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We present a gauge-invariant effective action for the Abelian-Higgs model (scalar electrodynamics) with
a chemical potential μ on a (1þ 1)-dimensional lattice. This formulation provides an expansion in the
hopping parameter κ which we test with Monte Carlo simulations for a broad range of the inverse gauge
coupling βpl ¼ 1=g2 and small values of the scalar self-coupling λ. In the opposite limit of infinitely large λ,
the partition function can be written as a traced product of local tensors which allows us to write exact
blocking formulas. Gauss’s law is automatically satisfied and the introduction of μ has consequences only if
we have an external electric field, g2 ¼ 0 or an explicit gauge symmetry breaking. The time-continuum
limit of the blocked transfer matrix can be obtained numerically and, for g2 ¼ 0 and a spin-1 truncation, the
small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard
model in the limit of large on-site repulsion. We extend this procedure for finite βpl and derive a spin-1
approximation of the Hamiltonian. It involves new terms corresponding to transitions among the two
species in the Bose-Hubbard model. We propose an optical lattice implementation involving a ladder
structure.
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I. INTRODUCTION

The lattice formulation of quantum chromodynamics has
provided successful treatments of nonperturbative prob-
lems involving strongly interacting particles in the context
of particle and nuclear physics. However, numerical com-
putations at finite density and real time have remained a
major challenge. For this reason, there has been a lot of
interest in the possibility of building quantum simulators
for lattice gauge theory (LGT) using optical lattices (for
recent reviews see Refs. [1,2]).
When physical degrees of freedom—individual cold

atoms or condensates trapped in the optical lattice—play
the role of the gauge fields, one needs to make sure that the
physical observables are gauge invariant. One way to
achieve this goal is to impose Gauss’s law at least in some
approximation. This question is discussed in the context of
Abelian gauge theories in Refs. [3–9]. Another approach
that has been advocated [10,11] is to work directly with a
gauge-invariant formulation.
A simple example is the correspondence between the

Fermi-Hubbard model and an SUð2Þ gauge theory with one
fermion [12]. At strong gauge coupling and small hopping
parameter, the quadratic part of the gauge-invariant effec-
tive Hamiltonian in one spatial dimension reads

Heff ∝
X
i

½MiMiþ1 þ 2ðB†
i Biþ1 þ B†

iþ1BiÞ�; ð1Þ

where Mi and Bi are the gauge-invariant operators corre-
sponding to mesons and SUð2Þ baryons. A similar effective

Hamiltonian can be obtained at second order in degenerate
perturbation theory of the Fermi-Hubbard model with
strong on-site repulsion.
Effective actions for mesons and baryons can be con-

structed for SUðNÞ gauge groups with similar approxima-
tions [13]. The computation of the corrections due to the
plaquette interactions is rather involved [14]. Various
related techniques have been developed to approach chiral
symmetry breaking at strong coupling [15,16] and can
accommodate a chemical potential [17]. Despite this
progress, testing the validity of the approximations with
numerical methods has remained challengingwhich suggests
to consider simpler examples.
For the Bose-Hubbard model with one species of

particle, there is a remarkable level of quantitative agree-
ment [18] between state-of-the-art quantum Monte Carlo
(MC) calculations and their experimental optical lattice
implementations. It would be highly desirable to provide a
similar proof of principle for a simple LGT model where
calculations at finite density and real time are possible.
It is important to emphasize that to the best of our

knowledge there are so far no experimental realizations of
any lattice model with dynamical gauge fields. It is thus
crucial to start with a simple example as a proof of principle
that it is feasible.
In this article, we explain how to establish an approxi-

mate quantitative correspondence between the well-known
Abelian-Higgs model (scalar electrodynamics) [19,20] on a
(1þ 1)-dimensional lattice and specific many-body theo-
ries that can in principle be realized experimentally on
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optical lattices. The Abelian-Higgs model describes a
charged complex scalar field and an Abelian gauge field.
Its formulation is reviewed in Sec. II. The model can be
studied numerically by various numerical methods in
various regions of the parameter space and a first important
step is to connect the standard isotropic space-time calcu-
lations to the Hamiltonian approach obtained by taking the
time-continuum limit first and then connecting this
Hamiltonian with the Hamiltonian of cold atoms trapped
in optical lattices. Our first goal is to achieve some
calibration in the gapped, confining phase corresponding
to the Mott insulator phase of the cold atom system. A more
ambitious goal is to extend this procedure to the region of
parameter space where the gap disappears and a new phase
appears.
The exact form of the gauge-invariant effective action for

the mesons is derived in Sec. III by integrating over the
gauge fields. In this case the constraint enforcing gauge
invariance, i.e. Gauss’s law, is satisfied automatically, while
formulations with explicit gauge fields need to impose this
nontrivial constraint, which is often done approximately.
The absence of fermions permits inexpensive MC simu-
lations at Euclidean time and zero chemical potential. This
allows us to test the expansion of the effective action in the
hopping parameter for a broad range of the inverse gauge
coupling βpl and small values of the scalar self-coupling λ.
Good agreement with MC is shown in Sec. IV.
In Sec. V we consider the opposite limit of arbitrarily

large λ where the amplitude of the scalar field is frozen to
unity. In this limit, all the remaining variables involved in
the basic formulation are compact and we can use recently
developed tensor renormalization group (TRG) methods
[21–24] to write the partition function as a traced product of
local tensors with discrete indices. This reformulation
allows us to write exact blocking formulas which can be
used for numerical purposes. The basic character expan-
sions used in this section are well known and have been
developed in the context of dual formulations [19]. They
have also been used for other purposes recently [25,26].
Gauss’s law is automatically implemented and the

introduction of a chemical potential has practical conse-
quences only if we have an external electric field, g2 ¼ 0 or
an explicit gauge symmetry breaking. In the g2 ¼ 0 case,
the practical implementation requires truncations but in
contrast to the MC approach there is no sign problem for
arbitrary values of μ. We then write the transfer matrix as a
product of tensors along a time slice.
The time-continuum limit of the blocked transfer matrix

can be obtained numerically. In the case g2 ¼ 0, and with a
spin-1 truncation (inspired by gauge magnet or gauge link
constructions [27,28]), the small volume energy spectrum
is identical to the low energy spectrum of a two-species
Bose-Hubbard model in the limit of large on-site repulsion
[29,30]. We calculate numerically the energy spectrum in
this limit in Sec. VI. This section reviews the connection

between the Abelian-Higgs and Oð2Þ models and connects
with our previous Hamiltonian construction for the Oð2Þ
case, which is an important prerequisite for understanding
the material in Sec. VIII.
In Sec. VII, we start with finite values of βpl (nonzero

values of g2) and consider the time-continuum limit
obtained by extrapolating to infinite βpl while keeping a
fixed value for the mass gap. Using the spin-1 approxi-
mation we obtain a Hamiltonian which is quite different
from the one obtained in Sec. VI where we started with the
model at g2 ¼ 0. It involves new terms corresponding to
transitions among the two species in the Bose-Hubbard
model which we discuss in Sec. VIII. We then propose an
optical lattice implementation involving a ladder structure
and discuss further plans to obtain a good correspondence
between conventional MC calculations and optical lattice
measurements.

II. THE ABELIAN-HIGGS MODEL

In this section, we briefly remind the reader of the action
for the Abelian-Higgs model on a 1þ 1 space-time lattice
of size Ns × Nτ and introduce the notations used later.
We use x, y etc. for space-time vectors, i, j etc. for the
one-dimensional spatial sites and ν̂ ¼ ŝ or τ̂ for the unit
vectors in space and time, respectively. The gauge fields
Ux;ν̂ ¼ expðiAx;ν̂Þ are attached to the links. We denote the
product ofU’s around a plaquetteUpl;x where x is the lower
left corner of the plaquette in space-time coordinates. We
use the notation βpl ¼ 1=g2 for the inverse gauge coupling
and κs (κτ) for the hopping coefficient in the space (time)
direction. For the potential for the complex scalar field
ϕx ¼ jϕxj expðiθxÞ, we follow the convention of Ref. [31].
The action reads

S ¼ Sg þ Sh þ Sλ; ð2Þ

where the gauge part is

Sg ¼ −βpl
X
x

Re½Upl;x�; ð3Þ

the hopping

Sh ¼ −κτ
X
x

½eμϕ†
xUx;τ̂ϕxþτ̂ þ e−μϕ†

xþτ̂U
†
x;τ̂ϕx�

− κs
X
x

½ϕ†
xUx;ŝϕxþŝ þ ϕ†

xþŝU
†
x;ŝϕx� ð4Þ

and the self-interaction

Sλ ¼ λ
X
x

ðϕ†
xϕx − 1Þ2 þ

X
x

ϕ†
xϕx: ð5Þ

The partition function can then be written as
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Z ¼
Z

Dϕ†DϕDUe−S: ð6Þ

In the hopping part of the action Sh, we can separate the
compact and noncompact variables

Sh ¼ − 2κτjϕxjjϕxþτ̂j
X
x

cosðθxþτ̂ − θx þ Ax;τ̂ − iμÞ

− 2κsjϕxjjϕxþŝj
X
x

cosðθxþŝ − θx þ Ax;ŝÞ: ð7Þ

This equation makes clear that the chemical potential is a
constant imaginary gauge field in the time direction and
that the Nambu-Goldstone fields θx can be eliminated by a
gauge transformation

Ax;ν̂ → Ax;ν̂ − θxþν̂ þ θx; ð8Þ

which leaves the plaquette terms unchanged.

III. A GAUGE-INVARIANT EFFECTIVE ACTION

As explained in the Introduction, unlike other
approaches [2,4–7,9,32–34] we will not try to implement
the gauge field on the optical lattice, but rather try to
implement a gauge-invariant effective action obtained by
integrating over the gauge fields. In this section, we will
show that this effective action is a function of the
composite, gauge-invariant, meson field which we denote
Mx ≡ ϕ†

xϕx in order to emphasize the analogy with Eq. (1).
In other words,

Z ¼
Z

Dϕ†DϕDUe−S ¼
Z

DMe−SeffðMÞ−SλðMÞ: ð9Þ

For this purpose, we use the Fourier expansion of the
Boltzmann weights in terms of the modified Bessel
functions In, for instance,

exp½2κτjϕxjjϕxþτ̂jcosðθxþτ̂ − θxþAx;τ̂ − iμÞ�

¼
X∞
n¼−∞

Inð2κτjϕxjjϕxþτ̂jÞexp½inðθxþτ̂ − θxþAx;τ̂ − iμÞ�;

ð10Þ

and similar expressions for the space hopping and the
plaquette interactions. We can then collect all the expo-
nentials involving a given Ax;ν̂ and perform the integration
over Ax;ν̂. This results in Kronecker deltas relating the
various Fourier modes. The final result is

e−Seff ¼
X
fm□g

�Y
□

Im□
ðβplÞ

Y
x

ðInx;ŝð2κsjϕxjjϕxþŝjÞ

× Inx;τ̂ð2κτjϕxjjϕxþτ̂jÞ expðμnx;τ̂ÞÞ
�
; ð11Þ

with specific rules to express the link indices nx;ν̂ in terms
of the plaquette indicesm□ that we now proceed to explain.
Given that for x real, InðxÞ ¼ I−nðxÞ there are several
equivalent ways to label the contributions. We use the
convention where time is along the vertical axis. Starting
from the lower left corner of the plaquette and moving
counterclockwise, the gauge fields in the exponentials
come with a plus sign for the first two links and a minus
sign for the last two links. For the hopping terms, the gauge
fields always come with a positive sign. This results in the
rules

nx;ŝ ¼ mbelow −mabove; ð12Þ

nx;τ̂ ¼ mright −mleft ð13Þ

where the subscripts such as “below” refer to the plaquette
location with respect to the link. This completely fixes the
link indices in terms of the plaquette indices and it is easy to
check that Eqs. (12) and (13) guarantee that the link indices
automatically satisfy the current conservation imposed by
the integration of the θx variables. In other words, the m□

are the dual variables [19].
Models with local Uð1Þ symmetry, in particular the

Abelian-Higgs model have been extensively studied in
Ref. [19] in the dual formulation in d dimensions. While
the focus of this paper is on 1þ 1 dimensions, we note that
duality transformations based on (10), allow one to con-
struct a gauge theory of integers in 2þ 1 dimensions and a
Kalb-Ramond-type theory [35] in 3þ 1 dimensions, which
should be considered as candidates for quantum simulating
higher-dimensional models on optical lattices.
Equations (12) and (13) have simple electromagnetic

analogs. First, nx;τ̂ can be interpreted as a charge and mx as
an electric field in the spatial direction. With this
Minkowskian interpretation, Eq. (13) enforces Gauss’s
law. Second, nx;ν̂ can be interpreted as a two-dimensional
current and mx as a magnetic field normal to the two-
dimensional plane. In this Euclidean interpretation,
Eqs. (12) and (13) express the current as the curl of the
magnetic field. A right-hand rule can be obtained for the
following index ordering: time, space, normal direction.
A discrete version of Gauss’s theorem guarantees that the
sum of the charges on a time slice is the last m on the right
minus the first m on the left.
At the lowest order of the strong-coupling expansion we

have βpl ¼ 0 and from Inð0Þ ¼ 0 for n ≠ 0, we see that all
the indices must be zeros. The effect of the plaquette can be
restored perturbatively. This can be organized in an
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expansion in the hopping parameter. In the isotropic case
κτ ¼ κs ¼ κ we obtain

Seff ¼
X
hxyi

�
−κ2MxMy þ

1

4
κ4ðMxMyÞ2

�

− 2κ4
I1ðβplÞ
I0ðβplÞ

X
□ðxyzwÞ

MxMyMzMw þOðκ6Þ: ð14Þ

IV. MONTE CARLO CALCULATIONS

Consider the action (2) for the isotropic case
κτ ¼ κs ¼ κ. We start with the βpl → ∞ limit when all
gauge variables are frozen to unity, Ux;ν̂ ¼ 1. In this limit
the expectation value of the hopping term

Lϕ ¼ hRefϕ†
xUx;ν̂ϕxþν̂gi ð15Þ

can be calculated with the hopping parameter expansion,
for small κ. It has been derived up to Oðκ5Þ in Ref. [31].
This result can be generalized to βpl < ∞ by including the
appropriate factors of I1ðβplÞ=I0ðβplÞ for the diagrams that
involve plaquettes [36].
To check the range of validity of the expansion we

perform Monte Carlo simulations at several values of βpl,
κ and λ on a 162 lattice. To test the βpl → ∞ limit we set
βpl ¼ 20 and for λ ¼ 0.05 and 0.1 scan the range of
κ ∈ ½0.05; 0.30�. The results for Lϕ are shown in Fig. 1.
The lines represent the expansion at two orders. The
expansion starts to break down around κ ¼ 0.15 at Oðκ3Þ
and κ ¼ 0.2 at Oðκ5Þ. At the present exploratory stage we
use the updating algorithm of Ref. [37] that is applicable at
small self-coupling λ.
To study the dependence on βpl we focus on the κ ∈

½0.08; 0.16� range at λ ¼ 0.1 and perform calculations at

βpl ¼ 20, 2, 0.2 and 0.02. The results for Lϕ are shown
in Fig. 2.
To understand the dependence on βpl better we also

calculate Lϕ for several values of βpl at fixed κ ¼ 0.15. The
results together with the hopping expansion are shown in
Fig. 3. There is good agreement, and the dependence on β is
weak; compare the scales on Figs. 2 and 3.
At intermediate and large values of the self-coupling λ

one cannot consider the quartic term as a perturbation
and the updating algorithm of Ref. [37] suffers from low
acceptance rate. We are currently implementing the
Biased-Metropolis Heatbath algorithm [38] that can
provide almost uniform acceptance for arbitrary values
of λ. This is achieved by tabulating the proposal
probability distribution function. This algorithm has
been used for compact variables, such as the ones in
Uð1Þ and SUð2Þ gauge theory, but has not yet been
applied for a noncompact case, such as the scalar field
amplitude.
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FIG. 2 (color online). Lϕ at βpl ¼ 20, 2, 0.2 and 0.02 for
λ ¼ 0.1 as function of κ compared with the hopping expansion
with included dependence on βpl up to Oðκ5Þ.
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V. THE LARGE λ LIMIT

We now turn to the limit where λ becomes arbitrarily
large. In this limit, Mx is frozen to 1, or in other words, the
Brout-Englert-Higgs mode becomes infinitely massive. We
are then left with compact variables of integration in the
original formulation (θx and Ax;ν̂) and the Fourier expan-
sions described before lead to expressions of the partition
function in terms of discrete sums.
As explained in Ref. [22], these sums can be formulated

in a compact way using tensorial notations. In order to
simplify the equations below we define

tnðzÞ ¼
InðzÞ
I0ðzÞ

: ð16Þ

These normalized Bessel functions have useful properties.
For instance tnð0Þ ¼ δn;0. For z nonzero and finite, we have

1 ¼ t0ðzÞ > t1ðzÞ > t2ðzÞ > � � � > 0: ð17Þ

In addition, for sufficiently large z,

tnðzÞ ≈ 1 −
n2

2z
: ð18Þ

Following the general principles of the construction [22],
we attach a Bð□Þ tensor to every plaquette

Bð□Þ
m1m2m3m4

¼
�
tm□

ðβplÞ; if m1 ¼ m2 ¼ m3 ¼ m4 ¼ m□

0; otherwise;

ð19Þ

an AðsÞ tensor to the horizontal links

AðsÞ
mabovembelow ¼ tjmbelow−mabovejð2κsÞ; ð20Þ

and an AðτÞ tensor to the vertical links

AðτÞ
mleftmright ¼ tjmleft−mrightjð2κτÞeðmright−mleftÞμ: ð21Þ

The partition function can now be written as

Z ¼ ðI0ðβplÞI0ð2κsÞI0ð2κτÞÞV

× Tr

�Y
s;τ;□

AðsÞ
mabovembelowA

ðτÞ
mleftmrightB

ð□Þ
m1m2m3m4

�
: ð22Þ

The traces are performed by contracting the vertical and
horizontal indices as shown in Fig. 4. Note that the tensor
AðsÞ associated with a horizontal space link is represented
by a vertical line orthogonal to the link and the tensor AðτÞ
associated with a vertical time link is represented by a
horizontal line orthogonal to the link.

The traces can also be expressed in terms of a transfer
matrix T which can be constructed in the following way.
First, we define a matrix B as the product of the plaquette
tensors on a time slice alternating with the link tensor
corresponding to the vertical links in between the pla-
quettes. There are two natural ways to impose boundary
conditions. The first is to connect the last A tensor with the
first B tensor (periodic boundary conditions), the second is
to impose m ¼ 0 for the first and last B tensor (open
boundary conditions). However, in both cases, the total
charge on the interval has to be zero. A more general option
is to allow arbitrarym’s at each end. This would allow us to
consider appropriately selected charge sectors. In the
following we will focus on the open boundary conditions
(m ¼ 0 at both ends) and define

Bðm1;m2;…mNs Þðm0
1
;m0

2
…m0

Ns
Þ

¼ tm1
ð2κτÞδm1;m0

1
tm1

ðβplÞtjm1−m2jð2κτÞδm2;m0
2
tm2

ðβplÞ
× tjm2−m3jð2κτÞ…tmNs

ðβplÞtmNs
ð2κτÞ: ð23Þ

Note that with this choice of open boundary conditions, the
chemical potential has completely disappeared. If we had
chosen different m’s at the end allowing a total charge Q
inside the interval, we would have an additional factor
expðμQÞ. Another way to get a nontrivial factor involving μ
is to introduce an explicit symmetry breaking term of the
form, for instance, bν̂ðUx;ν̂ þU†

x;ν̂Þ. This brings new
independent quantum numbers on the links which intro-
duce local violations of Gauss’s law. It may also be argued
that if g2 is exactly zero, there is no electric field and no

FIG. 4 (color online). The basic B and A tensors (in brown and
green, respectively). The AðsÞ are associated with the vertical
tensors, and the horizontal (spatial) links of the lattice. The AðτÞ
are associated with the horizontal tensors, and the vertical
(temporal) links of the lattice.
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special reason to impose m ¼ 0 at the boundary
(see Sec. VI).
We next define a matrix A as the product

Aðm1;m2;…mNs Þðm0
1
;m0

2
…m0

Ns
Þ

¼ tjm1−m0
1
jð2κsÞtjm2−m0

2
jð2κsÞ…tjmNs−m

0
Ns
jð2κsÞ: ð24Þ

With these notations we can construct a symmetric
transfer matrix T . Since B is diagonal, real and positive,
we can define its square root in an obvious way and write
the transfer matrix as

T ¼
ffiffiffiffi
B

p
A

ffiffiffiffi
B

p
: ð25Þ

With this definition, the partition function can be written as

Z ¼ ðI0ðβplÞI0ð2κsÞI0ð2κτÞÞVTr½TNτ �: ð26Þ

Alternatively, we could diagonalize the symmetric matrixA
and define the (dual) transfer matrix

~T ¼
ffiffiffiffi
A

p
B

ffiffiffiffi
A

p
: ð27Þ

The A and B matrices can be constructed by a recursive
blocking method similar to those discussed in Ref. [22]. We
can construct a new B tensor called B0, by contracting two
B tensors on both sides of an AðτÞ tensor. This process can
be iterated and is illustrated in Fig. 5. Using tensorial
notation we write

B0
m3m6Mðm1;m2ÞM0ðm0

1
;m0

2
Þ

¼
X
m4;m5

Bm3m4m1m0
1
AðτÞ
m4m5

Bm5m6m2m0
2
; ð28Þ

where the notation Mðm1; m2Þ stands for the product state,
M ¼ m1 ⊗ m2. One can continue blocking horizontally as
above until the desired spatial size is achieved resulting in
the matrix B. By their very nature the Bs enforce that this
object is diagonal in the collective product-state indices of
the upper and lower tensor legs. For practical reasons,
truncation methods need to be introduced at the beginning
and after each blocking [21,39].

Now consider the AðsÞ matrices which correspond to the
horizontal links of the original lattice as in Fig. 6. If one
takes their outer product and collects the upper indices into
a single product-state index, and does the same for the
lower indices, one has another matrix built out of the
vertical AðsÞ tensors. Once again in tensorial notation this
can be written as

A0ðsÞ
Mðm1;m2ÞM0ðm0

1
;m0

2
Þ ¼ AðsÞ

m1m0
1
AðsÞ
m2m0

2
: ð29Þ

One can continue taking the product of AðsÞ matrices until
the desired spatial size has been reached resulting in the
matrix A.

VI. THE CASE g2 ¼ 0

In this section, we discuss the case where both λ is
infinite and g2 is exactly zero, i.e. βpl ¼ ∞. This limit
corresponds to the two-dimensional classical Oð2Þ model,
and it has been discussed in the early studies of the phase
structure and topological excitations of the Abelian-Higgs
model, for instance, in Refs. [40,41].
As explained in Refs. [42–44], the time-continuum limit

can be achieved by taking the limit κτ → ∞ while keeping
the product κτκs constant. This leads to a Hamiltonian for
quantum rotors located at each spatial site and having
quantized angular momentum running over positive and
negative integers. In order to realize this Hamiltonian on
optical lattices,we considered [29] a spin-1 truncationwhere
the angular momentum at each site is restricted to the values
0 and�1. For thismodel such truncation is similar in spirit to
the dilute-gas approximation [45] and has very small effects
on the phase diagram provided that the hopping parameter
and the chemical potential are not too large.
Following Refs. [29,30] with the replacements βν → 2κν,

the Hamiltonian for the spin-1 approximation of the Oð2Þ
model reads

Ĥ ¼
~U
2

X
i

ðL̂z
ðiÞÞ2 − ~μ

X
i

L̂z
ðiÞ

−
~J
4

X
i

ðL̂þ
ðiÞL̂

−
ðiþ1Þ þ L̂−

ðiÞL̂
þ
ðiþ1ÞÞ; ð30Þ

FIG. 5 (color online). Part of the construction of the blocked B0

tensor. This shows the contraction of the B and AðτÞ tensors. The
dashed lines are the links of the original lattice.

FIG. 6 (color online). Graphical representation of the blocking
of the A tensors. The vertical tensors are the AðsÞ and the dashed
lines are the links of the original lattice.
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with the now dimensionful quantities

~U ≡ 1

2κτa
; ~μ≡ μ

a
; ~J ≡ 2κs

a
; ð31Þ

and a the time lattice spacing. If we use open boundary
conditions, the sums run over all spatial sites in the first two
sums and all but the last in the third sum. This approximate
Hamiltonian can be matched [29,30] with the effective
Hamiltonian of a Bose-Hubbard model discussed in
Sec. VIII, that, we expect, can be implemented on optical
lattices.
The method discussed in Sec. V allows us to match the

spectra at small volume for the classical lattice model and
the two-species Bose-Hubbard model derived to match the
Hamiltonian (30) in Ref. [29] with very good accuracy.
This section is a warm-up for the more complicated
situations discussed in Secs. VII and VIII.
The first step is to understand the matching in the simple

situation where ~U is large compared to ~μ and ~J. In this case,
~U sets the scale of the mass gap and ~μ and ~J introduce small
splittings. We now use energy units where ~U ¼ 1. The
time-continuum limit can be obtained numerically as we
keep blocking the transfer matrix in the space direction as
discussed in Sec. V. The spectra in blocks of size 2, 4 and 8
in the spin-1 approximation are shown in Fig. 7 for ~J ¼ 0.1,
~μ ¼ 0. A nonzero chemical potential would split the charge
conjugated states and make the graph difficult to read. An
example will be shown for L ¼ 2 in Sec. VIII.

VII. THE TIME-CONTINUUM LIMIT AND THE
ENERGY SPECTRUM

In this section, we construct the time-continuum limit of
the transfer matrix T defined by Eq. (25) starting now with
the more general situation where we have βpl finite and

increase its value keeping the open boundary conditions
(m ¼ 0 at both ends). In order to obtain Hamiltonians
corresponding to Bose-Hubbard models, a guiding strategy
is to assume that the spatial hopping κs is proportional
to some hopping energy. In the limit κs ¼ 0, the inside
matrix A becomes the identity and the transfer matrix
T ¼ ffiffiffiffi

B
p

A
ffiffiffiffi
B

p
becomes B which is diagonal. In this limit,

the only way to obtain a time-continuum limit, in other
words to have T close to the identity, is to require that both
κτ and βpl become large. At leading order in the inverse of
these large parameters, the eigenvalues of T are

λðm1;m2;…mNs Þ ¼ 1 −
1

2

��
1

βpl
ðm2

1 þm2
2 þ � � � þm2

Ns
Þ

þ 1

2κτ
ðm2

1 þ ðm2 −m1Þ2 þ � � �

� � � þ ðmNs
−mNs−1Þ2 þm2

Ns

��
: ð32Þ

There are two limiting situations: 1 ≪ βpl ≪ κτ and
1 ≪ κτ ≪ βpl. In the first case, 1=βpl is the largest
coefficient and the low energy states are those with a
few mi nonzero and consequently only a few differences of
m’s are nonzero and the second term in Eq. (32) is a
perturbation. In the second case, 1=κτ is the largest
coefficient and we could guess that to minimize its
contribution, we need to take most of the m’s to be equal
and just create a few charges. For a large volume, this can
cause the first term of Eq. (32) to dominate, which signals
an infrared instability. In electrostatic terms, creating one
charge also creates a constant electric field over the entire
volume. The linear potential is responsible for the confine-
ment and trying to treat the interaction perturbatively
results in infrared problems.
For this reason, in the following, we will only consider

the case 1 ≪ βpl ≪ κτ and set the scale with the (large) gap
energy

~UP ≡ 1

aβpl
: ð33Þ

It is important to distinguish this scale from the ~U
introduced in Sec. VI. ~UP is associated with the plaquette
quantum number m (the energy to create a flux tube across
one lattice spacing between the opposite charges), while ~U
in Sec. VI is associated with the quantum number n
(the energy to create a single charge). In addition, we
define the (small) energy scale

~Y ≡ 1

2κτa
¼ βpl

2κτ
~UP; ð34Þ

which plays the same role as ~U in Sec. VI and the space
hopping parameter

0 2 4 6 8

0.

0.5

1.

E
–

E
0

Spectra for L=2, 4 and 8; J/U=0.1; µ=0

FIG. 7. Oð2Þ spectra in ~U units for L ¼ 2, 4, and 8, with
~J ¼ 0.1, ~μ ¼ 0. Some higher energy states are not shown on the
figure.
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~X ≡ ffiffiffi
2

p
βplκs ~UP: ð35Þ

We are now in position to derive an expression for the
Hamiltonian in the spin-1 approximation where the
plaquette quantum number m takes values �1 and 0 only.
The effect of κs can be studied by linearization. In the case
of two spins, we find that

∂T=∂κsjκs¼0 ¼
ffiffiffi
2

p
ðL̄x

ð1Þ þ L̄x
ð2ÞÞ: ð36Þ

We use the notation L̄x
ð1Þ to denote the first generator of the

spin-1 rotation algebra at the site (1). The notation L̄ is used
to emphasize that the spin is related to the m quantum
numbers attached to the plaquettes in contrast to the spin-1
generators L̂ in Sec. VI having a spin related to the charges
n attached to the time links. The final form of the
Hamiltonian H̄ for 1 ≪ βpl ≪ κτ is

H̄ ¼
~UP

2

X
i

ðL̄z
ðiÞÞ2 þ

~Y
2

X
i
0ðL̄z

ðiÞ − L̄z
ðiþ1ÞÞ2 − ~X

X
i

L̄x
ðiÞ;

ð37Þ
where

P0
i is a short notation to include the single

terms at the two ends as in Eq. (32), i.e. besides
ðL̄z

ð1Þ − L̄z
ð2ÞÞ2; ðL̄z

ð2Þ − L̄z
ð3ÞÞ2;…; ðL̄z

ðNs−1Þ − L̄z
ðNsÞÞ2 terms

this sum contains ðL̄z
ð1ÞÞ2 and ðL̄z

ðNsÞÞ2.
The process outlined in this paper can in principle be

generalized for higher spatial dimensions and non-Abelian
gauge groups. Tensor formulations and exact blocking
procedures have already been worked out in Ref. [22].

VIII. A TWO-SPECIES BOSE-HUBBARD
MODEL IMPLEMENTATION

In Refs. [29,30], we have proposed to match the
Hamiltonian of the Oð2Þ model given in Eq. (30) with
the two-species Bose-Hubbard Hamiltonian on a linear
optical lattice

H ¼ −
X
hiji

ðtaa†i aj þ tbb
†
i bj þ H:c:Þ −

X
i;α

ðμaþb þ ΔαÞnαi

þ
X
i;α

Uα

2
nαi ðnαi − 1Þ þW

X
i

nai n
b
i þ

X
hijiα

Vαnαi n
α
j

ð38Þ
with α ¼ a; b indicating two different species and with
nai ¼ a†i ai and nbi ¼ b†i bi. In this expression, the chemical
potential μaþb is associated with the conservation of na þ
nb and should not be confused with the chemical potential
introduced in the previous section which couples to na − nb

and breaks the charge conjugation symmetry. In the limit
where Ua ¼ Ub ¼ U andW and μaþb ¼ ð3=2ÞU are much
larger than any other energy scale, we have the condition

nai þ nbi ¼ 2 for the low energy sector. The three states
j2; 0i, j1; 1i and j0; 2i satisfy this condition and correspond
to the three states of the spin-1 projection considered above.
Using degenerate perturbation theory [46,47], we found

[29,30] that

Heff ¼
�
Va

2
−
t2a
U
þ Vb

2
−
t2b
U

�X
hiji

Lz
iL

z
j

þ −tatb
U

X
hiji

ðLþ
i L

−
j þ L−

i L
þ
j Þ þ ðU −WÞ

X
i

ðLz
i Þ2

þ
��

pn
2
Va þ Δa −

pðnþ 1Þt2a
U

�

−
�
pn
2
Vb þ Δb −

pðnþ 1Þt2b
U

��X
i

Lz
i ; ð39Þ

where p is the number of neighbors and n is the occupation
(p ¼ 2, n ¼ 2 in the case under consideration). L̂ is the
angular momentum operator in the representation n=2. The
effective Hamiltonian (39) without the last term has been
studied in [48] and shows a rich phase diagram.
In order to match the Hamiltonian of Eq. (39) with the

spin-1 approximation of theOð2Þmodel, Eq. (30), we need
to tune the hopping amplitudes as tα¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VαU=2

p
, obtaining

the correspondence ~J ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
VaVb

p
, ~U ¼ 2ðU −WÞ, and

~μ ¼ −ðΔa − VaÞ þ ðΔb − VbÞ. Figure 8 illustrates the
matching of the energy spectrum for ~J= ~U ¼ 0.1 and large
U, for small systems (two sites and four sites). In the limit
U → ∞, the matching is excellent. As we lower U, high
energy states get a lower energy and can mix with the
low energy states. These states may be related to the modes
that become infinitely massive when λ → ∞. In 2þ 1
dimensions, Higgs modes have been identified numerically
[49] and experimentally [50] for the one-species Hubbard
model.
The optical lattice implementation of the two-species

Bose-Hubbard Hamiltonian is discussed in Ref. [29] for a
87Rb and 41K Bose-Bose mixture. The on-site interactions
ðUα;WÞ and the hopping amplitudes (tα) can be tuned to
some extent by the parameters of the optical lattice [51,52].
In addition, an interspecies Feshbach resonance is acces-
sible for this mixture and therefore the interspecies inter-
action (W) can be further controlled by an external
magnetic field. The extended interaction Vα is present
and small when we consider Wannier Gaussian wave
functions sitting on nearby lattice sites [53]. Achieving
the required extended interaction may be a challenging part
of the experimental proposal. The strong-coupling limit is
needed for our perturbation theory treatment to apply, but it
is also important to have U significantly larger than the
temperature. For the 87Rb-41K mixture, temperature and
recoil energies of the order of 100 nK have been achieved,
and values of U that are 10–20 times larger can be reached
[52,54,55].
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For the Hamiltonian H̄ in Eq. (37) corresponding to
1≪ βpl ≪ κτ, we need to introduce a new interaction to
represent the L̄x effects that interchange them ¼ 0 states with
them ¼ �1 states. This can be achieved by adding the piece

ΔH ¼ −
tab
2

X
i

ða†i bi þ b†i aiÞ: ð40Þ

The matching between the two models can be achieved by
imposing t ¼ 0, Va ¼ Vb ¼ − ~Y/2 and tab ¼ ~X. Energy
levels obtained numerically with this method have a good
matching shown in Fig. 9. Note that if an interspecies nearest-
neighbor interactionVab is introduced, it can be incorporated
in Heff by making the substitution Va þ Vb → Va þ Vb −
2Vab in the first term of Eq. (39).
This is a very different realization than for the Oð2Þ limit.

The presence in the Hamiltonian of the additional term
that interchanges the species index, Eq. (40), rules out
implementing this Hamiltonian using mixtures of two differ-
ent types of atoms. It could be realized with a single atomic
species on a ladder structure with a and b corresponding to

the two legs of the ladder. Ladder systems have been
realized experimentally by using lattices of double wells
[56–60]. The hopping amplitudes can be tuned such that the
hopping in the direction along the ladder is negligible, but
finite along the rungs, thus exchanging a, b species index at
the same rung. An attractive intraspecies interaction
(Va ¼ Vb ¼ − ~Y=2) is also needed, favoring having two
atoms in neighboring sides on the same leg of the ladder.
This acts as a nearest-neighbor ferromagnetic coupling in the
effective one-dimensional spin chain Hamiltonian. For the
experimental implementation, an attractive nearest-neighbor
interaction can be obtained by using cold dipolar atoms or
molecules, with dipole moments aligned along the ladder
and with inter-rung distance such that the rapidly decaying
dipole-dipole interaction between next-nearest neighbors can
be neglected. With this alignment of the moments, the
interspecies interaction in the same rung (W) is repulsive.
Experiments with ultracold dipolar quantum gases have been
performed with chromium [61], erbium [62,63], and dys-
prosium [64–66], which have magnetic moments 6μB, 7μB
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Abelian- Higgs and BH Spectra for L=4; X /UP=Y /UP=0.1

FIG. 9. Abelian-Higgs model with ~X= ~UP ¼ 0.1, ~Y= ~UP ¼ 0.1
and the corresponding Bose-Hubbard spectra for L ¼ 2 (top) and
L ¼ 4 (bottom).
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FIG. 8. Oð2Þ with ~J= ~U ¼ 0.1 and Bose-Hubbard spectra for
L ¼ 2 with ~μ= ~U ¼ 0.02 (top) and L ¼ 4 with ~μ ¼ 0 (bottom).
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and 10μB, respectively, and with polar molecules, such as
40K 87Rb and 23Na 40K [67–69]. Alternatively, the two
boson species in the Bose-Hubbard Hamiltonian could
correspond to two hyperfine states of the same atom species,
provided these two states support Raman transitions between
them so that the species conversion term Eq. (40) can be
created. These transitions have recently been exploited for
the creation of synthetic dimensions [70,71]. Another
possible avenue to be explored would be to implement
the spin-1 approximation directly on one-dimensional opti-
cal lattices by combining Raman lasers and atoms with
magnetic sublevels. A possibility to obtain a pseudospin 1 is
to use the F ¼ 1 hyperfine splitting of 87Rb [71].

IX. CONCLUSIONS

With the remarkable experimental progress in the field of
atomic, molecular and optical physics, particularly the
loading of trapped ultracold atoms onto optical lattices,
and the unprecedented levels of control and tunability of
their interactions, a wide range of quantum many-body
lattice Hamiltonians can be realized and studied.
We have proposed a two-species Bose-Hubbard model

that may be used as a quantum simulator for lattice gauge
theories. The gauge invariance is built in and thus
does not need to be achieved via fine-tuning, and the
correspondence between the proposed Bose-Hubbard
Hamiltonian and the Abelian-Higgs model can be checked
quantitatively.
On the experimental side, various multispecies Bose-

Hubbard systems can be created with current cold atom
technology. Various possible realizations for the two species
that are needed can be explored. On the theory side, the
Bose-Hubbard Hamiltonian is amenable to quantum
Monte Carlo calculations and the Abelian-Higgs model
can be treated with the TRG (and the time-continuum limit
obtained) as well as Monte Carlo calculations.
For reasons explained in Ref. [49], the Higgs mode is

usually difficult to observe numerically or experimentally.
However, for the (2þ 1)-dimensional Bose-Hubbard
model, numerical calculations of the scalar susceptibility
near the tip of a Mott insulator lobe where the relativistic
particle-hole symmetry is restored, show a peak narrowing
as one approaches the quantum critical point [49]. Almost
simultaneously, an experimental implementation of the
model on an optical lattice [50] made it possible to observe

the corresponding temperature response to a periodic
modulation of the lattice depth. However, in 1þ 1 there
are so far no conclusive results. Our setup could contribute
to clarify this point in the future.
Another interesting feature of the (1þ 1)-dimensional

Abelian-Higgs model is a possibility for confinement of
fractional charges. The Wilson loop is often used as an
observable signaling confinement and it remains to be seen
what observables in the optical lattice experiments can be
related to it. Following Einhorn and Savit [41], one can
introduce a fractional charge by increasing the basic charge,
or, in our case, rescaling the quantum number m. This
means that m has to span at least a ½−2; 2� range, in other
words, at least a spin-2 approximation is required.
For the models we considered here the full spectra can be

calculated, at least for small systems. The TRG formulation
can very naturally provide time-dependent correlation
functions. Therefore, besides the ultimate goal of quantum
simulating lattice gauge theories using cold atoms on
optical lattices, the correspondence we report here may
also provide a way of studying the dynamics of cold atom
systems such as response to sudden quenches.
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