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We propose a new mechanism for baryogenesis at the 1–200 MeV scale. Enhancement of charge parity
(CP) violation takes place via interference between oscillations and decays of mesinos—bound states of a
scalar quark and antiquark and their CP conjugates. We present the mechanism in a simplified model with
four new fundamental particles, with masses between 300 GeV and 10 TeV, and show that some of the
experimentally allowed parameter space can give the observed baryon-to-entropy ratio.

DOI: 10.1103/PhysRevD.92.076014 PACS numbers: 11.30.Er, 11.30.Fs, 14.80.Pq, 98.80.Cq

I. INTRODUCTION

Baryogenesis, the explanation for the asymmetry
between matter and antimatter in our Universe, is a
profound puzzle for particle physics, as well as one of
the strongest motivations for extending the standard model
(SM). The first proposed solution, by Sakharov in 1967,
laid out three conditions for a successful resolution to the
puzzle [1]. The first condition, C and charge parity (CP)
violation, is satisfied by a CP-violating phase in the
Cabibbo-Kobayashi-Maskawa matrix of the SM; however
the effects of this phase are too suppressed in the early
Universe to produce a sufficient asymmetry. The second
condition, violation of baryon number, is satisfied by
anomalous electroweak processes that are sufficiently fast
at high temperature to produce baryon number [2], but only
if the third condition, departure from thermal equilibrium,
is satisfied. The minimal SM with a Higgs boson at
125 GeV does not have any phase transition or sufficiently
long-lived heavy particles to produce a sufficient departure
from thermal equilibrium for baryogenesis [3].
In most supersymmetric extensions of the standard

model, cosmology theory favors a low reheat scale after
inflation [4,5]. Furthermore, in many theories, the absence
of observed isocurvature perturbations favors a low infla-
tion scale [5,6]. A low inflation or reheat scale would imply
that the baryogenesis scale must also be low, in some cases
as low as an MeV. Although proposals for baryogenesis at
scales as low as an MeV exist [7], the time scale at this
epoch is relatively long compared to typical particle
physics scales, making departure from thermal equilibrium
difficult to arrange. Models which do depart from thermal
equilibrium at these low scales then produce additional
entropy which dilutes the baryon abundance. In addition,
CP violation at these low scales, if large enough to produce
enough baryon number to survive the dilution, can easily
lead to particle electric dipole moments which are in

conflict with experimental bounds. Finally, low energy
baryon number violation can lead to rare decays in conflict
with observation. It is therefore difficult to produce enough
baryons at low energy while satisfying experimental con-
straints, motivating the exploration of new mechanisms for
low scale baryogenesis, particularly ones which enhance
the quantummechanical interference which is necessary for
CP violation.
In the SM the CP-violating phase is unphysical if any of

the small mixing angles or like-sign quark mass differences
vanish. A reparametrization-invariant measure of CP vio-
lation [8] in the SM is thus very tiny. Nevertheless, the SM
does provide a wealth of large CP-violating asymmetries in
the decays of oscillating neutral mesons, illustrating the
efficiency of oscillations for enhancing the effects of CP-
violating phases. A proposal [9] that a similar enhancement
of CP violation could occur during an electroweak phase
transition was shown not to work due to the too rapid rate of
thermal decoherence [10].
In this paper we present a new baryogenesis mechanism.

We show how in an extension of the SM, the particle-
antiparticle oscillations of mesinos [11,12] (bound states of
a fermion quark and a scalar antiquark or vice versa), when
combined with baryon-violating scalar decays, can give
rise to baryogenesis. The scalar quark, whose mass is of
order of a TeV, is produced by the out-of-equilibrium
decays of a long-lived heavy neutral fermion, below the
QCD hadronization scale but before nucleosynthesis. Both
the oscillation rate and the decay rate of the mesinos are
rapid when compared with the decoherence time, allowing
quantum mechanical interference between particle and
antiparticle decays to produce substantial CP violation.
This mechanism for producing baryons is amusingly
similar to the mechanism for CP-violating production of
charged leptons in the neutral kaon system. We illustrate
the mechanism in a simplified model which introduces a
minimal number of new particles beyond the SM. Our
mechanism and the new particles could be part of a
supersymmetric extension of the SM with baryon-
number-violating R-parity violation.
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The organization of the paper is as follows. In Sec. II we
introduce the model, describing the CP-violating oscilla-
tions of the mesino. Section III details experimental
constraints on the model, from production at colliders
and precision measurements of rare processes. In Sec. IV
we describe the cosmology of the model, estimating the
parameters needed to explain the observed baryon asym-
metry. We conclude in Sec. V.

II. THE MODEL AND SOME PHENOMENA

The ingredients we need for our model are a complex
scalar ϕ and n Weyl fermions Ni. ϕ is a color triplet,
SUð2ÞL singlet, and carries hypercharge −1=3. Each Ni is
taken to be a singlet under the SM gauge group. The
relevant interactions of these are

L ⊃ yijϕd̄iNj − 1

2
mNijNiNj þ αijϕ

�d̄i ūj þc:c: ð1Þ

ūi and d̄i are the left-hand up- and down-type singlet
antiquarks, respectively, with the subscript labeling the
generation. This Lagrangian has been considered before in
the context of baryogenesis in, e.g., [13], although the
mechanism we describe is completely new. Another pos-
sible baryon-number-violating interaction of ϕ, ϕqiqj,
where the qi are quark doublets, is neglected because we
are considering only the interactions that could come from
baryon-number-violating interactions in a supersymmetric
theory where ϕ is a superpartner of a down-type singlet
quark. By rotating and rephasing the Ni we can make the
singlet mass matrix mN real and diagonal. αij is a 3 × 3

matrix containing nine complex parameters, with seven
phases removable by reparametrizations. The remaining
phases in this matrix do not play a role in our baryogenesis
mechanism and will be ignored for the rest of the paper.
Having exhausted our freedom to rephase the fields, each of
the elements in the 3 × n matrix yij contains a physical,
CP-violating imaginary component.
We will see that the simplest version of the model

involves three new Weyl fermions, i.e., n ¼ 3, which we
label in order of their masses, mN1

< mN2
< mN3

. The
colored scalar is produced in the early Universe by late, out-
of-equilibrium decays of N3. The scalar forms color-singlet
bound states with SM quarks, termed mesinos, which
undergo particle-antiparticle oscillations and decay. The
two lighter singlets provide common intermediate on- and
off-shell states for the mesino and antimesino that allow for
them to violate CP (and baryon number) in the interference
between decays with and without mixing, sourcing the
baryon asymmetry of the Universe.
In the following sections we discuss mesino-antimesino

oscillation in this model and the constraints from collider
experiments and precision measurements.

A. Mesino oscillations and decay

At temperatures below the QCD hadronization scale,
Tc ≃ 200 MeV, if the colored scalars are sufficiently long
lived, they will bind with light SM quarks to form mesinos
and antimesinos. In analogy with the naming convention
for mesons, we refer to the (electrically neutral) mesino
containing ϕ� and q ¼ d, s, b as Φq with its antiparticle Φ̄q

containing ϕ and q̄ ¼ d̄, s̄, b̄.
Φq and Φ̄q form a pseudo-Dirac fermion and, as

discussed in Ref. [14], the system can be described using
a two-state Hamiltonian containing dispersive and absorp-
tive parts, just like the case of the neutral mesons,

H ¼ M − i
2
Γ: ð2Þ

The eigenstates of H, with eigenvalues ωL;H, can be given
in terms of the flavor eigenstates jΦqi and jΦ̄qi,

jΦL;Hi ¼ pjΦqi � qjΦ̄qi; ð3Þ

with L and H referring to light and heavy. The complex
numbers p and q are related by

�
q
p

�
2

¼ M�
12 − ði=2ÞΓ�

12

M12 − ði=2ÞΓ12

: ð4Þ

The mass and width differences between jΦLi and jΦHi are
Δm ¼ mH −mL ¼ ReðωH − ωLÞ; ð5Þ
ΔΓ ¼ ΓH − ΓL ¼ −2ImðωH − ωLÞ; ð6Þ

with

ωH − ωL ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M12 − i

2
Γ12

��
M�

12 − i
2
Γ�
12

�s
: ð7Þ

In the scenario we will study, the mass difference is small
compared to the masses of the heavy and light eigenstates,

mH ≃mL ≃mH þmL

2
≡mΦq

: ð8Þ

Furthermore, the mass of the mesino is mostly supplied by
the ϕ, mΦq

≃mϕ. As in the case of meson oscillations, it is
often useful to introduce a dimensionless parameter to
characterize the oscillation rate,

x≡ Δm
Γ

; ð9Þ

where Γ ¼ ðΓH þ ΓLÞ=2 is the average lifetime of the
states. x ≫ 1 indicates that the mesino system oscillates
rapidly before decaying while x ≪ 1means that the mesino
typically decays before oscillating much.
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We use jΦqðtÞi to label a state at time t that began at
t ¼ 0 as a pure mesino and jΦ̄qðtÞi to label one that began
as a pure antimesino. These evolve in time according to

jΦqðtÞi ¼ gþðtÞjΦqi − q
p
g−ðtÞjΦ̄qi; ð10Þ

jΦ̄qðtÞi ¼ gþðtÞjΦ̄qi − p
q
g−ðtÞjΦqi; ð11Þ

with

g�ðtÞ ¼
1

2
ðe−imHt−1

2
ΓHt � e−imLt−1

2
ΓLtÞ: ð12Þ

The baryon-number-violating operator ϕ�d̄i ūj and its
conjugate in Eq. (1) allow for the mesino and antimesino
flavor eigenstates to decay to collections of hadrons with
baryon number B ¼ þ1 and B ¼ −1, respectively, with
amplitudes related by complex conjugation. In terms of the
time-independent amplitude for a mesino to decay to a state
with B ¼ þ1,M, the time-dependent amplitudes for initial
mesino or antimesino states to decay to B ¼ �1 (denoted B
and B̄) are

hBjΦqðtÞi ¼ gþðtÞM;

hB̄jΦqðtÞi ¼ − q
p
g−ðtÞM�;

hBjΦ̄qðtÞi ¼ −p
q
g−ðtÞM;

hB̄jΦ̄qðtÞi ¼ gþðtÞM�: ð13Þ

Squaring these and integrating over t, we can find the
probability that an initial mesino state decays to B and B̄,

PΦq→B ∝
Z

∞

0

dtjhBjΦqðtÞij2; ð14Þ

PΦq→B̄ ∝
Z

∞

0

dtjhB̄jΦqðtÞij2; ð15Þ

and similarly for an initial antimesino. Using these expres-
sions, we write down the baryon asymmetry per mesino-
antimesino pair,

ϵB ¼ AB × BrΦq→B; ð16Þ

where

AB ¼
PΦq→B − PΦq→B̄ þ PΦ̄q→B − PΦ̄q→B̄

PΦq→B þ PΦq→B̄ þ PΦ̄q→B þ PΦ̄q→B̄
; ð17Þ

andBrΦq→B ¼ ΓΦq→B=Γ is the (time-independent) branching
ratio of a mesino flavor eigenstate to decay into a state with
B ¼ þ1. In terms of the elements of H, AB is

AB ¼ 2ImM�
12Γ12

Γ2 þ 4jM12j2
: ð18Þ

To get a sense of how large the asymmetry ϵB can be, we
estimate the magnitudes of the elements that appear in
it below.

1. Estimating M12

The leading contributions to M12 in the Φq-Φ̄q system
arise from the diagrams in Fig. 1, resulting in [11,12]

M12 ¼
X
i

M12ðNiÞ ¼
2f2Φq

3

X
i

y2qimNi

m2
Ni

−m2
Φq

; ð19Þ

where we have written the contribution from each Ni
as M12ðNiÞ.
The mesino decay constant fΦq

can be related to the B
meson decay constant [15],

fΦq
¼ fBq

ffiffiffiffiffiffiffi
mb

mϕ

r �
αsðmbÞ
αsðmtÞ

�
6=23

�
αsðmtÞ
αsðmϕÞ

�
6=21

: ð20Þ

The cosmology of the model will motivate focusing on the
strange mesino; to estimate its decay constant, we use
fBs

¼ 225 MeV [16], MS quark masses, mb ¼ 4.18 GeV,
mt ¼ 160 GeV [17], and leading order QCD running (the
contribution of which is negligible above the top mass in
this case), and find

fΦs
≃ 21.5 MeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
650 GeV

mϕ

s
: ð21Þ

In what follows, we take q ¼ s, specifying to the case of the
strange mesino, Φs.

2. Estimating Γ and Γ12

As mentioned above, the operator ϕ�d̄i ūj in Eq. (1)
allows for the mesino to decay to a collection of hadrons
with B ¼ þ1 with a rate

ΓΦs→B ¼ 1

16π

X
i;j

jαijj2mΦs
¼ α2B

16π
mΦs

; ð22Þ

where we assume that we can ignore the masses of the
hadrons in the final state in comparison to the mesino’s and
we have defined α2B ≡P

i;jjαijj2.

FIG. 1. Tree level contributions to M12.
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In general, the mesinos can also decay to a singlet plus
hadrons, Φq → Nj þ h where h labels the hadronic state,
through the operator ϕd̄iNj with a rate proportional to
jyijj2. This is kinematically allowed for mΦq

> mNj
þmh.

If h is self conjugate under Cðh ¼ π0; πþπ−; ρ;…Þ then
this is a final state for antimesino decay as well, leading to a
nonzero value of Γ12 and CP violation through Eq. (18).
This CP asymmetry is suppressed when jΓ12j=Γ is small;
for this reason we take only N1 to be kinematically allowed
in the decay of the strange mesino, and set its mass close
enough to the mesino’s so that single hadron final states
dominate the partial width. In this case jΓ12j ∼ ΓΦs→N1

and
jΓ12j=Γ can potentially be unsuppressed.
Assuming that mΦs

≃mNi
, we can approximate Γ12 as

being dominated by the decays Φs, Φ̄s → N1 þ η, where η
is the lightest pseudoscalar meson composed of ss̄, as
shown diagrammatically in Fig. 2. This results in

Γ12 ≃ Γ2-body
12 ð23Þ

¼ y2s1mN1

16π
jFðm2

N1
Þj2λ1=2

�
1;
m2

N1

m2
Φq

;
m2

P

m2
Φq

�
; ð24Þ

where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc and
Fðq2Þ is the Φs → P transition form factor at momentum
transfer q. We provide estimates of the form factor Fðm2

N1
Þ

in the Appendix. For mΦs
∼ 1 TeV with a splitting

mΦs
−mN1

∼ 1 GeV, the form factor is Oð10−3 − 10−2Þ.
Defining the mass splitting, ΔmϕNi

≡ jmΦs
−mNi

j and
assuming that they are small compared to the mesino
mass, the rate to decay to the lightest singlet and the off-
diagonal term in the absorptive part of the Hamiltonian are
given by

ΓΦq→N1
≃ jΓ12j≃ 4 × 10−8 GeV

���� ys10.1

����
2

×

����Fðm
2
N1
Þ

10−2

����
2�ΔmϕN1

1 GeV

�
; ð25Þ

for a scalar of mass ∼1 TeV.

For the mesino to hadronize before decaying, the decay
rate has to be slow compared to the time scale for
hadronization, Γ ≪ 1=thad ∼ ΛQCD ∼ 200 MeV. The partial
width toN1 satisfies this condition for any set of parameters
we consider. Requiring that the partial width to baryons is
smaller than ΛQCD limits αB ≲ 0.1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
650 GeV=mϕ

p
.

3. Simplifying the asymmetry

In the limit of small mass splittings between Φs and
Ni, ΔmϕNi

≪ mϕ, the contribution to M12 from Ni is
approximately

jM12ðNiÞj≃ 1.54 × 10−6 GeV

���� ysi0.1

����
2

×
�
650 GeV

mϕ

��
1 GeV
ΔmϕNi

�
; ð26Þ

choosing to normalize the mass of the scalar above
experimental constraints from collider searches (see
Sec. III A below). Comparing this with Eq. (25), we expect
that, barring extreme cancellations between contributions
from the different singlets, jM12j ≫ Γ12, ΓΦq→N1

.
The asymmetry per mesino pair can be written simply in

terms of the oscillation parameter x in this limit. When
jΓ12j ≪ jM12j, x≃ 2jM12j=Γ and

ϵB ¼ xr sin β
1þ x2

jΓ12j
Γ

BrΦq→B þO
����� Γ12

M12

����
�
; ð27Þ

where

r≡
����1 −M12ðN1Þ

M12

����; 0 < r < 1; ð28Þ

and the reparametrization-invariant, CP-violating phase is

β≡ arg f½M12 −M12ðN1Þ��Γ12g: ð29Þ

β is defined this way so as to be generically Oð1Þ, making
use of the fact that Γ12 andM12ðN1Þ have the same phase. If
we also make use of the relation between the decay rate to a
singlet and the off-diagonal term in Γ, jΓ12j≃ ΓΦq→N1

¼
ΓBrΦq→N̄1

then

ϵB ≃ xr sin β
1þ x2

BrΦq→BBrΦq→N1
: ð30Þ

The question of whether jM12j is large or small com-
pared to the total mesino decay rate Γ is determined by the
partial width to antibaryons, ΓΦq→B. If αB is much smaller

than about 10−4jys1jð650 GeV=mϕÞ, then jM12j ≫ ΓΦq→B

and x ≫ 1. Then,
FIG. 2. Two-body contribution to Γ12 from Φs, Φ̄s → N1 þ η
where η is the lightest meson containing ss̄.
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ϵB →
r
x
sin βBrΦq→BBrΦq→N1

: ð31Þ

In this case, by inspecting Eqs. (26) and (25), typically
x≲ 102, depending on the hierarchy of jΓ12j and ΓΦq→B.
The asymmetry is suppressed by x and a potentially
small branching ratio. On the other hand, if αB ≫
10−4jys1jð650 GeV=mϕÞ then jΓ12j ≪ jM12j ≪ ΓΦq→B

and x ≪ 1. The asymmetry becomes

ϵB → xr sin βBrΦq→N̄1
; ð32Þ

suppressed by the small values of both x and BrΦq→N̄1
.

The asymmetry is typically largest when ΓΦq→B≃
jΓ12j ≪ jM12j. In this situation Eq. (31) applies and
ϵB ∼ 10−2r sin β. We note that it is possible to achieve
an asymmetry as large as ϵB ¼ 1=8 if ΓΦq→B ≃ jΓ12j≃
jM12j. However, this requires large, unnatural cancellations
(at the level of 10−2) between the contributions to M12.

III. EXPERIMENTAL CONSTRAINTS

A. Collider constraints

In this model the colored scalar can be pair produced in
pp and pp̄ collisions which then decay to multijet final
states. If the dominant decay mode is through the coupling
αijϕ

�d̄iūj þ H:c:, then ϕ will decay to two hard jets,
leading to a four-jet signature. If the decay of ϕ proceeds
mostly through N1, the situation is somewhat more
nuanced as we describe below.
In proton-(anti)proton collisions, the ϕϕ� pair is pro-

duced in the lab frame with very little boost in the direction
transverse to the beam. The ϕ decays to a very soft light
quark with a momentum of OðΔmϕN1

Þ and N1 that is also
essentially at rest in the ϕ rest frame, because of the small
mass splitting between the ϕ and N1. The N1 decays
through an off-shell ϕ to three quarks with a rate

dΓN1

dp
≃X

i

jyi1j2α2B
512π3

p
mN1

�
mN1

− 2p

pþ ΔmϕN1

�
2

; ð33Þ

ignoring the masses of the quarks. p is the momentum of
the quark produced in the N1 → ϕd̄i splitting in the N1 rest
frame. Because of the small mass splitting, the momentum
of this quark is peaked at small values—in most decays
p≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔmϕN1
mN1

p
. This means that, for a splitting

ΔmϕN1
¼ 1 GeV, N1 masses below ∼1 TeV result in

one of the three quarks in N1 decays having a transverse
momentum in the lab frame of pT ≲ 30 GeV, making them
hard to observe. Therefore, at colliders, ϕ s either decay
directly to two hard jets or appear as two hard jets in their
decays to N1.
To use collider searches to set limits, we focus on the

situation where the scalars are produced and decay

promptly. At the Large Hadron Collider (LHC) this requires
decay lengths cτϕ, cτN1

≲ 1 mm. If the ϕs decay directly to
two quarks this requires αB ≳ 10−7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
650 GeV=mϕ

p
. If,

instead, ϕ decays proceed through N1, then
ðPi¼d;sjyi1j2Þ1=2 ≳ 10−4, for a form factor of 10−2 and a
mass splitting of 1 GeV and ðPi¼d;sjyi1j2Þ1=2αB≳
10−6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
650 GeV=mN1

p
. The collider limits we outline are

relatively insensitive to the particular values of these
couplings so long as they are large enough for prompt
decays, given ϕϕ� production is dominated by QCD.
We can also safely assume that these couplings are not
so large as to make the width of ϕ large enough to impact
the limits.
The requirement of prompt decays at hadron colliders is

not a strict condition for the viability of the model, but
merely simplifies our analysis later; a more robust lower
bound, weaker on the couplings byOð106Þ, comes from not
spoiling big bang nucleosynthesis (BBN). Indeed, long-
lived particles at colliders have been studied as a probe of
baryogenesis; see, e.g., Ref. [18]. In the long-lived case, the
lower limits on the particle masses can be quite strong, as
high as ∼1 TeV [18].
A search for squarks decaying to a b and an s quark was

undertaken at the LHC by the ATLAS collaboration using
17.4 fb−1 of 8 TeV pp collisions [19]. Squarks with masses
between 100 and 310 GeV were ruled out at the 95% con-
fidence level (C.L.). Since they are both color triplet
scalars, the production cross section for a ϕϕ� pair is
equal to that of a squark-antisquark pair. Thus, this
exclusion would directly apply to our model if the leading
αij were α31 or α32, and constrains mϕ > 310 GeV.1 In
addition, ATLAS has searched for the pair production of
scalar gluons that each decay to two gluons using 4.6 fb−1
collected at 7 TeV [21], finding no excess and setting an
upper limit on the cross section for this process. This limit
applies to ϕ in the case that it decays to a pair of light flavor
quarks, which is the case if the αij, i, j ¼ 1, 2 couplings
dominate. Using NLL-fast [22] to calculate the cross
section to produce a ϕϕ� pair at next-to-leading order with
next-to-leading logarithmic corrections, this search sets the
lower limit mϕ > 275 GeV at 95% C.L.
The CMS collaboration performed a search with

19.4 fb−1 of 8 TeV data, looking for the pair production
of resonances that decay to two jets [23]. Colored scalars
decaying to a b and a light flavor quark are ruled out at
95% C.L. for 200 GeV < mϕ < 385 GeV and those
decaying to two light quarks are excluded for 200 GeV <
mϕ < 350 GeV at 95% C.L.

1A similar limit ∼300 GeV was derived in Ref. [12] for
mesinos oscillating and decaying to a top and a light quark,
leading to a same-sign dilepton signal which was constrained by
CMS data [20].
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Although we expect the ϕ to decay to essentially two
hard jets, as explained above, if it decays through N1, there
could be apparent six-jet events from ϕϕ� production and
decay. Searches for three-jet resonances [24] generally have
more reach than those for two-jet resonances because of the
comparative ease of distinguishing this from backgrounds.
In cases where these decays include heavy flavor, limits as
high as 600 GeV can be set.
In light of this discussion, we consider 600 GeV as a

conservative lower bound on the mass of ϕ, deferring a
complete study of the collider limits for future work. For
this reason, when specifyingmϕ, we have taken 650 GeVas
a benchmark value.
The prospects for future searches for ϕ → 2j are

promising, with a study of the 14 TeV LHC indicating
that mϕ up to 750 GeV could be probed with 300 fb−1 and
up to 1070 GeV with 1000 fb−1 [25]. Such searches would
push significantly into the region of parameter space
compatible with an explanation of the baryon asymmetry
of the Universe, as we see in Sec. IV.

B. Constraints from rare processes

Our model possesses new interactions which violate CP,
quark flavor, and baryon number, potentially leading to
observable conflicts with standard model predictions. In
examining the consequences, we note that our model could
be part of an R-parity-violating supersymmetric model
[26–28], and we could use some of the existing studies of
constraints on such models [29–32]. The constraints on
baryon-number-violating parameters in supersymmetric
theories depend on many soft supersymmetry breaking
parameters which play no role in baryogenesis. In this
section we consider the constraints on the parameters in our
more minimal model. Although baryon number is violated,
given that lepton number is conserved,2 and given that the
only fermions lighter than the proton are leptons, the proton
is stable. There are stringent constraints on couplings
involving the first generation from neutron-antineutron
oscillations, and on baryon-violating couplings of the
strange quark, from heavy nuclei decays.
Dimension-9 six quarkΔB ¼ 2 operators arise in the low

energy effective theory from the diagram shown in Fig. 3.
The relevant operators are of the form

�X
k

yikyjk
MNk

�
αlmαno
m4

ϕ

d̄id̄jd̄lūmd̄nūo: ð34Þ

Constraints on such operators with various color and
spin combinations from neutron-antineutron oscillations
have been considered in many previous works
[27,28,30,33–35]. An accurate computation of the rate

requires perturbative renormalization group scaling and
matching to lattice QCD matrix element computations of
the various operators [34,36], and currently still has
uncertainties of order 1. Currently the best constraint on
the neutron oscillation rate is 2.9 × 10−33 GeV [35]. If we
simply estimate the matrix element of

hn̄jd̄ d̄ d̄ d̄ ū ū jni ∼Oð10−5 GeV6Þ; ð35Þ

which is consistent with the lattice computations, we find

�X
k

y2dk
MNk

�
α211
m4

ϕ

< 2.9 × 10−28 GeV−5: ð36Þ

Neglecting the very weakly coupled N3, and using MN1
∼

MN2
∼mϕ ∼ 650 GeV gives

ðy2d1 þ y2d2Þα211 < Oð10−14Þ: ð37Þ

FIG. 3. Diagram responsible for the dimension-9 ΔB ¼ 2
operator in Eq. (34) that leads to neutron-antineutron oscillations.

FIG. 4. Solid lines indicate values of ΓN3
and mN3

that give
ηB ¼ 8.6 × 10−11 for ϵB ¼ 10−4, 10−5, and 10−6, from bottom to
top, respectively. The shaded regions lead to a plasma temper-
ature at N3 decay greater than Tc ≃ 200 MeV, in which case
mesinos do not form, or a temperature at decay less than 1 MeV,
which would spoil BBN. Note that this is calculated within the
sudden decay approximation.2or conserved mod 2, if there are Majorana neutrino masses.
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The best constraints on operators involving strange quarks
arise from limits on dinucleon decay into kaons
[7,28,31,37]. Using the rough estimates from Ref. [31]
for the nuclear matrix elements and the experimental
bound from Ref. [37] gives a bound on the coefficient
of the operator s̄ s̄ d̄ d̄ ū ū which, for MN1

∼MN2
∼

mϕ ∼ 650 GeV, translates into bounds on combinations
of couplings

ðy2s1 þ y2s2Þα211 < Oð10−14Þ; ð38Þ

ðy2d1 þ y2d2Þα212 < Oð10−14Þ; ð39Þ

ðyd1ys1 þ yd2ys2Þα12α11 < Oð10−14Þ; ð40Þ

although the strong interaction and nuclear physics uncer-
tainty in these bounds spans several orders of magnitude.
Neutron oscillations and nucleus decay give much weaker
constraints on coefficients of operators containing heavier
quarks, as the required loops involve weak interactions and
small CKM parameters. See, e.g., Ref. [32] for a summary
of such constraints in R-parity-violating supersymmetry.
We also need to check that the new sources of flavor

violation will not violate the stringent constraints coming
from the agreement between theory and experiment in
neutral meson oscillation phenomenology. After integrat-
ing out ϕ and the Ni, the interactions in Eq. (1) will lead to
ΔF ¼ 2 flavor-changing operators. The most stringent
constraints come from the neutral kaon oscillations.
The relevant ΔS ¼ 2 Hamiltonian that is generated reads

[38]

HΔS¼2
ϕNi

¼
X
i;j

y�diydjysiy
�
sj

2933π2m2
ϕ

d̄αRγ
μsαRd̄

β
Rγμs

β
R; ð41Þ

where α and β are color indices, and we have assumed that
mϕ ≃mNi

. This contributes to the KL-KS mass difference,

ΔmK ¼ 2RehK̄0jHΔS¼2
ϕNi

jK0i ð42Þ

¼ Re
X
i;j

y�diydjysiy
�
sj

2834π2
mKf2K
m2

ϕ

; ð43Þ

with fK being the kaon decay constant. Requiring that
this not exceed the measured mass difference of
ð3.484� 0.006Þ × 10−12 MeV [17] leads to a constraint
on the couplings,

�
Re

X
i;j
y�diydjysiy

�
sj

�
1=4

< 0.40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

650 GeV

r
; ð44Þ

where we have used fK ¼ 155 MeV [39]. Since the
Yukawa couplings are complex, there is also a contribution
to CP violation in the neutral kaon system. This is typically
parametrized by

ϵK ¼ ImhK̄0jHΔS¼2jK0iffiffiffi
2

p
ΔmK

: ð45Þ

If we assume that the kaon mass difference is saturated by
the SM contribution, then the operator in Eq. (41) gives a
contribution to CP violation of

ϵK ¼ 14

�
650 GeV

mϕ

�
2

Im
X
i;j

y�diydjysiy
�
sj: ð46Þ

Requiring that this is less than the measured value,
ð2.228� 0.011Þ × 10−3 [17], results in a constraint,

�
Im

X
i;j
y�diydjysiy

�
sj

�
1=4

< 0.11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

650 GeV

r
: ð47Þ

Since we expect that the CP-violating phases of the
Yukawa couplings have no reason to be suppressed, the
limit from ϵK is stronger than the one from ΔmK. However,
this constraint does not impact the viability of the model;
even Oð1Þ values of jysij are allowed so long as jydij ≲
O ð10−2Þ.
Limits from B0-B̄0 and Bs-B̄s mixing are no more

constraining than from kaon mixing, and values of jybij
as large as unity are allowed.
Experimental upper bounds on electric dipole moments

(EDMs) place strong constraints on new CP-violating
physics. For new CP-violating physics at the weak scale,
there may be nonstandard contributions to EDMs at one or
two loops, which place constraints on combinations of the
new couplings and phases. The relevant constraints on
R-parity-violating supersymmetry are summarized in
Ref. [32], and on supersymmetric models in general in
Ref. [40]. In our minimal model, which does not include
new couplings to leptons or to left-hand quarks, and which
does not require any new couplings to be large, there are no
one loop contributions or large two loop contributions to
EDMs and no constraints on the CP-violating phases.

IV. COSMOLOGY AND THE
BARYON-TO-ENTROPY RATIO

The baryon asymmetry of the Universe is quantified by
the ratio of the net baryon number to entropy,

ηB ¼ nB
s
: ð48Þ

The most precise determination of this quantity comes
from measurements of the cosmic microwave background
that fix the baryon density in units of the critical
density, Ωb, which is related to the baryon-to-entropy
ratio via ηB ¼ 3.9 × 10−9 ×Ωbh2. Planck has measured
Ωbh2 ¼ 0.0221� 0.0003 [41] which gives ηB ¼
ð8.6� 0.1Þ × 10−11.
In the minimal version of the model, the colored scalars

can be produced at late times, well after they have frozen
out, through N3 decays. Those produced in decays after the
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Universe has cooled below the QCD hadronization temper-
ature Tc ≃ 200 MeV bind immediately to form mesinos
and antimesinos. The CP-violating oscillations and decays
(to antibaryons and baryons) of the (anti)mesinos give rise
to a baryon asymmetry. To quantify this asymmetry, we
must first determine the number of N3 present after the
Universe has cooled below Tc.
There are two processeswhich control the number density

of N3: annihilation to quarks and scalars and decay to a
scalar and quark. The number density of N3 at time t is then

nN3
¼ nrelicN3

e−ΓN3
t

�
arelic
at

�
3

: ð49Þ

Here, nrelicN3
and arelic are the number density of N3 and the

scale factor, respectively, at T ≈ T ∼mN3
=20, and at is the

scale factor at t. Similarly toN1 andN2, we assume thatN3 is
close inmass toϕ,ΔmϕN3

≪ mϕ; mN3
. Then its decay rate is

given by

ΓN3
≃ X

q¼d;s;b

y2q3
8π

Δm2
ϕN3

mΦq

: ð50Þ

We want an appreciable number of N3 to survive until
Tc ≃ 200 MeV, which corresponds to a time tc ∼ 10−5 s
assuming standard thermal history. Our thermal history is
not standard sincewe haveN3 decaying and injecting energy
into the plasma competing with the cooling of the plasma
due to the expansion of the Universe. However, as we show
below, that does not drastically affect the timevs temperature
relationship. Therefore, to get a respectable number ofN3 to
decay after Tc, producing mesinos, we must have
ΓN3

≲ 1=tc ∼ 10−19 GeV. For a splitting ΔmϕN3
∼

O ðGeVÞ, this requires y2q3 ≲ 10−15ðmN3
=TeVÞ. Since the

N3 annihilation rate is proportional to y4q3, Yukawa cou-
plings that are this small mean that the annihilation rate was
always much smaller than the expansion rate of the
Universe. Hence, assuming reheating happened at a high
temperature and theN3were in equilibriumwith the plasma,
nrelicN3

¼ ð3=4Þnγ where nγ is evaluated at T ¼ mN3
=20 and

only the decay rate ΓN3
dictates the N3 number density

for T < Tc.
We can determine the baryon-to-entropy ratio by

coevolving the N3 and radiation energy densities,

dρrad
dt

¼ −4Hρrad þ ΓN3
mN3

nN3
; ð51Þ

dρN3

dt
¼ −3HρN3

− ΓN3
mN3

nN3
; ð52Þ

along with the baryon (minus antibaryon) number density,

dnB
dt

¼ −3HnB þ 1

2
AΓN3

ϵBnN3
: ð53Þ

Equations (51)–(52) describe the radiation and N3 energy
densities, taking into account the expansion of the Universe
and the fact that the decays of N3 heat up the plasma.
Equation (53) describes the evolution of the net baryon
number density, which develops a nonzero value due to CP-
violating oscillations ofmesinos produced byN3 decays. The
factor of 1=2 appears due to the definition of ϵB in Eq. (16) as
the baryon asymmetry per mesino-antimesino pair. A counts
the fraction of mesino states that undergo CP-violating
oscillations. In this work, we focus on the strange mesino
since, being an isoscalar, it is not decohered by scattering on
the pions present in the plasma after confinement, a pos-
sibility in the case of the downmesino that would complicate
the analysis. Thus, we take A ¼ 1=3, assuming that equal
fractions of up, down, and strange mesinos are formed which
should be true to ∼30%, the level of SU(3) flavor breaking
observed elsewhere. It is important to keep in mind that in
addition to Eq. (53), the net baryon number density is subject
to the constraint that nB ¼ 0 for T < Tc since scalars
produced above the QCD confinement temperature do not
hadronize and therefore do not undergo coherent oscillations.
Instead of solving Eqs. (51)–(53) exactly, we first use the

sudden decay approximation to gain an intuitive under-
standing of the baryon-to-entropy ratio and to obtain simple
analytic relations among the parameters of the model. In
this approximation, we consider the comoving N3 number
density to be constant until the time tdecay ¼ 1=ΓN3

, after
which it is zero. The N3 decays dump energy into the
plasma3 and produce scalars that, if the plasma temperature
at the time of decay is less than Tc, form mesinos that
oscillate and decay on time scales short compared to the
expansion of the Universe,4 creating a net baryon asym-
metry. We now describe the evolution of the Universe in the
context of this approximation.
At very early times, the Universe’s energy density is

dominated by radiation, until some time teq < tdecay when
the energy density in N3 (matter) is equal to that in
radiation. For times teq < t < tdecay, the Universe is mat-
ter-dominated. After the decays of N3 at tdecay, the Universe
is again radiation dominated. The temperature of the
plasma at the time of matter-radiation equality, teq, is

Teq ¼
45ζð3Þ

2π4g�ðTiÞ
mN3

; ð54Þ

3Note that solving Eqs. (51)–(53) exactly, as we do below,
shows that the plasma temperature does not actually increase
during N3 decay—rather, its cooling rate slows [42]. For this
reason we ignore whether N3 decays reheat the plasma to a
temperature above Tc, a possibility that would naively spoil
hadronization.

4At temperatures below Tc, the ϕ − ϕ� annihilation cross
section becomes large, OðΛ2

QCDÞ [43]. However, the rate for this
process is tiny compared to the oscillation and decay rates since it
is suppressed by the small ratio of the N3 to ϕ decay rates,
Γann ∝ nϕ ∼ nN3

ΓN3
=Γϕ.
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with g�ðTiÞ being the effective number of relativistic
degrees of freedom at a temperature Ti ∼mN3

when the
Universe is very hot and radiation dominated. We use
g�ðTiÞ ¼ 116.25 which takes into account the SM con-
tributions as well as contributions from ϕ and N1;2. The
time vs temperature relationship during radiation domina-
tion fixes the time at Teq,

teq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

45

2π2g�ðTeqÞ

s
MPl

T2
eq

ð55Þ

¼
�
2π2

45

�
3=2

�
π2

ζð3Þ
�
2 g2�ðTiÞ
g1=2� ðTeqÞ

MPl

m2
N3

; ð56Þ

where MPl ¼ ð8πGÞ−1=2 ¼ 2.4 × 1018 GeV is the Planck
mass and g�ðTeqÞ≃ 70, for Teq of order of a few GeV. After
teq, assuming t ≫ teq the N3 and radiation energy densities
evolve according to matter domination,

ρrad ¼
4M2

Pl

3

�
teq
t4

�
2=3

; ρN3
¼ 4M2

Pl

3

1

t2
: ð57Þ

Defining ξ≡ ρN3
ðt ¼ t−decayÞ=ρradðt ¼ t−decayÞ, where t−decay

indicates an infinitesimal time before decay, we find

ξ ¼
�
tdecay
teq

�
2=3

ð58Þ

¼
�
45

2π2

��
ζð3Þ
π2

�
4=3

�
g�ðTeqÞ
g4�ðTiÞ

�
1=3

�
m2

N3

MPlΓN3

�2=3

: ð59Þ

The baryon-to-entropy ratio is

ηB ¼ nBðt ¼ tþdecayÞ
sradðt ¼ tþdecayÞ

; ð60Þ

where tþdecay denotes an infinitesimal time after decay. The
net baryon number density is related to the N3 number
density just before decay,

nBðt ¼ tþdecayÞ ¼ nN3
ðt ¼ t−decayÞ ×

1

2
AϵB: ð61Þ

A and ϵB are determined solely by the mesino particle
physics and factor out of the cosmological story. We can
write ηB in terms of ξ,

ηB ¼ ρradðt−decayÞ
sradðtþdecayÞ

ξ

mN3

AϵB
2

ð62Þ

¼ 3

4

Tradðt−decayÞ
mN3

�
Tradðt−decayÞ
TradðtþdecayÞ

�
3

ξ
AϵB
2

: ð63Þ

The ratio of the temperatures before and after decay can be
found by using the conservation of energy,

ρradðtþdecayÞ ¼ ρradðt−decayÞ þ ρN3
ðt−decayÞ ð64Þ

¼ ρradðt−decayÞð1þ ξÞ; ð65Þ
which leads to

ηB ¼ 3

4

Tradðt−decayÞ
mN3

ξ

ð1þ ξÞ3=4
AϵB
2

: ð66Þ

We can use the expression for the radiation energy density
in Eq. (57) to find the temperature of the plasma just before
decay, Tradðt−decayÞ≡ Tdecay,

Tdecay ≃ 2ffiffiffi
3

p
�

π2

ζð3Þ
�

1=3
�

g�ðTiÞ
g�ðTdecayÞ

�
1=4

�
M2

PlΓ2
N3

mN3

�1=3

ð67Þ

≃ 15
ffiffiffi
3

p
ζð3Þ

π4
1

g�ðTiÞ
mN3

ξ
; ð68Þ

with g�ðTdecayÞ ¼ 63.75 the number of relativistic degrees
of freedom at this temperature. We ignore here the decrease
of the number of degrees of freedom below the QCD
confinement temperature since it obscures the physics and
is numerically unimportant at the level of accuracy of our
estimates. Using this expression, we can express the
baryon-to-entropy ratio as

ηB ≃ 45
ffiffiffi
3

p
ζð3Þ

8π4
1

g�ðTiÞ
1

ð1þ ξÞ3=4 AϵB ð69Þ

¼ 6.1 × 10−10
�
116.25
g�ðTiÞ

��
10

1þ ξ

�
3=4

ð70Þ

×

�
A
1=3

��
ϵB
10−5

�
: ð71Þ

The factor

ð1þ ξÞ−3=4 ¼
�
Tradðt−decayÞ
TradðtþdecayÞ

�
3

ð72Þ

can be thought of as the entropy dilution of the naive baryon-
to-entropy ratio due to the N3 decays heating the plasma.5

In the sudden decay approximation, the decay rate ΓN3
is

constrained as a function ofmN3
by two requirements. First,

the N3 decays take place after the Universe has cooled
below 200 MeV so that mesinos form. Second, the decays
must occur before the Universe has cooled below 1 MeV
to not spoil BBN. We plot these constraints in Fig. 4, along
with values of ΓN3

and mN3
that result in ηB ¼ 8.6 × 10−11

for εB ¼ 10−4, 10−5, and 10−6.

5Again, we stress that the plasma does not actually heat up in
an exact treatment of Eqs. (51)–(53). See below.
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For a fixed value of mN3
, there is a minimal amount of

entropy dilution, i.e. a minimal value of ξ, that can be found
by setting the temperature of the plasma at N3 decay to be
equal to the QCD confinement temperature. Using this
value of the entropy dilution determines a lower bound on
the asymmetry ϵB as a function of mN3

such that a baryon-
to-entropy ratio of 9 × 10−11 is possible. We plot this lower
bound on ϵB in Fig. 5, as a function of the scalar mass,
taking the splitting between N3 and ϕ to be ΔmϕN3

¼
3 GeV.
To assess whether we can reasonably achieve a baryon-

to-entropy ratio in line with the current experimental value
of 8.6 × 10−11, we also show in Fig. 5 the asymmetry ϵB as
a function ofmϕ, taking ΔmϕN1

¼ ΔmϕN2
¼ 1 GeV, ys1 ¼

ys2 ¼ 10−2 ≫ ys3, for αB ¼ 10−4, 10−5, and 10−6. We see
that there exist ranges of parameter choices that allow for
scalars with a mass between 300 GeV and 10 TeV to have
an asymmetry above the bound, and therefore to account
for the measured value of ηB, depending on the choice of
ΓN3

. In principle, masses as large as 106−7 GeV can be
compatible with the observed baryon asymmetry but scales
this large would require a larger ϵB, hence a larger amount
of fine-tuning. In addition, testing this model and embed-
ding it in a framework that explains the weak scale, like the
supersymmetric SM, could become difficult.
We can check the accuracy of our sudden decay

approximation by solving Eqs. (51)–(53) numerically
and determining the resulting baryon-to-entropy ratio. In

Fig. 6, we show the results of a numerical solution of the
evolution equations with mN3

¼ 650 GeV and ΓN3
¼

10−20 GeV. The top panel shows the evolution of the
plasma temperature in time. As mentioned above, the
plasma is not “heated up” by the decay of the N3 s;
instead, it cools more slowly. The next panel shows the
ratio of the N3 energy density to the radiation energy
density, ρN3

=ρrad, as a function of time. This ratio grows
until ∼1=ΓN3

when it decreases due to N3 decays. The
bottom panel shows the net baryon-to-entropy ratio, ηB, as
it develops from zero at early times to a fixed value at late

FIG. 5. The shaded region shows values of ϵB and mϕ,
assuming ΔϕN3

¼ 3 GeV, that result in ηB < 8.6 × 10−11 for
Tdecay < Tc ≃ 200 MeV in the sudden decay approximation. The
points above this region can attain the measured value of ηB,
depending on the value of ΓN3

. Also shown are the values of ϵB
when choosing ΔϕN1

¼ΔϕN2
¼1GeV, ys1¼ys2¼10−2≫ys3,

and αB ¼ 10−4, 10−5, 10−6.

FIG. 6 (color online). Results of a numerical solution of
Eqs. (51)–(53) for mN3

¼ 650 GeV and ΓN3
¼ 10−20 GeV.

Top: the temperature of the plasma as a function of time (solid,
black). For comparison, the evolution of the temperature
without N3 decays, assuming a radiation-dominated Universe,
is also shown (dashed, gray). The dotted blue line shows
Tc ¼ 200 MeV. As mentioned, the plasma does not actually
heat up due toN3 decays; rather it just cools more slowly. Middle:
the evolution of the N3 energy density to that of the plasma.
Bottom: the growth of ηB for values of the asymmetry ϵB ¼ 10−4
(solid, black), 10−5 (dashed, black), 10−6 (dotted, black) along
with the value as measured by Planck (solid, red). Also shown are
the sudden decay approximations to ηB for each of these values of
ϵB (gray). The decrease in ηB from its maximum to its value at late
times in each case reflects the entropy dilution due to the energy
dumped into the plasma.
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times for ϵB ¼ 10−4, 10−5, and 10−6. We also show the
value of ηB calculated for these parameters in the sudden
decay approximation. We note that the sudden decay
approximation of ηB agrees with the numerical solution
of Eqs. (51)–(53) to within an ∼Oð1Þ factor for a wide
range of values of mN3

, ΓN3
, and ϵB. In our numerical

solution, we took g�ðTÞ to be fixed at 63.75 for temper-
atures less than 4 GeV. Including the change of g� at the
hadronization temperature would not drastically affect our
conclusions, and would only obscure the relevant physics.
We note here that the estimate of the baryon asymmetry

in this section depended on the assumption that the scalars
were produced by the late, out-of-equilibrium decay of a
particle that was in thermal equilibrium at very high
temperatures. Alternative cosmological histories are cer-
tainly possible. For example, the scalars could be produced
by the decay of long-lived moduli [5]. Another possibility
involves considering a nonthermal parent particle (possibly
N3) that dominates the energy density of the Universe. Its
decays to scalars reheat the Universe and create a baryon
asymmetry before the creation of a thermal plasma.
Alternative scenarios may, of course, have a quite different
relationship between ϵB and ηB from the simple one
presented here.

V. CONCLUSIONS

We have shown that if there is a scalar quark which lives
long enough to hadronize, CP violation in the oscillations
of mesinos is possible. If the scalar quark has baryon-
number-violating decays, and if it can be produced out of
thermal equilibrium in the early Universe, such CP
violation could be the origin of the matter-antimatter
asymmetry of our Universe. We presented a mechanism
for the out-of-equilibrium production of the scalar quark
via the late decays of a very weakly coupled heavy neutral
particle, and computed ηB, the ratio of baryon number to
entropy, in terms of the relevant parameters of the model.
Because ηB depends sensitively on the parameters, the
viable parameter space of the model is rather well con-
strained. In particular, obtaining sufficient CP violation
requires the existence of a neutral Majorana fermion which
is not much lighter than the squark. Such a difficult to
explain coincidence hints at an environmental selection
principle, which is attractive in light of the observation that
the value of ηB in our Universe appears to be optimal for
creating stars in galaxies which are not so dense as to be
unfriendly to advanced life [44].
In order to experimentally test the model one should

begin by finding evidence for scalar quarks at the LHC. As
discussed in Sec. III A, existing searches, especially in the
case where the decays do not produce significant missing
energy, are not very constraining. In our model the squark
should decay sometimes into two antiquarks, and some-
times into a quark and a neutral fermion, with the latter
decaying into one soft and two hard quarks. The final states

are likely to contain at least one third generation quark for
the reasons discussed in Sec. III B. Because successful
baryogenesis requires that the neutral fermion not be much
lighter than the mesino, the first quark is very soft. Thus the
scalar quark should essentially decay into two hard jets
(and possibly two very soft quarks). The decays may be
prompt or could produce displaced vertices. The LHC
reach for the discovery of heavy scalar quarks which decay
into jets is projected to reach 1070 GeV [25] with
1000 fb−1. In Ref. [12], Berger, Csaki, Grossman, and
Heidenreich proposed looking for same-sign top quarks as
evidence for mesino oscillations, assuming that the squark
predominantly decays into a top and a strange quark. In our
model, same-sign tops can be produced without mesino
oscillations, as the neutral fermion which is often produced
in ϕ decays is equally likely to decay to top and to antitop.
Searching for such events containing same-sign tops should
increase the reach for searching for scalar quarks and
significantly constrain the model. Note that this signature
will be CP violating, but the small asymmetry between top
and antitop will be too challenging to measure at the LHC.
We also point out that a slight extension to the model

would allow for asymmetric dark matter (for a review, see,
e.g., [45]) to be incorporated. If the operator mediating ϕ
decays to baryons, αijϕ�d̄iūj, were modified to the dimen-
sion-5 operator αijϕ

�d̄iūjðχ=MÞ where χ is a complex
scalar andM is the relevant scale, the model would possess
a Z2 symmetry under which χ, ϕ, and Ni are odd. This
would render χ stable if it were the lightest of these
particles. Then the oscillations and decays of the mesinos
would produce a χ − χ� asymmetry along with the baryon-
antibaryon asymmetry. The χ mass in this model would be
fixed to be ∼5 GeV since the number densities of dark and
baryonic matter would be equal. The signature of ϕ
production at a hadron collider would now include missing
energy, pushing up the lower bound on the allowed mass.

APPENDIX: FORM FACTOR ESTIMATION

In this appendix, we detail our estimation of the mesino-
meson transition form factor which enters the two-body
contribution to Γ12. We specialize to the Φs → ηN1 case
that we considered above.
We begin by expressing the form factor using an operator

product expansion (see, e.g., Ref. [46] for a description of
the formalism),

Fðq2Þ ¼
Z

dx dyhηðp0Þjs̄iαskγ j0iCijkl
αβγδh0jϕjs̄lδjΦsβðpÞi:

ðA1Þ

p is the mesino momentum and p0 ¼ pþ q is the meson
momentum—a transition involving an on-shell N1 has
q2 ¼ m2

n1 . C
ijkl
αβγδ is the short-distance Wilson coefficient

calculated perturbatively. Greek subscripts are Lorentz
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indices and latin superscripts are color indices. We use the
shorthand

R
dx ¼ R

1
0 dx1

R
1
0 dx2δð1 − x1 − x2Þ and simi-

larly for dy. x1 is the momentum fraction of the squark
in the mesino and x2 is that of the light quark. y1;2 are the
momentum fractions of the quark and antiquark in the
meson. We expand the bilinear operators in terms of
operators of definite quantum numbers using the meson
and mesino momentum distributions,6

hηðp0Þjs̄iαskγ j0i¼
δik

Nc

�
−1

4

�
ðp0γ5Þαγϕ�

ηðy1;y2Þþ��� ; ðA2Þ

h0jϕjs̄lδjΦsβðpÞi ¼
δjl

Nc
δβδϕΦs

ðx1; x2Þ þ � � � ; ðA3Þ

where the distribution amplitudes ϕη and ϕΦs
are normal-

ized so thatZ
dyϕηðy1;y2Þ¼fη;

Z
dxϕΦs

ðx1;x2Þ¼fΦs
; ðA4Þ

where fη and fΦs
are the meson and mesino decay

constants.
At leading order there are two diagrams that contribute to

the Wilson coefficient, shown in Fig. 7, which give

Cijkl
αβγδ ¼ ðigsÞ2

�
− i
k2

�
ðγρÞγδðtaÞijðtaÞkl

×

�
γρ

iΔ1

Δ2
1

PL − iðx1pþ Δ2Þρ
Δ2

2 −m2
ϕ

PL

�
αβ

: ðA5Þ

Δ1 ¼ p0 − x2p and Δ2 ¼ p − y2p0 are the momenta of the
virtual quark and squark in the two diagrams and k is the
gluon momentum. Using these, the form factor becomes

Fðq2Þ¼ παs
trðtataÞ
N2

c

Z
dxdyϕMðx1;x2Þϕ�

Pðy1;y2Þ
~C
k2
;

ðA6Þ

with

~C ¼ 1

Δ2
1

Trðp0γ5γρΔ1PLγρÞ ðA7Þ

−
1

Δ2
2 −m2

ϕ

Trðp0γ5PLðx1pþ Δ1ÞÞ

¼ 4p0 · Δ1

Δ2
1

þ 2p0 · ðx1pþ Δ1Þ
Δ2

2 −m2
ϕ

: ðA8Þ

We use simple forms for the distribution functions,

ϕηðy1; y2Þ ¼ 6fηy1y2; ðA9Þ

ϕΦs
ðx1; x2Þ ¼ fΦs

δ

�
x2 − ΛQCD

mΦs

�
; ðA10Þ

where ΛQCD ∼ 300 MeV is the QCD scale. The meson
distribution function is motivated by the requirement that
the quark and antiquark momentum distributions be sym-
metric—it can also be shown to be the asymptotic meson
distribution amplitude. The mesino distribution function
encodes the fact that the light quark carries a momentum
fraction mq=mΦs

where mq ∼ ΛQCD is a constituent quark
mass.
Integrating over the mesino momentum distribution

takes

4p0 · Δ1

Δ2
1

→ −2þO
�
ΛQCD

mΦs

�
; ðA11Þ

2p0 · ðx1pþ Δ1Þ
Δ2

2 −m2
ϕ

→
m2

Φs
− q2

m2
Φs

−m2
ϕ − y2ðm2

Φs
− q2Þ

þO
�
ΛQCD

mΦs

�
; ðA12Þ

and

k2 ≃−ΛQCDmΦs
y2

�
1 − q2

m2
Φs

�
þO

�
Λ2

m2
Φs

�
: ðA13Þ

Because of the factor of 1=k2 in the Wilson coefficient, the
form factor is enhanced in the region where q2 approaches
m2

Φs
giving the form factor a 1=ðm2

Φs
− q2Þ scaling. After

integrating over the meson momentum distribution, (A12)
gives a logarithmic correction to the scaling which we can
ignore. We therefore take ~C≃−2, finding

Fðq2Þ≃ 3ðN2
c − 1Þ
N2

c
παs

fηfΦs

ΛQCDmΦs

1

1 − q2=m2
Φs

ðA14Þ

¼ 8παs
3

fηfΦs

ΛQCDmΦs

1

1 − q2=m2
Φs

: ðA15Þ

FIG. 7. Leading diagrams responsible for the Φs → ηN1 tran-
sition. Dashed lines are ϕ lines and solid lines are s or s̄ lines.
Curly lines are gluons. Shaded dots represent the ϕ − s − N1

coupling.

6We ignore the uū and dd̄ quark components of η, an
approximation that is valid given the overall uncertainty of the
calculation.
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Using αs ≃ 0.3, appropriate for the mass splitting between
Φs and N1 of ∼1 GeV that we have in mind,
ΛQCD ≃ 300 MeV, a value of the η decay constant derived
from the η → γγ rate (fη ¼ 130 MeV), and the mesino
decay constant from Eq. (21), this gives, for the production
of a physical N1,

Fðm2
N1
Þ≃ 1.2 × 10−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
650 GeV

mΦs

s �
1 GeV
ΔmΦN1

�
: ðA16Þ

Being an estimate of an exclusive process in QCD, this
calculation has considerable uncertainty, and represents the

largest contribution to the overall uncertainty in our
estimate of the baryon-to-entropy ratio. However, it cap-
tures the essential physics: this rate is enhanced when the
singlet mass is close to the mass of the mesino. This is
because the quark produced in the ϕ → N1s splitting has a
smaller momentum in this regime, allowing it to more
easily bind with the spectator quark to form a meson.
Similar behavior is observed in the B meson system, where
the semileptonic transition form factor in B → πlν decays
grows as the lν mass approaches mB.
Note that the overall normalization of the form factor, for

a fixed jΓ12j, is degenerate with the value of jys1j.
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