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We revisit the topic of triple-product asymmetries which probe CP violation through differential
distributions. We construct distributions with well-defined discrete symmetry properties and characterize
the asymmetries formed upon them. It is stressed that the simplest asymmetries may not be optimal.
We explore systematic generalizations having limited reliance on the process dynamics and phase-space
parametrization. They exploit larger fractions of the information contained in differential distributions and
may lead to increased sensitivities to CP violation. Our detailed treatment of the case of spinless four-body
decays paves the way for further experimental studies.
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I. INTRODUCTION

The fully differential rates of some multibody meson
decays are being more and more accurately measured. In
the search for new sources of CP violation, such processes
present several advantages. They often feature a rich
variety of interfering contributions from which differences
in CP-violating—weak—phases could manifest them-
selves. In addition, the multiplication of measurable
independent four-vectors permits the construction of so-
called triple-product observables. These have a couple of
interesting characteristics. Unlike total rate asymmetries
between CP-conjugate processes, their sensitivity to
small differences in CP-violating phases is not conditioned
by the presence of CP-conserving—strong or unitary—
phase differences. They can also be measured using
untagged samples in which CP-conjugate processes
need not be distinguished, provided their fractions are
equal.
In this paper, we explore the variety of possible

triple-product observables. The ever-increasing amount
of data collected allows finer details of the differential
distributions for which they are proxies to become meas-
urable. We stress that the most common asymmetries may
not be the most sensitive ones, due to cancellations in
phase-space integrals. As much as possible, we would like
to abstract our treatment from the particular dynamics
of the studied process. In many multibody decays, only
phenomenological descriptions of various degrees of
accuracy are achieved. They may not capture all the fine
details of interfering contributions which could reveal
CP violation. A systematic procedure that is less
likely to miss unpredicted forms of CP violation is
therefore desirable. Although we will mostly focus, for
concreteness, on four-body meson decays involving
spinless particles, our discussion has a wider range of
application.

A. Differential CP violation

Let us consider two transitions of amplitudes
Mðfλi; pigÞ and M̄ðfλı̄; pı̄gÞ. They involve an equal
number particles respectively labeled by i and ı̄, with
helicities λi;ı̄ and four-momenta pi;ı̄. We would like to
perform a comparison of these two amplitudes phase-space
point by phase-space point so we take λı̄ ¼ λi as well
as pı̄ ¼ pi.
If these two processes are CP conjugate of each other,

with ı̄ ¼ CP½i�, CP violation at any phase-space point takes
the form of a difference between the squared moduli of

Mðfλi; pigÞ and M̄ðfλi; p̄igÞ

where p̄≡ P½p� is the parity conjugate of the momentum p.
Testing CP conservation phase-space point by phase-space
point thus implies a comparison of the differential rates of
two processes involving CP-conjugate particles of identical
helicities but opposite three-momenta.
It is useful to define an operator, called motion reversal

and denoted here by T̂, that reverts both momentum and
spin three-vectors [1,2]. Its action on helicities and
momenta is thus identical to that of CP and it can be
viewed as the unitary component of the antiunitary time-
reversal operator T. It is therefore sometimes called naïve T.
In general, the amplitudes above can then be decomposed
into two pieces that are respectively T̂-even and T̂-odd [3]:

Mðfλi; pigÞ ¼ Meðfλi; pigÞ þMoðfλi; pigÞ;
M̄ðfλi; p̄igÞ ¼ M̄eðfλi; p̄igÞ þ M̄oðfλi; p̄igÞ

¼ M̄eðfλi; pigÞ − M̄oðfλi; pigÞ:

Those two terms can receive several contributions whose
absorptive parts [4,5] take the form of CP-even phases δ.
One can then write
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Meðfλi; pigÞ ¼ ajeeiðδ
j
eþφj

eÞ;

M̄eðfλi; pigÞ ¼ ajeeiðδ
j
e−φ

j
eÞ;

Moðfλi; pigÞ ¼ akoeiðδ
k
oþ½φk

oþπ=2�Þ;

M̄oðfλi; pigÞ ¼ akoeiðδ
k
o−½φk

oþπ=2�Þ; ð1Þ

with implicit summation over the j, k indices, and real aj;ke;o,
δj;ke;o, φ

j;k
e;o functions of the helicities and momenta fλi; pig.

The above conventions imply that all CP violation is
encoded in the CP-odd phases φj;k

e;o. When they vanish,

M̄eðfλi; pigÞ ¼ þMeðfλi; pigÞ;
M̄oðfλi; pigÞ ¼ −Moðfλi; pigÞ;

so that the CP-conjugate rates are identical, phase-space
point by phase-space point. As the physical amplitude is
defined up to an overall phase, a departure from zero for
differences in these φj;k

e;o is what we are after.

B. CP violation without CP-even phases

The T̂-transformed differential rates are obviously acces-
sible experimentally since the measured momenta can be
artificially reversed. For processes involving only scalars in
their initial and final states, T̂ is actually equivalent to parity
conjugation P. The measured differential rates of any pair
of CP-conjugate processes can therefore be decomposed
into four pieces of definite T̂ and CP transformation
properties:

dΓ
dΦ

����
T̂−even

odd

CP−even
odd

≡ I� T̂
2

I� CP
2

dΓ
dΦ

ð2Þ

with the shorthand Φ≡ fλi; pig.
For simplicity, let us assume there are respectively two

and one contribution(s) to the T̂-even and T̂-odd parts of the
amplitude in the process under scrutiny:

Mðfλi; pigÞ ¼ a1eeiðδ
1
aþφ1

aÞ þ a2eeiðδ
2
aþφ2

aÞ þ ia1oeiðδ
1
oþφ1

oÞ;

M̄ðfλi; p̄igÞ ¼ a1eeiðδ
1
a−φ1

aÞ þ a2eeiðδ
2
a−φ2

aÞ þ ia1oeiðδ
1
o−φ1

oÞ:

All functions of the phase space are evaluated at fλi; pig.
Note that the convention of Eq. (1) causes the appearance of
a factor of i in front of the T̂-odd term. Up to a flux factor,
the squared modulus of this expression and of its CP
conjugate provides us with the differential rates which can
be decomposed as prescribed in Eq. (2):

dΓ
dΦ

����
T̂−even

CP−even
∝ a1ea1e þ a2ea2e þ a1oa1o

þ 2a1ea2e cosðδ1e − δ2eÞ cosðφ1
e − φ2

eÞ;
dΓ
dΦ

����
T̂−odd

CP−even
∝ 2a1ea1o sinðδ1e − δ1oÞ cosðφ1

e − φ1
oÞ

þ 2a2ea1o sinðδ2e − δ1oÞ cosðφ2
e − φ2

oÞ;
dΓ
dΦ

����
T̂−even

CP−odd
∝ −2a1ea2e sinðδ1e − δ2eÞ sinðφ1

e − φ2
eÞ;

dΓ
dΦ

����
T̂−odd

CP−odd
∝ 2a1ea1o cosðδ1e − δ1oÞ sinðφ1

e − φ1
oÞ

þ 2a2ea1o cosðδ2e − δ1oÞ sinðφ2
e − φ1

oÞ:
The last two expressions above vanish in theCP limit. There
are thus two distinct kinds of CP-violating differential rates
[6]: the presence of the T̂-even one requires nonvanishing
differences in CP-even phases δ, while the T̂-odd–CP-odd
one does not. This is because, in the absence of an absorptive
part to the amplitude, T̂ is equivalent to T so that CPT con-
servation imposes any CP-odd quantity to also be T̂ odd [7].
On the other hand, the T̂-odd–CP-even piece of the

differential rate could be used to isolate relatively small
differences in CP-even phases δ, in the absence of a
CP-odd phase φ. Thus it can help us to better understand
final-state interactions.

C. Untagged samples

Another remarkable characteristic of the T̂-odd–CP-odd
part of the differential rate is that it can be measured with
samples which contain an equal number of events from
CP-conjugated processes. It can also be evaluated in the
decay of self-conjugate states like the Z and h bosons, or
any Majorana fermion. This can be understood by rewriting
the T̂-odd–CP-odd differential rate defined in Eq. (2) as

I − T̂
2

�
Iþ CPT̂

2

dΓ
dΦ

�
;

using the fact that T̂ is an involution: T̂2 ¼ I. It only
involves dðΓþ Γ̄Þ=dΦ evaluated at the phase-space point
fλi; pig and at its T̂ conjugate fλi; p̄ig.
Other discrete symmetry operators can be introduced.

In particular, let us denote a permutation of the external
particles as Efi1; i2;…; ing ¼ fE½i1�;E½i2�;…;E½in�g. For
transitions involving a self-conjugate subset of external
particles, there is an especially relevant permutation E� that
takes each particle in the subset to its CP conjugate. For
example, E�fKþ; K−; πþ; π−g ¼ fK−; Kþ; π−; πþg.
A part of the differential rate that is odd under a

permutation E can also be used to test CP conservation
with samples containing an equal number of events from
CP-conjugate processes:

GAUTHIER DURIEUX AND YUVAL GROSSMAN PHYSICAL REVIEW D 92, 076013 (2015)

076013-2



I − E
2

�
Iþ CPE

2

dΓ
dΦ

�
:

However, resorting to such samples is only desirable when
a subset of the particles involved is self-conjugate.
Experimentally, the tagging that discriminates between
the CP-conjugate processes then comes with an efficiency
cost. Importantly, without tagging, what is then actually
measured is

Iþ CPT̂E�

2

dΓ
dΦ

:

In an untagged sample, one can therefore measure two
CP-odd differential rates that are either T̂-odd–E�-even or
T̂-even–E�-odd:

I� T̂
2

I ∓ E�

2

I − CP
2

dΓ
dΦ

¼ I� T̂
2

I ∓ E�

2

�
Iþ CPT̂E�

2

dΓ
dΦ

�
:

Some asymmetries of either kind were measured by the
LHCb Collaboration in its study of the B0

s → KþK−πþπ−
decay with an untagged sample [8] (see discussion in
Sec. II H).
On the contrary, the differential rates of identical T̂ and

E� parities are CP even in an untagged sample:

I� T̂
2

I� E�

2

�
Iþ CPT̂E�

2

dΓ
dΦ

�
¼ I� T̂

2

I� E�

2

Iþ CP
2

dΓ
dΦ

:

As in the tagged sample case, they provide a handle on the
CP-even phases.

D. Integrated observables

No phase-space integration or spin averaging is in
principle required to test for the existence of CP-violating
phases. Such procedures are only applied because of
practical constraints like finite statistics. The total rate
asymmetry is constructed upon the T̂-even–CP-odd differ-
ential rate

Z
dΦ

dΓ
dΦ

����
T̂−even

CP−odd
: ð3Þ

A second family of observables can be obtained from
integrals of its T̂-odd–CP-odd homologue

Z
dΦfðΦÞdΓ

dΦ

����
T̂−odd

CP−odd
ð4Þ

with some T̂-odd function f ðΦÞ without which the phase-
space integral would vanish. Similarly, any T̂-even function
gðΦÞ could be inserted into the T̂-even–CP-odd integral to
construct observables sharing the properties of the total rate
asymmetry.
As a product of a T̂-odd kinematic function with a

T̂-odd–CP-even differential rate, the observables of Eq. (4)

are T̂ even and CP odd but do not have definite T
transformation properties.

E. T̂ oddity and triple products

There are two tensors available to construct Lorentz
invariants from spin and momenta four-vectors. The metric
gμν leads to T̂-even contractions like invariant masses, and
the completely antisymmetric ϵμνρσ produces T̂-odd com-
binations of four-vectors.
Dot products and antisymmetric contractions of four-

momenta and Pauli-Lubański spin vectors (respectively
denoted by p and w) have definite P parities. The P-even
combinations are

p1 · p2; w1 · w2;

ϵμνρσp
μ
1p

ν
2p

σ
3w

ρ
4; and ϵμνρσp

μ
1w

ν
2w

σ
3w

ρ
4;

while the P-odd ones are

p1 ·w2;

ϵμνρσp
μ
1p

ν
2p

σ
3p

ρ
4; ϵμνρσp

μ
1p

ν
2w

σ
3w

ρ
4; ϵμνρσw

μ
1w

ν
2w

σ
3w

ρ
4:

The sensitivities to discrete symmetry violation of observ-
ables having definite P and T̂ transformation properties, in
the presence or absence of absorptive parts in the ampli-
tude, are listed on p. 519 of Ref. [6].
The completely antisymmetric Lorentz structure can

originate directly from Lagrangian couplings like
iϵμνρσFμνFρσ, or arise in the presence of chiral fermions,
since γ5 ¼ i

4!
ϵμνρσγ

μγνγργσ. Because it is completely anti-
symmetric, however, a necessary condition for the presence
of a T̂-odd part Mo in an amplitude is the availability of
four independent and distinguishable four-vectors. In a
process involving scalars or particles of unmeasured spins,
at least five external momenta are therefore required.
In a reference frame where aμ ¼ ða0; 0Þ, the completely

antisymmetric combination of four four-vectors
ϵμνρσaμbνcρdσ reduces to a a0 b · ðc × dÞ scalar triple
product (for ϵ0123 ≡þ1). The observables constructed
from the T̂-odd parts of the differential rate are therefore
customarily called triple-product asymmetries. A signifi-
cant amount of effort, both theoretical and experimental,
has been devoted to their study. A triple-product asym-
metry has been measured in KL → πþπ−eþe− [9] and
applications are also found in heavy-meson [10–26]
[27–31], baryon [32,33], top [34], Z [35], Higgs [36–39],
and beyond-the-standard-model [40] physics.

F. Asymmetries

The simplest up-down triple-product asymmetries are
based on the sign of one of the constructible triple product
[see Eq. (4)]
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f ðΦÞ ¼ signfϵμνρσaμbνcρdσg: ð5Þ

The usual quantities defined in the literature

A
ð−Þ

T̂ ≡
R
dΦfðΦÞ½dΓdΦ jT̂−oddCP−evenþð−Þ

dΓ
dΦ jT̂−oddCP−odd�R

dΦ½dΓdΦ jT̂−evenCP−evenþð−Þ
dΓ
dΦ jT̂−evenCP−odd�

are ratios of integrated T̂-odd and T̂-even differential rates
and have no definite CP transformation properties. The
converse is only true when differences of CP-even phases
vanish. In the notations of Sec. I B,

AT̂ ∝ 2ajeako sin½ðδje − δkeÞ þ ðφj
e − φk

oÞ�
then actually becomes a probe for small differences in
CP-odd phases φ. On the contrary,

ACP
T̂

≡ 1

2
ðAT̂ − ĀT̂Þ

is always CP odd. ĀP is occasionally defined as the CPT̂
conjugate of AT̂ and has then a sign opposite to ĀT̂ ≡
CP½AT̂� defined here. With this alternative convention,ACP

T̂
becomes a sum. Other asymmetries were for instance listed
in Ref. [26]. Instead of ACP

T̂
, one may consider

~ACP
T̂ ≡

R
dΦfðΦÞdΓdΦ jT̂−oddCP−oddR
dΦdΓ

dΦ jT̂−evenCP−even

:

This choice corresponds to the more common one when the
total rate asymmetry of Eq. (3) vanishes. Using ~ACP

T̂ , the
T̂-even–CP-odd and T̂-odd–CP-odd families of observ-
ables can be kept independent. Uncertainties in the relative
abundance of the two CP-conjugate initial states can
however make the use of ACP

T̂
experimentally preferable.

G. Dilutions and f ðΦÞ sets
The “sign” function used in Eq. (5) is not the only possible

weight function f ðΦÞ that could be used in phase-space
integrals of T̂-odd differential rates. Experimentally, this
choice amounts to counting events in regions of phase space.
Moreover, the adjunction of any T̂-even factor in the “sign”
argument besides the antisymmetric contraction
ϵμνρσaμbνcρdσ would obviously yield other potentially inter-
esting observables. Using a basis of T̂-odd functions onΦ, it
is also possible to decompose the T̂-odd–CP-odd differential
rate in moments (see Refs. [41–43] about the method of
moments). As in Ref. [28], a binning of the phase space could
also be defined and a chi-squared test carried out to assess
local departures from zero in the T̂-odd–CP-odd piece of the
differential rate. This would correspond to choosing, for the
f ðΦÞ’s, a set of characteristic functions that evaluate to 1 in
one bin and vanish elsewhere. At least three categories of

f ðΦÞ functions can thus be used to describe the T̂-odd–CP-
odd piece of the differential decay rate:

(i) “sign” functions defining a signed partition of the
phase space,

(ii) a T̂-odd basis on Φ providing a decomposition in
moments, and

(iii) characteristic functions defining a phase-space
binning.

To avoid dilutions in the integral of Eq. (4), the functions
chosen should ideally change sign wherever the T̂-odd–CP-
odd piece of the differential decay rate itself changes sign.
The bins’ boundaries should also be placed there.
The question of what set of f ðΦÞ functions would yield

the best sensitivity to CP violation is nontrivial and
depends on the process at hand. Actually, when the form
of the differential decay rate is known with confidence,
one may rely on an unbinned likelihood fit to the data for
extracting CP-violating parameters. Such amplitude
analyses have notably been carried out for several B-meson
decays: e.g., for B0

s → KþK−KþK−, dominated by a ϕϕ
intermediate state [29], or for B0 → KþK−Kþπ−, domi-
nated by a ϕK�0 resonant intermediate state [27,31].
Trustworthy parametrizations also make it possible to

determine the asymmetries relevant in the study of the
CP-odd phases that might appear in perturbative processes
like h → lþl−l0þl0− or eþe− → hlþl− [39,44–48].
Observables of optimal statistical significance can then
also be determined [49].
In the hadronic decays of heavy mesons, however, the

parametrization provided by a resonance model is only
phenomenological and, although it may capture accurately
enough the main features of the studied process, new
sources of CP violation may only be observable in finer
details. Using tests of CP violation that have a limited
reliance upon the process dynamics and its parametrization
is therefore desirable.

II. SPINLESS FOUR-BODY DECAYS

Four-body decays involving only spinless particles are
simple examples of processes in which four independent
four-vectors can be measured. In these cases, T̂ is equivalent
to P and there is actually one single independent antisym-
metric ϵμνρσ contraction which involves the external par-
ticles’ four-momenta. All T̂-odd functions of the phase space
are built upon it.
In the following, we will focus on this simple case and

investigate how to define appropriate signed partitions (or
binnings) of the phase space. For concreteness, wewill often
refer to the specificD0 → KþK−πþπ− decay. Its differential
rate, as well as that of the corresponding CP-conjugate
process, has recently been measured with an impressive
accuracy by the LHCbCollaboration [28]. Notewewill only
consider time-integrated quantities while the LHCb
Collaboration also recorded the time dependence of the
decay rate.

GAUTHIER DURIEUX AND YUVAL GROSSMAN PHYSICAL REVIEW D 92, 076013 (2015)

076013-4



A. Phase-space parametrization

Hadronic multibody decays often receive contributions
of various topologies. The ones so far measured in D0 →
KþK−πþπ− are displayed in Table I. A given resonance
structure would be most appropriately described with a
parametrization of the phase space that includes the
invariant masses in which resonances occur. Such a
description would likely be the most sensitive to the
interferences between the several partial-wave contribu-
tions to that topology. On the contrary, the effects of the
resonances occurring in other invariant masses would be
diluted. Therefore, at this point already, the parametrization
of the four-body phase space challenges our aim at a
description independent of the process dynamics.
One may first consider the partial-wave decomposition

of the dominant resonant intermediate state. Let us here
focus on the 0 → ab → ð12Þð34Þ topology found in the
ϕρ0 resonant contribution that accounts for about 40% of
the D0 → KþK−πþπ− branching fraction. Repeating the
analysis that follows for different parametrizations would
be required to obtain better sensitivities to other decay
topologies. A (14)(23) pairing would for instance allow one
to better probe CP violation involving a K�0K̄�0 resonant
intermediate state in the D0 → KþK−πþπ− decay.
The standard Cabibbo-Maksymowicz parametrization

[52] of the phase space Φ can be adopted to describe a
four-body decay of 0 → ab → ð12Þð34Þ topology. It is
based on two invariant masses m2

a and m2
b (which become

constants in the narrow-width approximation) and three
angles (see Fig. 1). In the a and b subsystems’ rest frames,
the orientations of the final-state particles’ momenta are
respectively characterized by θa and θb, comprised in the

½0; π� interval. The relative orientation of the planes formed
by the two pairs of momenta is measured by ϕ ∈ ½−π; π�.
Note that θa and θb are T̂-even while ϕ is T̂-odd (and
P-odd). The whole ϕ dependence of a differential distri-
bution of definite T̂ transformation properties can thus be
obtained from the ½0; π� interval. The angle ϕ also deter-
mines the sign of the triple product:

ϵμνρσp
μ
1p

ν
2p

ρ
3p

σ
4 ¼

1

8
mamb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

0; m
2
a; m2

bÞ
q

sθasθbsϕ;

where λðx2;y2;z2Þ≡ðxþyþzÞðxþy−zÞðx−yþzÞðx−y−zÞ
is the usual Källén function, and m1;2;3;4 have been
neglected. We will occasionally use shorthands like
cϕ≡ cosϕ, s2θ≡ sin2 θ, s2θ≡ sinð2θÞ.

B. Differential decay rates

For a decay to four spinless particles forming two
intermediates states of angular momentum ja, jb, the
amplitude can be expressed in terms of spherical harmon-
ics. With a spinless initial state, the two intermediate states
have equal helicities λ. We can therefore write

M ¼ 4π
X
ja;jb;λ

Aja;jb
λ ðm2

a; m2
bÞYλ

ja
ðθa;ϕÞYλ

jb
ðθb; 0Þ�

with jλj ≤ minðja; jbÞ, and partial-wave amplitudes Aja;jb
λ

of mass dimension −1. General expressions for n-body
phase spaces and arbitrary spins can be derived from
Refs. [53–55]. Our normalization is chosen such that the
squared amplitude integrated over the θa;b and ϕ angles
takes the form

Z
dcθa
2

dcθb
2

dϕ
2π

jMj2 ¼
X
ja;jb;λ

jAja;jb
λ ðm2

a; m2
bÞj2:

In the ja ¼ 1 ¼ jb case relevant for the ϕρ0 intermediate
state of D0 → KþK−πþπ−, one can define the linear
polarization amplitudes

A0 ≡ A1;1
0 ; A∥;⊥ ≡ 1ffiffiffi

2
p ðA1;1

þ1 � A1;1
−1Þ;

TABLE I. The different measured contributions [50] to
BrðD0 → KþK−πþπ−Þ ¼ ð24.3� 1.2Þ × 10−4 as listed by the
Particle Data Group [51], the corresponding decay topologies (or
resonance structures), and branching fractions. The S, P, and D
indices indicate the partial waves in which the particle pairs are
produced.

Intermediate states Br × 104

ðϕρ0ÞS, ϕ → KþK−, ρ0 → πþπ− 9.3� 1.2
ðϕρ0ÞD, ϕ → KþK−, ρ0 → πþπ− 0.83� 0.23

ðK�0K̄�0ÞS, K�0 → K�π∓ 1.48� 0.30

ϕðπþπ−ÞS, ϕ → KþK− 2.50� 0.33

ðK−πþÞPðKþπ−ÞS 2.6� 0.5

Kþ
1 K

−, Kþ
1 → K�0πþ 1.8� 0.5

K−
1K

þ, K−
1 → K̄�0π− 0.22� 0.12

Kþ
1 K

−, Kþ
1 → ρ0Kþ 1.14� 0.26

K−
1K

þ, K−
1 → ρ0K− 1.46� 0.25

K�ð1410ÞþK−, K�ð1410Þþ → K�0πþ 1.02� 0.26
K�ð1410Þ−Kþ, K�ð1410Þ− → K̄�0π− 1.14� 0.2

FIG. 1. Parametrization of the phase space of a 0 → 1234
four-body decay privileging the (12) and (34) subsystems. The
momenta of the final-state particle pairs are pictured in their joint
rest frames.
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where, for conciseness, we omitted the m2
a;b dependences.

The amplitude is then written as

1

3
M ¼ A0cθacθb þ

A∥ffiffiffi
2

p sθasθbcϕ − i
A⊥ffiffiffi
2

p sθasθbsϕ;

where the last term is T̂ odd because of its sϕ dependence.
Its factor of i respects the phase conventions of Eq. (1).
Denoting by Ā0;∥;⊥ the linear polarization amplitudes of the
CP-conjugate process, the corresponding differential decay
rate can be decomposed, as described before, into four
pieces of definite T̂ and CP transformation properties:

2m0

9

dΓ
dΦ

����
T̂−even

CP−even
¼ jA0j2 þ jĀ0j2

2
c2θac2θb

þ jA∥j2 þ jĀ∥j2
4

s2θas2θbc2ϕ

þ jA⊥j2 þ jĀ⊥j2
4

s2θas2θbs2ϕ

þ RefA0A�
∥ þ Ā0Ā�

∥g
4

ffiffiffi
2

p s2θas2θbcϕ;

2m0

9

dΓ
dΦ

����
T̂−odd

CP−even
¼ ImfA⊥A�

0 þ Ā⊥Ā�
0g

4
ffiffiffi
2

p s2θas2θbsϕ

þ ImfA⊥A�
∥ þ Ā⊥Ā�

∥g
4

s2θas2θbs2ϕ;

2m0

9

dΓ
dΦ

����
T̂−even

CP−odd
¼ jA0j2 − jĀ0j2

2
c2θac2θb

þ jA∥j2 − jĀ∥j2
4

s2θas2θbc2ϕ

þ jA⊥j2 − jĀ⊥j2
4

s2θas2θbs2ϕ

þ RefA0A�
∥ − Ā0Ā�

∥g
4

ffiffiffi
2

p s2θas2θbcϕ;

2m0

9

dΓ
dΦ

����
T̂−odd

CP−odd
¼ ImfA⊥A�

0 − Ā⊥Ā�
0g

4
ffiffiffi
2

p s2θas2θbsϕ

þ ImfA⊥A�
∥ − Ā⊥Ā�

∥g
4

s2θas2θbs2ϕ;

where

TABLE II. Piecewise integrals from which information about the CP-conserving and CP-violating phases
between different polarization amplitudes could be extracted, for a 0 → ð12Þð34Þ decay involving spinless particles
and proceeding through two intermediate vector resonances.

R
dΦ signfcθacθbcϕg

dΓ
dΦ

���T̂−even
CP−even

¼ þ 2
ffiffiffi
2

p

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai0a
j
∥ cosðδi0 − δj∥Þ cosðφi

0 − φj
∥Þ

R
dΦ signfcθacθbsϕg

dΓ
dΦ

���T̂−odd
CP−even

¼ þ 2
ffiffiffi
2

p

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai⊥a
j
0 sinðδi⊥ − δj0Þ cosðφi⊥ − φj

0Þ

R
dΦ signfcθacθbcϕg

dΓ
dΦ

���T̂−even
CP−odd

¼ −
2

ffiffiffi
2

p

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai0a
j
∥ sinðδi0 − δj∥Þ sinðφi

0 − φj
∥Þ

R
dΦ signfcθacθbsϕg

dΓ
dΦ

���T̂−odd
CP−odd

¼ þ 2
ffiffiffi
2

p

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai⊥a
j
0 cosðδi⊥ − δj0Þ sinðφi⊥ − φj

0Þ

R
dΦ signfs2ϕgdΓ

dΦ

���T̂−odd
CP−even

¼ þ 4

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai⊥a
j
∥ sinðδi⊥ − δj∥Þ cosðφi⊥ − φj

∥Þ

R
dΦ signfs2ϕgdΓ

dΦ

���T̂−even
CP−odd

¼ −
4

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai⊥a
j
⊥ sinðδi⊥ − δj⊥Þ sinðφi⊥ − φj

⊥Þ

R
dΦ signfs2ϕgdΓ

dΦ

���T̂−odd
CP−odd

¼ þ 4

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai⊥a
j
∥ cosðδi⊥ − δj∥Þ sinðφi⊥ − φj

∥Þ

R
dΦ signfc2ϕgdΓ

dΦ

���T̂−even
CP−odd

¼ −
4

π

Z
dm2

a

2π

dm2
b

2π
N
X
i;j

ai∥a
j
∥ sinðδi∥ − δj∥Þ sinðφi

∥ − φj
∥Þ

with N ≡ 1

2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

0; m
2
a; m2

bÞ
p

8πm2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

a; m2
1; m

2
2Þ

p
8πm2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

b; m
2
3; m

2
4Þ

p
8πm2

b
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dΦ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

0; m
2
a; m2

bÞ
q

8πm2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

a; m2
1; m

2
2Þ

p
8πm2

a

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

b; m
2
3; m

2
4Þ

q
8πm2

b

dcθa
2

dcθb
2

dϕ
2π

dm2
a

2π

dm2
b

2π
:

The linear polarization amplitudes may receive different
contributions each having a CP-even phase δiX and a CP-
odd phase φi

X:

AXðm2
a; m2

bÞ≡
X
i

aiXðm2
a;m2

bÞei½δ
i
Xðm2

a;m2
bÞþφi

X �

for real-valued aiX, δiX, φi
X and X ¼ 0, ∥, or ⊥. The

corresponding CP-conjugate quantities are then given by
ĀX ≡P

ia
i
Xe

i½δiX−φi
X �, so that

RefAXA�
Y � ĀXĀ�

Yg=2
¼ �

X
i;j

aiXa
j
Y
cos
sin

ðδiX − δjYÞ
cos
sin

ðφi
X − φj

YÞ;

ImfAXA�
Y � ĀXĀ�

Yg=2

¼ þ
X
i;j

aiXa
j
Y
sin
cos

ðδiX − δjYÞ
sin
cos

ðφi
X − φj

YÞ:

In this specific example, again, the different pieces of the
partial rate exhibit the sensitivities to the CP-even and -odd
phases described earlier.

C. Beyond the most common observables

Interestingly, with a single resonant intermediate state
having ja ¼ 1 ¼ jb, the total rate asymmetry based on the
integral of Eq. (3) vanishes when the A0 coefficient receives

FIG. 2 (color online). Decomposition of the measured D → KþK−πþπ− differential rate into components of definite T̂ and CP
transformation properties, projected onto the ϕ angle andmKK invariant mass. The uncertainties on the LHCb data points in Figs. 3(e)–3
(f) and Figs. 2(c)–2(d) of Ref. [28] have been assumed equal to

ffiffiffiffi
N

p þ 8 and uncorrelated.
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contributions of identical phases, or one single contribu-
tion. (The terms involving other linear polarization ampli-
tudes vanish upon phase-space integration.) In such a case,
only a differential rate study can provide information about
CP violation.
Without assumptions about the presence of identical

phases, the most common up-down integrated asymmetry
based on the sign of the triple productZ

dΦsignfsϕgdΓ
dΦ

����
T̂−odd

CP−odd

also vanishes in this simple case. This illustrates—in an
extreme way—that phase-space integration may result in
losses of sensitivity to CP-violating phases. A nontrivial
phase-space-dependent T̂-even factor in the T̂-odd–CP-odd
differential rate can make it change sign where the triple
product does not.
Such dilutions can obviously be overcome when a trust-

worthy parametrization of the differential rate is known.
Taking seriously the simplified parametrization of the D0

decay presented above, the bare examination of the differ-
ential rates indicates that more information about CP-odd
and -even phases is contained in the piecewise integrals of
Table II upon which asymmetries could be constructed.
However, as already stressed, the parametrization of

heavy mesons’ hadronic decays is only phenomenological
and may miss some fine interference details that have the
potential of revealing new sources of CP violation. We
would therefore wish to adopt a more systematic approach
that does not rely on strong theoretical assumptions about
the process dynamics.

D. A first look at the data

This point can be made more concrete using the recent
experimental study of the D0 → KþK−πþπ− decay. The
LHCb Collaboration displayed in Ref. [28] the measured
mπþπ− ,mKþK− , cos θπ , cos θK andϕ distributions for bothD0

and D̄0 as well as sinϕ > 0 and sinϕ < 0. This allows for
the marginalized differential distributions of definite T̂ and
CP properties to be derived. The left panel of Fig. 2 for

instance shows those differential distributions projected
onto the ϕ angle (i.e., marginalized over the four other
phase-space variables). The respective c2ϕ and s2ϕ depend-
ences of the T̂-even–CP-even and T̂-odd–CP-even differ-
ential rates expected from a dominant ϕρ0 contribution are
clearly visible while the T̂-even–CP–odd and T̂-odd–CP-
odd distributions are roughly compatible with zero.
An oscillatory pattern can however be distinguished

in the T̂-odd–CP-odd differential rate. The An ≡R
dΦsignfsin nϕgdΓdΦ jT̂−oddCP−odd asymmetries (see Table III)

notably point at the presence of a sizable sin 8ϕ contribu-
tion: the A8 departure from zero is of about 2.6 standard
deviations (2.0 standard deviations for A2 and A13). If
genuine, this rapid oscillatory behavior would indicate the
presence of a CP-violating phase difference but would not
have contributed to the asymmetries that could be expected
from a simple ϕρ0 parametrization. Whether any resonance
model considered as providing a fair description of that
process would have included a contribution oscillating so
rapidly is also unclear.

E. Even more angular asymmetries

Clearly, one way in which the presence of CP-violating
phases could be probed without relying on a full descrip-
tion of the dynamics of the process studied would be to
evaluate systematically a wider range of triple-product
asymmetries of the form

Z
dΦsignfflðcθaÞfmðcθbÞ sin nϕg

dΓ
dΦ

����
T̂−odd

CP−odd

for all combinations of reasonably large integers l, m, and
n. In the case of spinless final states forming two pairs of
resonant intermediate states, the natural set of functions f
are products of the various cθ dependences arising in
spherical harmonics:

l ¼ 1∶ cθ;

2∶ 3c2θ− 1;

3∶ cθð5c2θ− 3Þ; 5c2θ− 1;

4∶ 35c4θ− 30c2θþ 3; cθð7c2θ− 3Þ; 7c2θ− 1;

…

TABLE III. An ≡
R
dΦsignfsin nϕgdΓdΦ jT̂−oddCP−odd asymmetries in

the data collected by the LHCb Collaboration on the D0 →
KþK−πþπ− decay. The uncertainties on the data points of
Figs. 3(e)–3(f) in Ref. [28] have been assumed equal toffiffiffiffi
N

p þ 8 and uncorrelated.

n An n An

1 þ58� 132 8 þ337� 132
2 −259� 132 9 −40� 132
3 −2� 132 10 þ41� 132
4 −134� 132 11 þ128� 132
5 −225� 132 12 þ164� 132
6 þ164� 132 13 þ268� 132
7 þ101� 132 14 −107� 132

TABLE IV. Natural set of functions of the θa;b angles for the
systematic construction of asymmetries in 0 → ð12Þð34Þ decays
involving spinless particles.

f0ðcθÞ ¼ 1, f6ðcθÞ ¼ 5c2θ − 3,
f1ðcθÞ ¼ cθ, f7ðcθÞ ¼ cθð5c2θ − 1Þ,
f2ðcθÞ ¼ 3c2θ − 1, f8ðcθÞ ¼ cθð3c2θ − 1Þð5c2θ − 3Þ,
f3ðcθÞ ¼ cθð3c2θ − 1Þ, f9ðcθÞ ¼ ð3c2θ − 1Þð5c2θ − 1Þ,
f4ðcθÞ ¼ cθð5c2θ − 3Þ, f10ðcθÞ ¼ cθð5c2θ − 3Þð5c2θ − 1Þ,
f5ðcθÞ ¼ 5c2θ − 1, � � �
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The dependences upon sθ have been dropped as they have
no influence on the sign of the associated Legendre
polynomials Pm

l . Here, the set of f functions could there-
fore be defined as in Table IV, keeping in mind that another
choice would be needed for final states carrying spin.

F. Invariant mass dependence

Let us still focus on the parametrization of the phase
space privileging the 0 → ð12Þð34Þ type of topology.

Upon phase-space integration, the m2
a;b invariant mass

dependence of the decay rate could also lead to losses
of sensitivity to CP-violating phases. This happens when it
causes the T̂-odd–CP-odd piece of the differential decay
rate to change sign. Guessing where this could happen is in
general difficult. However, when resonances are clearly
identified, one at least knows the real parts of the associated
propagators

Re

�
1

m2
a −M2 þ iΓM

�
¼ m2

a −M2

ðm2
a −M2Þ2 þ Γ2M2

change sign at the resonances (and could possibly appear in
interferences).
Once again, a glimpse at the LHCb data shows such a

behavior actually occurs in the mKK invariant mass spec-

trum, although in the T̂-odd–CP-even piece of the

TABLE V. Parameters chosen in the toy simulation of the
D → ϕρ0 → ðKþK−Þðπþπ−Þ process.

aX½GeV−1� δX φX

X ¼ 0∶ 1 1 0
∥∶ 2 0 0
⊥∶ 1 1 0.05

FIG. 3 (color online). SimulatedD → ϕρ0 → ðKþK−Þðπþπ−Þ decay and partial rate decomposition in components of definite T̂ andCP
transformation properties as in Eq. (2), projected onto the ϕ angle and mKK invariant mass. Only statistical uncertainties are displayed.

PROBING CP VIOLATION SYSTEMATICALLY IN … PHYSICAL REVIEW D 92, 076013 (2015)

076013-9



differential rate which is not directly relevant for the
extraction of CP-violating phases (see right panel
of Fig. 2).
Therefore, when constructing asymmetries systemati-

cally one may also wish to consider signfm2
a −M2

i g and
signfm2

b −M2
jg as weight functions, for the known reso-

nances appearing atM2
i;j in the m

2
a;b invariant mass spectra.

G. Binned analyses

Instead of constructing asymmetries, one may rather
adopt the approach of Ref. [28] and bin the phase space.
Care must however be taken in the binning choice. Putting
together in one bin regions of the phase space in which the
T̂-odd–CP-odd part of the differential rate changes sign
would result in sensitivity losses.
These can be assessed using a toy simulation. We

considered massless kaons and pions and generated events
using MADGRAPH5 [56] with the following matrix elements
for the Dρϕ, ϕKK, and ρππ interactions:

Dρϕ∶ ϵμρϵνϕpα
ρp

β
ϕ

�
A0gανgβμ

þA∥

�
gμνgαβ

�
1−

p2
ρp2

ϕ

ðpρ ·pϕÞ2
	
−gανgβμ

�
þA⊥iϵμναβ

�
;

ϕKK∶ ϵμϕðpKþμ−pK−μÞ;
ρππ∶ ϵμρðpπþμ−pπ−μÞ:

The linear polarization amplitudes described earlier are
then

A0 ¼
A0λðm2

D;m
2
KK;m

2
ππÞ

12ðm2
KK −m2

ϕ þ imϕΓϕÞðm2
ππ −m2

ρ þ imρΓρÞ
;

A∥ ¼
A∥

mKKmππ

m2
D−m

2
KK−m

2
ππ
λðm2

D;m
2
KK;m

2
ππÞ

6ðm2
KK −m2

ϕ þ imϕΓϕÞðm2
ππ −m2

ρ þ imρΓρÞ
;

A⊥ ¼ A⊥mKKmππ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D;m
2
KK;m

2
ππÞ

p
6ðm2

KK −m2
ϕ þ imϕΓϕÞðm2

ππ −m2
ρ þ imρΓρÞ

;

where each of the A0;∥;⊥ were given both a CP-even and
CP-odd phase: AX ¼ aXeiðδXþφXÞ for X ¼ 0; ∥;⊥. These
parameters were fixed as in Table V and 40000 D0 and D̄0

decays were generated. The decomposition of the ϕ differ-
ential distribution obtained is displayed in the left panel
of Fig. 3.
A larger magnitude for a∥ than for a⊥ causes the

T̂-even–CP–even piece of the differential rate to have a
dip at π=2. The nonvanishing difference in CP-conserving
phases δ∥ − δ⊥ sources the sin 2ϕ dependence of the
T̂-odd–CP-even contribution. No structure is generated
in the T̂-even–CP-odd distribution, while a small difference
in CP-violating phases φ∥ − φ⊥ allows for a sin 2ϕ

dependence in the T̂-odd–CP-odd differential rate. Due
to limited statistics, the latter is barely visible in Fig. 3.
Additionally, a sin 2θa sin 2θb sinϕ dependence of each
piece of the differential rate is washed out upon integration
over the θa;b angles. One can also notice a sign change in
the T̂-odd–CP-even differential rate projected on the mKK
variable at the mϕ ¼ 1.02 GeV resonance (see right panel
of Fig. 3).
Computing

Z
dΦsign

�
flðcθaÞfmðcθbÞ sin nϕ

×
Y
i

ðm2
a −M2

i Þ
Y
j

ðm2
b −M2

jÞ
�
dΓ
dΦ

����
T̂−odd

CP−odd
ð6Þ

asymmetries as prescribed earlier, one observes the
expected excesses for ðl; m; nÞ ¼ ð0; 0; 2Þ and ð1; 1; 1Þ.
They are of 4.0 and 2.8 standard deviations, respectively
(see Table VI; only statistical uncertainties have been
accounted for). Using additional signfm2

KK −m2
ϕg and

signfm2
ππ −m2

ρg weight functions does not enhance the
excesses’ significance.
The LHCb Collaboration partitioned the phase space in

32 bins (two bins per kinematic variable) and estimated the
combined departure from zero using a chi-squared test [28].
The separation between the two bins of the ϕ variable was
set at 1.99 rad (its domain is restricted to the ½0; π� interval
here) and between −0.28 and þ0.28 for cos θKK and
cos θππ.
In our simulated sample, a chi-squared test with only two

bins of boundary located at π=2 in the ϕ variable gives a
departure from zero for the T̂-odd–CP-odd differential rate

TABLE VI. Departure from zero expressed in standard devia-
tions for a few asymmetries, computed with the simulated sample
of D → ϕρ0 → ðKþK−Þðπþπ−Þ decays. Only statistical uncer-
tainties are accounted for.

sin nϕ sin nϕ sin nϕ sin nϕ
ðm2

KK −m2
ϕÞ ðm2

ππ −m2
ρÞ cos θKK cos θππ

n ¼ 1∶ −2.0 0.86 1.2 −2.8
2: −4.0 0.88 3.4 0.40
3: 0.20 0.15 −0.014 −1.4
4: 0.30 −0.014 −0.52 −1.5
5: 0.30 0.95 −1.2 −0.65
6: −0.40 0.20 1.0 0.057
7: −2.0 2.4 2.4 −0.042
8: −0.70 0.37 1.5 0.27
9: −0.60 −0.69 0.88 −0.75

10: 0.60 −2.2 −0.78 1.0
11: −2.0 0.53 2.1 −0.15
12: −0.20 −0.092 0.55 −1.7
13: −1.0 0.30 1.2 0.67
14: 0.20 1.7 0.30 −0.70
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equivalent to 3.9 Gaussian standard deviations. Once the
bins’ boundary is moved to 1.99 rad, this significance
slightly diminishes to 3.7σ. The loss of sensitivity is more
significant for the only other binning relevant to this
simplified simulation. With two bins in both the cos θKK
and cos θππ directions, the T̂-odd–CP-odd differential rate
departs from zero at the 2.8σ level when the bin boundaries
are chosen at 0, and at the 1.1σ level only when they are
respectively taken at the extreme values of −0.28
and þ0.28.
The multiplication of unnecessary bins also leads to

losses of sensitivity, in this scheme. With eight bins having
boundaries at π=2 in the ϕ angle and 0 in the cos θKK;ππ
variables, one for instance obtains an overall departure
from zero of 3.5 standard deviations.

H. Untagged D and B → KþK−πþπ− samples

Although a tagging of the D0 has been carried out by the
LHCb Collaboration in this D0 → KþK−πþπ− decay, the
self-conjugate final state could have motivated an untagged
analysis. This is what was actually done in the study of the
B0
s decay to the very same final state [8].
In both cases, the E� permutation defined in Sec. I C sends

fKþ; K−; πþ; π−g to fK−; Kþ; π−; πþg. In the parametriza-
tion of the phase space adopted thus far, it therefore acts
trivially on the mKK , mππ invariant masses, and on the ϕ
azimuthal angle. The cosines of the polar angles in theKþK−

andπþπ− subsystemsundergo the following transformations:

E�½cos θKþ� ¼ cos θK− ¼ − cos θKþ ;

E�½cos θπþ� ¼ cos θπ− ¼ − cos θπþ :

FIG. 4 (color online). The four components of the D → KþK−πþπ− differential rate having definite T̂, E�, and CP transformation
properties that could have been measured with an untagged sample. The uncertainties on the LHCb data points in from Figs. 3(a)–3(d) of
Ref. [28] have been assumed equal to

ffiffiffiffi
N

p þ 8 and uncorrelated.
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Practically, the untagged E�-odd distributions can therefore
be obtained bymultiplying theweights of each recorded event
by 1

2
signfcos θKþ cos θπþg and by considering the absolute

values of both cosines as kinematic variables. The same
procedure carried out with the variable ϕ yields the T̂-odd
distributions. Using the LHCbmeasurement [28], we display
in Fig. 4 the projection onto the cos θKþ and cos θπþ variables
of the four differential rates that could have been measured
with an untagged sample of D → KþK−πþπ− events.
In its analysis of the B0

s → KþK−πþπ− decay [8], the
LHCb Collaboration used a parametrization of the phase
space privileging resonances in the Kþπ− and K−πþ

invariant masses. A dominant K�0K̄�0 intermediate state
motivated this choice. In that parametrization, the permu-
tation E� exchanges the cosines of the polar angles defined
in the two subsystems cθa and cθb, as well as their
respective invariant masses ma and mb. Various E�-odd
asymmetries can therefore be constructed by using weight
functions gðΦÞ (see Sec. I D) proportional to either
cθa − cθb, or ma −mb. The E�-odd asymmetries measured
in Ref. [8] were the ones possibly appearing for Kπ
subsystems forming partial waves of ja;b ¼ 0 and 1.
However, the arguments presented here to motivate the
systematic use of a wider range of T̂-odd–CP-odd asym-
metries also apply to T̂-even–E�-odd–CP-odd ones.

III. CONCLUSIONS

CP violation in K and B decays has so far been observed
mostly through time-independent and time-integrated rate
asymmetries. As multibody decays are being measured
with an ever increasing accuracy, it is desirable to devote
more attention to their rich differential distributions.

Taking, as an illustrative example, theD0 → KþK−πþπ−
decay whose differential distribution has recently been
studied by the LHCb Collaboration [28], we proposed to
measure a large set of generalized triple-product asymme-
tries. Their choice is guided by the topology—or resonance
structure—of the contribution under scrutiny, by the spin of
the particles involved, and by the location of the known
resonances. An illustration of the procedure and of the
losses of sensitivity that may occur with a suboptimal
partition of the phase space was provided using a toy
simulation. Such a procedure could obviously be applied to
a wide range of other processes in which CP violation is
searched for in differential distributions.
In charm decays, a signal of CP violation would clearly

point at new physics. In B decays, however, standard model
CP violation is expected to be visible in some cases. We did
not investigate whether cleaner probes for physics beyond
the standard model could be constructed from differential
observables. Clearly, more theoretical studies in this
direction would be necessary.
Our final point is to emphasize that more experimental

studies are needed in order to devise observables optimized
for specific processes. With the new data coming from
LHCb and Belle II, such a task is timely.
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