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Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly
∼1 MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of
acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm
cavity mirrors. These parametric instabilities have the potential to significantly compromise the detector
performance and control. Here we present the design of “acoustic mode dampers” that use the piezoelectric
effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an
Advanced LIGO-like test mass have shown a tenfold reduction in the amplitude of several mechanical
modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in
advanced detectors.
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I. INTRODUCTION

The network of advanced gravitational wave detectors
currently under construction (two LIGO [1] detectors in
the USA, the Advanced Virgo [2] detector in Italy, and
Kagra [3] in Japan) promises to open the new window of
gravitational wave astronomy within this decade. These
large optical interferometers are built to make extremely
high-precision measurement of the test mass motion
induced by gravitational waves [4].
Sensitivity to gravitational wave strains of order 10−24

requires high optical power circulating in the arm cavities
of these detectors. For instance, up to 750 kW of optical
power will be sustained in the steady-state regime inside the
Advanced LIGO arm cavities.
It has been experimentally observed that the stored

energy in a resonant cavity can leak from the optical
modes to the mechanical modes of the cavity mirrors via a
3-mode interaction [5]. Given sufficiently high circulating
optical power, and mirror materials with very low mechani-
cal loss as required to avoid thermal noise, the uncontrolled
growth of test mass acoustic modes can lead to Parametric
Instabilities (PI) [6,7]. If left unaddressed, PI will prevent
high-power operation and, thus, limit the astrophysical
output of gravitational wave detectors. While Advanced
LIGO will serve as the primary example in this paper, all
advanced gravitational wave detectors are susceptible to
these instabilities.
Several schemes have been proposed to damp PI [8,9]. In

particular, solutions directly applicable to Advanced LIGO
involve active damping of acoustic modes by means of the
test mass electro-static drive actuators [10], and thermal
tuning of the optical modes using the test mass ring heaters

[11]. A significant constraint on any technique is that it
must preserve the inherently low mechanical loss of the test
mass in the gravitational wave frequency band to maintain a
low level of thermal noise.
Here we present a novel method to passively control

PI by reducing the Q-factor of the test mass acoustic
modes with small resonant dampers. These “acoustic
mode dampers” (AMD) dissipate the strain energy of
the test mass mode through a resistive element after
converting it to electrical energy via the piezoelectric effect
(see Fig. 2).
The resonant nature of the AMD allows it to effectively

damp test mass acoustic modes without introducing sig-
nificant mechanical loss at lower frequencies where thermal
noise can limit detector performance. With respect to other
proposed solutions, this approach has the advantage of
being simple, self-contained, and completely passive.
Models indicate that AMDs can provide a broadband
reduction in the Q of mechanical modes relevant to PI,
and are therefore particularly beneficial in the presence of a
large number of unstable modes.
The structure of this paper is as follows. In Sec. II we set

the stage by giving a brief overview of parametric insta-
bilities, including equations of particular relevance to
evaluating AMD performance. Section III presents a simple
one-dimensional model of the AMD which highlights the
principles of AMD operation. This is followed by a
description of the detailed finite element model (FEM)
used to analyze the AMDs ability to suppress PI when
attached to an Advanced LIGO test mass. The FEM
predictions are compared with experimental results from
a full-scale prototype in Sec. IV. Finally, in Sec. V we
discuss an AMD design that will provide Advanced LIGO
with protection from instabilities, without significantly
increasing test mass thermal noise.*sgras@ligo.mit.edu
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II. PARAMETRIC INSTABILITIES (PI)

The acousto-optic interactions responsible for parametric
instabilities have been extensively studied [6,8,12]. They
consist of a scattering process and radiation pressure
operating together in an optical cavity in a closed-loop
manner. The graphical representation of this process is
shown in Fig. 1.
The e-folding growth time, or “ring-up time,” of an

acoustic mode in the presence of a 3-mode interaction is
τ ¼ 2Qm=ðωmðR − 1ÞÞ [13], where Qm and ωm are the
Q-factor and angular frequency of the mode, respectively,
and R is the parametric gain. When R > 1 the amplitude
increases exponentially until a saturation point is reached
[14]. The parametric gain R for the single optomechanical
interaction can be approximated as

R ≈ PcΛQmΓðδνhom;ΔωÞ; ð1Þ

where Pc is the optical power circulating in the arm cavity
and δνhom is the cavity line widths (full width, half
maximum) for the higher-order optical mode. The param-
eter Λ measures the spatial overlap between the acoustic
and the higher-order optical modes; Γ is representative of
the interferometer optical configuration and is a function of
the 3-mode interaction tuningΔω ¼ ωm − 2πΔνhom, where
Δνhom is the frequency difference between the fundamental
and higher-order optical modes. For Δω → 0, the param-
eter Γ reaches its maximum (see [15] for a more detailed
description).

Unstable acoustic modes with parametric gain up to R≃
100 may arise in Advanced LIGO in the 10–90 kHz band
[6]. To prevent these instabilities, a damping mechanism
must be introduced to reduce the Q-factor of all unstable
acoustic modes in this frequency band without introducing
excess thermal fluctuation in the detection band of 10 Hz
to 1 kHz.

III. MODEL OF THE ACOUSTIC
MODE DAMPER (AMD)

In order to reduce the Q of test mass acoustic modes we
designed a resonant AMD which can be attached to the test
mass and provide dissipation via the piezoelectric effect.
In this section we first describe the interaction between

the AMD and the test mass with a simple one-dimensional
model, then we present a complete finite element model of
the entire system.

A. Simplified one-dimensional model

The AMD and test-mass system can be described as a
pair of coupled oscillators with a large mass ratio. The
AMD mass m is attached to the much more massive test
mass via piezoelectric shear plates, which are modeled as a
lossy spring with complex spring constant of magnitude k
and loss angle η.
The test mass acoustic mode for which we would like to

estimate the impact of the AMD is simplified in this model
to a massM, equal to the modal mass of the acoustic mode,
attached to a fixed reference by a lossless spring K. The
coupled systems is then excited by the radiation pressure
force F applied to the TM mode, as shown in Fig. 2.
At frequencies near the resonance of the AMD, the lossy

spring produced by the piezoelectric material and resistive
load will dissipate the energy of the excited acoustic mode,
as seen in Fig. 3.
For this system of coupled oscillators, the amplitude

AðωÞ of the acoustic mode driven by force F at angular
frequency ω is

AðωÞ ¼ F
Mω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ η2

ðδϵþ μÞ2 þ η2ðδþ μÞ2

s

where δ ¼ 1 − ω2
0=ω

2; ϵ ¼ 1 − ω2=ω2
D ð2Þ

ω2
0 ¼

K
M

; ω2
D ¼ k

m
; and μ ¼ m

M
: ð3Þ

The resulting effective Q-factor is

Qeff ¼
maxðAðωÞÞ
Aðω ¼ 0Þ ≃ η2 þ ð1 − ρÞ2

ημρ
; ð4Þ

where ρ ¼ ω0=ωD, and we assume μ ≪ 1.
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FIG. 1 (color online). PI described as a positive feedback
process. The process is started when thermally perturbed mirror
surface distorts a steady state cavity field inside the interferometer
arm cavity. Two transverse optical sidebands are created. Both
sidebands exert force on the test mass via radiation pressure.
When the energy dissipation of the acoustic mode and the rate of
work done by the radiation pressure are unbalanced, one of the
sidebands excites the exponential growth of the acoustic mode
amplitude. The dynamic of this process is commonly described in
terms of the parametric gain R, with R > 1 in the case of
instability.
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When the acoustic mode resonance is near that of the
AMD, η ≫ j1 − ρj, the acoustic mode Q is reduced to
Qeff ≃ η=μ. When the acoustic mode resonance is well
above the AMD resonance, Qeff ≃ ρ=ημ, and when it
is well below the AMD resonance,Qeff ≃ 1=ημρ, assuming
η2 ≪ 1.
To suppress PIs, the test mass acoustic mode Q-factors

only need to be reduced from ≈107 to 105–106. Using this
simple model we can estimate that a 3g AMD with η ¼ 0.1
on a 10 kg test mass, can give Qeff ≲ 105 for resonances
with 1

3
< ρ < 3.

However, this model ignores a number of important
factors. One of these is the location of the AMD relative to
the nodes and antinodes of each test mass acoustic mode.
Quantitatively speaking, the modal mass M of a given
mode should be increased in this model by the ratio of the
displacement at the AMD location to that of the mode’s
antinode squared M0 ¼ Mðxmax=xAMDÞ2. Thus, an AMD
located near a node will have a reduced value of μ, and will
provide little damping.
Other important factors include the multiple coupled

degrees of freedom of the AMD and the directional nature

FIG. 2 (color online). Overview of the acoustic mode damper (AMD). The AMD can be described as a small spring-mass system
attached to a larger mass M. M represents a modal mass of an acoustic test mass mode which vibrates due to an external force F
(radiation pressure). Such induced vibration causes deformation of the lossy spring of the damper. The nonzero loss angle of the
damping spring (piezoelectric material) results in the lag of strain with respect to stress and thus energy dissipation. As a consequence of
this dissipation process the amplitude of the acoustic mode vibration is reduced.
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FIG. 3 (color online). A viscouslike behavior of the loss angle
for shunted piezoelectric material. The total loss factor is a
combination of the shunting loss and structural loss of the
piezoelectric material. The maximum peak position is located
at 40 kHz which corresponds to the shunt with 10 kΩ resistor.
The larger the resistor the lower is frequency of the peak loss. The
peak height is proportional to electromechanical coupling co-
efficient k15. Note, the loss angle at the low-frequency section is
mainly dominated by the structural loss angle of piezoelectric
material.
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of the piezo damping material, both of which are covered in
the following section.

B. Finite element model (FEM)

The simple one-dimensional model introduced in the
previous section is useful to provide an intuitive under-
standing of the AMD damping mechanism. However, it is
inadequate to represent the details of the interaction
between the AMD and the test mass acoustic modes
(TMAMs). Each AMD has at least six resonant modes
and hundreds of TMAMs are present in the frequency band
of interest; a finite element model is required in order to
properly reproduce these modes and calculate the fre-
quency overlap between them.
A FEM of the Advanced LIGO test mass with two

attached AMDs was constructed with the ANSYS program
[16]. The AMDmodel corresponds to the parameters of our
prototype AMD (see Table I), and the test mass model
parameters are reported in Table VI. All dissipation mech-
anisms in the test mass substrate, coating and bonds were
included in the FEM, along with all the losses related to the
acoustic mode damper structure (see Table V for a full list).
A piezoelectric material (PZT), for which energy

dissipation can be easily controlled, is ideal for AMD
construction. The AMD design modeled here has 2 PZTs
sandwiched between a reaction mass and the interferometer
test mass (see Fig. 2). The PZTs respond to shear stress, and
are poled orthogonally to ensure that all but 1 of the 6
lowest frequency AMD modes are damped. See Fig. 4 for
mode shapes; the compression mode is not damped by the
shear plates.
For the shear resonant damper, the spring constant can be

associated with the shear deformation of the piezomaterial

kð1þ iηÞ ¼ Reðcsu55Þð1þ iηpztÞ S
h
; ð5Þ

where csu55 is the active shunted shear stiffness matrix
component, S is the area, and h is the height of the shear
plate, respectively.
The loss factor ηpzt is induced by shunting the shear plate

with a resistor resulting in c55 becomes a complex quantity

with a nonzero imaginary stiffness. The magnitude of
Imðc55Þ is strictly related to the impedance of the shear
plate-resistor circuit. Thus, the loss factor of the shunted
shear plate can be defined as

ηpzt ¼ Imðcsu55Þ
Reðcsu55Þ

: ð6Þ

Because the impedance of any PZT is capacitive, the loss
factor ηpzt is frequency dependent. As such, careful
selection of the shunting resistor and PZT dimensions
can be used to maximize loss in the band of interest, as
shown in Fig. 3. A more detailed discussion of the
piezoelectric loss angle can be found in Appendix A.
We validated the FEM of the AMD by computing its

principal resonances, and comparing them with direct
measurements performed on a prototype AMD. The princi-
pal resonances were measured with a capacitive bridge
circuit where one of the matching capacitors was the
AMD prototype. A total of five principal resonances were

TABLE I. List of the components for acoustic mode damper prototype. The dimensions and loss angle value are
used in finite element modeling described in Sec. III B.

Component Material Dimensions Loss angle
Resistor Ceramic, surface mount 0.7 × 1.2 × 0.5 mm3 10 kΩ
Reaction mass Tungsten h ¼ 6.5 mm, d ¼ 9.6 mm 4e-5a

Epoxy Conductive TruDuct 2902 25 μm 0.15a

Piezo Shear plate TRS 200HD 4 × 4 × 0.76 mm3 0.014
Base Fused silicaþ gold coating h ¼ 3 mm, d ¼ 10 mm 7.6 × 10−12 · f0.77b

Epoxy Nonconductive (EP30, MasterBond) 25 μm 0.1a

aAssumed loss value.
bLoss obtained from [17].

compression

flag (F) anti−flag (aF)

rotation (R)

FIG. 4 (color online). Principal modes of AMD. The flag and
antiflag modes are in doublets due to AMD geometry. The
difference between flag and antiflag modes corresponds to the
location of the rotation axis about which reaction mass rocks. For
the flag pole the rotation axis is at the bottom surface of the shear
plate whereas for the antiflag mode the rotation axis is at the
height of mass center of the reaction mass.

S. GRAS et al. PHYSICAL REVIEW D 92, 082001 (2015)

082001-4



identified, with three types of modes: two flag, two antiflag,
and one rotation mode (see Table II). All these modes are
characterized by large shear deformation for the double piezo
configuration in the AMD. The sixth compression modewas
not measured as it does not involve shear of the piezo plate.
Table II shows the good agreement between the output of the
model and measurements on the AMD prototype.
Harmonic analysis (finite element analysis with an

excitation at a fixed frequency) was conducted to estimate
the Q-factor of each of the TMAMs. This approach allows
us to include frequency dependent variables such as the
shear plate stiffness Reðcsu55Þ, and its loss angle (see
Appendix A).
The modal Q-factor of each resonant mode of the system

was calculated as

QðfnÞ ¼
P

mEmðfnÞP
mEmðfnÞ tanðϕmÞ

; ð7Þ

where fn is the frequency of the nth acoustic mode (see
Fig. 5). The loss associated with each structural component
is treated separately; Em is the strain energy stored in the
mth component and tanðϕmÞ is its loss factor (see Tables I
and VI).
The modeled resonant frequencies of 12 TMAMs were

then compared to the measured resonance frequencies (see

Table III), obtained according to methods described in
Sec. IV. The front face displacement of the modes are
shown in Fig. 5.
Note that the agreement between calculated andmeasured

Q-values increases with frequency. According to the model,
surface strain energy decreases with resonant frequency.
This may indicate an additional dissipation process which is
missing in the model. Nevertheless, a small relative fre-
quency offset Δf below 1% in Table III indicates a good
agreement of the FEM with measured values.

IV. EXPERIMENTAL RESULTS

Several AMD prototypes were constructed, each con-
sisting of six components (see Table I):

TABLE II. Verification of the finite element model for AMD.
Five principle resonances (two flag, two antiflag and one rota-
tional mode) obtained with the model are compared to the
measured values. The x, y suffix corresponds to the shear plate
orientation.

Mode type FEM [kHz] Measured [kHz]
Fy-mode 9.96 9.77
Fx-mode 12.87 12.61
R-mode 23.28 24.13
aFy-mode 38.36 37.39
aFx-mode 50.51 48.86

FIG. 5 (color online). Test mass drumhead modes for which Q-
factor was measured. The color code corresponds to the test mass
front-face displacement amplitude. This figure was obtained from
FEM analysis of the test mass model without AMDs.

TABLE III. The Q-factor of the test mass modes without AMDs
installed. The 4th and 7th column correspond to the relative
frequency noise Δf% and Q-factor ratio between calculated and
measured value, respectively. Mode number corresponds to the
first 12 modes with an antinode in the center (drumhead modes).

Mode #
Frequency [Hz]

Δf%
Q-factor

FEM Measured FEM Measured Ratio

1 8128.3 8150.9 0.3 37M 1.9M 19.5
2 10 391.1 10 418.1 0.3 63M 14M 4.5
3 12 999.1 12 984.7 0.1 29M 15M 1.9
4 15 101.4 15 047.2 0.4 56M 17M 3.3
5 15 151.0 15 539.1 2.5 55M 16M 3.4
6 19 487.0 19 544.9 0.3 30M 7.0M 4.3
7 20 113.6 20 185.5 0.3 27M 13M 2.1
8 24 824.0 24 901.8 0.3 32M 16M 2.0
9 26 504.3 26 681.2 0.7 48M 18M 2.7
10 29 767.4 29 699.5 1.0 18M 15M 1.1
11 30 912.1 31 003.3 0.3 18M 12M 1.5
12 32 664.1 32 743.2 0.2 14M 13M 1.1

FIG. 6 (color online). Two acoustic mode dampers attached to
the barrel of a suspended aLIGO-like test mass. The AMDs are on
opposite sides of the test mass, ∼45° down from the midline.
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Reaction mass: A 10 g tungsten cylinder which tunes the
AMD principal resonances to frequencies above 10 kHz is
located on top of the shear plates.
Shear plate: Two piezoelectric shear plates, oriented

with perpendicular polarizations are glued to the reaction
mass and base with conductive epoxy Tra-Duct2902. The
epoxy serves to electrically connect the PZT electrodes to
the reaction mass and base.
Base: The interface between flat shear plates and curved

barrel of the test mass. The top flat surface is gold coated
with separate sections to which shear plates are glued. The
bottom surface is curved to match the test mass barrel
curvature. The base is made from fused silica and glued to
the test mass with nonconductive epoxy.
Shunting circuit: One 10 kΩ resistor for each shear plate

is glued to the reaction mass with conductive epoxy. The
circuit is closed with 100 μm diameter silver coated copper
wire, which is soldered to the resistor and gold coated
surface of the base.
To measure Q-factors of the test mass modes, both with

and without AMDs attached, a 16 m optical cavity was
used, with the test mass forming the end mirror of the cavity
(Fig. 6). The test mass was suspended with monolithic
fused silica suspension [18]. The optical cavity supports a
2 mm diameter Gaussian mode; the resonant beam probes
the motion in the center of the test mass face, so that modes
with an antinode in the center of the mass are easily
measured. A total of 12 modes were identified (Fig. 5) and
measured, with the results shown in Table III.
In order to measure the impact of the AMD on the Q of

the TMAMs, several modes of the test mass were excited
using electrostatic actuators [19] and their ring-down times
observed. This measurement was repeated in three con-
figurations: with no AMD, with 2 AMDs, with 2 AMDs
which lacked resistive damping (shunt wires cut).
Each acoustic mode was detected in the cavity locking

error signal as a peak in the Fourier domain. After being
excited, each mode amplitude was recorded as a function of
time to estimate the decay time τ. The Q-factor was
determined from the decay time τ, according to

Q ¼ πf0τ; ð8Þ
where f0 is the resonant frequency in Hz and τ is the
exponential decay time constant.
Measurements of the test mass mode Q-factor performed

after installing two AMDs clearly show the substantial
damping capability of the AMD prototype, as reported in
Table IV (see also Table VII in the Appendix for additional
details).
The results indicate that out of 12 modes, 11 are sup-

pressed by at least factor of 10 and in some cases by more
than 2 orders of magnitude. The relatively large discrepancy
betweenmodel andmeasurement for mode number 2 can be
explained by the AMD and test mass (TM) interaction
condition for this particular mode. The FEM predicts that

mode number 2 will bewithin 500 Hz of the AMDFy-mode
at 10 kHz, while the measured values give a separation of
800 Hz (mostly due to the AMD resonance being off),
reducing the interaction between the AMD and TM mode.
In the off-resonance interactions, which are more

common and set the lower limit to AMD performance,
the discrepancy is generally less than a factor of a few.
Surprisingly, modes number 2 and number 6 show a

counterintuitive behavior; opening the resistive circuit of
the AMDs decreases the TMAM Q-factor. However, since
the electrical circuit of AMD affects the mechanical stiff-
ness of the shear plates, it is expected that the principal
resonances also changed when the circuit is opened. And, if
the AMD resonance is close to the TMAM frequency,
Eq. (4) indicates that the mode Q can be decreased by
lowering the AMD loss.
The large Q reduction for modes number 3 and number 4

is due to the on-resonance interaction between TMAM and
AMD, whereas for modes number 5 and number 12, the
large Q reduction is due to the antinode AMD location on
the TMAM.

V. ANALYSIS OF THE AMD THERMAL NOISE

The AMD is designed to increase the mechanical
damping of the test mass acoustic modes above 10 kHz.
At the same time, the AMD must introduce minimal
additional mechanical loss in the 10-1000 Hz band, where
low mechanical loss is required to keep test mass thermal
noise small [21]. Thus it is critical to calculate the thermal
noise resulting from the AMDs in our overall evaluation of
this PI mitigation technique.
We used the FEM described above to calculate the

thermal noise resulting from our experimental test of two
AMDs attached to a test mass. The AMD thermal noise was
calculated numerically at 100 Hz, the most sensitive part of
the detection band, using Levin’s approach [22]. The energy

TABLE IV. Test mass mode suppression obtained with two
AMDs. The damping factor refers two overall mode damping
efficiency where the resistive contribution corresponds to the
contribution of the shunt to the damping mechanism.

Mode #
Frequency

[Hz]
Damping
factor

Resistive contribution
[%]

1 8150.9 32.2 12
2 10 418.1 31.8 −57
3 12 984.7 441.2 21
4 15 047.2 81.0 9
5 15 539.1 > 320 > 71
6 19 544.9 15.6 −2
7 20 185.5 13.8 41
8 24 901.8 5.2 4
9 26 681.2 > 360 > 0
10 29 699.5 23.8 43
11 31 003.3 307.7 68
12 32 743.2 > 260 > 4
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dissipation per cycle was computed using Eq. (A15) for a
pressure profile corresponding to the Advanced LIGO
geometry (laser beam radius ω0 ¼ 5.5 cm, incident on
the front face of the TM). Results are shown in Table V.
The test mass thermal noise level of 5.2 × 10−21 m=

ffiffiffiffiffiffi
Hz

p
corresponds to the design level for Advanced LIGO, and is
dominated by optical coating loss [23,24]. As Table V
shows, while our prototype AMD would contribute sig-
nificantly to thermal noise, it is not orders of magnitude
above the more fundamental sources of thermal noise.
Relative to the prototype device, our model points to

several design and material improvements that can be made
to significantly reduce the thermal noise impact. The major
AMD thermal noise contributors are the epoxies used to
bond the AMD elements, and structural loss in the piezo
shear plates. The former can be improved with lower loss
epoxy and thinner bond layers. The latter can be improved
with a more suitable choice of piezo material.
Other design elements can also be altered. The mass of

the reaction mass can be reduced to lower the thermal noise
without significantly affecting the acoustic mode damping
performance. Another modification would be to avoid
alignment of the piezo shear plate polarization with the
laser beam axis, to minimize the contribution of resistive
loss to the thermal noise. These and other design opti-
mizations will be explored in a future paper.

VI. CONCLUSION

Acoustic mode dampers represent a simple yet effective
approach to damping parametric instabilities. The great

advantage of this approach over active damping [10] is that
many test mass acoustic modes are effected simultaneously,
and no further intervention is necessary. This is likely to be
a critical feature in instruments that would otherwise suffer
from multiple acoustic modes simultaneously excited by
parametric instabilities.
The investigation presented here involved modeling and

construction of a prototype AMD, which was shown to
effectively damp test mass acoustic modes. The thermal
noise associated with this prototype AMD was also
computed. Though the prototype AMD does not meet
the stringent thermal noise requirements of gravitational
wave detectors, several design elements were identified for
improvement, making this approach a potentially viable
solution to parametric instabilities.
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APPENDIX A: PIEZOELECTRIC MATERIAL

Any piezoelectric material is strictly characterized by
electromechanical properties. The fact that both electrical
and mechanical properties are inseparable allows us to
represent the dissipation process in a shunted piezoelectric
material either as a Johnson heat or mechanical loss.
For the purpose of this work we focus on the dissipation

process in terms of the mechanical loss. From the stress
charge of the piezoelectric constitutive equation, it is
straightforward to derive the total induced stress in the
shunted piezoelectric material [25]. Assuming no external
current plugged to the piezoelement electrode, we get

σð6×1Þ ¼ ðcEð6×6Þ − iωetð6×3ÞZ
TOT
ð3×3ÞAð3×3Þeð3×6ÞL−1

ð3×3ÞÞSð6×1Þ;
ðA1Þ

where cE is the mechanical stiffness matrix under constant
electric field, et and e are the piezoelectric stress constant.
The upper script t refers to transpose operator [26]. The
electrode area is represented by matrix A, whereas the
thickness of the piezomaterial between electrodes is rep-
resented by matrix L. The strain S is a product of the acting
stress σ on the piezoelement and the charge accumulation
in the piezoelement. Each bracket corresponds to the matrix
dimension. It is assumed that piezoelectric element has a
brick shape, thus matrices ZTOT, A, and L are diagonal.
The total impedance in Eq. (A1) is the inverse sum of the

piezoelement admittance under constant electric field YE

and the admittance of the external circuit Ysu connected to
the piezoelement electrodes; thus,

TABLE V. Thermal noise budget for test mass and acoustic
mode damper prototype when attached to the test mass. The
thermal noise was calculated for the laser beam spot size of
ω ¼ 5.5 cm.

Component Thermal noise @ 100 Hz ½10−21m=
ffiffiffiffiffiffi
Hz

p �
Test mass
Substrate 0.8
Optical coating 5.1
Suspension ears 0.0
Ears bond 0.6
Total per TM 5.2
AMD
Reaction mass (RM) 0.3
Epoxy (RM-PZT) 4.8
Shear plate (PZT-X)a 5.5
Shear plate (PZT-Y)a 5.5
Epoxy base-PZT 7.2
Base 0.0
Epoxy base-TM 6.0
Total per AMD 13

aA product of a structural+resistive loss angle. Note that a
major contribution to that value comes from the structural loss;
see Fig. 3.
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ZTOT ¼ ðYE þ YsuÞ−1: ðA2Þ

The admittance of piezelement YE is assumed to be
exclusively capacitive. Hence,

YE ¼ iωAϵSL−1 ¼ iωCS ¼ iωCTðϵTÞ−1ϵS; ðA3Þ

where C, ϵ is the capacitance and the dielectric constant
matrices under constant strain S and constant stress T,
respectively. It is convenient to operate with CT since this
quantity can be easily measured at stress free conditions
and no shortened piezelement electrodes.
According to Eq. (A1), if the piezoelement is integrated

with a nonzero impedance electric circuit, the imaginary
part of the stiffness tensor arises. The imaginary part can be
interpreted as a dissipative component of the stiffness
tensor. The total shunted stiffness matrix is

csu ¼ cE − iωetZTOTAeL−1: ðA4Þ

Because matrices A, ZTOT, and L are diagonal and knowing
that AL−1 ¼ CTðϵTÞ−1 Eq. (A4) can be written as

csu ¼ cE − eteẐðϵSÞ−1; ðA5Þ

where Ẑ is the nondimensional impedance

Ẑ ¼ ZTOTYE: ðA6Þ

Note, for zero impedance the shunted circuit sets Ẑ to be a
unity matrix Ẑ ¼ I whereas for the nonzero impedance
shunting Ẑ is a complex quantity. Using indexing Eq. (A4)
can be written as

csuij ¼ cEij −
ekiekjẐkk

ϵSkk
: ðA7Þ

where k ¼ 1; 2; 3 and corresponds to the electrode position,
ϵS is the dielectric permittivity of the piezoelectric material.
It is a general equation for the stiffness matrix of PZTwith
an arbitrary number of electrode pairs.
From Eqs. (A3) and (A7) it becomes clear that loss can

be controlled with the shunting circuit. Moreover, such loss
is, in fact, a frequency-dependent quantity with loss curve
shape dependent on the shunting circuit.
For the shear plate with the single pair of electrodes,

which is our case, only a stiffness matrix element csu55 is
affected by shunting resistor, thus

csu55 ¼ cE55 −
e15e15Ẑ11

ϵS11
: ðA8Þ

and the nondimensional complex impedance Ẑkk has a
single nonunity element,

Ẑ11 ¼
iωϵS11RC

T

iωϵS11RC
T þ ϵT11

¼ ðωϵS11RCTÞ2
ðωϵS11RCTÞ2 þ ðϵT11Þ2

þ i
ωϵS11ϵ

T
11RC

T

ðωϵS11RCTÞ2 þ ðϵT11Þ2
: ðA9Þ

Since the stiffness matrix csu is a complex quantity, we can
define the loss factor η as

η ¼ ImðcsuÞ
ReðcsuÞ ; ðA10Þ

and thus

ηij ¼
ImðẐkkÞχkij

ReðẐkkÞχkij þ 1
; ðA11Þ

where χkij ¼ ekiekjðcEijϵSkkÞ−1. Index k is associated
with the electrodes orientation, whereas indices i and j
correspond to stress-strain directions in the stiffness
matrix csu. The shunting loss factor of the shear plate
becomes

η55 ¼
ImðẐ11Þχ155

ReðẐ11Þχ155 þ 1
: ðA12Þ

This is the main loss mechanism based on which shear
AMDs operate. The quantity χ155 is simply a function of
electromechanical coupling coefficient k15 and is equal to

χ155 ¼ k2
15

1−k2
15

. Note that according to Eq. (A8), the material

stiffness (the real part of csu55) is also reduced and should be
included in the analysis.

1. Total mechanical loss angle

An assumption of the stiffness matrix being real in the
absence of shunt is not sufficient for accurate estimation of
energy dissipation. It becomes especially important in the
thermal noise analysis; see Sec. V.
For known material loss angle of the nonshunted piezo-

element, the total loss factor of the piezoelectric material
can be defined as

ηtotij ¼ tanðϕmat
ij Þ þ ImðẐkkÞχkij

1þ ReðẐkkÞχkij
; ðA13Þ

where tanðϕmat
ij Þ is the material loss factor matrix of

piezoelement. The loss factor tanðϕmat
ij Þ of cE can be easily

computed using Eq. (A10).
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All piezoelectric material has anisotropic structure which
implies that strain energy dissipation in such material must
depend on the piezoelement geometric shape. It is more
convenient to use effective loss angle ϕeff rather than the
loss angle ϕ for each stiffness matrix component. We define
the energy dissipation per cycle in the piezoelement

Wdis ¼ 2πWstηeff ðA14Þ

¼ 2π

Z
ReðSiS�jÞReðcsuji Þηtotji dV ðA15Þ

where Wst is the stored strain energy such that
2πWst ¼

R
ReðSiT�

jÞdV, where S, T are the complex strain
and stress, respectively and V is the volume of the
piezoelement.
Since the loss factor of the piezoelement is inverse of its

Q-factor or equally a ratio of dissipated energy per cycle
Wdis to energy stored Wst in the piezoelement, we can
define the effective noise fuctor ηeff

ηeff ¼
Wdis

2πWst
¼

R
ReðSiS�jÞReðcsuji Þηtotji dVR

ReðSiT�
jÞdV

; ðA16Þ

where S, T are the complex strain and stress, respectively
and V is the volume of the piezoelement. This is a key
equation in the finite element analysis which properly
estimates the contribution of piezoelement in the strain
energy dissipation in the test mass.
In our analysis we assumed constant material intrinsic

loss factor for all cE elements equal to tanðϕmat
ij Þ ¼ 0.014

[27], which leads to

ηtot55 ¼
0.014þ ImðẐ11Þχ155
1þ ReðẐ11Þχ155

: ðA17Þ

Note, the remaining elements of the shunting induced loss
ηtotkij are equal to the material structural loss factor. The total
loss angle for the cE55 stiffness element is shown in Fig. 3.

APPENDIX B: ADDITIONAL TABLES

See Tables VI and VII.

TABLE VI. Values for the aLIGO end test mass parameters used in this paper.

Optical parameters
End test mass transmissivity 5.0 ppm
1 layer each of Ta2O5=SiO2 with thickness of 2.32 μm, and 3.49 μma, respectively

Mechanical properties of optical coating and ear bond

Ta2O5 SiO2 Ear bond
Young’s modulus 140 GPa 70 GPa 7.2 GPa
Poisson ratio 0.23 0.17 0.17
Density 8300 kg=m3 2201 kg=m3 2202 kg=m3

Refractive index 2.06539 1.45 -
Loss angleb 2.4 × 10−4 þ f · 1.8 × 10−9 0.4 × 10−4 þ f · 1.1 × 10−9 0.1

Test mass dimensions
Radius 0.17 m
Thickness 0.2 m
Flats width 0.095 m
Wedge angle 0.07 deg
Mass 40 kg
Loss anglec 7.6 × 10−12 · f0.77

Materialc fused silica
aFor the purpose of numerical analysis, a multilayer coating was reduced to double layers with a total thickness

which corresponds to the sum of all 18=19 layers of Ta2O5=SiO2 for the ETM.
bf-frequency. Note, the difference in loss angles for the substrate, and for the optical coating made from fused

silica. Losses were obtained from [20]. Additionally, coating loss angles were revised to the current measured
values.

cBoth test mass and suspension ears.
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TABLE VII. Results of the Q-factor measurement with attached AMDs for shunted and nonshunted cases.

Mode #

Q-factor
Resistive Open circuit

FEM Measured FEM Measured

1 52k 59k 70k 67k
2 7.9k 440k 9.9k 280k
3 23k 34k 23k 43k
4 420k 210k 510k 230k
5 2.4M < 50k 2.2M 170k
6 1.9M 450k 4.8M 440k
7 1.1M 940k 1.6M 1.6M
8 6.7M 3.1M 9.5M 3.2M
9 49k < 50k 64k < 50k
10 1.9M 630k 3.3M 1.1M
11 61k 39k 116k 120k
12 25k < 50k 260k 52k
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