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We study the weak decay of the Λb into J=ψKΞ and J=ψηΛ states, and relate these processes to the
Λb → J=ψK̄N decay mode. The elementary weak transition at the quark level proceeds via the creation of a
J=ψ meson and an excited sud system with I ¼ 0, which upon hadronization leads to K̄N or ηΛ pairs.
These states undergo final-state interaction in coupled channels and produce a final meson-baryon pair. The
KΞ state only occurs via rescattering, hence making the Λb → J=ψKΞ process very sensitive to the details
of the meson-baryon interaction in strangeness S ¼ −1 and isospin I ¼ 0. We show that the corresponding
invariant mass distribution is dominated by the next-to-leading-order terms of the chiral interaction. The
I ¼ 0 selectivity of this decay, and its large sensitivity to the higher-order terms, makes its measurement
very useful and complementary to the K−p → KΞ cross section data. The rates of the Λb → J=ψKΞ and
Λb → J=ψηΛ invariant mass distributions are sizable compared to those of the Λb → J=ψK̄N decay, which
is measured experimentally, and thus, we provide arguments for an experimental determination of these
decay modes that will help us understand better the chiral dynamics at higher energies.
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I. INTRODUCTION

The meson-baryon interaction in the strangeness S ¼ −1
sector has been one of the favorite grounds to test non-
perturbative chiral dynamics. The existence of the Λð1405Þ
resonance below the K̄N threshold makes the use of
nonperturbative unitary schemes mandatory to study the
K̄N interaction with its coupled channels. The combination
of chiral dynamics and unitarity in coupled channels has
proved very efficient in describing this interaction, even
using the chiral Lagrangians to lowest order [1,2]. The
scheme combining these two essential dynamical aspects is
usually referred to as the chiral unitary approach and has
been widely used, providing good agreement with data
[3–12]. One of the common findings of this approach is the
existence of two poles for the Λð1405Þ, a narrow one
around 1420 MeV, and another one, not so precise in the
mass and wider, around 1380 MeV [6,10]. There are many
reactions supporting this two-pole structure and reviews on
the situation can be seen in Refs. [13–15]. More recently, it
has found additional support from the analysis of the πΣ
photoproduction data [16–18] in Refs. [14,19,20].
The aim for precision and the need to extend the

approach to higher energies has motivated the introduction
of higher-order terms of the chiral Lagrangians in the
kernel, or potential, of the meson-baryon interaction. New
fits to extended data, that include the valuable results of the
K−p kaonic atom [21], have been performed with the aim

of determining the parameters of the higher-order chiral
potential [20,22–25]. A recent study [26] has also incorpo-
rated the data of the K−p → KþΞ−, K0Ξ0 reactions, since
they do not proceed from the lowest-order chiral
Lagrangian and, hence, they are especially sensitive to
the higher-order terms. Most of the data employed in all fits
are coming from antikaon proton scattering and therefore
contain contributions from both isospin I ¼ 0 and I ¼ 1

components, an exception being the π0Σ0 production
channel, which selects I ¼ 0. The chiral Lagrangian
models can also be tested against data from photoproduc-
tion [16–18], from pp → Kþπ0Σ0 [27] and from K−p →
π0π0Σ0 [28] reactions, but the energies where there is
available information are essentially below the K̄N thresh-
old where the higher-order terms are relatively unimpor-
tant, or can be easily accommodated by changes in the
subtraction constants in the regularization of the loop
functions of the different channels. This is why data
filtering I ¼ 0 at high energies would be most welcome
as a complement of the information one can obtain from
K−p scattering data. One such opportunity arises from the
weak decay of the Λb into states containing a J=Ψ and
meson-baryon pairs, measured by the CDF [29] and LHCb
[30–32] collaborations. In particular, the Λb → J=ΨK−p
decay has been employed very recently in Ref. [32] to
claim the presence of an exotic pentaquark charmonium
state in the J=Ψp channel.
A recent theoretical study of the Λb → J=ψK−pðπΣÞ

decay has been performed [33], finding that this type of*feijoo@ecm.ub.edu
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reaction does filter the final meson-baryon components in
I ¼ 0. In the present work we focus on the study of the
Λb → J=ψKΞ and the Λb → J=ψηΛ decay processes, since
they are very sensitive to the details of the meson-baryon
interaction at high energies, in particular to the higher-order
terms, and may help us improve our knowledge on the
parameters of the chiral Lagrangian. The weak decay
mechanism in these reactions is the same as that producing
J=ψ and K−p or πΣ, except that different channels are
chosen in the final-state interaction of the very few meson-
baryon states which are allowed to be produced in a
primary step by the selection rules. More specifically,
the Λb decays weakly into J=ψ and three quarks that
hadronize to produce the primary meson-baryon compo-
nents, which turn out to be K̄N and ηΛ. The final-state
interaction of these states in coupled channels allows the
production of KΞ in the case of the Λb → J=ψKΞ decay.
Thus, not having the KΞ pair produced in the first step, it
comes from the rescattering of meson-baryon components
and hence this decay process depends strongly on the
behavior of the meson-baryon interaction. The coupled-
channel models employed in the present study are based on
the chiral Lagrangian up to next-to-leading order with the
parameters fixed in Ref. [26] to antikaon proton scattering
data, including the KΞ production channels. When imple-
mented in the decay processes studied in this work, we
actually confirm their sensitivity to the meson-baryon
Lagrangian, in particular to its next-to-leading-order terms,
not only on the invariant mass decay rate of the Λb →
J=ψKΞ process, but also on that of the Λb → J=ψηΛ one,
even if this process also receives contributions from the
primary weak decay.
The paper is organized as follows. In Sec. II we present

the formalism, describing the weak transition process and
the implementation of final-state interactions in Sec. II A,
and giving the details of the employed meson-baryon
interaction in Sec. II B. Our results for the invariant mass
distributions of the Λb → J=ψKΞ and the Λb → J=ψηΛ
processes are discussed in Sec. III, where they are com-
pared to those for the related Λb → J=ψπΣ, J=ψK̄N
decays. Our concluding remarks are given in Sec. IV.

II. FORMALISM

A. The Λb → J=ψMB process

In the decay of the Λb into J=ψ at the elementary quark
level we must bear in mind that the q → q0 transitions at the
Wqq0 vertices are determined by the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements [34]. The u → d and
c → s transitions are given by the cosine of the Cabibbo
angle, cos θC, and thus being Cabibbo favored, the b → c
transition proceeds via Asin2θC and is Cabibbo suppressed,
while the transition b → u would be doubly Cabibbo
suppressed [35]. At the quark level, the Cabibbo-favored
mechanism for J=ψ production is depicted by the first part

of the diagram of Fig. 1. This corresponds to internal
emission in the classification of topologies of Ref. [34], and
is also the dominant mechanism in the related B̄0 → J=ψππ
decay [36–38]. As we can see in the figure, a sud state is
obtained after the weak decay. The next step consists in the
hadronization of this final three-quark state by introducing
a q̄q pair with the quantum numbers of the vacuum,
ūuþ d̄dþ s̄s, which will then produce an initial meson-
baryon pair. The final-state interaction of this pair will
produce a final meson-baryon state in s-wave, which has
JP ¼ 1=2− quantum numbers. Since the hadronization is a
strong interaction process, the sud quark system produced
in the weak process must have these quantum numbers.
Going back to the original Λb state, one finds a b quark and
a ud quark pair coupled to isospin I ¼ 0. The other
observation from the decay mechanism is that the two
Wqq0 transitions occur in the same quark line involving the
initial b and the final s quarks, and thus, in this reaction the
u and d quarks act as spectators. This means that the ud pair
in the final sud state after the weak decay has I ¼ 0 and,
since the s quark also has I ¼ 0, the final three-quark
system has total I ¼ 0. Hence, even if the weak interaction
allows for isospin violation, in this case the process has
filtered I ¼ 0 in the final state. Since isospin is conserved in
the strong hadronization process and in the subsequent
final-state rescattering interaction, the final meson-baryon
component also appears in I ¼ 0.
Another observation concerning the hadronization is

that, since the sud quark state after the weak decay has
JP ¼ 1=2− and the ud quarks have the same quantum
numbers as in the original Λb state (JP ¼ 1=2þ each) in an
independent quark model used for the argumentation, it is
the s quark that must carry the minus parity, which would
correspond to an L ¼ 1 orbit of a potential well. Since in
the final meson-baryon states all the quarks will be in their
ground state with L ¼ 0, the s quark must be necessarily
involved in the hadronization, as depicted in Fig. 1. Then it
is easy to see that we would have a sū meson plus a uud
baryon, or sd̄ and dud or ss̄ and sud. These configurations
correspond to K−p, K̄0n or ηðη0ÞΛ (ηΣ cannot appear

FIG. 1. Diagrams describing the production of a meson-baryon
pair from the weak decay Λb → ΛJ=ψ through a hadronization
mechanism. The full and serrated lines correspond to quarks and
the W boson, respectively.
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because it has I ¼ 1). The weights of these components
remain to be determined, requiring the quark structure for
the baryons of the octet. This is simple and is shown in
detail in Ref. [33], with the result that the sud state after the
weak decay is given by

jHi ¼ jK−pi þ jK̄0ni −
ffiffiffi
2

p

3
jηΛi þ 2

3
jη0Λi; ð1Þ

or, equivalently, that the different possible meson-baryon
pairs are created with a weight hi, given by

hπ0Σ0 ¼ hπþΣ− ¼ hπ−Σþ ¼ 0; hηΛ ¼ −
ffiffiffi
2

p

3
;

hK−p ¼ hK̄0n ¼ 1; hKþΞ− ¼ hK0Ξ0 ¼ 0:

As is customary is these studies we neglect the η0Λ
component, and we only have primary K−p, K0n or ηΛ
production. We can see that aKΞ pair is not produced in the
first step.
Next, one must incorporate the final-state interaction of

these meson-baryon pairs, which is depicted in Fig. 2. The
matrix element for the production of the final state, j, is
given by

MjðMinvÞ ¼ Vp

�
hj þ

X
i

hiGiðMinvÞtijðMinvÞ
�
; ð2Þ

where Gi denotes the one-meson-one-baryon loop func-
tion, chosen in accordance with the model for the scattering
matrix tij that will be described in the next section, and
Minv is the invariant mass of the meson-baryon system in
the final state.
The factor Vp, which includes the common dynamics of

the production of the different pairs, is unknown and we
take it as constant. This may in principle look like a very
strong assumption since it is well known that the quanti-
tative description of weak decay processes involving
hadrons is a very arduous and challenging task.

Semileptonic decay amplitudes can be written in terms
of the CKM quark-mixing parameter for the q → q0
transition and a hadron matrix element that can be para-
metrized in terms of form factors. These have been obtained
from a variety of approaches, such as the nonrelativistic
constituent quark model [39], the covariant light-front
model [40], the relativistic quark model [41], or employing
light-cone sum rules [42]; see a recent comparison of these
approaches in Ref. [43]. The situation is even more
complicated in the case of nonleptonic decay modes, as
the one addressed here, or semileptonic processes with two
or more hadrons in the final state. One must first deal with
the hard process that involves the weak transition and the
hadronization. This requires the evaluation of transition
matrix elements, into two or more hadrons, of an effective
Hamiltonian built up from four-quark operators. There is a
vast amount of literature on this subject and, typically, one
employs the factorization approach at various degrees of
sophistication [44–46]. This permits replacing the matrix
elements of the four-quark operators by two independent
hadronic currents, which are then related to their respective
form factors that can be evaluated e.g. from light-front
distribution amplitudes, as done in Refs. [47,48]. In
addition to the hard process, one must also account for
the hadron final-state interaction, which has been done
using the Omnès representation [49–51], implementing
Breit-Wigner or Flatté structures [52] or applying chiral
unitary theory [48,53].
Unlike many of these approaches, our aim is limited: we

only deal with the meson-baryon system in s-wave and we
are only concerned about a narrow window of invariant
masses. All we need to apply our formalism is that the form
factors for the primary production of hadrons prior to its
final-state interactions behave smoothly compared to the
changes induced by these interactions. Including all the
information of the hard transition part in a constant factor
Vp we obtain, up to an arbitrary normalization, invariant
mass distributions which carry information on the charac-
teristics of the meson-baryon interaction. Our assumption
finds support from the work of Ref. [51]. Although
calculations of the hard-scale matrix element are difficult,
as commented above, there are cases that can be kept under
control, like the semileptonic decays with two pseudoscalar
mesons in the final state with small recoil, which can be
treated in heavy meson chiral perturbative theory. The form
factors for these processes have been evaluated explicitly in
Ref. [51] and, for large invariant masses of the lepton
system, the s-wave one behaves smoothly as a function of
the invariant mass of the meson pair. If we now extrapolate
these results to the present problem, replacing the energetic
lepton system by the massive J=Ψ particle, we can also
assume a moderate dependence of the s-wave hard matrix
elements on the invariant mass of the meson-baryon pair.
There is also empirical evidence on the smoothness of these
primary form factors. In Ref. [54] form factors for the decay

FIG. 2. Final-state interaction of the meson-baryon pair, where
the double, full and dashed lines denote the J=ψ , the baryons and
the pseudoscalar mesons, respectively. The shaded circle and
square stand for the production mechanism of the J=ψBiϕi, as
depicted in Fig. 1, and the meson-baryon scattering matrix tij,
respectively.
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of B mesons into J=Ψ and a light scalar meson were
evaluated, finding Fσ

B0
s
ðm2

J=ψÞ=Ff0
B0
s
ðm2

J=ψÞ ¼ 1, where σ, f0
stand for the f0ð500Þ, f0ð980Þ mesons. In addition, using
current data for B-meson decays, Ref. [36] found a ratio
Ff0
B0
s
ðm2

J=ψ Þ=Fσ
B0ðm2

J=ψÞ which is also compatible with unity.

In summary, the studies quoted above tell us that, in the
processes studied here, there is a broad range of energies, of
a few hundreds of MeV, where we can consider the primary
form factors associated to the hard process to behave
smoothly, so that the energy dependence of MjðMinvÞ in
Eq. (2) can be associated essentially to the changes of the
final-state interaction.
Finally, the invariant mass distribution for the Λb →

J=ψϕjBj process reads

dΓj

dMinv
ðMinvÞ ¼

1

ð2πÞ3
Mj

MΛb

pJ=ψpjjMjðMinvÞj2; ð3Þ

where pJ=ψ and pj stand for the modulus of the three-
momentum of the J=ψ in theΛb rest frame and the modulus
of the center-of-mass three-momentum in the final meson-
baryon system, respectively. The mass of the final baryon is
denoted by Mj.

B. Summary of the Barcelona model for
meson-baryon scattering

In this section we describe the model developed recently
in Ref. [26] with the aim of improving upon the knowledge
of the chiral meson-baryon interaction at next-to-leading
(NLO) order in the strangeness S ¼ −1 sector. The param-
eters of the Lagrangian were fitted to a large set of
experimental scattering data in different two-body chan-
nels, as well as to branching ratios at threshold, and to the
precise SIDDHARTAvalue of the energy shift and width of
kaonic hydrogen [21]. Novel to other works in the
literature, the model was also constrained to reproduce
the K−p → KþΞ−, K0Ξ0 reactions, since they become
especially sensitive to the NLO terms, as they cannot
proceed with the Lagrangian at lowest order, except
indirectly via unitarization contributions.
The results presented in Ref. [26] clearly established the

sensitivity of the NLO Lagrangian to the K−p → KΞ
reactions, thus yielding better constrained parameters.
That work also investigated the influence of high-spin
hyperon resonances to the K−p → KΞ amplitudes. The
resonant terms helped in improving the description of the
scattering data, including also the differential cross sections
of the KΞ production reactions. In addition, by absorbing
certain structures of the cross section, the inclusion of
resonant contributions helped in obtaining more precise
values of the low-energy constants of the chiral unitary
model.
More specifically, and similarly to many other chiral

unitary models, the meson-baryon amplitudes built up in

Ref. [26] start from a kernel obtained from the SU(3) chiral
Lagrangian up to NLO:

vij ¼ vWT
ij þ vNLOij ð4Þ

where

vWT
ij ¼ −

Cijð2
ffiffiffi
s

p
−Mi −MjÞ
4f2

NiNj ð5Þ

and

vNLOij ¼ Dij − 2ðkμk0μÞLij

f2
NiNj; ð6Þ

with

Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi þ Ei

2Mi

s
; Nj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj þ Ej

2Mj

s
:

The indices i, j stand for any of the ten meson-baryon
channels in the neutral S ¼ −1 sector: K−p, K̄0n, π0Λ,
π0Σ0, π−Σþ, πþΣ−, ηΛ, ηΣ0, KþΞ− and K0Ξ0. The
quantities Mi, Mj and Ei, Ej are the masses and energies,
respectively, of the baryons involved in the transition. The
lowest-order kernel vWT

ij , or Weinberg-Tomozawa (WT)
term, is given in terms of the pion decay constant f and a
matrix of coefficients Cij. The other low-energy constants
are embedded in the matrices Dij and Lij of the NLO term,
vNLOij . These matrices are well known and can be found, for
example, in the appendices of Ref. [26]. It is important to
stress that the inclusion of NLO terms in the Lagrangian
implies an increase, from one to eight, of the chiral
interaction parameters to be fitted, the uncertainty of which
was limiting the predictive power of the NLO models. An
important step to remedy this situation was done in the
study of Ref. [26] by employing the data on KΞ produc-
tion reactions, which are especially sensitive to the NLO
contributions.
The interaction kernel cannot be employed perturba-

tively to describe the scattering of K̄N states, since they
couple strongly to many other channel states generating the
two poles of the Λð1405Þ and the Λð1670Þ in I ¼ 0, plus
other resonances in other sectors. A nonperturbative
resummation is needed to describe this system and the
present model employs the Bethe-Salpeter equation in its
on-shell factorized form:

tij ¼ vij þ vilGltlj: ð7Þ

The loop function G stands for a diagonal matrix with
elements
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Gl ¼ i
Z

d4ql
ð2πÞ4

2Ml

ðP − qlÞ2 −M2
l þ iϵ

1

q2l −m2
l þ iϵ

; ð8Þ

where Ml and ml are the baryon and meson masses of the
“l” channel. The logarithmic divergences of the loop
function are treated within dimensional regularization:

Gl ¼
2Ml

ð4πÞ2
�
al þ ln

M2
l

μ2
þm2

l −M2
l þ s

2s
ln

m2
l

M2
l

þ qcmffiffiffi
s

p ln

�ðsþ 2
ffiffiffi
s

p
qcmÞ2 − ðM2

l −m2
l Þ2

ðs − 2
ffiffiffi
s

p
qcmÞ2 − ðM2

l −m2
l Þ2

��
; ð9Þ

where we have taken μ ¼ 1 GeV as regularization scale,
and al are subtraction constants, which are also taken as
free parameters respecting isospin symmetry. We note that
this model neglects the s- and u-channel diagrams involv-
ing the coupling of the meson-baryon channel to an
intermediate ground-state baryon, which have been shown
to contribute very moderately [6,24,25].
The chiral model was complemented with the explicit

inclusion, in the K−p → K0Ξ0, KþΞ− amplitudes, of two
high-spin resonances. From the possible candidates listed
in the Particle Data Group [55], and according to other
resonance-based models [56,57], the Σð2030Þ and the
Σð2250Þ resonances were selected. The spin and parity
Jπ ¼ 7=2þ of the Σð2030Þ are well established. Those of
the Σð2250Þ are not known, but the choice Jπ ¼ 5=2− was
adopted out of the two most probable assignments, 5=2− or
9=2− [55,56]. With the resonances included, the amplitudes
connecting K−p, K̄0n states with KþΞ−, K0Ξ0 ones should
be replaced as

tij → tij þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4MpMΞ
p t5=2

−

ij þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MpMΞ

p t7=2
þ

ij : ð10Þ

The resonant amplitudes tRij contain the appropriate
Clebsch-Gordan coefficients projecting the i and j states
into the isospin value I ¼ 1 of the 5=2− and 7=2þ
resonances included. The attempt in Ref. [26] of incorpo-
rating the additional effect of the I ¼ 0 Jπ ¼ 3=2− Λð1890Þ
resonance did not produce a substantial improvement in the
description of the data. More details on the implementation
of the resonant terms can be found in Ref. [26].
Once the amplitudes tijðMinvÞ are known, we can insert

them into Eq. (2) to determine the matrix element for the
decay of the Λb into J=Ψ and a particular final meson-
baryon state j.
The results presented in this work will be based on two

of the models developed in Ref. [26]. The first one employs
only the dynamics of the chiral Lagrangian up to NLO and
will be referred to as Model 1. The second one, denoted as
Model 2, includes the additional contribution of the two
resonances. The low-energy parameters, subtracting con-
stants and, in the case of Model 2, the couplings, masses,

widths and form-factor cutoffs of the resonances, were
fitted to reproduce K−p threshold branching ratios, as well
as the K−p scattering data for elastic and inelastic proc-
esses, including the total and differential cross sections of
the K−p → K0Ξ0, KþΞ− reactions. The details on how the
observables are reproduced can be seen in Ref. [26]. One
can also find in Table VI of that work the resulting values of
the parameters, noting that Models 1 and 2 are named there
as NLO* and NLOþ RES, respectively. Here we only give
explicitly the value of the χ2d:o:f:, 1.48 for Model 1 and 1.05
for Model 2, which informs in a global way on the
goodness of these fits. We note that the fit denoted by
WT+RES in Ref. [26], which did not incorporate the NLO
terms of the chiral Lagrangian, was of much lower quality,
producing a χ2d:o:f: of 2.26.

III. RESULTS

We start this section by presenting in Fig. 3 the cross
section data of the K−p → K0Ξ0 reaction (top panels) and
of the K−p → K−Ξþ reaction (bottom panels), obtained
employing Model 1 (left panels) or Model 2 (right panels).
The figure shows the complete results (solid lines), as well
as the results where only the isospin I ¼ 1 component
(dashed lines) or the I ¼ 0 one (dash-dotted lines) have
been retained. It is interesting to see that, in both models,
the I ¼ 1 component is dominant and is concentrated at
lower energies. The smaller I ¼ 0 component at higher
energies adds up destructively to the cross section in the
case of the K−p → K0Ξ0 reaction, while it contributes to
enhance the cross section in theK−p → K−Ξþ process. We
note that the tree-level chiral contributions to these reac-
tions come entirely from the NLO Lagrangian and, upon
inspecting the size of the coefficients, their strength in the
I ¼ 0 channel would be 9 times larger than that in the I ¼ 1
channel. The reversed trend observed in Fig. 3 is a
consequence of the unitarization in coupled channels with
coupling coefficients determined by the fit and, conse-
quently, by the data.
As we can see in Fig. 3, the contribution of I ¼ 0 in the

K−p → KΞ cross section has a maximum around
2300 MeV for Model 1 or around 2400 MeV and less
pronounced for Model 2, far from the peak of the data and
of the complete amplitude, around 2050 MeV. The K−p →
KΞ reactions contain a mixture of both isospin compo-
nents, while the decay process Λb → J=ψKΞ, studied in
this paper, filters I ¼ 0 and therefore provides additional
information to the one obtained from the scattering data.
Since the models of Ref. [26] make a fitting to all

K−p → X data in a range from threshold to KΞ production,
we start presenting, in Fig. 4, the predictions of Model 1
and Model 2 for the decay reactions Λb → J=ψK̄N and
Λb → J=ψπΣ, already studied in Ref. [33]. These are
averaged distributions over the possible different charged
states. We can see that the results of both models are similar
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to those found in Ref. [33], with the shape of the πΣ and
K̄N distributions lying somewhat in between those of the
Bonn and Murcia-Valencia models studied there (a differ-
ent normalization was used in that work). We note that our
πΣ distributions shown in Fig. 4 stay over the K̄N ones, in
contrast to what one observes in the models discussed in
Ref. [33], where the πΣ distributions cross below the
respective K̄N ones just above the threshold for K̄N states.
We have checked that this is a peculiarity of our NLO
contributions, since we also obtain a crossing behavior
when our interaction models are restricted to only the
lowest-order terms. It is also interesting to see that the
numerical results in Fig. 4 depend on the model, indicating
their sensitivity to different parametrizations that fit the
K−p → X data equally well. Actually, as seen from Eq. (2),
the rescattering term of the invariant mass distribution,
which is dominant around the energy region of the Λð1405Þ
resonance, depends not only on the strong scattering
amplitudes, tij, but also on the loop functions, Gi. Since
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FIG. 3 (color online). The total cross sections of the K−p → K0Ξ0 reaction (top row) and the K−p → K−Ξþ reaction (bottom row)
for the two different models (Model 1 and Model 2) discussed in the text. The solid lines show the results of the full amplitude,
while the dashed and dash-dotted lines denote the I ¼ 1 and I ¼ 0 contributions, respectively. Experimental data are from
Refs. [58–64].
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the fitting procedures consider the parameters of the
meson-baryon interaction simultaneously with those of
the loop functions, there is some freedom in the values
of these loop functions obtained by different strong
interaction models that produce equivalent scattering
amplitudes. In addition, since the global parameter Vp is
unknown by us, the relevant information from this figure is
the ratio of the πΣ to K̄N distributions, at their respective
maximum values for instance. We obtain ratios of 4.9 and
3.5 for Models 1 and 2, respectively. These values are of the
order of those found in Ref. [33].
In Fig. 5 we present the invariant mass distributions of

the KþΞ− states from the decay process Λb → J=ψKþΞ−.
We do not show the distribution for the decay process
Λb → J=ψK0Ξ0, because, except for minor differences
associated to the slightly different physical masses of the
particles, it is identical to that of the charged channel, since
these processes involve only the I ¼ 0 part of the strong
meson-baryon amplitude. The fact that this decay filters the
I ¼ 0 components makes the differences between Model 1
(thick dashed line) and Model 2 (thick solid line) more
evident, not only in the strength but also in the shape of
the invariant mass distribution. If, in order to eliminate the
dependence on undetermined loop functions and on the
unknown weak parameter Vp, we represented each Λb →
J=ψKþΞ− distribution relative to its corresponding Λb →
J=ψK̄N one shown in Fig. 4, the difference would even be
somewhat enhanced. Therefore, measuring the decay of the
Λb into J=ψKþΞ− and into J=ψK̄N could help us
discriminate between models that give a similar account
of the scattering K−p → K0Ξ0, KþΞ− processes. The
figure also shows that the I ¼ 0 structure observed around
2300 MeV results from the terms of the NLO Lagrangian.

When they are set to zero, the invariant mass distributions
of the two models, shown by the thin dashed and thin solid
lines in Fig. 5, become small and structureless.
We have observed a similar behavior in the mass

distributions of the reaction Λb → J=ψηΛ which are shown
in Fig. 6. In this case, as the coefficient hηΛ does not vanish,
we see from Eq. (2) that the tree-level term also contributes
here, unlike the case of KΞ production. This makes the
magnitude of the Λb → J=ψηΛ mass distribution about 20
times bigger than that of the Λb → J=ψKΞ one.
The invariant mass distributions from the Λb →

J=ψKþΞ− and Λb → J=ψηΛ decays obtained in Models
1 and 2 are compared with the phase space in Fig. 7. The
phase-space distributions (dotted lines for Model 1 and
dash-dotted lines for Model 2) are obtained by taking the
amplitudeMj as constant in Eq. (3) and normalizing to the
area of the invariant mass distribution of the corresponding
model. The comparison allows one to see that there are
dynamical features in the meson-baryon amplitudes leading
to a distinct shape of the mass distributions. In the case of
Model 1, we observe a peak between 2250 and 2300 MeV
for both Λb → J=ψKþΞ− and Λb → J=ψηΛ distributions.
The peak resembles a resonance, but we should take into
account that the limitation of the phase space at about
2500 MeV produces a narrower structure than that of the
cross sections of the K−p → KΞ reactions, as we can see
from the I ¼ 0 contribution in Fig. 3 (left panels), which is
much broader. Actually, the I ¼ 0 contribution of Model 2
to the cross sections of Fig. 3 (right panels) does not
indicate any particular structure, and the very different
shapes that this model predicts for Λb → J=ψKþΞ− and
Λb → J=ψηΛ (see the thick solid lines in Fig. 7), peaking at
about 2400 and 2200 MeV respectively, do not indicate the
presence of a resonance since it would necessarily appear in
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FIG. 5 (color online). Invariant mass distributions of KþΞ−

states produced in the decay Λb → J=ψKþΞ−, obtained for the
two models discussed in the text: Model 1 (dashed lines) and
Model 2 (solid lines). The thin lower lines correspond to omitting
the NLO terms of the potential. The normalization is the same as
in Fig. 4.
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of the potential. The normalization is the same as in Fig. 4.
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both final states at the same energy. In order to find extra
information concerning this issue, we have performed an
extrapolationof themodels to the complex plane, keeping the
kernel potential vij real, i.e. calculated at Reð ffiffiffi

s
p Þ, but

allowing the loop functions Gl to become complex.
Employing this prescription, we do not find poles of the
meson-baryon scattering amplitude in the second Riemann
sheet around these energies. In our models, it is the energy
dependence in the parametrization of the next-to-leading-
order contribution and the interference of terms that creates
this shape. In any case, what is clear is that the experimental
implementation of this reaction will provide valuable infor-
mation concerning the meson-baryon interaction at higher
energies, beyond what present scattering data has offered us.
Although we have given the invariant mass distributions

in arbitrary units, one should bear in mind that all the
figures, from Fig. 4 to Fig. 6 have the same normalization.
Since measurements for the Λb → J=ψK−p reaction are
already available from the CDF [29] and LHCb [30–32]
collaborations, the measurements of the reactions proposed
here could be related to those of the Λb → J=ψK−p
reaction and this would allow a direct comparison with
our predictions. In this spirit, we note that the recent

resonance analysis of Ref. [32] showed a Λð1405Þ con-
tribution which lies in between the distribution found by the
Bonn model in Ref. [33] and that of the Murcia-Valencia
model in Ref. [33] or the Barcelona models presented here.

IV. CONCLUSIONS

We have shown that theΛb → J=ψηΛ and particularly the
Λb → J=ψKΞ reactions provide very valuable information
concerning the meson-baryon interaction in the S ¼ −1 and
isospin I ¼ 0 sector. The dynamics of the reaction, where the
light quarks of the Λb play a spectator role, is such that it
filters I ¼ 0 in the final state. This is so because theud quarks
in the Λb baryon necessarily couple to I ¼ 0 and the weak
decay favors the b → cc̄s transition, so there is an s quark at
the end of the weak process, which together with the ud pair
in I ¼ 0 gives a total isospin I ¼ 0. Thus, these decays may
offer complementary information to that obtained from
K−p → KΞ scattering data, where both I ¼ 0 and I ¼ 1
contributions combine to give the final results.
Our study is based on models of K−p scattering that

include the next-to-leading-order terms of the chiral
Lagrangian and some explicit I ¼ 1 resonances, which
do not contribute directly to the studied decays but their
inclusion does modify the parameters of Model 2 with
respect to those of Model 1. Both models produce quite
different invariant mass distributions for the decay of theΛb
into KΞ and ηΛ states, which are in turn quite different also
from the phase space, indicating the sensitivity of these
processes to the strong internal dynamics. The differences
from the phase space are more visible in Model 1 for both
decay processes and in Model 2 for the Λb → J=ψKΞ one.
The reason stems from the fact that the decay into ηΛ can
proceed at tree level, while the selectivity of the Λb decay
processes producing the J=ψ does not allow the formation
of a KΞ pair in a primary step. This is only produced
through rescattering of the K̄N and ηΛ primary compo-
nents. Thus the Λb → J=ψKΞ reaction is directly propor-
tional to the meson-baryon scattering amplitude, concretely
to the ηΛ → KΞ and K̄N → KΞ components in I ¼ 0. The
theoretical models fitted to the K−p scattering data lead to
Λb → J=ψKΞ mass distributions with a peaked structure
around 2300 MeV, lying far away from the one around
2050 MeV in the K−p → KΞ cross section, which is
dominated by I ¼ 1. These models also predict sizable
differences for the Λb decay in the energy region of KΞ and
ηΛ production, reflecting that the I ¼ 0 component of the
meson-baryon interaction, which is the one playing a role
in the Λb decay processes studied here, is not very well
constrained by the fitting to K−p → KΞ data.
All the features observed in the present work indicate

that the actual measure of these observables would
provide valuable information, novel so far, that would
enrich our knowledge of the meson-baryon interaction and
help us make progress in our understanding of hadron
dynamics.
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