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We present a direct confirmation of the validity of the equivalence principle for unstructured test bodies
in scalar-tensor gravity. Our analysis is complementary to previous approaches and valid for a large class of
scalar-tensor theories of gravitation. A covariant approach is used to derive the equations of motion in a
systematic way and allows for the experimental test of scalar-tensor theories by means of extended test
bodies.
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I. INTRODUCTION

Since the famous tower observations by Galileo, the
independence of the dynamics on the mass of a test body in
a gravitational field has been verified in numerous physical
experiments [1,2]. This striking property of test matter, later
on termed the “equivalence principle,” was put by Einstein
at the foundation of General Relativity theory, further
generalizations also encompass classical and quantum
extensions of General Relativity [3–8]. Tests of the equiv-
alence principle are therefore of fundamental importance
for relativistic gravitational theories.
Scalar-tensor theories are considered to be close and

viable generalizations of Einstein’s General Relativity
theory. Since their early introduction in Refs. [9–11], they
have attracted a lot of attention in the literature, in particular
after the works of Brans and Dicke [12–16] in which the
scalar field was interpreted as a variable gravitational
coupling—for an overview of the history and results of
scalar-tensor theories, see Refs. [17–20].
Despite the long history of scalar-tensor theories, sur-

prisingly little attention was paid to the investigation of the
motion of extended test bodies in such theories. After some
preliminary discussions [14,21,22], the dynamics of com-
pact bodies was thoroughly studied in Ref. [23] in the
framework of the post-Newtonian formalism.
Here we present a multipolar derivation of the dynamics

of extended test bodies. In particular, we demonstrate the
validity of the equivalence principle for unstructured test
bodies for a very large class of scalar-tensor theories. We
use the notion of “test bodies” along the lines of Infeld and
Plebanski [24], who distinguished three kinds of equations
of motion. According to them, the equations of the first
kind describe the motion of a test body (particle) under the
action of a given external field which does not depend on

the dynamics of the test body. The equations of the second
and of the third kinds take into account the backreaction, so
that a body moves in a field that depends on the mass and
the motion of an extended body. Here we deal with the
equations of motion of the first kind.
We study the class of scalar-tensor gravity models which

is fairly general. In the Brans–Dicke–(Jordan–Thiry)
theory, the gravitational and scalar fields are universally
coupled to matter of all types. However, in Ref. [25] this
postulate was relaxed, and while preserving the universality
of the gravitational coupling, it was assumed that scalar
fields may couple differently to visible (ordinary) and to
invisible (dark) matter. Later this idea was developed into a
scalar chameleon theory [26,27].
Our analysis is complementary to the ones in

Refs. [28,29] and [30,31]. It clearly demonstrates that
future experiments to test scalar-tensor gravity should
either make use of structured test bodies or heavy bodies.

II. CONSERVATION OF ENERGY
AND MOMENTUM IN

SCALAR-TENSOR THEORY

The conservation law of the energy-momentum tensor
underlies the analysis of the equations of motion of the first
kind. We suppose that the dynamics of matter that con-
stitutes a test body is described by the matter Lagrangian
Lmat. The latter depends on the material fields (and their
derivatives) which interact with the spacetime metric gij
and with a multiplet of scalar fields φA (capital indices
A;B;C ¼ 1;…; N label the components of the multiplet).
The metrical energy-momentum tensor of matter is

constructed as usual via
ffiffiffiffiffiffi−gp

tij ≔ 2∂ð ffiffiffiffiffiffi−gp
LmatÞ=∂gij.

From the Noether theorem for diffeomorphism invariant
models, one finds the generalized conservation law

∇jtkj ¼ ðαtkj − βgkjgmntmnÞ 1
F
∂jF ¼ −Vij
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Here, quite generally, F ¼ FðφAÞ, and we introduced

Vij
k ¼ −αAjδ

k
i þ βgijAk; Ai ≔ ∂i logF: ð2Þ

Different scalar-tensor models are characterized by specific
values of the constants α and β. For example, in standard
Brans–Dicke theory, α ¼ 4 and β ¼ 1; see Ref. [32]. In
chameleon theory [26,27], the values of α and β depend on
the matter type; see Appendix C.
It is worthwhile to stress that the important feature of the

multipolar approach, which we pursue in the next section to
derive the dynamics of test bodies, is that the result does not
depend on the explicit form of the Lagrangians for the
gravitational and the scalar fields.

III. EQUATIONS OF MOTION

We derive equations of motion using the Mathisson–
Papapetrou–Dixon [33–36] approach by integrating the
conservation law (1). This can be done in a most convenient
way with the help of the geodesic expansion technique of
Synge [37]. Denoting the world function by σ and the
parallel propagator by gyx, we introduce integrated
moments to an arbitrary multipolar order n ¼ 0; 1; 2;… by

py1…yny0 ≔ ð−1Þn
Z
ΣðsÞ

σy1 � � � σyngy0x0
ffiffiffiffiffiffi
−g

p
tx0x1dΣx1 ; ð3Þ

ky2…ynþ1y0y1 ≔ ð−1Þn
Z
ΣðsÞ

σy1 � � � σyngy0x0gy1x1
×

ffiffiffiffiffiffi
−g

p
tx0x1wx2dΣx2 : ð4Þ

Here we use a condensed notation so that yn denotes indices
at the point y. The point y we associate with the worldline
yðsÞ of an extended test body, parametrized by the proper
time s. As usual, the integrals are performed over spatial
hypersurfaces ΣðsÞ.

A. Pole-dipole equations of motion

In the pole-dipole approximation, an extended body is
characterized by the multipole moments pa; pab; kab; kabc.
Using the general multipolar scheme [38], we derive the
equations of motion for these moments:

0 ¼ kðajcjbÞ − vðapbÞc; ð5Þ
D
ds

pab ¼ kba − vapb − Vdc
bkacd; ð6Þ

D
ds

pa ¼−Vcb
akbc − Vdc

a
;bkbcd − 1

2
Ra

cdbðkbcd þ vdpbcÞ:
ð7Þ

Here va ≔ dya=ds denotes the normalized 4-velocity of a
body. Since ka½bc� ¼ 0, we can solve (5) to find explicitly

kabc ¼ vapcb þ vcp½ab� þ vbp½ac� þ vap½bc�: ð8Þ

Plugging this into (6) and (7) and taking into account (2),
we obtain the generalized Mathisson–Papapetrou–Dixon
system

DPa

ds
¼ 1

2
Ra

bcdvbJ cd − βξfa − βξb∇bfa; ð9Þ

DJ ab

ds
¼ −2v½aPb� − 2βξ½afb�: ð10Þ

Here fa ≔ F−αAa, and following Refs. [32,38,39], we
introduce the generalized total energy-momentum 4-vector
and the generalized total angular momentum by

Pa ≔ F−αpa þ pba∇bF−α; ð11Þ

J ab ≔ F−αLab: ð12Þ

The orbital angular moment is defined by Lab ≔ 2p½ab�,
and we denoted

ξa ≔ gbckabc; ξ ≔ gabkab: ð13Þ

B. Monopolar equations of motion

At the monopolar order, the only nontrivial moments are
pa and kab. The system (5)–(7) then reduces to

0 ¼ kba − vapb; ð14Þ
Dpa

ds
¼ −Vcb

akbc: ð15Þ

Making use of k½ab� ¼ 0, the first equation yields
v½apb� ¼ 0, and hence we have

pa ¼ Mva ⇒ ξ ¼ M; ð16Þ
with the mass M ≔ vapa. Substituting (14) and (16) into
(15), we find

DðMvaÞ
ds

¼ αMva
1

F
dF
ds

− βM
1

F
∇aF: ð17Þ

Contracting this with va, we derive

dM
ds

¼ Mðα − βÞ 1
F
dF
ds

; ð18Þ

and with the help of this, we write (17) in the final form

Dva

ds
¼ −βðgab − vavbÞ∇bF

F
: ð19Þ

Quite remarkably, we thus find that the dynamics of an
extended test body in the monopole approximation is
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independent of the body’s mass. In the case of a trivial
coupling function F, Eq. (19) reproduces the well-known
general relativistic result.
Interestingly, the mass of a body is not constant; its

dynamics is described by (18), and we can solve this
differential equation to find explicitly the dependence of
the mass on the scalar function: M ¼ Fα−βM0 with
M0 ¼ const.

IV. CONCLUSIONS

Our main result is the system (9)–(10) that describes the
dynamics of extended test bodies in scalar-tensor gravity.
This is a direct generalization of the classic general-
relativistic Mathisson–Papapetrou–Dixon result. The inte-
gration of these equations of motion (although a nontrivial
task) should form the basis for local systematic tests of
scalar-tensor gravity by means of spinning extended test
bodies.
In the monopolar case, our analysis revealed a surpris-

ingly simple equation of motion (19). In contrast to
geodesic motion in General Relativity, freely falling mas-
sive test bodies in scalar-tensor gravity experience an
additional force, determined by the new scalar degrees
of freedom encoded in the function F. The simplicity of
(19) makes this equation an ideal candidate for use in
combination with free-fall experiments.
We stress that our method is complementary to the ones

used in Refs. [28–31]. In contrast to other methods, it does
not require the use of the full field equations due to its
limitation to the test body case and therefore benefits from a
certain simplicity. In particular it allows for a straightfor-
ward generalization to other gravity theories [38], which
significantly go beyond the framework of scalar-tensor
theories. Again we stress that our results do not depend on
the explicit form of the Lagrangians for the gravitational
and the scalar fields.
A remarkable feature of (19) is the prediction that all

massive test bodies move in the same way, independently
of their mass. We thus demonstrate the validity of the
equivalence principle in scalar-tensor gravity. Namely, in
accordance with the weak equivalence principle, the tra-
jectory of a test particle depends only on the initial position
and velocity of the body but not on its mass or internal
structure. It is worthwhile to note that such a conclusion is
valid for a wide class of models, including the generalized
Brans–Dicke theory (with β ¼ 1) and also the chameleon
theory (with β ≠ 1).
This result is consistent with the previous independent

analysis [28,29], which has shown that the total scalar
charge of a body is equal to its mass when the scalar field
self-interactions are neglected. The latter is in agreement
with the test body assumption that underlies the
Mathisson–Papapetrou–Dixon approach, yielding equa-
tions of motion of the first kind. When one goes beyond
the test body approximation, however, the scalar charge is

no longer equal to the mass, and a further study is needed to
fix their relation. The corresponding equations of motion
(of the second and third kinds, according to Ref. [24]) are
more complicated, and the validity of the equivalence
principle is not guaranteed. For an overview of different
approximation methods in the context of the relativistic
problem of motion, see Ref. [40].
Experimentalists are encouraged to use our results as a

framework to systematically test and constrain the effects
of scalar fields in gravity.
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APPENDIX A: CONVENTIONS
AND SYMBOLS

Our basic conventions are as in Ref. [39]. In particular,
we use the Latin alphabet to label the spacetime coordinate
indices. The Ricci tensor is introduced by Rij ≔ Rkij

k, and
the curvature scalar is R ≔ gijRij. Note that our curvature
conventions differ by a sign from those in Refs. [37,41].
The signature of the spacetime metric is assumed to be
ðþ1;−1;−1;−1Þ, and κ ¼ 8πG=c4 denotes Einstein’s
gravitational constant.

APPENDIX B: BRANS–DICKE THEORY

Awide class of scalar-tensor theories is described by the

action Itot ¼
R
d4xL

J
þ Im on the spacetime with the metric

g
J
ij. The gravitational Lagrangian density reads L

J
¼

ffiffiffiffiffiffi−gpJ
LðgJÞ with

LðgJÞ ¼ 1

2κ
ð−F2RðgJÞ þ gij

J

γAB
J ∂iφ

A∂jφ
B − 2U

J Þ: ðB1Þ

This generalizes the Brans–Dicke theory [12] to the case
[23] with N scalar fields φA (capital indices A;B;C ¼
1;…; N label the components of the multiplet). Here

F ¼ FðφAÞ;

U
J ¼ U

J ðφAÞ;
γ
J
AB ¼ γ

J
ABðφAÞ: ðB2Þ

The action Im ¼ R
d4x

ffiffiffiffiffiffi−gpJ
Lmðψ ; ∂ψ ; gJijÞ describes the

universal minimal coupling of the matter fields ψ to
gravity.
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The metric g
J
ij measures distances in the Jordan refer-

ence frame and determines the Riemannian curvature scalar
RðgJÞ. Making a conformal transformation

g
J
ij → gij ¼ F2g

J
ij; ðB3Þ

we obtain a different metric on the spacetime manifold.
This is called an Einstein reference frame.
In the Einstein reference frame, the action reads Itot ¼R
d4xLþ Im where the gravitational Lagrangian density

L ¼ ffiffiffiffiffiffi−gp
L with

L ¼ 1

2κ
ð−Rþ gijγAB∂iφ

A∂jφ
B − 2UÞ; ðB4Þ

and the matter action

Im ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
F−4Lmðψ ; ∂ψ ; F−2gijÞ: ðB5Þ

The scalar curvature RðgÞ is constructed from the Einstein
metric gij, and

γAB ¼ 1

F2
ðγJAB þ 6F;AF;BÞ; U ¼ 1

F4
U
J
: ðB6Þ

APPENDIX C: CHAMELEON THEORY

In the chameleon theory [25–27], the universality of the
scalar-gravity coupling is abolished. Instead, one assumes
that there are several kinds of matter fields ψ ðaÞ that couple
to the gravitational field via different metrics gðaÞij ¼
F−2βagij. The constants βa are different for each kind of

matter, and the matter action (B5) is generalized to Im ¼P
aI

ðaÞ
m with

IðaÞm ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffi
−gðaÞ

q
LðaÞ
m ðψ ðaÞ; ∂ψ ðaÞ; gðaÞij Þ: ðC1Þ

Different matter types ψ ðaÞ do not interact with each
other directly. The gravitational action

R
d4xL has the

usual form determined by the general Lagrangian (B4) of a
Brans–Dicke scalar-tensor theory in the Einstein reference
frame.
The coefficients βa appear in the conservation laws of the

energy-momentum tensor, which for each kind of matter
have the generic form (1).

[1] C. M. Will, Theory and Experiment in Gravitational Phys-
ics, 2nd ed. (Cambridge University Press, Cambridge,
England, 1993).

[2] C. M. Will, The confrontation between General Relativity
and experiment, Living Rev. Relativity 17, 4 (2014).

[3] W.-T. Ni, Equivalence Principles and Eectromagnetism,
Phys. Rev. Lett. 38, 301 (1977).

[4] W.-T. Ni, Equivalence principles, their empirical founda-
tions, and the role of precision experiments to test them,
Proceedings of the International School and Symposium on
“Precision Measurement and Gravity Experiment,” Taipei,
1983, edited by W.-T. Ni (National Tsing Hua University,
Hsinchu, 1983), p. 492.

[5] F.W. Hehl, J. Lemke, and E.W. Mielke, Two Lectures on
Fermions and Gravity, Geometry and Theoretical Physics,
edited by J. Debrus and A. C. Hirshfeld (Springer, Berlin,
1991), pp. 56–140; DOI: 10.1007/978-3-642-76353-3_3.

[6] J. Lemke, E. W. Mielke, and F. W. Hehl, Äquivalenzprinzip
für Materiewellen? Experimente mit Neutronen, Atomen,
Neutrinos, Phys. in unserer Zeit 25, 36 (1994).

[7] C. Lämmerzahl, On the equivalence principle in quantum
theory, Gen. Relativ. Gravit. 28, 1043 (1996).

[8] C. Lämmerzahl, The Einstein Equivalence Principle and the
Search for New Physics, Quantum Gravity—From Theory

to Experimental Search, edited by D. Giulini, C. Kiefer, and
C. Lämmerzahl (Springer Verlag, Berlin, 2003); Lect. Notes
Phys. 631, 367 (2003).

[9] P. Jordan, Schwerkraft und Weltall, 2nd ed. (Vieweg,
Braunschweig, 1955).

[10] P. Jordan, Zum gegenwärtigen Stand der Diracschen
kosmologischen Hypothesen, Z. Phys. 157, 112 (1959).

[11] Y. Thiry, Etude mathématique des équations d’une théorie
unitaire à quinze variables de champ, J. Math. Pures Appl.
Sér. 9 30, 275 (1951).

[12] C. Brans and R. H. Dicke, Mach’s principle and a relativistic
theory of gravitation, Phys. Rev. 124, 925 (1961).

[13] C. Brans, Mach’s principle and a relativistic theory of
gravitation. II, Phys. Rev. 125, 2194 (1962).

[14] C. Brans, Mach’s principle and locally measured gravita-
tional constant in general relativity, Phys. Rev. 125, 388
(1962).

[15] R. H. Dicke, Mach’s principle and invariance under trans-
formation of units, Phys. Rev. 125, 2163 (1962).

[16] R. H. Dicke, The Theoretical Significance of Experimental
Relativity (Gordon and Breach, New York, 1964).

[17] Y. Fujii and K. Maeda, The Scalar-Tensor Theory of
Gravity (Cambridge University Press, Cambridge, England,
2003).

DIRK PUETZFELD AND YURI N. OBUKHOV PHYSICAL REVIEW D 92, 081502(R) (2015)

081502-4

RAPID COMMUNICATIONS

http://dx.doi.org/10.12942/lrr-2014-4
http://dx.doi.org/10.1103/PhysRevLett.38.301
http://dx.doi.org/10.1007/978-3-642-76353-3_3
http://dx.doi.org/10.1002/piuz.19940250113
http://dx.doi.org/10.1007/BF02113157
http://dx.doi.org/10.1007/b13561
http://dx.doi.org/10.1007/b13561
http://dx.doi.org/10.1007/BF01375155
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRev.125.2194
http://dx.doi.org/10.1103/PhysRev.125.388
http://dx.doi.org/10.1103/PhysRev.125.388
http://dx.doi.org/10.1103/PhysRev.125.2163


[18] C. Brans, The roots of scalar-tensor theory: an approximate
history, arXiv:gr-qc/0506063.

[19] H. Goenner, Some remarks on the genesis of scalar-tensor
theories, Gen. Relativ. Gravit. 44, 2077 (2012).

[20] T. P. Sotiriou, Gravity and Scalar Fields, Lect. Notes Phys.
Vol. 892, edited by E. Papantonopoulos (Springer, Cham,
2015), pp. 3–24; DOI: 10.1007/978-3-319-10070-8_1.

[21] P. Bergmann, Comments on the scalar-tensor theory, Int. J.
Theor. Phys. 1, 25 (1968).

[22] R. V. Wagoner, Scalar-tensor theory and gravitational
waves, Phys. Rev. D 1, 3209 (1970).

[23] T. Damour and G. Esposito-Farèse, Tensor-multi-scalar theo-
ries of gravitation, Classical QuantumGravity 9, 2093 (1992).

[24] L. Infeld and J. Plebanski, Motion and Relativity
(Pergamon, New York, Panstwowe Wydawnictwo
Naukowe, Warszawa, 1960).

[25] T. Damour, G. W. Gibbons, and C. Gundlach, Dark Matter,
Time-Varying G, and a Dilaton Field, Phys. Rev. Lett. 64,
123 (1990).

[26] J. Khoury and A. Weltman, Chameleon Fields: Awaiting
Surprises for Tests of Gravity in Space, Phys. Rev. Lett. 93,
171104 (2004).

[27] J. Khoury and A. Weltman, Chameleon cosmology, Phys.
Rev. D 69, 044026 (2004).

[28] L. Hui, A. Nicolis, and C.W. Stubbs, Equivalence principle
implications of modified gravity models, Phys. Rev. D
80,104002 (2009).

[29] L. Hui and A. Nicolis, Equivalence Principle for Scalar
Forces, Phys. Rev. Lett. 105, 231101 (2010).

[30] S. E. Gralla, Motion of small bodies in classical field theory,
Phys. Rev. D 81, 084060 (2010).

[31] S. E. Gralla, Mass, charge, and motion in covariant gravity
theories, Phys. Rev. D 87, 104020 (2013).

[32] Yu. N. Obukhov and D. Puetzfeld, Equations of motion in
scalar-tensor theories of gravity: A covariant multipolar
approach, Phys. Rev. D 90, 104041 (2014).

[33] M. Mathisson, Neue Mechanik materieller Systeme, Acta
Phys. Pol. 6, 163 (1937).

[34] A. Papapetrou, Spinning test-particles in General Relativity.
I, Proc. R. Soc. A 209, 248 (1951).

[35] W. G. Dixon, A covariant multipole formalism for extended
test bodies in General Relativity, Nuovo Cimento 34, 317
(1964).

[36] W. G. Dixon, Dynamics of extended bodies in General
Relativity. III. Equations of motion, Phil. Trans. R. Soc. A
277, 59 (1974).

[37] J. L. Synge, Relativity: The General Theory (North-Holland,
Amsterdam, 1960).

[38] D. Puetzfeld and Yu. N. Obukhov, Equations of motion in
metric-affine gravity: A covariant unified framework, Phys.
Rev. D 90, 084034 (2014).

[39] D. Puetzfeld and Yu. N. Obukhov, Equations of motion in
gravity theories with nonminimal coupling: A loophole to
detect torsion macroscopically?, Phys. Rev. D 88, 064025
(2013).

[40] Equations of Motion Relativistic Gravity, Fundamental
Theories of Physics Vol. 179, edited by D. Puetzfeld,
C. Lämmerzahl, and B. Schutz (Springer, Berlin,
2015); DOI: 10.1007/978-3-319-18335-0.

[41] E. Poisson, A. Pound, and I. Vega, The motion of point
particles in curved spacetime, Living Rev. Relativity 14, 7
(2011).

EQUIVALENCE PRINCIPLE IN SCALAR-TENSOR GRAVITY PHYSICAL REVIEW D 92, 081502(R) (2015)

081502-5

RAPID COMMUNICATIONS

http://arXiv.org/abs/gr-qc/0506063
http://dx.doi.org/10.1007/s10714-012-1378-8
http://dx.doi.org/10.1007/978-3-319-10070-8_1
http://dx.doi.org/10.1007/BF00668828
http://dx.doi.org/10.1007/BF00668828
http://dx.doi.org/10.1103/PhysRevD.1.3209
http://dx.doi.org/10.1088/0264-9381/9/9/015
http://dx.doi.org/10.1103/PhysRevLett.64.123
http://dx.doi.org/10.1103/PhysRevLett.64.123
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.80.104002
http://dx.doi.org/10.1103/PhysRevD.80.104002
http://dx.doi.org/10.1103/PhysRevLett.105.231101
http://dx.doi.org/10.1103/PhysRevD.81.084060
http://dx.doi.org/10.1103/PhysRevD.87.104020
http://dx.doi.org/10.1103/PhysRevD.90.104041
http://dx.doi.org/10.1098/rspa.1951.0200
http://dx.doi.org/10.1007/BF02734579
http://dx.doi.org/10.1007/BF02734579
http://dx.doi.org/10.1098/rsta.1974.0046
http://dx.doi.org/10.1098/rsta.1974.0046
http://dx.doi.org/10.1103/PhysRevD.90.084034
http://dx.doi.org/10.1103/PhysRevD.90.084034
http://dx.doi.org/10.1103/PhysRevD.88.064025
http://dx.doi.org/10.1103/PhysRevD.88.064025
http://dx.doi.org/10.1007/978-3-319-18335-0
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.12942/lrr-2011-7

