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We discuss the “constant speed of sound” (CSS) parametrization of the equation of state of high-density
matter and its application to the field correlator method (FCM) model of quark matter. We show how
observational constraints on the maximum mass and typical radius of neutron stars are expressed as
constraints on the CSS parameters. We find that the observation of a 2 M⊙ star already severely constrains
the CSS parameters, and is particularly difficult to accommodate if the squared speed of sound in the
high-density phase is assumed to be around 1=3 or less. We show that the FCM equation of state can be
accurately represented by the CSS parametrization, which assumes a sharp transition to a high-density
phase with density-independent speed of sound. We display the mapping between the FCM and CSS
parameters, and see that FCM only allows equations of state in a restricted subspace of the CSS
parameters.
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I. INTRODUCTION

There are many models of matter at density significantly
above nuclear saturation density, each with their own
parameters. In studying the equation of state (EoS) of
matter in this regime it is therefore useful to have a general
parametrization of the EoS which can be used as a generic
language for relating different models to each other and for
expressing experimental constraints in model-independent
terms. In this work we use the previously proposed constant
speed of sound (CSS) parametrization [1–3] (for applica-
tions, see, e.g., [4]). We show how mass and radius
observations can be expressed as constraints on the CSS
parameters. Here we analyze a specific example, where the
high-density matter is quark matter described by a model
based on the field correlator method (Sec. IV), showing
how its parameters can be mapped on to the CSS parameter
space, and how it is constrained by currently available
observations of neutron stars.
The CSS parametrization is applicable to high-density

equations of state for which (a) there is a sharp interface
between nuclear matter and a high-density phase which we
will call quark matter, even when (as in Sec. II) we do not
make any assumptions about its physical nature; and (b) the
speed of sound in the high-density matter is pressure-
independent for pressures ranging from the first-order
transition pressure up to the maximum central pressure
of neutron stars. One can then write the high-density EoS in
terms of three parameters: the pressure ptrans of the
transition, the discontinuity in energy density Δε at the
transition, and the speed of sound cQM in the high-density
phase. For a given nuclear matter EoS εNMðpÞ, the full CSS
EoS is then

εðpÞ ¼
�
εNMðpÞ p < ptrans

εNMðptransÞ þ Δεþ c−2QMðp − ptransÞ p > ptrans:

ð1Þ

The CSS form can be viewed as the lowest-order terms
of a Taylor expansion of the high-density EoS about the
transition pressure. Following Ref. [1], we express the three
parameters in dimensionless form, as ptrans=εtrans, Δε=εtrans
(equal to λ − 1 in the notation of Ref. [5]) and c2QM,
where εtrans ≡ εNMðptransÞ.
The assumption of a sharp interface will be valid if, for

example, there is a first-order phase transition between
nuclear and quark matter, and the surface tension of the
interface is high enough to ensure that the transition occurs
at a sharp interface (Maxwell construction) not via a mixed
phase (Gibbs construction). Given the uncertainties in the
value of the surface tension [6–8], this is a possible
scenario. One can also formulate generic equations of state
that model interfaces that are smeared out by mixing or
percolation [9–11].
The assumption of a density-independent speed of sound

is valid for a large class of models of quark matter. The CSS
parametrization is an almost exact fit to some Nambu–Jona-
Lasinio models [2,12–14]. The perturbative quark matter
EoS [15] also has roughly density-independent c2QM, with a
value around 0.2 to 0.3 (we use units where ℏ ¼ c ¼ 1),
above the transition from nuclear matter (see Fig. 9 of
Ref. [16]). In the quartic polynomial parametrization [17],
varying the coefficient a2 between �ð150 MeVÞ2, and the
coefficient a4 between 0.6 and 1, and keeping ntrans=n0
above 1.5 (n0 ≡ 0.16 fm−3 is the nuclear saturation
density), one finds that c2QM is always between 0.3 and
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0.36. It is noticeable that models based on relativistic
quarks tend to have c2QM ≈ close to 1=3, which is the value
for systems with conformal symmetry, and it has been
conjectured that there is a fundamental bound c2QM < 1=3
[18], although some models violate that bound, e.g. [19,20]
or [14] (parametrized in [2]).
In Sec. II we show how the CSS parametrization is

constrained by observables such as the maximum mass
Mmax, the radius of a maximum-mass star, and the radius
R1.4 of a star of mass 1.4 M⊙. In Secs. III–IV we describe a
specific model, based on a Brueckner-Hartree-Fock (BHF)
calculation of the nuclear matter EoS and the field
correlator method (FCM) for the quark matter EoS. We
show how the parameters of this model map on to part of
the CSS parameter space, and how the observational
constraints apply to the FCM model parameters.
Section V gives our conclusions.

II. CONSTRAINING THE CSS PARAMETERS

A. Topology of the mass-radius relation

We use the term “hybrid star” to refer to stars whose
central pressure is above ptrans, and so they contain a core of
the high-density phase. The part of the mass-radius relation
that arises from such stars is the hybrid branch. In all
models of nuclear/quark matter we find the same four
topologies of the mass-radius curve for compact stars: the
hybrid branch may be connected to the nuclear branch (C),
or disconnected (D), or both may be present (B) or neither
(A). The occurrence of these as a function of the CSS
parameters ptrans=εtrans and Δε=εtrans at fixed c2QM is shown
schematically in Fig. 1 (taken from Ref. [1]). The mass-
radius curve in each region is depicted in inset plots, in

which the thick green line is the hadronic branch, the thin
solid red lines are stable hybrid stars, and the thin dashed
red lines are unstable hybrid stars.
In the phase diagram the solid red line shows the

threshold value Δεcrit below which there is always a stable
hybrid star branch connected to the neutron star branch.
This critical value is given by [5,21,22]

Δεcrit
εtrans

¼ 1

2
þ 3

2

ptrans

εtrans
ð2Þ

and was obtained by performing an expansion in powers of
the size of the core of high-density phase. Equation (2) is an
analytic result, independent of c2QM and the nuclear matter
EoS. The dashed and dot-dashed black lines mark the
border of regions where the disconnected hybrid star
branch exists. The position of these lines depends on the
value of c2QM and (weakly) on the accompanying nuclear
matter EoS [1].
Once a nuclear matter EoS has been chosen, any high-

density EoS that is well approximated by the CSS para-
metrization can be summarized by giving the values of the
three CSS parameters, corresponding to a point in the phase
diagram. We then know what sort of hybrid branches will
be present.

B. Maximum mass of hybrid stars

In Fig. 2 we show how mass measurements of neutron
stars can be expressed as constraints on the CSS param-
eters. Each panel shows dependence on ptrans=εtrans and
Δε=εtrans for fixed c2QM, as in Fig. 1. The region in which the
transition to quark matter would occur below nuclear
saturation density (ntrans < n0) is excluded (hatched band
at the left end) because in that region bulk nuclear matter
would be metastable. There is also an upper limit on
the transition pressure, which is the central pressure of the
heaviest stable nuclear matter star. This depends on the
hadronic EoS that had been assumed.
The contours show the maximummass of a hybrid star as

a function of the EoS parameters. The region inside the
M ¼ 2 M⊙ contour corresponds to EoSes for which the
maximum mass is less than 2 M⊙ so it is shaded to signify
that this region of parameter space for the high-density EoS
is excluded by the observation of a star with mass 2 M⊙
[23]. For high-density EoSs with c2QM ¼ 1 (right-hand
plots), this region is not too large, and leaves a good range
of transition pressures and energy density discontinuities
that are compatible with the observation. However, for
high-density matter with c2QM ¼ 1=3 (left-hand plots),
which is the typical value in many models (See Sec. I),
the Mmax > 2 M⊙ constraint eliminates a large region of
the CSS parameter space [1,18]. We discuss this in more
detail below.

εtrans

Δ
ε

ε

trans

tr
an

s

p

FIG. 1 (color online). Schematic phase diagram (from [1]) for
hybrid star branches in the mass-radius relation of compact stars.
We fix c2QM and vary ptrans=εtrans and Δε=εtrans. The four regions
are (A) no hybrid branch (“absent”); (B) both connected and
disconnected hybrid branches; (C) connected hybrid branch only;
and (D) disconnected hybrid branch only.
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The upper plots in Fig. 2 are for a stiffer nuclear matter
EoS, DBHF [24], and the lower plots are for a softer
nuclear matter EoS, BHF [25] (see Sec. III). Properties of
these nuclear matter EoSs are given in Table I. As one
would expect, the stiffer EoS gives rise to heavier (and
larger) stars, and therefore allows a wider range of CSS
parameters to be compatible with the 2 M⊙ measurement.

In Fig. 2 the dot-dashed (red) contours are for hybrid
stars on a connected branch, while the dashed (blue)
contours are for disconnected branches. As discussed in
Ref. [1], when crossing the near-horizontal boundary from
region C to B the connected hybrid branch splits into a
smaller connected branch and a disconnected branch, so the
maximummass of the connected branch smoothly becomes

FIG. 2 (color online). Contour plots showing the maximum hybrid star mass as a function of the CSS parameters of the high-density
EoS. Each panel shows the dependence on the CSS parameters ptrans=εtrans and Δε=εtrans. The left plots are for c2QM ¼ 1=3, and the right
plots are for c2QM ¼ 1. The top row is for a DHBF (stiff) nuclear matter EoS, and the bottom row is for a BHF (soft) nuclear matter EoS.
The grey shaded region is excluded by the measurement of a 2M⊙ star. The hatched band at low density (where ntrans < n0) is excluded
because bulk nuclear matter would be metastable. The hatched band at high density is excluded because the transition pressure is above
the central pressure of the heaviest stable hadronic star.

TABLE I. Calculated properties of symmetric nuclear matter for the BHF and Dirac-Brueckner-Hartree-Fock (DBHF) nuclear
equations of state used here. BHF is softer, and DBHF is stiffer (see Sec. III).

Property BHF, Av18 þ UVIX TBF DBHF, Bonn A

Saturation baryon density n0 (fm−3) 0.16 0.18
Binding energy/baryon E=A (MeV) −15.98 −16.15
Compressibility K0 (MeV) 212.4 230
Symmetry energy S0 (MeV) 31.9 34.4
L ¼ 3n0½dS0=dn�n0 (MeV) 52.9 69.4
Maximum mass of star (M⊙) 2.03 2.31
Radius of the heaviest star (km) 9.92 11.26
Radius of M ¼ 1.4 M⊙ star (km) 11.77 13.41
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the maximum mass of the disconnected branch. Therefore
the red contour in the C region smoothly becomes a blue
contour in the B and D regions. When crossing the near-
vertical boundary from region C to B a new disconnected
branch forms, so the connected branch (red dot-dashed)
contour crosses this boundary smoothly.
In each panel of Fig. 2, the physically relevant allowed

region is the white unshaded region. The grey shaded
region is excluded by the existence of a 2 M⊙ star. We see
that increasing the stiffness of the hadronic EoS or of the
quark matter EoS (by increasing c2QM) shrinks the excluded
region.
For both the hadronic EoSs that we study, the CSS

parameters are significantly constrained. From the two left
panels of Fig. 2 one can see that if, as predicted by many
models, c2QM ≲ 1=3, then we are limited to two regions of
parameter space, corresponding to a low pressure transition
or a high pressure transition. In the low-transition-pressure
region the transition occurs at a fairly low density
ntrans ≲ 2n0, and a connected hybrid branch is possible.

In the high-transition-pressure region the connected branch
(red dot-dashed) contours are, except at very low Δε,
almost vertical, corresponding to EoSs that give rise to a
very small connected hybrid branch which exists in a very
small range of central pressures pcent just above ptrans. The
maximum mass on this branch is therefore very close to the
mass of the purely hadronic matter star with pcent ¼ ptrans.
The mass of such a purely hadronic star is naturally
independent of parameters that only affect the quark matter
EoS, such as Δε and c2QM, so the contour is vertical. These
hybrid stars have a tiny core of the high-density phase and
cover a tiny range of masses, of order 10−3 M⊙ or less, and
so would be very rare.
Disconnected hybrid branches are of special interest,

because they give a characteristic signature in mass-radius
measurements. For both the hadronic EoSs that we study,
the region B and D, where disconnected hybrid star
branches can occur, are excluded for c2QM ≤ 1=3. Even
for larger c2QM disconnected branches only arise if the
nuclear matter EoS is sufficiently stiff. It is interesting to

FIG. 3 (color online). Contour plots showing the radius of the maximum-mass star as a function of the CSS parameters. Dashed lines
are for the case where this star is on the disconnected branch; for dot-dashed lines it is on the connected branch. The grey shaded region
is excluded by the measurement of a 2 M⊙ star. The hatched band at low density (where ntrans < n0) is excluded because bulk nuclear
matter would be metastable. The hatched band at high density is excluded because the transition pressure is above the central pressure of
the heaviest stable hadronic star. For a magnified version of the low-transition-pressure region for c2QM ¼ 1=3, see Fig. 5.
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note that using an extremely stiff hadronic matter EoS such
as DD2-EV [26] can further shrink the region that is
excluded by the Mmax > 2 M⊙ constraint, allowing dis-
connected branches of hybrid stars to occur.

C. Minimum radius of hybrid stars

In Fig. 3 we show contour plots of the radius of the
maximum-mass star (on either a connected or disconnected
hybrid branch) as a function of the CSS quark matter EoS
parameters. Since the smallest hybrid star is typically the
heaviest one, this allows us to infer the smallest radius that
arises from a given EoS.
The layout is as in Fig. 2: each panel shows dependence

on ptrans=εtrans and Δε=εtrans for fixed c2QM; the plots on the
left are for c2QM ¼ 1=3 and the plots on the right are for
c2QM ¼ 1; the plots on the top are for the stiffer DBHF
nuclear matter EoS, while the lower plots are for the softer
BHF nuclear matter EoS. As in Fig. 2, the region that is
eliminated by the observation of a 2 M⊙ star is shaded
in grey.

The smallest stars, with radii as small as 9 km, occur
when the high-density phase has the largest possible speed
of sound c2QM ¼ 1. They are disconnected branch stars
arising from EoSs having a low transition pressure
(ntrans ≲ 2n0) with a fairly large energy density disconti-
nuity (Δε=εtrans ≳ 1).
As in Fig. 2, the contours in the high-transition-pressure

region are almost vertical because the hybrid branch is then
a very short extension to the nuclear mass-radius relation,
and its radius is close to that of the heaviest purely hadronic
star, which is independent of Δε=εtrans and c2QM. The radius
of the hybrid stars decreases with ptrans in this region,
because the radius of hadronic stars decreases with central
pressure.
For c2QM ¼ 1=3, the allowed low-transition-pressure

region is disconnected from the high-transition-pressure
region and is so small that it is hard to see on this plot. By
magnifying it (left-hand plots of Fig. 5) we see that in this
region the radius contours closely track the border of the
allowed region (the Mmax ¼ 2 M⊙ line) so we can say that
the radius must be greater than 11.5 km almost independent

FIG. 4 (color online). Contour plots similar to Fig. 3 showing the radius of a hybrid star of massM ¼ 1.4 M⊙ as a function of the CSS
parameters. Such stars only exist in a limited region of the space of EoSs [delimited by dashed (magenta) lines]. The grey shaded region
is excluded by the observational constraintMmax > 2 M⊙. For a magnified version of the low-transition-pressure region for c2QM ¼ 1=3,
see Fig. 5.
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of the transition pressure and hadronic EoS. For a stiff
hadronic EoS this minimum is raised to 11.7 km. These
values are comparable to the minimum radius of about
11.8 km found in Ref. [18], which explored a larger set of
hadronic EoSs but did not explore the full CSS parameter
space for the high-density EoS. If a star with radius smaller
than this minimum value were to be observed, we would
have to conclude that either the transition occurs outside the
low-density region or that c2QM is greater than 1=3. In the
magnified figure we also show how the excluded region
would grow if a 2.1 M⊙ star were to be observed (long-
dashed line for connected branch stars and short-dashed
line for disconnected branch stars). This would increase the
minimum radius to about 12.1 km for the soft hadronic EoS
and 12.2 km for the stiff hadronic EoS.

D. Typical radius of hybrid stars

In Fig. 4 we show contours (the U-shaped lines) of
typical radius of a hybrid star, defined as R1.4, the radius of
a star of mass 1.4M⊙, as a function of the CSS quark matter
EoS parameters. The contours only fill the part of the CSS

parameter space where there are hybrid stars with that mass.
The dashed (magenta) lines delimit that region which
extends only up to moderate transition pressure.
The overall behavior is that, at fixedΔε=εtrans, the typical

radius is large when the transition density is at its lowest.
As the transition density rises the radius of a 1.4 M⊙ star
decreases at first, but then increases again. This is related to
the previously noted fact [27] that when one fixes the speed
of sound of quark matter and increases the bag constant
(which increases ptrans=εtrans and also varies Δε=εtrans in a
correlated way) the resultant family of mass-radius curves
all pass through the same small region in theM-R plane: the
MðRÞ curves “rotate” counterclockwise around this hub
(see Fig. 2 of Ref. [27]). In our case we are varying
ptrans=εtrans at fixed Δε=εtrans, so the hub itself also moves.
At low transition density the hub is below 1.4 M⊙, so R1.4

decreases with ptrans=εtrans. At high transition density the
hub is at a mass above 1.4 M⊙ so R1.4 will increase
with ptrans=εtrans.
The smallest stars occur for c2QM ¼ 1 (right-hand plots),

where R1.4 ≳ 9.5 km at large values of the energy density

FIG. 5 (color online). Magnified version of the c2QM ¼ 1=3 plots in Figs. 3–4. In the two left panels, the contours are for the radius of
the maximum-mass star, which is typically the smallest star for the given EoS. In the two right panels, the contours are for R1.4, the radius
of a 1.4 M⊙ star. The region under and to the left of the hatched bar is probably unphysical because ntrans < n0, and it was excluded
(hatched band) in earlier figures. The grey shaded region is excluded by the observational constraint Mmax > 2 M⊙. The dashed line
shows how that region would grow if a 2.1 M⊙ star were observed.
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discontinuity, and the radius rises as the discontinuity is
decreased. This is consistent with the absolute lower bound
of about 8.5 km [28] for the maximally compact c2QM ¼ 1

star obeying Mmax > 2 M⊙.
For c2QM ¼ 1=3 the allowed region at low transition

pressure is small, so in the right panels of Fig. 5 we show a
magnification of this region. We see that in the allowed
(Mmax > 2 M⊙ and ntrans > n0) region there is a minimum
radius 12.2 km for the BHF (soft) hadronic EoS, and about
12.5 km for the DBHF (stiff) hadronic EoS. This minimum
is attained at the lowest possible transition density,
ntrans ≈ n0. As the transition density rises to values around
2n0, the minimum radius rises to 12.5 (BHF) or 13.3 km
(DBHF). This is comparable to the minimum radius of
about 13 km found in Ref. [18], which explored a wider
range of hadronic EoSs but assumed ntrans ¼ 2n0. These
results are consistent with the lower bound on R1.4 for
c2QM ¼ 1=3 of about 11 km established in Ref. [28] (Fig. 5)
using the EoS that yields maximally compact stars (cor-
responding to CSS with ptrans ¼ 0 and c2QM ¼ 1=3) obey-
ing Mmax > 2 M⊙. If a 1.4 M⊙ star were observed to have
radius below the minimum value, one would have to
conclude that either it is not a hybrid star or
that c2QM > 1=3.
The dashed line shows how the excluded region would

grow if a star of mass 2.1 M⊙ were to be observed. This
would increase the minimum radius to about 12.7 (BHF) or
13 km (DBHF).

III. THE BHF AND DBHF EOS
OF NUCLEAR MATTER

We now discuss in more detail the nuclear matter
equations of state that we use in this work. We adopt
the BHF scheme, in which the only input needed is the
realistic free nucleon-nucleon (NN) interaction V in the
Brueckner-Bethe–Goldstone (BBG) equation for the reac-
tion matrix G,

G½ρ;ω� ¼ V þ
X
kakb

V
jkakbiQhkakbj

ω − eðkaÞ − eðkbÞ
G½ρ;ω�; ð3Þ

where ρ is the nucleon number density and ω the starting
energy. The propagation of intermediate baryon pairs
is determined by the single-particle energy eðk; ρÞ ¼
k2
2m þ Uðk; ρÞ, and the Pauli operator Q. Because of the
occurrence of G in the single-particle potential Uðk; ρÞ ¼
Re

P
k0≤kFhkk0jG½ρ; eðkÞ þ eðk0Þ�jkk0ia, where the subscript

“a” indicates antisymmetrization of the matrix element, the
BBG equation [Eq. (3)] has to be solved in a self-consistent
manner for several momenta of the particles involved, at the
considered densities.
In the nonrelativistic BHF approximation the energy per

nucleon is given by [29]

E
A
¼ 3

5

k2F
2m

þ 1

2ρ

X
k;k0≤kF

hkk0jG½ρ; eðkÞ þ eðk0Þ�jkk0ia: ð4Þ

The nuclear EoS can be calculated with good accuracy in
the Brueckner two hole-line approximation with the con-
tinuous choice for the single-particle potential, and the
results in this scheme are quite close to the calculations
which include also the three hole-line contribution [30–32].
The dependence on the NN interaction, also within other
many-body approaches, has been systematically investi-
gated in Ref. [33].
It is well known that, in order to reproduce the correct

saturation point of symmetric nuclear matter, we must
introduce nuclear three-body forces (TBFs). In our
approach the TBF is reduced to a density-dependent
two-body force by averaging over the position of the third
particle, assuming that the probability of having two
particles at a given distance is reduced according to the
two-body correlation function [34,35].
In this work we use the Argonne v18 NN potential [36],

and the so-called Urbana model for TBFs, which consists
of an attractive term due to two-pion exchange with
excitation of an intermediate Δ resonance, and a repulsive
phenomenological central term [37,38]. Those TBFs pro-
duce a shift of aboutþ1 MeV in energy and −0.01 fm−3 in
density. This adjustment is obtained by tuning the two
parameters contained in the TBFs, and was performed to
get an optimal saturation point [34,35]. At present the
theoretical status of microscopically derived TBFs is still
quite rudimentary; however a tentative approach has been
proposed using the same meson-exchange parameters as
the underlying NN potential [39,40].
Along with the nonrelativistic BHF EoS we consider its

relativistic counterpart, the DBHF scheme [24] where the
Bonn-A potential is used for the nucleon-nucleon inter-
action. In the low density region (ρ < 0.3 fm−3), the BHF
(including TBF) and DBHF equations of state are very
similar, whereas at higher densities the DBHF is slightly
stiffer. The discrepancy between the nonrelativistic and
relativistic calculation can be easily understood by recalling
that the DBHF treatment is equivalent to introducing in the
nonrelativistic BHF the TBF corresponding to the excita-
tion of a nucleon-antinucleon pair, the so-called Z-diagram
[41], which is repulsive at all densities. In the BHF
treatment with Urbana TBF, both attractive and repulsive
TBF are introduced and therefore a softer EoS is expected.
We report in Table I the main properties of both EoSs.
In this work we perform all calculations for both the

BHF and DBHF equations of state for hadronic matter. This
provides a reasonable range of possible hadronic EoSs, and
allows us to gauge the sensitivity of our results to this
source of uncertainty, although even DBHF is not as stiff as
an ultrastiff hadronic EoS such as DD2-EV [26] (see
Sec. II B).
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We do not include the effects of hyperons because these
are unknown, and including them would not increase the
physical accuracy of our results. Calculating a hyperonic
EoS requires knowledge of hyperon interactions with
other baryons, and there is little data on hyperon-nucleon
interactions [42] and none on hyperon-hyperon interactions
or three-body interactions. There have been various con-
jectures about the hyperon interaction [43–46] and how to
include it in BHF [44,47,48] and DBHF [49] but there is no
consensus on the correct result.

IV. QUARK MATTER VIA THE FIELD
CORRELATOR METHOD

A. The FCM EoS

The approach based on the FCM provides a natural
treatment of the dynamics of confinement in terms of the
color electric (DE and DE

1 ) and color magnetic (DH and
DH

1 ) Gaussian correlators, the former being directly related
to confinement, so that its vanishing above the critical
temperature implies deconfinement [50]. The extension of
the FCM to finite temperature T at chemical potential
μq ¼ 0 gives analytical results in reasonable agreement
with lattice data, giving us some confidence that it correctly
describes the deconfinement phase transition [51,52]. In
order to derive an EoS of the quark-gluon matter in the
range of baryon density typical of the neutron star interiors,
we have to extend the FCM to nonzero chemical potential
[51,52]. In this case, the quark pressure for a single flavor is
simply given by

Pq=T4 ¼ 1

π2

�
ϕν

�
μq − V1=2

T

�
þ ϕν

�
−
μq þ V1=2

T

��

ð5Þ

where

ϕνðaÞ¼
Z

∞

0

du
�
u4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þν2

p 	�
exp

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þν2

p
−a

i
þ1

	
−1

ð6Þ

with ν ¼ mq=T, and V1 is the large distance static q̄q
potential whose value at zero chemical potential and
temperature is V1ðT ¼ μB ¼ 0Þ ¼ 0.8 to 0.9 GeV
[53,54]. The gluon contribution to the pressure is

Pg=T4 ¼ 8

3π2

Z
∞

0

dχχ3
1

exp ðχ þ 9V1

8T Þ − 1
ð7Þ

and the total pressure is

Pqg ¼
X

j¼u;d;s

Pj
q þ Pg −

ð11 − 2
3
NfÞ

32

G2

2
ð8Þ

where Pj
q and Pg are given in Eqs. (5) and (7), and Nf is the

number of flavors. The last term in Eq. (8) corresponds to
the difference of the vacuum energy density in the two
phases, G2 being the gluon condensate whose numerical
value, determined by the QCD sum rules at zero temper-
ature and chemical potential, is known with large uncer-
tainty, G2 ¼ 0.012� 0.006 GeV4. At finite temperature
and vanishing baryon density, a comparison with the recent
available lattice calculations provides clear indications
about the specific values of these two parameters, and in
particular their values at the critical temperature Tc. Some
lattice simulations suggest no dependence of V1 on μB, at
least for very small μB, while different analyses suggest a
linear decreasing of G2 with the baryon density ρB [55],
in nuclear matter. However, for simplicity, in the following
we treat both V1 and G2 as numerical parameters with no
dependence on μB.

B. The FCM EoS and the CSS parametrization

The CSS parametrization will be applicable to the FCM
EoS if the speed of sound in the FCM EoS depends only
weakly on the density or pressure. In Fig. 6 we show that
this is indeed the case. The upper panel shows the speed of
sound vs pressure in the FCM quark matter EoS for
different values of the FCM parameters, displayed in the
lower panel. We see that the speed of sound varies by less
than 5% over the considered range of pressures along
each curve, and lies in the interval 0.28 < c2QM < 1=3. The
value of c2QM shows a weak dependence on V1 and
extremely weak dependence on G2, which appears as an
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FIG. 6 (color online). The squared speed of sound c2QM [panel
(a)] is displayed vs quark matter pressure for several values of V1

(in MeV) andG2 (in GeV4). In panel (b), the FCM energy density
is represented by full symbols, whereas the full lines denote the
CSS parametrization given by Eq. (1).
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additive constant in the quark matter EoS according to
Eq. (8). The transition pressure is more sensitive to the
FCM parameters, increasing rapidly with V1 and with G2.
The energy density at a given pressure increases slightly
with an increase in V1 or G2.
To illustrate how well the CSS parametrization fits the

FCM EoS, we show in the lower panel of Fig. 6 that, for the
same FCM parameter choices, we can always find suitable
values of the CSS parameters which fit the FCM calculation
extremely well. This means that there exists a well-defined
mapping between the FCM parameters (V1, G2) and the
CSS parameters (ptrans=εtrans, Δε=εtrans, c2QM). Note that the
mapping depends on the EoS of the hadronic matter.
The mapping is displayed in Fig. 7, which shows the

region of the CSS parameter space where FCM equations
of state are found. As in the phase diagrams in Sec. II, we
show the plane whose coordinates are the CSS parameters
Δε=εtrans and ptrans=εtrans. For the hadronic EoS we use
BHF (left panel) and DBHF (right panel). The lines without
points represent the phase boundaries, as for the figures
in Sec. II, for connected and disconnected branches.
Whether a given FCM EoS yields stable hybrid stars
depends on which of those phase regions (see Fig. 1) it
is in. The solid (green) phase boundary with a cusp at
ptrans=εtrans ≈ 0.17 delimits the region with a disconnected
branch for c2QM ¼ 1=3, while the nearby dashed (green) line
is for c2QM ¼ 0.28, so these span the range of c2QM relevant

for the FCM, as discussed in Fig. 6. It is evident that the
dependence on c2QM is tiny and negligible for practical
purposes.
The thin dashed (black) line and the solid (black) line

studded with circles delimit the equations of state yielded
by the FCM calculation. Within that region, the lines
studded with points show the CSS parametrization of the
FCM quark matter EoS, where along each line we keep V1

constant and vary G2. Above that region, which corre-
sponds to negative values of V1, the EoS cannot reproduce
the 2 M⊙ limit, and in this sense is unphysical (Fig. 8).
Below that region, there would be no transition from
hadronic to quark matter, as explained below.
In Fig. 7, V1 varies from 0 up to the maximum value at

which hybrid star configurations occur, which is indicated
by an (orange) cross. For the BHF case that value is
V1 ¼ 240 MeV, G2 ¼ 0.0024 GeV4 and for the DBHF
case it is V1 ¼ 255 MeV, G2 ¼ 0.0019 GeV4. Along each
FCM curve in Fig. 7 the parameter G2 starts at the
minimum value at which there is a phase transition from
hadronic to FCM quark matter; at lower G2 the quark
and the hadronic pressures pðμÞ do not cross at any μ.
On each curve one point is labeled with its value of
G2=ð10−3 GeV4Þ, and subsequent points are at intervals
where G2 increases in increments of 1 in the same units.
We observe that along each line of constant V1,

ptrans=εtrans grows with G2. This can be explained by
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recalling the linear dependence of the quark pressure on G2

in Eq. (8), so that, at fixed chemical potential, an increase of
G2 lowers the quark pressure, making quark matter less
favorable, and shifting the transition point to higher
chemical potential or pressure. This was already discussed
in Ref. [56] for BHF nuclear matter, and is equally
applicable to DBHF nuclear matter. Obviously if G2

becomes too small, the phase transition takes place in a
region of low densities where finite nuclei are present,
and the homogeneous nuclear matter approach becomes
invalid.
The qualitative behavior of the curves of constant V1 can

be understood in terms of the Maxwell construction
between the purely hadronic phase and the quark phase.
The fact that Δϵ=εtrans goes through a minimum (which is
always at ptrans=εtrans ≈ 0.1) as G2 is increased at constant
V1 can be understood from Fig. 2 of Ref. [56], which shows
pressure p as a function of baryon density n and the
location of the hadron (BHF EoS) to quark (FCM EoS)
transition when G2 is varied. The hadronic EoS is strongly
curved, especially at low pressure, while the FCM EoS is
closer to a straight line. Consequently, the baryon density
difference between the two phases at a given pressure has a
minimum at densities around 2n0, which corresponds to
ptrans=εtrans ≈ 0.1. As G2 increases, the transition pressure
rises, scanning through this minimum. It follows that the
energy density difference also goes through a minimum,
because ϵ ¼ μn − p, and p and μ are continuous at the

transition, so Δε ¼ μΔn. The DBHF hadronic EoS is very
similar to BHF at low pressure, so the curves have their
minima at the same value of ptrans=εtrans in both panels
of Fig. 7.
We also see in Fig. 7 that an increase of V1 moves the

curves slightly downward and to the right. This is expected
since V1 is a measure of the interparticle strength, and is
inversely proportional to the pressure of the system, so that
the pressure decreases as V1 is increased at fixed μ, and, as
already discussed for the parameter G2, a decrease of the
quark pressure raises ptrans. The role of V1 and G2 in the
quark EoS discussed so far provides in the same way a
qualitative understanding of c2QM in panel (a) in Fig. 6,
although, as already noticed, the effect in Fig. 7 of the
change in c2QM is negligible.

C. Expected properties of mass-radius curves

By comparing Fig. 7 with Fig. 1 we can see that when
combining FCM quark matter with BHF (soft) nuclear
matter, the physically allowed range of FCM parameter
values yields EoSs that are mostly in regions C and A,
where there is no disconnected hybrid branch. At the lowest
transition densities the FCM EoS can achieve a large
enough energy density discontinuity to yield a discon-
nected branch (region D).
For the DBHF (stiff) nuclear EoS there is a wider range

of values of V1 andG2 that give disconnected branches, and
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some of them give simultaneous connected and discon-
nected branches. This difference can be understood in terms
of the stiffness of the EoSs. A change from a soft hadronic
EoS (BHF) to a stiff one (DBHF) produces a steeper growth
of the hadronic pressure as a function of the baryon density.
Referring again to Fig. 2 of Ref. [56], this pulls the DBHF
pðnÞ curve further away from the FCM curve, giving a
larger difference in baryon density at a given pressure, and
hence, as noted above, a larger Δε. This is why the curves
for DBHFþ FCM (right panel of Fig. 7) are shifted
upwards along the Δε=εtrans axis compared to the BHFþ
FCM curves (left panel of Fig. 7).
We can calculate the maximum mass of a hybrid star

containing a FCM core as a function of the FCM param-
eters, and then use the mapping described above to obtain
the CSS parameter values for each FCM EoS, producing a
contour plot of maximummass (Fig. 8) for BHF (left panel)
and DBHF (right panel) hadronic EoS. Given that the CSS
parametrization is a fairly accurate representation of the
FCM EoS, one would expect this to be very similar to the
corresponding plot for CSS itself with c2QM ¼ 1=3 (Fig. 2),
and this is indeed the case. The contours in Fig. 8 are
restricted to the region corresponding to physically allowed
FCM parameter values, so they end at the edges of that
region.
The triangular shaded area at the edge of each panel

shows the region of the parameter space that is accessible
by the FCM and is consistent with the measurement of a
2 M⊙, by having hybrid stars of maximum mass greater
than 2 M⊙. The (orange) cross in each panel of Fig. 7 is at
the high-transition-pressure corner of that triangular area.
The heaviest BHFþ FCM hybrid star has a mass of
2.03 M⊙, and the heaviest DBHFþ FCM hybrid star
has a mass of 2.31 M⊙.
As noted in Sec. II B, the hybrid stars in this physically

allowed and FCM-compatible region of the phase diagram
lie on a very tiny connected branch, covering a very small
range of central pressures and masses and radii, and would
therefore occur only rarely in nature. These stars have very
small quark matter cores (see Ref. [1], Figs. 5 and 6), and
their mass and radius are very similar to those of the
heaviest purely hadronic star, but there could be other clear
signatures of the presence of the quark matter core, such as
different cooling behavior.
The CSS parametrization has another region where

heavy hybrid stars occur, at low transition pressure (see
Fig. 2), but the FCM does not predict that the quark matter
EoS could be in that region.
To characterize the radius of FCM hybrid stars we cannot

construct contour plots like Fig. 4 because, as we have just
seen, the FCM predicts that only hybrid stars with mass
very close to the maximum mass are allowed. There are no
FCM hybrid stars with mass around 1.4 M⊙. Instead, in
Fig. 9 we show the range of radii of stars with a given
maximummass when varying FCM parameters, for our two

different hadronic EoSs. The right-hand edge of each
shaded region traces out the mass-radius relation for
hadronic stars with the corresponding hadronic EoS. The
FCM hybrid stars form very small connected branches
which connect to the nuclear matter where the central
pressure reaches the transition pressure (see Sec. II B), so
the hybrid stars do not deviate very far from the hadronic
mass-radius curve. Hence the shaded regions in Fig. 9
are narrow, especially in the observationally allowed
(Mmax > 2 M⊙) region, which perfectly matches the pre-
diction of CSS parametrization on the maximum-mass star
radius in the high-transition-pressure region (see the left
panels of Fig. 3). For BHF (soft) nuclear matter, the
hadronic stars, and hence the hybrid stars, are smaller
because the nuclear mantle is more compressed by the self
gravitation of the star.

V. CONCLUSIONS

We have shown how observational constraints on the
mass and radius of hybrid stars can be expressed as
constraints on the parameters of the CSS parametrization
of the high-density EoS, which, in the space of possible
models of quark matter, is a reasonably model-independent
parametrization. Of course, physical predictions from
CSS depend on the hadronic EoS with which it is
combined. The CSS parametrization assumes a sharp
transition from nuclear matter to a high-density phase such
as quark matter, and that the speed of sound in that phase is
independent of the pressure. We found that the observation

FIG. 9 (color online). Shaded areas show range of radii of stars
with a given maximum mass when varying FCM parameters. The
thick dashed lines indicate the purely hadronic mass-radius
configurations. The crosses at the top of the shaded regions
correspond to the maximal configuration indicated by the same
symbol in Fig. 7. The observational constraint [23] on the star
mass is indicated by a horizontal line.
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of a 2 M⊙ star constrains the CSS parameters signifi-
cantly [1,18].
If, as predicted by many physical models of quark matter,

c2QM ≲ 1=3, then for typical models of hadronic matter such
as BHF or DBHF there are two possible scenarios (we
discuss ultrastiff hadronic EoSs below).
First, there is a low-transition-pressure scenario, where

the transition to the high-density phase occurs at ntrans ≲
2n0 (the unshaded region on the left side of the two left
panels of Figs. 2–4). In this scenario, the hybrid branch of
the mass-radius relation will be connected to the nuclear
branch. In the c2QM ≲ 1=3 and low-transition-pressure
scenario there are strong constraints on the radius of the
star, as shown in Fig. 5. The radius of the maximum-mass
star (which is typically the smallest possible star) must be
greater than about 11.5 km, and the radius of a 1.4 M⊙ star
must be greater than about 12.2 km [28]. For a stiffer
hadronic EoS, these minima are raised by about 0.15 to
0.3 km. If a neutron star of mass 2.1 M⊙ were observed
then this constraint would tighten, increasing the minimum
radius to about 12.1 km. If a star smaller than the minimum
radius were observed, we would have to conclude that
either the transition is outside the low-density regime or
c2QM > 1=3. Conversely, if theoretical considerations estab-
lished that c2QM is smaller than 1=3, the minimum radius
would become larger [18].
Secondly, there is a high-transition-pressure scenario

(the white region on the right side of the left panels of
Figs. 2–4). This tends to give a very small branch of hybrid
stars with tiny quark matter cores, occurring in a narrow
range of central pressures just above the transition pressure.
This is why the mass and radius contours become almost
vertical in this region: the hybrid star has almost the same
mass and radius as the heaviest purely hadronic star (the
one where the central pressure is ptrans), and so the
properties of these hybrid stars depend on the hadronic
EoS (see Fig. 9) via ptrans=εtrans but not on quark matter
properties such as Δε or c2QM.
If the hadronic matter is extremely stiff (e.g. DD2-EV

[26]) or the quark matter has c2QM larger than 1=3 then a
larger region of the CSS parameter space becomes allowed.
The right panels of Figs. 2–4 show the extreme case
where c2QM ¼ 1. In this case the minimum possible radius
is 9.0 km.
Disconnected hybrid branches are of special interest,

because they give a characteristic signature in mass-radius
measurements. For both the hadronic EoSs that we study,
disconnected hybrid star branches are excluded by the
Mmax > 2 M⊙ constraint for c2QM ≤ 1=3, and even for
larger c2QM they only arise if the hadronic matter EoS is

stiff. Explorations of the ultrastiff hadronic DD2-EV EoS
indicate that disconnected hybrid star branches can occur at
moderate c2QM, and it would be interesting to include this
EoS in a future study.
Our work is intended to motivate the use of the CSS

parametrization as a framework in which the implications
of observations of neutron stars for the high-density EoS
can be expressed and discussed in a way that is reasonably
independent of the modeling of the EoS of the high-density
phase (quark matter in our case) [4,26].
As an application to a specific model, we performed

calculations for the FCM quark matter EoS. We showed
that the FCM equation of state can be accurately repre-
sented by the CSS parametrization, and we displayed the
mapping between the FCM and CSS parameters. We found
that FCM quark matter has a speed of sound in a narrow
range around c2QM ¼ 0.3, and the FCM family of EoSs
covers a limited region of the space of all possible EoSs
(Fig. 7). Once the observational constraintMmax > 2 M⊙ is
taken into account, the allowed region in the parameter
space is drastically reduced to the shaded areas of Fig. 8.
This corresponds to the high-transition-pressure scenario,
with a small connected branch of hybrid stars with tiny
quark matter cores. Such stars would be hard to distinguish
from hadronic stars via mass and radius measurements,
but the quark matter core could be detectable via other
signatures, such as cooling behavior. These hybrid stars
have central densities larger than 6.5n0 in the BHF case,
and 3.5n0 in the DBHF case (Fig. 8) which means that,
according to Refs. [43,44,46,49], hyperons could play an
important role in the BHF case, and they cannot be ruled
out even in the relativistic DBHF case. As discussed in
Sec. III, we ignored hyperons because we are already using
two different hadronic EoSs, one stiff and one soft, to
estimate the sensitivity of our results to the hadronic EoS,
and the effect of hyperons remains unknown. In the future
we hope that more experimental data will constrain the
high-density hadronic EoS, including the hyperonic
contribution.
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