

4π
; ð1Þ

where the speed of the light (propagation speed of ultra-
relativistic particles) is set to c ¼ 1. Here n is the unit
vector in the direction of propagation. It is assumed that the
particles are injected by an instant spherically symmetric
point-like source described by the Dirac delta functions
δðtÞδðrÞ. We consider only elastic collisions which are
described by the collision integral

Stf ¼
Z

fðn0Þwðn0 → nÞdΩ0

−
Z

fðnÞwðn → n0ÞdΩ0; ð2Þ

where wðn0 → nÞ is the probability of the scattering of a
particle from the initial direction along n0 to the final
direction along n per unit time. In the case of an isotropic
medium, the probability w depends only on the angle
between the initial and final directions. For compactness of
presentation, the dependence of the distribution function on
time and the coordinates in Eq. (2) is omitted.
The solution of Eq. (1) can be found in the small-angle

approximation, which is valid for initial moments of time.
Below we will show that from this equation one can also
obtain the equation for the diffusion of particles, and derive
its solution which is valid for large time intervals.
We are interested, first of all, in the transition between

these two solutions. For this purpose it is useful to simplify
the problem and consider the moments of the distribution
function rather than the distribution function itself.
Applying successively the integral operators

R
dΩ,R

dΩnα;…,
R
dΩnα…nω to the Boltzmann equation, one

can obtain the equations for the moments. We restrict
ourselves to the first two moments: the density g ¼ R

fdΩ
and the current j ¼ R

nfdΩ. They are governed by the
following equations:

∂g
∂t þ

∂jα
∂rα ¼ δðtÞδðrÞ;

∂jα
∂t þ ∂

∂rβ hnαnβig ¼ −
jα
τ
: ð3Þ

Here τ is the scattering time, which is the inverse of the
transport cross section σtr ¼ 1=τ, where

σtr ¼
Z

ð1 − nn0Þwðn0 → nÞdΩ: ð4Þ

In the derivation of the equations in Eq. (3), it has been
taken into account that

R
nαdΩ ¼ 0,

R
StfdΩ ¼ 0.

The density and the current depend on the higher
moments of the distribution function. To close the system
of equations given by Eq. (3), we should define the form of
the isotropization tensor,

hnαnβi ¼
R
nαnβfdΩR
fdΩ

; ð5Þ

based on the following physical arguments.
In the spherically symmetric case, the radial direction is

the only preferential direction; therefore, the isotropization
tensor should have the following structure:

hnαnβi ¼ Aδαβ þ Bραρβ; ð6Þ

where ρ ¼ r=r is the radial direction. The standard pro-
cedure for the determination of the coefficients A and B,
which consists in the consequent multiplication by tensors
δαβ and ραρβ, leads to the equations
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1 ¼ 3Aþ B;

hðnρÞ2i ¼ Aþ B; ð7Þ

from which we find

A ¼ 1 − hðnρÞ2i
2

; B ¼ 3hðnρÞ2i − 1

2
: ð8Þ

We assume that the tensor depends only on the coordinates.
Then, it is convenient to introduce the isotropization
function ϕðrÞ ¼ B which would allow us to write the
isotropization tensor in the form

hnαnβi ¼ ð1 − ϕðrÞÞ δαβ
3

þ ϕðrÞραρβ: ð9Þ

The tensor consists of the unidirectional (ραρβ) and the
isotropic (δαβ=3) parts. At r ¼ 0, when n ¼ ρ, we have
hnαnβið0Þ ¼ ραρβ, whereas at the infinity all directions of n
are distributed isotropically, and hnαnβið∞Þ ¼ δαβ=3.
Thus, the isotropization function should satisfy the boun-
dary conditions

ϕð0Þ ¼ 1 and ϕð∞Þ ¼ 0: ð10Þ

In the spherically symmetric case, the density and the
current are expressed as g ¼ gðt; rÞ and j ¼ jðt; rÞρ. Then
the substitution of the isotropization tensor in the form
given by Eq. (9) into Eq. (3) results in

∂G
∂t þ ∂J

∂r ¼ δðtÞδðrÞ
4π

;

∂J
∂t þ

∂G
∂r −

1

r
∂
∂r

�
2

3
ð1 − ϕÞrG

�
¼ −

J
τ
; ð11Þ

where we have introduced the new functions G ¼ r2g
and J ¼ r2j.
At small distances and times, the current changes fast,

i.e., ∂J∂t ≫
J
τ. Therefore one can neglect the term on the right-

hand side of the second equation in Eq. (11). The condition
ϕð0Þ ¼ 1 leads to the cancellation of the third term on the
left-hand side of the same equation. Thus, the equations in
Eq. (11) are reduced to

∂G
∂t þ ∂J

∂r ¼ δðtÞδðrÞ
4π

;

∂J
∂t þ

∂G
∂r ¼ 0; ð12Þ

which can be rewritten in the form of the wave equation
for G,

∂2G
∂t2 ¼ ∂2G

∂r2 ; ð13Þ

with the boundary condition Gðt ¼ þ0; rÞ ¼ δðrÞ=4π. The
solution of this equation in terms of the density g ¼ G=r2 is

gðt; rÞ ¼ 1

4πr2
δðr − tÞ; ð14Þ

which describes the behavior of the density in the ballistic
regime.
In the opposite case, i.e., for large distances and times, it

is more convenient to proceed from the initial system of
equations given by Eq. (3). The current changes slowly on
the scale of the scattering time τ, i.e., ∂j∂t ≫

j
τ. This allows us

to neglect the derivative ∂j
∂t in the second equation. Taking

into account that ϕ ¼ 0, we find

∂g
∂t ¼ −∇j;

j ¼ −
τ

3
∇g; ð15Þ

which can be rewritten in the form of the diffusion equation
for g,

∂g
∂t ¼

τ

3
Δg: ð16Þ

A comparison with the conventional form of the diffusion
equation gives the well-known relation

D ¼ c2τ
3

¼ clc
3

; ð17Þ

where lc ¼ cτ is the scattering length.

B. Stationary case

The system of equations derived in the previous section
describes the particle motion over the entire process of
propagation, including the ballistic and diffusion modes, as
well as the transition stage between these two regimes. It
has a simple stationary solution. Indeed, the integration
over the entire time cancels out the time derivatives and
leads to the following system of ordinary differential
equations:

dJ
dr

¼ δðrÞ
4π

;

dG
dr

−
1

r
d
dr

�
2

3
ð1 − ϕÞrG

�
¼ −

J
τ
; ð18Þ

where J ¼ JðrÞ and G ¼ GðrÞ. The first of these equations
gives J ¼ ΘðrÞ=4π, where ΘðrÞ is the Heaviside step
function. The substitution of the current J into the second
equation results in an ordinary differential equation of the
first order. Its solution can be presented in the form
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gðrÞ ¼ χðrÞ
4πr2τ

Z
∞

r
dr0 exp

�
−
Z

r0

r
ψðr00Þdr00

�
; ð19Þ

where

χðrÞ ¼ 3

1þ 2ϕðrÞ ; ψðrÞ ¼ 2

r

�
1 − ϕðrÞ
1þ 2ϕðrÞ

�
: ð20Þ

The limits for the integrals are chosen from the condition
that the density vanishes at infinity.
To find the final expression, one should choose a suitable

form of the isotropization function ϕðrÞ. The boundary
condition 4πgðrÞr2 → 1 at r → 0, which has not been used
yet, gives a relation between ϕðrÞ and τ. To take this
relation into account, ϕ should have one free parameter ν.
In the case of an isotropic medium, one expects an
exponential rate of isotropization [5]. Therefore, one of
the possible expressions for the isotropization function is

ϕðrÞ ¼ e−r=ν: ð21Þ

However, this function does not allow for a representation
of Eq. (19) in quadratures. Another expression,

ϕ ¼ 1

1þ r=ν
; ð22Þ

is less physically motivated, but it allows us to obtain a
simple analytical solution. Indeed, the substitution of
Eq. (22) into Eq. (19) results in

gðrÞ ¼ 1

4πr2
3ðνþ rÞ

τ
: ð23Þ

The boundary condition 4πgðrÞr2 → 1 at r → 0 gives
ν ¼ τ=3. A comparison with Eq. (17) gives ν ¼ D=c.
Then, the solution can be written in terms of the diffusion
coefficient D as

gðrÞ ¼ 1

4π

�
1

r2
þ c
rD

�
; ð24Þ

which is just the sum of the solutions in the limiting cases
of the ballistic and diffusion regimes. Introducing a
dimensionless parameter x ¼ rc=D, which is the radial
distance in units of D=c, one can rewrite this expression in
the form

gðrÞ ¼ ð1þ xÞ
4πr2

: ð25Þ

The result is surprisingly simple. However, we should
note that it is obtained for a specific form of the isotrop-
ization function. The results for other forms of the
isotropization function can be numerically calculated using
Eq. (19). Figure 1 shows that the densities obtained for

ϕ ¼ 1
1þr=ν and ϕðrÞ ¼ e−r=ν differ by less than 30% at

x ∼ 1, and by less than 10% at x < 0.1 and x > 10. For
comparison, we also present the density obtained from the
generalized Jüttner function integrated over time. This
function was proposed phenomenologically in Ref. [4]
as a description of the evolution of the cosmic-ray flux. It is
seen from Fig. 1 that the Jüttner function gives a result
which is quite close to the solution with an exponential
form of the isotropization function.
The propagation of cosmic rays is characterized not only

by the density, but also by the angular distribution of the
particles. Such information is contained in the moments of
the angular distribution. Indeed, if μ ¼ nρ is the cosine
of the angle between the particle and the radial direction,
then the first moment of the angular distribution is

hμi ¼ jρ
g
: ð26Þ

Using the solution given by Eq. (25), we have

hμi ¼ 1

1þ x
: ð27Þ

The second moment is just the projection of the isotrop-
ization tensor on the radial direction,

FIG. 1 (color online). Upper panel: The function G ¼ 4πr2gðrÞ
for different models of isotropization as a function of x ¼ cr=D.
G1ðxÞ and G2ðxÞ correspond to the ϕ1 ¼ 1

1þr=ν and ϕ2 ¼ e−r=ν

isotropization functions. GJðxÞ corresponds to the generalized
Jüttner function integrated over time proposed in Ref. [4]. The
dashed lines represent the asymptotes GðxÞ ¼ 1 and GðxÞ ¼ x.
Lower panel: The ratios of the functions: G2=G1 and GJ=G1.
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hμ2i ¼ hnαnβiραρβ ¼
1þ 2ϕðrÞ

3
: ð28Þ

The moments hμi and hμ2i can be used to construct a
function that has the properties of the exact angular
distribution. In this regard, the simplest function is

MðμÞ ¼ 1

Z
exp

�
−
3ð1 − μÞ

x

�
; ð29Þ

where the normalization function has the form

ZðxÞ ¼ x
3
ð1 − e−6=xÞ: ð30Þ

MðμÞ is the distribution of the cosine of the pitch angles μ
in the interval ½−1; 1�. This distribution provides moments
that are in a good agreement with the moments given by
Eqs. (27) and (28). This can be seen in Fig. 2, which shows
the first moment obtained from Eq. (26) for different
isotropization functions and the first moment of the dis-
tribution MðμÞ. Moreover, for comparison we show the
function

hμi4 ¼
1

x
ð1 − e−x−

7
18
x2Þ ð31Þ

obtained in Ref. [6] as a fit to the numerical results for the
propagation of cosmic rays in turbulent magnetic fields (see
Eq. (21) in Ref. [6]). It is seen that all results do not differ
by more than 30%. The first angular moment for the
isotropization function ϕðrÞ ¼ e−r=ν and the moment given
by Eq. (31) are within 10% from the first moment ofMðμÞ.
One can show that in the small-angle limit the distribu-

tion given by Eq. (29) describes the diffusion in angle.
Indeed, in this limit the transport cross section becomes

σtr ≈
Z �

1 −
�
1 −

θ2

2

��
wðn0 → nÞdΩ

¼ 1

2

�
Δθ2

Δt

�
¼ Dθ

2
; ð32Þ

where Dθ is the diffusion coefficient in angular space.
Taking into account Eq. (17) and the relation x ¼ rc=D, we
obtain

MðμÞ ∼ exp

�
−
3Dðθ2=2Þ

rc

�
¼ exp

�
−

θ2

Dθr=c

�
: ð33Þ

The combination of the density and the angular distri-
butions results in the stationary distribution function

fðr; μÞ ¼ Q
4πc

�
1

r2
þ c
rD

�
1

2πZ
exp

�
−
3Dð1 − μÞ

rc

�
; ð34Þ

which describes the evolution of propagation from the
ballistic to the diffusion regime, where Q is the source
function (the production rate) of cosmic rays in the source.
We would like to emphasize once more that the exact

analytical distribution function is unknown. However, the
different models of isotropization produce very similar
results. Therefore, the obtained distribution function can be
considered as a good (within 30%) approximation to the
actual distribution.

C. Diffusion coefficient

In the derived distribution functions the diffusion coef-
ficient is assumed to be constant in space, but it can have an
arbitrary energy dependence. The latter is determined by
the relation between the Larmor radius RL ¼ E=eB and the
correlation length of the turbulence λ. If RL ≫ λ, the
particle is only slightly deflected on the correlation length.
The random walk of uncorrelated deflections results in the
scattering length lc ∼ R2

L [7]. By combining Eq. (17),
Eq. (32), and the relation τ ¼ 1=σtr, we obtain

D ¼ 2

3

c2

Dθ
: ð35Þ

The coefficient of diffusion in the angle, Dθ, can be written
as [2]

FIG. 2 (color online). Upper panel: The first moment of the
angular distribution hμi for different models of isotropization as a
function of x ¼ cr=D. hμi2 and hμi3 correspond to the ϕ2 ¼ e−r=ν

and ϕ1 ¼ 1
1þr=ν isotropization functions, respectively. hμi1 is the

first moment of the angular distribution MðμÞ given by Eq. (29).
hμi4 is the fit of the numerical results obtained in Ref. [6] given by
Eq. (31). Lower panel: The ratios of the functions: hμi2=hμi1,
hμi3=hμi1, and hμi4=hμi1.
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Dθ ¼
ðα − 1Þðβ þ 1Þ

4αβ

cλ
R2
L
; ð36Þ

where α and β are the power-law indices of turbulence for
wave vectors k > k0 ¼ 2π=λ and k < k0, respectively. The
value of β is poorly known; here, we will assume β ¼ 1.
For the Kolmogorov spectrum of turbulence (α ¼ 5=3),

calculations of the diffusion coefficient in the regime
RL ≫ λ give

D ¼ 10

3
cλ

�
RL

λ

�
2

: ð37Þ

Note that the energy dependence in this regime is the same
for any other spectrum of turbulence.
At RL ≪ λ, particles are only scattered by magneto-

hydrodynamic waves with a length equal to their gyrora-
dius. This leads to the dependence of the diffusion
coefficient on the turbulence spectrum. The quasilinear
theory predicts lc ∼ R2−α

L [8], where α is the power-law
index of the turbulence spectrum. This dependence can be
obtained as follows. The scattering frequency of the particle
by waves is expressed as [9]

νs ¼
π

4
Ω
�

Ekk
B2=8π

�
jk¼kres

; ð38Þ

where Ek is the spectrum of turbulence normalized asR
Ekdk ¼ B2=8π, kres ¼ Ω=vμ is the resonance wave vec-

tor, Ω is the gyrofrequency, and μ is the cosine of the pitch
angle. The diffusion coefficient is related to the scattering
frequency as [7,8]

D ¼ v2

4

Z
1

0

dμ
1 − μ2

νs
: ð39Þ

Taking the turbulence spectrum in the form Ek ∼ 1=kα with
the minimum wave vector k0 ¼ 2π=λ, and substituting
Eq. (38) into Eq. (39), we obtain

D ¼ 2

ð2 − αÞð4 − αÞðα − 1Þ
1

πð2πÞα−1 λc
�
RL

λ

�
2−α

: ð40Þ

Thus, for α ¼ 5=3 we have

D ¼ 27

7

1

πð2πÞ2=3 λc
�
RL

λ

�
1=3

; RL ≪ λ: ð41Þ

We note that the values of the numerical prefactors in
Eqs. (37) and (41) depend slightly on the turbulence
spectrum. The parameter λ in these expressions corre-
sponds to the largest scale of the inertial range of turbulence
and can be associated with the correlation length.
The simulations of particle propagation in the isotropic

and purely turbulent magnetic field performed in Ref. [10]

show that the diffusion coefficient can be presented in the
form

D ¼ cλ
3

�
1

ð2πÞ2=3
�
RL

λ

�
1=3

þ 4π

3

�
RL

λ

�
2
�
: ð42Þ

In the next section, this convenient expression for the
diffusion coefficient will be used for calculations of the
gamma-ray emission.

III. GAMMA-RAY EMISSION OF THE
REGION SURROUNDING A COSMIC-RAY

ACCELERATOR

High-energy gamma rays not only carry unique infor-
mation about the accelerators of cosmic rays (electrons,
protons, and nuclei), but they also allow us to trace these
particles after they leave the sites of their acceleration. In
the interstellar medium, this is realized through interactions
of cosmic rays with the so-called giant molecular clouds.
These dense gas regions illuminated by cosmic rays
provide a target for proton-proton interaction and radiate
gamma rays. Thus they can serve as unique “barometers”
for measurements of the pressure (energy density) of
cosmic rays at different locations relative to the accelerator.
The massive clouds located in the vicinity of the

accelerator dramatically increase the chances of tracing
the runaway particles through the secondary gamma rays.
For example, for a young supernova remnant (as an
accelerator of cosmic rays) at a distance of 1 kpc, a gas
cloud with a mass of order of 104 M⊙ can emit very high-
energy gamma rays at a level detectable by current instru-
ments if the cloud is located within 100 pc of the supernova
remnant [11]. Before being fully diffused and integrated
into the “sea” of Galactic cosmic rays, they produce gamma
rays with a spectrum that could essentially differ from both
the gamma-ray spectrum of the accelerator itself and the
spectrum of the diffuse Galactic gamma-ray emission. In
the case of propagation in a “nominal” diffusion regime, the
formation of gamma-ray energy spectra has been discussed
in Ref. [12]. However, closer to the accelerator, the
propagation of cosmic rays may have a more complex
character, which would be reflected in the spectra of
secondary gamma rays.
The morphology of the gamma-ray emission is deter-

mined by the interplay between the cosmic-ray and matter
distributions. While the distribution of the matter could be
arbitrary and random, the density of the cosmic rays
decreases with distance from the accelerator, which means
the most intensive radiation should arrive from the dense
regions located close to the accelerator.
However, the angular distribution of cosmic rays may

lead to a significant deviation from such a simple picture
[13]. Indeed, due to the relativistic character of proton-
proton interactions, gamma rays are emitted along the
direction of the momentum of the incident proton. This
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implies that only the protons directed towards the observer
give a contribution to the detectable gamma-ray flux. Close
to the accelerator, the angular distribution of cosmic rays,
which propagate ballistically along the radial direction, is
strictly anisotropic. Thus the gamma radiation can arrive
from the direction towards the accelerator only in the
presence of a significant amount of gas along the line of
sight. For the same reason, the nearby clouds not located on
the line of sight could be invisible because their radiation is
not directed towards the observer. As the distribution of
cosmic rays becomes more isotropic, the apparent intensity
of the radiation increases with the distance from the
accelerator.
On the other hand, if a gas cloud on the line of sight is

located sufficiently close to the accelerator, we could see a
bright source which would coincide with the accelerator.
This can be misinterpreted as a prolific production of
gamma rays inside the accelerator, although in reality the
accelerator could be a very inefficient gamma-ray emitter.
Thus, the consideration of a transition from the ballistic

to the diffusion regime may result in two consequences
related to the density and angular distributions of cosmic
rays. The first one is the lack of radiation from regions close
to the accelerator even in the presence of massive nearby
clouds (but located away from the line of sight). On the
contrary, we may detect a very bright and focused gamma-
ray image if a dense cloud in the proximity of the
accelerator appears on the line of sight.
In the following calculations we consider a proton

accelerator of power Lcr ¼ 1037 erg=s located at a distance
d ¼ 1 kpc from the observer. The energy spectrum of
protons is taken in the form JcrðEÞ¼E−2expð−E=1015eVÞ.
The stationary distribution of cosmic rays around the
accelerator is described by Eq. (34) with the diffusion
coefficient given by Eq. (42). We assume that particles

propagate through a turbulent magnetic field with the
Kolmogorov spectrum of turbulence. We keep the coher-
ence length of turbulence λ as a free parameter.
In the calculations, the magnetic field is taken at the level

of B ¼ 10−4 G. In the Galactic disk, the typical value of the
diffusion coefficient is D ≈ 1028 cm2=s at 1 GeV [14]. To
match this value we assume λ ¼ 104 pc and λ ¼ 105 pc for
the diffusion coefficients, which below we refer to as small
and large, respectively. The smallness of the ratio RL=λ ≈
1.1 × 10−9E12λ

−1
4 (where E12 ¼ E=1012 eV is the cosmic-

ray energy and λ4 ¼ λ=104 pc) allows us to neglect
the high-energy nonresonant part of the diffusion coeffi-
cient. The estimate based on Eq. (42) gives D≈
9 × 1028E1=3

12 λ2=34 cm2=s. Correspondingly, the transition
from the ballistic to the diffusion regime occurs at a
characteristic distance D=c ≈ 1.0E1=3

12 λ2=34 pc from the
cosmic-ray source.
Below we consider two cases: (i) a homogeneous

massive cloud surrounding the accelerator, and (ii) a group
of clouds located near the accelerator. We consider different
densities of the background gas (between the clouds), and
different values of the diffusion coefficient of cosmic rays.
For the calculation of gamma-ray production in pp
collisions the parametrization of Ref. [15] has been used.
The results present the intensity of gamma radiation
integrated along the line of sight through the gamma-ray
production region.
In the first example, we consider a homogeneous cloud

with a radius R ¼ 10 pc and density np ¼ 100 cm−3. With
these parameters the mass of the cloud is Mcl ≈ 104M⊙.
The accelerator is placed in the center of the cloud. The
intensity maps of gamma rays at three different energies,
E ¼ 1010, E ¼ 1011, and E ¼ 1012 eV, are shown in Fig. 3.
The calculations are performed for the case of slow

FIG. 3 (color online). The intensity maps of gamma-ray emission at different energies. The spherical cloud with a homogeneous
density distribution is irradiated by the cosmic-ray source located at its center. The gas density inside the accelerator is assumed to be
very low, so the contribution of the accelerator to the gamma-ray emission is negligible. The maps are produced for the case of a small
diffusion coefficient (for details, see the text). For a distance to the source d ¼ 1 kpc, the region of ∼1° × 1° corresponds to an area
∼20 × 20 pc2.
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diffusion. It is assumed that the density inside the accel-
erator is very small, and thus the gamma radiation of the
accelerator itself can be ignored.
Figure 3 shows that with an increase of energy the

radiation becomes more concentrated at the position of the
accelerator. The change of the gamma-ray morphology is
explained by the energy dependence of the cosmic-ray
propagation. With an increase of energy, the transition from
the ballistic to the diffusion regime occurs at larger
distances from the accelerator. The faster decrease of the
cosmic-ray density in the ballistic regime results in a faster
decrease of gamma-ray intensity at high energies. This is
seen in Fig. 4, in which the radial profiles of the intensity at
different energies are shown. The left and right panels of
Fig. 4 present the results calculated for the small and large
diffusion coefficients, respectively. For the fast diffusion,
the transition from the steep to the flat part of the profile
occurs at larger distances from the accelerator.
In Fig. 4 we show the radial profiles of gamma-ray

intensities for two different regimes of diffusion. To
describe the behavior of these curves, we also show the
local power-law indices α ¼ d lnPðrÞ=d lnðrÞ at different
energies. One can see that at small distances all profiles
approach the same inclination with α ≈ −1.3. At small
energies the flat part starts earlier and the intensity
decreases more slowly. For example, at E ¼ 109 eV the
flattest part of the profile corresponds to α ≈ −0.3. With an
increase of energy, the flat part becomes steeper. At very

high energies the transition to the flat part might not happen
at all.
The angular distribution of cosmic rays has a strong

impact on the characteristics of the secondary gamma
radiation, in particular on the radial profile of the
gamma-ray intensity (see the Appendix). In the case of a
strictly radial distribution of particles (i.e., for the ballistic
regime of propagation), the gamma-ray source will be
detected as a point-like object, independent of the linear
size of the gamma-ray production region, L. For the
“nominal” diffusion regime, the angular size of the
gamma-ray source is determined by the ratio L=R.
The transition regime introduces non-negligible corrections
to the formation of the overall image of the gamma-ray
source, and therefore it should be treated thoroughly. A
comparison of the results in Fig. 4 and Fig. 14 (which does
not take into account the angular distribution of protons)
shows that, in general, the shapes of the radial profiles in
these figures are similar, but there is also a significant
difference. In particular, if one assumes that the angular
distribution of particles is isotropic just after their escape
from the source, the power-law index of the slope of the
(projected) gamma-ray profile would be α ¼ −1. This is in
contrast to α ≈ −1.3, which is expected if we correctly treat
the angular distribution of particles closer to the source.
The sharp angular distribution of cosmic rays close to the
accelerator leads to a considerable loss of emission, and
therefore to a steeper gamma-ray intensity profile.

FIG. 4 (color online). Upper panel: Radial intensity profiles for different energies of gamma rays in the case of a homogeneous cloud
surrounding the cloud. Lower panel: The power-law index of the respective intensity profiles in the upper panel. The left and right panels
present the results calculated for the case of small and large diffusion coefficients, respectively. The profiles for energies E ¼ 1010,
E ¼ 1011, and E ¼ 1012 eV in the left panel correspond to the intensity maps shown in Fig. 3.
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The spectral energy distributions (SEDs) of gamma rays
at different distances from the source of cosmic rays are
shown in Fig. 5. The left and right panels show the results
corresponding to the small and large diffusion coefficients,
respectively. It is seen that an increase of the diffusion
coefficient leads to harder gamma-ray spectra. In the case
of a homogeneous distribution of the cosmic-ray density
and for the power-law energy spectrum of protons with an
index α ¼ 2, gamma rays have an almost flat SED. Note
that the flat part slightly deviates from the cosmic-ray
spectrum, namely it contains an intrinsic hardening due to
the increase of the inelastic cross section [16]. For the
homogeneous distribution of cosmic rays, the flat part of
the gamma-ray spectrum can be approximated by a power
law with a photon index Γ ¼ 1.94. The SED in the
direction towards the accelerator becomes even harder,
with a power-law photon index Γ ¼ 1.86. This can be
explained by the fact that high-energy protons preserve
their radial direction longer and, consequently, produce
higher-energy radiation towards the observer.
Because of the diffusion of cosmic rays, in directions far

from the direction towards the accelerator the density of the
low-energy protons decreases more slowly. At large dis-
tances from the accelerator, the SED of gamma rays is close
to E−δ (slightly harder because of the pp interaction cross
section), where δ characterizes the energy dependence of
the diffusion coefficient, DðEÞ ¼ D0Eδ. Because of the
assumed dependence of the diffusion coefficient with
δ ¼ 1=3, the SED at large distances in Fig. 5 follows a
∝ E−1=3 dependence.
In more realistic scenarios, the surroundings of the

cosmic-ray source could be inhomogeneous, i.e., they
may consist of clumps of matter. To study the general
features of the radiation of such an environment, we use a
simplified gas distribution template consisting of four

identical equally separated clouds surrounded by a homo-
geneous low-density gas (background):

np ¼ np0

�X
i

e−ð
r−ri
wi

Þ2 þ xbg

�
; ð43Þ

where np0 ¼ 103 cm−3, ri and wi are the coordinates of the
centers of these clouds and their widths, respectively, and
xbg is the level of the background relative to the maximum
density in the centers of the clouds. The width of each cloud
is wi ¼ 1 pc which corresponds to a mass Mcl ≈ 140M⊙.
The separation between the clouds is 5 pc. We consider the
cases without the background and with the background
with xbg ¼ 10−2. The zero level of the background elim-
inates the radiation from the direction towards the accel-
erator. For illustrative purposes, the source of cosmic rays is
located at the left border of each map in Fig. 6 and Fig. 7. It
is assumed that the density inside the accelerator is very
low, and thus its own gamma radiation can be neglected.
The intensity maps for the case without background gas

calculated for the slow and fast diffusion of cosmic rays are
shown in Figs. 6 and 7, respectively. The corresponding
intensity profiles are presented in the left and right panels of
Fig. 8. For slow diffusion, the gamma-ray intensity of
clouds decreases with the distance from the proton accel-
erator. The clouds are located along the line perpendicular
to the line of sight. At high energies in the case of fast
diffusion a fraction of the radiation from the closest clouds
is “lost.” Therefore, one can see an interesting effect
when—despite the decrease of the cosmic ray density with
distance—the highest-energy gamma rays are seen from the
farthest rather than the closest clouds.
The results corresponding to the homogeneous gas

background are shown in Figs. 9 and 10. The intensity
profiles shown in Fig. 11 are smoother compared to the

FIG. 5 (color online). Energy spectra of gamma rays at different distances from the cosmic-ray source in the case of a homogeneous
cloud. The results are given for the scenarios with slow (left panel) and fast (right panel) proton diffusion.
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FIG. 6 (color online). The intensity maps of gamma-ray emission from the group of clouds (without the gas background) at various
energies for the case of a low diffusion coefficient. The cosmic-ray source is located at the center of the left side.

FIG. 7 (color online). The same as in Fig. 6 for the case of a high diffusion coefficient.

FIG. 8 (color online). The radial intensity profiles for various energies in the case of a group of clouds for a low (left panel) and a high
(right panel) diffusion coefficient. The profiles for energies E ¼ 109, E ¼ 1011, and E ¼ 1013 eV correspond to the intensity maps given
in Fig. 6 for the left panel and Fig. 7 for the right panel.
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FIG. 9 (color online). The intensity maps of gamma-ray emission from the group of clouds and a homogeneous background at various
energies for the case of a low diffusion coefficient. The cosmic-ray source is located at the center of the left side.

FIG. 10 (color online). The same as in Fig. 9 for the case of a large diffusion coefficient.

FIG. 11 (color online). The radial intensity profiles for various energies in the case of a group of clouds surrounded by a homogeneous
background for the a low (left panel) and a high (right panel) diffusion coefficient. The profiles for energies E ¼ 109, E ¼ 1011, and
E ¼ 1013 eV correspond to the intensity maps given in Fig. 9 for the left panel and Fig. 10 for the right panel.
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relevant curves in the case of no background. The radiation
towards the accelerator appears in Fig. 11 because of the
presence of the background gas on the line of sight. The
results in Fig. 11 show that in the case of fast diffusion
the gamma-ray intensity is reduced; at very high energies it
disappears from the closest cloud.

To quantitatively describe how fast the gamma-ray
intensity decreases with distance, the intensity at the
position of the maximum (in the centers of the clouds)
shown in Fig. 11 has been fitted with a power law. The
calculated power-law indices of the fits for different
energies are presented in Table I. It is seen that with an
increase of energy the profile becomes flatter. The intensity
decreases more slowly in the case of a large diffusion
coefficient. Moreover, for the farthest two clouds for
energies E ¼ 1013 and E ¼ 1014 eV the intensity increases
with distance. In all cases the intensity at the maximum
points changes with distance more slowly than 1=ρ, where
ρ is the projected distance from the source.
The spectral energy distributions of gamma rays in the

direction to the centers of clouds are shown in Figs. 12 and
13. The clouds are numbered in the order of their distances

TABLE I. Power-law index α for the fit to the gamma-ray
intensity profiles for positions of the maximum radiation (the
centers of the clouds) shown in the right panel of Fig. 11 (large
diffusion coefficient).

Eγ , eV 109 1010 1011 1012 1013 1014

α −0.85 −0.73 −0.49 −0.21 0.53 1.14

FIG. 12 (color online). Energy spectra of gamma rays in the direction towards the centers of the clouds in the case of no background
for a low (left panel) and a high (right panel) diffusion coefficient. The clouds are numbered in order of their distance from the source.

FIG. 13 (color online). Energy spectra of gamma rays in the direction towards the centers of the clouds in the case of the homogeneous
background for a low (left panel) and a high (right panel) diffusion coefficient. The clouds are numbered in order of their distance from
the source.
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to the accelerator. The energy spectra of gamma rays from
the clouds are steeper than in the case of the homogeneous
cloud surrounding the accelerator (see Fig. 5). Obviously,
this is explained by the anisotropic distribution of cosmic
rays closer to the accelerator. The picture becomes
smoother when clouds are embedded in a homogeneous
background gas.

IV. CONCLUSION

One of the major issues in the general problem of the
identification of sources of Galactic and extragalactic
cosmic rays is the character of their propagation through
the turbulent magnetic fields outside the accelerators.
Depending on the distance to the source, the level of the
magnetic turbulence of the ambient medium, and the energy
of particles, their propagation can proceed in the ballistic or
in the diffusion regime. While the diffusion of cosmic rays
has been comprehensively studied in the literature, the
description of propagation in the intermediate stage, i.e.,
at the transition from the ballistic to the diffusive regime, is a
problem of greater complexity in the sense of the exact
analytical solutions. To study the dynamics of this transition,
we used a simplified approach. Based on the treatment of
moments of the Boltzmann equation, we derived a system of
equations for the time evolution of the distribution function
of cosmic rays. Written in the form of Eq. (11), it describes
not only the ballistic and diffusion regimes of propagation as
limiting cases, but also the transition stage between these two
regimes. This system of equations allows for a simple
stationary solution in the form of Eq. (19).
The key feature of this approach is the proper choice of a

specific function which describes the pitch-angle isotrop-
ization. Within the chosen approach, the isotropization
function cannot be strictly determined. Nevertheless, it
can be chosen and introduced in a self-consistent manner
based on reasonable physics arguments. In this paper, two
forms of the isotropization function have been considered:
(i) ϕ ¼ e−r=ν and (ii) ϕ ¼ 1=ð1þ r=νÞ. The exponential
form seems to be better justified given that in the presence of
isotropic turbulence the pitch-angle distribution moments
behave exponentially [5]. On the other hand, the form ϕ ¼
1=ð1þ r=νÞ provides a simple representation of the sta-
tionary solution given by Eq. (23). The results obtained for
both forms of the isotropization function are in agreement
with an accuracy better than 30%. They also agree well with
the integrated Jüttner function proposed in Ref. [4].
The angular, energy, and radial distributions of cosmic

rays outside the accelerator, in the general case of their
propagation, including the transition stage between the
ballistic and diffusion regimes, is described by a surpris-
ingly simple function given by Eq. (34). We should notice
that the anisotropy of the cosmic-ray distribution has a
strong impact on the gamma-ray morphology. Figure 2
demonstrates that the first moment of the angular distri-
bution of Eq. (29) is very close to the moments given by

Eq. (31) and is obtained from a more physically motivated
isotropization function ϕ ¼ e−r=ν. This implies that the
applied distribution function correctly describes the
anisotropy of cosmic rays, and, therefore, provides good
accuracy for the calculations of the gamma-ray images.
The anisotropy of the angular distribution of cosmic rays

before they enter the diffusion regime of propagation leads
to a partial or complete “loss” of secondary gamma rays by
the observer. The numerical calculations of secondary
gamma rays performed for both the homogeneous and
clumpy (consisting of dense clouds) distributions of gas in
the vicinity of the accelerator demonstrate the strong impact
of the effects of particle propagation in the pre-diffusion
regime on the apparent gamma-ray morphology and the
energy spectrum. Therefore, the detailed studies of spectral
and morphological features of high-energy gamma-ray
emission outside the detected (or potential) cosmic-ray
accelerators can tell us about the propagation character of
cosmic rays after they leave the sites of their acceleration.
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APPENDIX: INTENSITY PROFILES

The gamma-ray intensity profile corresponds to the
radiation integrated along the line of sight and considered
as a function of the projected distance from the source. Let us
assume that the angular distribution of cosmic-ray protons is
isotropic. In this case the production rate of gamma rays in
the direction of the observer is proportional to the density of
protons. Since the cosmic-ray density changes according to
Eq. (24), the form of the intensity profile is

I ¼
Z

z2

z1

�
1

r2
þ c
rD

�
dz; ðA1Þ

where z axis is directed along the line of sight.
If the region emitting gamma rays is a spherical cloud of

radius R with the center at the position of the particle
accelerator, then the integration limits z1;2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ρ2

p
give

Isph ¼
2

R

0
B@arctan

ffiffiffiffiffiffiffiffiffiffiffi
1
η2
− 1

q
η

þ Xarccosh

�
1

η

�1CA; ðA2Þ

where ρ is the projected distance from the source, η ¼ ρ=R,
and X ¼ Rc=D. If the emitting region is a strip with width
2R, and the source of cosmic rays is in the middle of the
strip, then the integration limits z1;2 ¼ �R give
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Istr ¼
2

R

�arctan 1
η

η
þ Xarcsinh

�
1

η

��
: ðA3Þ

The functions IsphR=2 and IstrR=2 are presented in
Fig. 14 and Fig. 15, respectively. The lower panels
show the local slopes of the curves defined as α ¼
d lnFðηÞ=d lnðηÞ, where FðηÞ ¼ IR=2.

It is seen from Figs. 14 and 15 that at small distances the
intensity changes as 1=ρ. For X ¼ 1 this behavior stays
approximately the same at all distances. This curve corre-
sponds to the case when the diffusion regime has not been
reached at the distance R. Other curves reveal that the
transition to the diffusion regime becomes flatter as the
distance increases. An integration over a smaller region
along the line of sight in the case of a spherical cloud makes
the slope of the profile steeper compared to the case of a
strip region.
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FIG. 14 (color online). The gamma-ray intensity profiles
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parameter X. Upper panel: The intensity. Lower panel: The slop
of the profile.

FIG. 15 (color online). The same as in Fig. 14 but for a strip
region.
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