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We investigate the transition from unitary to dissipative dynamics in the relativistic OðNÞ vector model
with the λðφ2Þ2 interaction using the nonperturbative functional renormalization group in the real-time
formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for
coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with
excitations in the thermal medium. Their competition determines the renormalization group flow and the
effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the
scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2 ≤ d ≤ 4 spatial
dimensions. We contrast our results to the behavior expected at vanishing temperature and address the
question of the appropriate dynamic universality class for the given microscopic theory.
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I. INTRODUCTION

Efforts to understand the properties of extreme states of
matter in QCD [1,2] rely crucially on the identification and
characterization of universal fluctuations. Understanding
their properties is essential to settle the presence and nature
of the critical end point [3], marking the end of the first-
order transition between the hadronic and quark-gluon
plasma (QGP) phase. To establish the hydrodynamics of
the QGP near the QCD critical point, it is in particular their
dynamic properties that are of considerable interest [4].
Near the critical point the characteristic fluctuations display
the phenomenon of critical slowing down which has
important ramifications: It controls the maximal achievable
correlation length in the process of the rapid cooling of the
quark-gluon plasma through the critical region [5] and
thereby sets the typical strength of event-by-event fluctua-
tions in heavy ion collisions probed at RHIC or the LHC
[6]. On the other hand, it constrains important nonequili-
brium effects as, e.g., the production of topological defects
[7,8]. It is a remarkable fact that these phenomena are
determined only by a few quantities characteristic of the
universality class of the critical point. While the identi-
fication of the static universality class is dictated by
principles of symmetry and the dimensionality of the
problem [9,10], to identify the proper dynamic universality

class requires an understanding of relevant modes at the
phase transition (i.e., the conservation laws respected by the
dynamics). Unfortunately, there are no general principles
that allow us to distinguish whether a particular mode is
relevant at the critical point, or if its effect is irrelevant for
the dynamic critical behavior. To answer this question it is
necessary to reconcile well-established effective models for
critical dynamics used in the vicinity of classical phase
transitions [11,12] with our understanding of the under-
lying coherently propagating excitations. In the past, there
have been several attempts in this direction using pertur-
bative methods as, e.g., the dynamic renormalization group
[13,14], as well as nonperturbative methods, e.g., AdS/CFT
duality [15–17], classical-statistical lattice field theory
simulations [18], or n-particle irreducible (nPI) effective
actions [19]. We propose a new attempt to make a solid
connection between dynamic critical phenomena and
microscopic quantum physics using the nonperturbative
functional renormalization group (RG) [20]. This formal-
ism has the potential to shed new light on the smooth
quantum-to-classical crossover and enables us to address
the question of the appropriate dynamic universality class
for a given microscopic theory. In particular, we provide a
continuous connection between the microscopic relativistic
and nonrelativistic dissipative dynamics at nonvanishing
temperature—going beyond conventional approaches to
dynamic critical behavior based on effective models. Our
work constitutes a first important step towards the goal to
fully unravel the dynamic properties in both the quantum
and classical domain in the framework of the real-time
functional renormalization group.
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In this paper, we consider the relativistic OðNÞ vector
model with the λðφ2Þ2 interaction and investigate the
transition from the microscopic dynamics to low-energy
effective dynamics in the vicinity of a continuous phase
transition. Let us briefly explain qualitative properties of
this model. It can be seen to describe an interacting gas of
relativistic bosonic particles in thermal equilibrium where
the interaction is short ranged and determined by the s-
wave scattering length [21]. Ultraviolet renormalization
tells us that a finite number of parameters, which deter-
mines the low-energy scattering of particles in the vacuum,
totally characterizes the microscopic dynamics. On the
other hand, the screening of soft momenta at nonvanishing
temperature is achieved by infrared renormalization. Thus,
there are two competing processes that play a role in the
system: The coherent scattering of particles leads to a
renormalization of the coupling and mass parameters of the
model, whereas incoherent collisions with thermal excita-
tions in the medium endow the particles with a finite
lifetime. The importance of these two processes for the
critical behavior of the theory strongly depend on the
spatial dimension as well as the temperature of the system.
At zero temperature (T ¼ 0) and in spatial dimension

d ≥ 2, the relativistic OðNÞ model features a second-order
phase transition which separates a disordered (symmetric)
phase from an ordered phase with a nonvanishing field
expectation value. In the vicinity of such a quantum critical
point (QCP) [22] the system is characterized by a diverging
correlation length ξ ∼ jδκj−ν, where δκ ¼ κ − κc is a micro-
scopic parameter that controls the deviation from the
critical point and ν is the correlation-length exponent.
The diverging correlation length can be related to the
vanishing of a relevant spectral gap Δ ∼ ξ−z, where z
defines the associated dynamic critical exponent.1 There
is no characteristic scale at the QCP—the system fluctuates
at all scales and thus some physical quantities, such as
scaling exponents, amplitude ratios, etc., can be universally
classified without knowing the details of the microscopic
physics.
Temperature is a relevant perturbation at the QCP. It

yields a different universality class for the thermal tran-
sition or may even render the transition unstable. While for
d > 2 the zero-temperature transition lies in the ðdþ 1Þ-
dimensional universality class of the classicalOðNÞmodel,
at nonvanishing temperature the system experiences an
effective dimensional reduction and the appropriate char-
acterization of universal fluctuations is given by the d-
dimensional theory. For spatial dimension d ¼ 2 the QCP
is in the three-dimensional OðNÞ universality class;

however for T ≠ 0 one expects that the field expectation
value always vanishes, in accordance with the Mermin-
Wagner theorem [23].2 Indeed, for vector models with
N ≥ 3 this is the case and there are no indications for an
ordered low-temperature phase. Nevertheless, for N ¼ 2
the system experiences a Kosterlitz-Thouless transition at
some critical temperature, which separates a high-temper-
ature disordered phase from a low-temperature phase with
algebraic order. This observation does not contradict the
Mermin-Wagner theorem, which cannot exclude a low-
temperature phase with algebraically decaying correlations
(see, e.g., Ref. [24] and references therein). In the presence
of a nonvanishing temperature we may identify different
regimes for the dynamic correlations and response of the
system: In the classical regimeΔ ≪ T, all modes are highly
occupied up to the scale set by the temperature. On the
other hand, when the temperature is sufficiently small, the
thermal occupation of modes is exponentially suppressed,
i.e., e−ωðpÞ=T ≪ 1, for ωðpÞ≳ Δ. This defines the quantum
regime, where occupation numbers are small and the
commutator of field operators cannot be neglected. Close
to the QCP, in the quantum regime, the dynamic critical
exponent z ¼ 1 in the relativistic OðNÞ model which is a
consequence of Lorentz symmetry. As the temperature is
increased and the system crosses over to the classical
regime, similar to the change in static universality class, the
dynamic critical exponent changes (z > 1). It is this inter-
play of temperature and dynamics that we address in the
following. These arguments are summarized in Fig. 1
which shows an illustration of the expected phase diagram
at zero and nonvanishing temperatures.
We provide a picture of the processes that lead to the

demise of coherent quasiparticle excitations and demon-
strate how an effective classical description of many-body
systems emerges at nonvanishing temperature. For that
purpose we employ the nonperturbative functional RG [20]
that allows us to study the impact of temperature and
dimensionality independent of the assumption of small
coupling or small deviations from the upper critical
dimension. Similar work along these lines has been
pursued, where the properties of classical phase transitions
and its static critical exponents have been examined in the
real-time formalism, e.g., at the example of the real scalar
theory [25,26] and gauge theories [27]. Dynamic scaling
properties have been addressed in the framework of the
functional RG in the context of effective models for critical
dynamics [12]. This includes, in particular, model A [28]
and model C [29] in the Halperin-Hohenberg classification
of dynamic universality classes [11]. Further applications

1We only indicate the leading divergence in ξ and Δ and thus
the provided scaling holds up to an appropriate dimensionful
constant (and additional subleading scaling corrections). Note
that both the correlation length and the spectral gap depend on the
temperature T, the parameter δκ, and possibly other external
fields, in general.

2There is an important exception to the theorem and that is the
theory with a discrete order parameter (N ¼ 1). At T ≠ 0 and in
spatial dimensions d > 1, this model features a continuous phase
transition in the d-dimensional Ising universality class, while the
QCP lies in the ðdþ 1Þ-dimensional Ising universality class.
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include stochastically driven systems out of equilibrium
[30–32], e.g., reaction-diffusion and percolation problems
[33], the Kardar-Parisi-Zhang (KPZ) equation [34], hydro-
dynamic turbulence [35,36], and nonequilibrium steady
states in closed systems [37,38]. Close to a quantum phase
transition (QPT) the functional renormalization group has
been applied to a number of problems in the imaginary-
time formalism. These include nonrelativistic systems
where a crossover was observed to a quasirelativistic action
with second (imaginary) time derivatives [39] and the two-
dimensional OðNÞ model [40] for which analytic continu-
ation was used to derive spectral functions in the quantum
critical regime. The relative importance of quantum and
thermal fluctuations in the vicinity of a QPTwas addressed
for the two-dimensional quantum Ising model [41], as well
as systems with fermions [42].
The outline of this paper is as follows: In Sec. II

we review real-time formalisms to determine n-point
functions—a necessary prerequisite to introduce the non-
perturbative real-time functional RG. In Sec. III we discuss
the properties of the functional flow and its application to
calculate real-time response in equilibrium systems. We
define the relativistic OðNÞ vector model and associated
scale-dependent effective action in Sec. IV and discuss the
role of different interaction vertices as well as consistent
truncation schemes for the RG flow. The main part of this
work consists of Secs. V–VII where we investigate differ-
ent possible regimes for the dynamics, the properties
of scaling solutions, and how our results compare

quantitatively to known results from the ϵ ¼ 4 − d and
large-N expansion. We close in Sec. VIII with our
perspective on the quantum-to-classical transition in the
low-temperature regime.

II. REAL-TIME n-POINT FUNCTIONS AND
GENERATING FUNCTIONALS

The correlations and response of a system to external
perturbations are fully captured by the time-ordered n-point
functions:

hT̂½φ̂a1ðx1Þ � � � φ̂anðxnÞ�i

≡ ð−iÞn 1

Z½J�
δnZ½J�

δJa1ðx1Þ � � � δJanðxnÞ
����
J¼0

; ð1Þ

where the Heisenberg-field operators φ̂aðxÞ ¼
eiĤtφ̂að0; xÞe−iĤt are given in the N-component vector
representation of the OðNÞ symmetry group and the func-
tional derivatives with respect to the real-valued external
sources JaðxÞ are evaluated at spacetime points x ¼ ðt; xÞ.
For a system that is prepared in the ground state or in
thermal equilibrium, the generating functional in Eq. (1)
can be defined as

Z½J� ¼ Trfe−βĤT̂½ei
R
x
JaðxÞφ̂aðxÞ�g: ð2Þ

Here, β ¼ 1=T defines the inverse temperature, Ĥ is the
(interacting) Hamiltonian, and the operator T̂ orders the
fields on the real line. However, systematic perturbation
theory based on (2) is ill defined (see, e.g., Refs. [43,44]).
To circumvent this point, we introduce the closed time
contour C [45,46], so that the generating functional can be
written as

Z½J� ¼ Tr
n
e−βĤT̂C

h
ei
R

C

x
JaðxÞφ̂aðxÞ

io
: ð3Þ

The external sources are taken to have nonvanishing
support on parts of C in the complex time plane, upon
which the operator T̂C defines the time ordering of the
fields. The contour integration in Eq. (3) can be expressed
via the parametrization C∶ ½0; 1�∋s↦tðsÞ ∈ C,

R
C
x � � � ≡R ½0;1� dst0ðsÞ R ddx � � �, with tð0Þ ¼ tð1Þ ¼ ti, and ti real.

While the purpose of this section is to illustrate how to
determine the real-time dynamic correlation functions and
response, for now, we will impose no restrictions on the
time path C. In the following, we examine different possible
choices and highlight their importance and shortcomings.
The imaginary-time formalism (ITF) [47–49] provides a

convenient means to calculate imaginary time-ordered
correlation functions in the ground state or in thermal
equilibrium. In this framework, the fields live on an
imaginary-time contour C ¼ C−iβ, where C−iβ ¼ ft ∈
CjRet ¼ ti; Imt ∈ ½−β; 0�g (see Fig. 2). That is, in the

FIG. 1 (color online). Illustration of the expected phase diagram
for theOðNÞ vector model in d > 2 spatial dimensions. It features
a line of second-order phase transitions Tcr ¼ TcrðδκÞ (blue,
continuous line) that separates an ordered from a disordered
phase, and terminates at a quantum critical point (T ¼ δκ ¼ 0).
As this critical line is approached, the correlation length ξ ¼
ξðT; δκÞ diverges. Shaded areas highlight those regions in the
phase diagram where critical fluctuations become important. The
narrow region around δκ is controlled primarily by the QCP and
becomes smaller as the spatial dimension d is increased. It
vanishes completely above d ¼ 3, in which case the effect of
fluctuations can be neglected. The critical region around the
thermal transition TcrðδκÞ similarly decreases in size until
fluctuations cease to be important above its upper critical
dimension d ¼ 4.
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ITF the ðdþ 1Þ-dimensional Euclidean theory appears
compactified in the time direction with perimeter β ¼
1=T and the imaginary-time Green functions satisfy a
periodicity constraint, the Kubo-Martin-Schwinger
(KMS) condition [50,51]. Based on the generating
functional (3), this formalism allows us to determine
thermodynamic properties of interacting many-body
systems, either by perturbative or nonperturbative means.
The analytic continuation of imaginary-time correlation
functions furthermore allows for the calculation of dynamic
properties, e.g., the response to external perturbations and
associated transport properties. However, this analytic
continuation, in practice, is an ill-posed numerical problem.
In the absence of a method that produces exact results
at imaginary time, additional assumptions on the analyticity
properties and ultraviolet (UV) behavior of correlation
functions are required (see, e.g., Refs. [52,53]). The validity
of such assumptions are especially questionable in
the vicinity of a thermodynamic singularity, e.g., at a
second-order phase transition where the system displays
nonanalytic behavior. Either way, the final result will be
sensitive to the values of some ad hoc parameters that might
not have an immediate physical significance. To determine
the dynamic correlations or response, it is therefore
desirable to employ a framework that allows for a direct
calculation in real time without the need for analytic
continuation.
Real-time formalisms (RTF) [43,44,54,55] employ a

different choice for the time contour C that appears in
the definition of n-point functions (1) and their generating
functional (3). While in principle there is an infinite set of
possible time paths, we consider a time-ordered contour
consisting of two branches only, C ¼ Cþ ⊕ C−, with tð0Þ ¼
tð1Þ ¼ ti and tðsÞ real for all s ∈ ½0; 1� [45,46]. This
contour, illustrated in Fig. 3, is defined with forward and

backward time ordering on the branches Cþ and C−,
respectively. The closed time path (CTP) generating func-
tional (3) becomes

Z½Jþ; J−� ¼ Tr
n
T̂
h
ei
R
x
Jþ;aðxÞφ̂aðxÞ

i

× e−βĤ
�
T̂
h
ei
R
x
J−;aðxÞφ̂aðxÞ

i�†o
; ð4Þ

where we have used the cyclicity of the trace and
introduced external sources Jþ and J− on the forward
and backward time-ordered segments of the contour. We
assume in the following that the sources have nonvanishing
support at times ti < t < tf and fall off sufficiently fast at
spatial infinity.3 This doubling of the degrees of freedom
allows us to employ the usual definition of the time-
ordering operator T̂ for real times. Furthermore, writing the
generating functional in the form (4) makes the conjugation
symmetry [43] clear:

Z½Jþ; J−�� ¼ Z½J−; Jþ�: ð5Þ
Of course, in the absence of sources the physical content of
(4) is no different than that provided by evaluating the
generating functional on the imaginary contour C−iβ, and
we have ZITF ¼ ZRTF.
In the following, we aim at a nonperturbative evaluation

of the generating functional using the functional RG in the
RTF. Its construction relies on the path integral represen-
tation of the generating functional on the CTP, the
derivation of which [43,44,55,56] is based on the insertion
of a complete set of states associated to the Heisenberg-
field operator φ̂ðxÞ. We distinguish the fields on the two
branches of the CTP and introduce two distinct degrees of
freedom, φþ and φ−, on the forward and backward time-
ordered segments, respectively:

FIG. 2 (color online). Imaginary-time contour C−iβ in the
complex time plane. The right branch defines the segment of
the contour on which the sources are nonvanishing and is
equipped with an imaginary-time ordering (indicated by the
arrow). The left branch closes the contour and defines a
periodicity constraint for the fields that live on the right contour
(at initial and final imaginary time). In the corresponding
Euclidean action this is expressed by the boundary condition
φaðt ¼ tiÞ ¼ φaðt ¼ ti − iβÞ. The particular choice on which
branch the fields should propagate is arbitrary.

FIG. 3 (color online). Real-time contour C ¼ Cþ ⊕ C− in the
complex time plane. The upper and lower parts of the contour
define those segments on which the external sources are non-
vanishing. The statistical operator ρ̂D ¼ Z−1e−βĤ is inserted at
initial time ti, while the contour winds around at final time tf . The
end points of the contour are completely arbitrary and the
generating functional does not depend on the specific choice
of ti or tf. However, initial and final segments define constraints
for the fields that live on the upper and lower branches of the
contour; e.g., in the real-time action on the closed time path, we
impose the constraint φaþðt ¼ tfÞ ¼ φa

−ðt ¼ tfÞ at final time.

3The spacetime integration is defined as
R
x � � �≡R ½ti;tf � dt

R
ddx � � � and it is understood that the limits ti → −∞

and tf → ∞ are taken at the end.
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φ̂ðt; xÞjφαðxÞ; t ∈ Cαi ¼ φαðt; xÞjφαðxÞ; t ∈ Cαi; ð6Þ
where α ∈ fþ;−g. At large time tf, at which we identify the two branches of the contour (cf. Fig. 3) the fields satisfy the
property φþðtfÞ ¼ φ−ðtfÞ and we will choose the value of tf in the following such that tf → ∞. Proceeding along these
lines we first decompose the generating functional (4) as a product of transition matrix elements between states that live on
the CTP, i.e.

Z½Jþ; J−� ¼
Z Y

α∈fþ;−g
½dφαðtiÞ�½dφαðtfÞ�hφþ; tije−βĤjφ−; tiihφ−; tijφ−; tfiJ−hφ−; tfjφþ; tfihφþ; tfjφþ; tiiJþ ; ð7Þ

where the subscripts Jþ and J− indicate that the corresponding matrix elements should be evaluated in the presence of
external sources. The functional measure is defined as

R ½dφαðtÞ�≡N
R Q

x∈Rddφαðt; xÞ with some appropriate
normalization constant N and a proper regularization of the infinite product. The matrix elements for which the external
sources are nonvanishing can be expressed in terms of a functional integral over a phase factor which is fully determined by
the dynamics and the coupling of the fields to external sources. On the Cα, α ∈ fþ;−g, segments they take the following
form:

hφα; tfjφα; tiiJα ¼
Z

½dφ0
α�eifS½φα�þ

R
x
Jα;aðxÞφa

αðxÞg: ð8Þ

Here, the functional integration runs over all field configurations with fixed values of the field both at initial φα ¼ φαðtiÞ and
final time φα ¼ φαðtfÞ. Evaluating the product of all matrix elements in (7) we obtain the path integral representation of the
full generating functional:

Z½Jþ; J−� ¼
Z Y

α∈fþ;−g
½dφα�eifS½φþ;φ−�þ

R
x
Jþ;aðxÞφa

þðxÞ−
R
x
J−;aðxÞφa

−ðxÞg; ð9Þ

where we have introduced the CTP action

S½φþ;φ−� ¼ S½φþ� − S�½φ−� þ F ½φþ;φ−�; ð10Þ

and the full functional measure

Z Y
α∈fþ;−g

½dφα�≡
Z Y

α∈fþ;−g

Y
ti≤t≤tf

½dφαðtÞ�: ð11Þ

The functional integral goes over all possible field con-
figurations. Any constraints on the fields have been
absorbed into the CTP action (10), in the form of the
constraint-fluctuation (CF) functional F ½φþ;φ−�. We pro-
vide the following formal definition in terms of the matrix
elements at initial and final time:

F ½φþ;φ−� ¼ −ilnZ − ilnhφþ; tijρ̂Djφ−; tii
− ilnhφ−; tfjφþ; tfi; ð12Þ

where ρ̂D ¼ Z−1e−βĤ, so that Trρ̂D ¼ 1. Of course, to give
any meaning to this object, we need to consider regulari-
zations of the contributions on the rhs. This is immediately
clear if we examine, e.g., the final time constraint
which can be expressed in the following way:
hφ−; tfjφþ; tfi ¼ δ½φ−ðtfÞ − φþðtfÞ�. Independent of the

regularization we take note of the following properties: The
CF-functional references only the field values at the
boundaries ti and tf and, in equilibrium, it is homogeneous
in time. Also, while the first term on the rhs of Eq. (12) is
field independent and therefore does not contribute in the
calculation of correlation functions the remaining terms do.
They eventually lead to nonvanishing mixing contributions
and additional couplings between the φþ and φ− fields in
the CTP effective action. It is these terms that affect the
correlations and response of the system and have to be
accounted for to resolve the real-time properties of the
theory in equilibrium.
From Eq. (9) we obtain the generating functional for

connected correlation functions in the path integral for-
malism. It is defined as

W½Jþ; J−� ¼ −i lnZ½Jþ; J−�: ð13Þ

Field expectation values are obtained by functional differ-
entiation

ϕαðxÞ ¼
δW½Jþ; J−�
δJαðxÞ

; ð14Þ

as are the connected correlation functions
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Gαβðx; yÞ ¼
δ2W½Jþ; J−�
δJαðxÞδJβðyÞ

; ð15Þ

where Greek indices α; β ∈ fþ;−g denote fields and
external sources on the distinct branches of the CTP. We
construct the effective action in the RTF via the Legendre
transform

Γ½ϕþ;ϕ−� ¼ W½Jþ; J−�

−
Z
x
fJþ;aðxÞϕaþðxÞ − J−;aðxÞϕa

−ðxÞg; ð16Þ

for which the sources are considered to be functionals of the
fields, i.e., Jþ ¼ Jþ½ϕþ;ϕ−� and J− ¼ J−½ϕþ;ϕ−�, as
obtained from inverting the relations (14). From the
effective action we derive the equations of motion in the
presence of nonvanishing sources

δΓ½ϕþ;ϕ−�
δϕαðxÞ

¼ −sgnðαÞJαðxÞ: ð17Þ

When the external sources are set to zero, in the ground
state or in thermal equilibrium, the field configurations that
extremize the effective action are homogeneous both in
space and time. While in the construction of the effective
action we employed the ϕþ and ϕ− fields, a much more
convenient parametrization of the physical degrees of
freedom is instead given by the average and difference
fields (retarded/advanced basis)

ϕ ¼ 1

2
ðϕþ þ ϕ−Þ; ~ϕ ¼ ϕþ − ϕ−; ð18Þ

and the corresponding external sources

J ¼ 1

2
ðJþ þ J−Þ; ~J ¼ Jþ − J−: ð19Þ

In this parametrization, the equilibrium field configurations
are ϕjJ¼ ~J¼0 ¼ ϕþjJ¼ ~J¼0 ¼ ϕ−jJ¼ ~J¼0 ¼ hφ̂i, ~ϕjJ¼ ~J¼0 ¼ 0,
and we define the retarded propagator in the following way,

GRðx; yÞ ¼ δ2W½J; ~J�
δ ~JðxÞδJðyÞ ; ð20Þ

which (in the absence of sources) is equivalent to the
expectation value of the antisymmetric field commutator,
i.e., GRðx; yÞjJ¼ ~J¼0 ¼ iθðx0 − y0Þh½φ̂ðxÞ; φ̂ðyÞ�i. The stat-
istical correlation function is given by

Fðx; yÞ ¼ −i
δ2W½J; ~J�
δ ~JðxÞδ ~JðyÞ ; ð21Þ

which, also in the absence of sources, can be
written as the (connected) average anticommutator

Fðx; yÞjJ¼~J¼0 ¼ 1
2
hfφ̂ðxÞ; φ̂ðyÞgi. While the derivation of

the effective action relies on the Legendre-transform with
respect to the external sources, in the end we are interested
only in the case when they are set to zero. To avoid a
proliferation of notation in the following, it will therefore
be understood that all quantities are specified in the absence
of sources unless stated otherwise.
Equation (7) essentially contains two different functional

averages: The conditional average over the real-time
evolution of the fields at times t > ti, as well as an
averaging over the ground state or statistical operator ρ̂D
at initial time ti. These two contributions are not distin-
guished within the ITF, where the functional average is
performed over all (imaginary-time) fluctuations at once.
Thus, in principle, the RTF allows us to study separately the
effect of the initial conditions and the dynamics. Here,
however, we ask specifically about the scale dependence of
different dynamical processes in equilibrium as a function
of a given set of microscopic parameters in the action. That
is, we do not show how thermal correlations are built up in
real time starting from an arbitrary initial state. This is an
interesting problem in its own right and there are other
frameworks that address the issue of thermalization [57–
61]. We assume that the averaging over the initial statistical
operator has been taken into account to the effect of
imposing relations between different n-point functions
dictated by the properties of equilibrium fluctuations.
Typically, these relations are expressed in frequency space
and this implies that the statistical operator ρ̂D has been
inserted in the infinite past ti → −∞, so that the system
satisfies time translation invariance.
The derivation of the CTP action (10) makes it clear that

the calculation of correlation functions will not depend on
the field-independent contribution −ilnZ to the CF-
functional. In fact, it can be ignored for the most part
when dealing with a system in equilibrium and this is what
we will do in the following. However, this procedure leads
to some subtle issues in the calculation of the thermody-
namic free energy, which we address here: The free energy
density in the RTF is defined as

F ¼ i
β
V −

1

β Voldþ1

ln Z; ð22Þ

where Voldþ1 ≡ R ½ti;tf � dt
R
ddx and

V ¼ −
Γ½ϕ ¼ hφ̂i; ~ϕ ¼ 0�

Voldþ1

ð23Þ

is the CTP effective potential. It depends on the value of the
homogeneous field expectation value hφ̂i and we have
pulled out the field-independent contribution∼lnZ from the
CTP effective action to make it explicit. In equilibrium, one
finds the effective potential V to be zero in a calculation
where all zero momentum 1PI diagrams are summed over
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[43,62]. Of course, this is simply a consequence of the
conjugation symmetry (5), which constrains the free energy
to be real valued. However, it is important to realize that
derivatives of the CTP effective action might be nonzero
even in the absence of sources. A careful analysis shows
that they match the contributions from the real part
− 1

βVoldþ1
lnZ [62]. Thus, the derivatives of the effective

action carry the same information as lnZ and the free
energy can be reproduced also within the CTP formalism

when the field-independent contribution to the effective
action is not taken into account explicitly.
The presence of conjugation symmetry (5) constrains the

form of possible parameters and couplings of the theory.
For the CTP effective action it takes the form

Γ½ϕ; ~ϕ�� ¼ −Γ½ϕ;− ~ϕ�: ð24Þ

If we expand Γ½ϕ; ~ϕ� in the fields ϕ and ~ϕ

Γ½ϕ; ~ϕ� ¼
X
m;n

Z
x1;…;xm;y1;…;yn

Γðm;nÞðx1;…; xm; y1;…; ynÞϕðx1Þ � � �ϕðxmÞ ~ϕðy1Þ � � � ~ϕðynÞ; ð25Þ

Γðm;nÞðx1;…; xm; y1;…; ynÞ≡ δmþnΓ½ϕ; ~ϕ�
δϕðx1Þ � � � δϕðxmÞδ ~ϕðy1Þ � � � δ ~ϕðynÞ

; ð26Þ

where the summation over internal indices is implied, the
symmetry (24) divides the contributions to the effective
action into two distinct classes, characterized by either real
or imaginary (amputated) 1PI correlation functions
Γðm;nÞðx1;…; xm; y1;…; ynÞ [which are related to the odd
and even powers of ~ϕ in (25), respectively]. In fact, already
from the form of the CF-functional (12), it is clear that
imaginary couplings and parameters to the CTP action are
necessarily present when initial fluctuations and boundary
conditions are taken into account. They play an important
role over a wide range of scales and ensure the consistency
of the thermal flow by providing relations between real and
imaginary vertices of the Wilsonian effective action. The
general aim of this paper is to demonstrate how these
vertices might be generated and to show how an effective
classical description emerges in the RTF when all fluctua-
tions have been accounted for.

III. NONPERTURBATIVE FUNCTIONAL
RENORMALIZATION GROUP IN THE REAL-

TIME FORMALISM

The nonperturbative RG employed in this work is based
on the flow of generating functionals for correlation
functions. In particular, for systems with spatial and time
translation invariance, it is useful to consider the
functional flow of the scale-dependent 1PI effective action
[20]. There exists a large number of reviews in the literature
and we will not provide all the details here; see, e.g.,
Refs. [63–68]. However, we will highlight some of the
properties that appear in the physical (real-time)
representation.
The construction of the functional flow equation relies

on a modification of the original CTP action, i.e.,
S½φ; ~φ� → S½φ; ~φ� þ ΔkS½φ; ~φ�, where

ΔkS½φ; ~φ� ¼ −
Z
x;y

~φaðxÞRk;abðx; yÞφbðyÞ: ð27Þ

The function Rk is taken to be non-negative and its
properties are chosen so that (27) defines a momentum-
dependent mass term, i.e.

Rk;abðx0; y0; pÞ ¼ RkðpÞδðx0 − y0Þδab; ð28Þ

where ti ≤ x0; y0 ≤ tf. It depends on an additional scale
parameter k which controls the effective mass of different
modes. Thus, by an appropriate choice of Rk, we may
regulate the infrared (IR) divergences associated to the
massless modes in the vicinity of a second-order (or weakly
first-order) phase transition (see, e.g., Ref. [69]). Further
regulating contributions quadratic in the difference field ~φ
might be necessary in the presence of additional sym-
metries [30], but this is not the case here. For our purposes,
it is sufficient to consider a regulator coupling the φ and ~φ
fields only. Such a regulator is compatible with the
symmetries in the presence of a fixed reference frame—
the rest frame in which we define the temperature of the
system.
The modification of the action by the insertion (27)

endows the generating functional for connected correlation
functions W½J; ~J� with a scale dependence, which we
highlight by an additional index k:

Wk½J; ~J� ¼ −i ln Zk½J; ~J�: ð29Þ
Any n-point correlation function derived from Wk will
inherit this scale dependence and by functional differ-
entiation with respect to the external sources, we obtain the
field expectation values
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ϕkðxÞ ¼
δWk½J; ~J�
δ~JðxÞ ; ~ϕkðxÞ ¼

δWk½J; ~J�
δJðxÞ ; ð30Þ

in the presence of nonvanishing sources J; ~J, and Rk.
Similarly, the (connected) retarded propagator and statis-
tical correlation function read

GR
k ðx; yÞ ¼

δ2Wk½J; ~J�
δ ~JðxÞδJðyÞ ; ð31Þ

Fkðx; yÞ ¼ −i
δ2Wk½J; ~J�
δ ~JðxÞδ ~JðyÞ : ð32Þ

The advanced propagator is not independent and given by
the relation GA

k ðx; yÞ ¼ ½GR
k ðy; xÞ�T , while the anomalous

propagator ~Fkðx; yÞ ¼ −i δ2Wk½J; ~J�
δJðxÞδJðyÞ vanishes in the absence

of sources and therefore does not yield any contribution to
the RG flow.
The scale-dependent generating functional of 1PI corre-

lation functions Γk½ϕ; ~ϕ� is defined by the (partial)
Legendre transform of Eq. (29), with respect to the sources
J and ~J, for fixed (i.e., k-independent) values of the fields ϕ
and ~ϕ:

Γk½ϕ; ~ϕ� ¼ Wk½J; ~J� − ΔkS½ϕ; ~ϕ�

−
Z
x
f ~JaðxÞϕaðxÞ þ JaðxÞ ~ϕaðxÞg: ð33Þ

Here, J ¼ J½ϕ; ~ϕ� and ~J ¼ ~J½ϕ; ~ϕ� are in fact k dependent
and are determined by inverting relations (30) for fixed ϕ

and ~ϕ. From Eq. (33) it is straightforward to derive the
exact RG flow equation: Taking the scale derivative
with respect to the logarithmic scale parameter s ¼
lnðk=ΛÞ (where Λ refers to some fixed reference scale,
which will typically be identified with the UV cutoff), we
obtain4

∂
∂sΓk ¼ i

Z
p
Tr

� ∂
∂sRkðpÞReGR

k ðω; pÞ
�
; ð34Þ

where the integration runs over real frequencies and
momenta, p ¼ ðω; pÞ, and the trace Trf� � �g is evaluated
over internal field indices. Both the scale derivative of the
CTP effective action, on the lhs of Eq. (34), and the
retarded propagator on the rhs are defined in the presence of
arbitrary sources J and ~J and therefore depend on the fields.

At this level the functional flow equation (34) corresponds
to an infinite hierarchy of coupled differential equations.
Taking functional derivatives with respect to the fields, we
may derive the flow equations for n-point functions to
arbitrary order. To solve this hierarchy however, we need to
close the infinite set of coupled equations which defines a
particular truncation of the scale-dependent CTP effective
action Γk. The so-obtained flow equations are then evalu-
ated at the global minimum of the effective action,
determined by (30) in the absence of sources,
J ¼ ~J ¼ 0. Of course, any truncation of (34) amounts to
an approximation of the full theory and restricts both the
possible degrees of freedom and interactions that might
become relevant in the low-energy effective theory. While
sophisticated truncations have been developed to solve
these flow equations (see, e.g., Refs. [70–76]) typically the
quality of a particular truncation can be improved consid-
erably if one has some understanding of the relevant
operators in the low-energy regime. In the following
section we will consider possible truncations for
the OðNÞ model that allow us to follow the flow of the
scale-dependent effective potential in the vicinity of the
second-order phase transition (at vanishing or nonvanishing
temperature). This allows us to address the impact of the
characteristic scales of the system determined by temper-
ature and microscopic interactions and to resolve the
dynamic scaling behavior.
Let us finally comment on the form of the regulator

function RkðpÞ. So far it seems that we might choose
any function as long as it is non-negative. However,
if we are to make sure that Eq. (34) defines a functional
flow between the microscopic action and CTP effective
action, we need to impose additional constraints on the
regulator function Rk that enforce compatibility with
these boundary conditions. In particular, the following
properties should hold: limk→ΛΓk½ϕ; ~ϕ� ¼ S½φ; ~φ� and
limk→0Γk½ϕ; ~ϕ� ¼ Γ½ϕ; ~ϕ�. Of course, when J ¼ ~J ¼ 0,
the effective action should depend only on ϕ ¼ hφ̂i while
~ϕ ¼ 0. These conditions can be implemented by the
following requirements: limk→ΛRk ∼ Λ2 → ∞ and
limk→0Rk ¼ 0, respectively. Specifically, in the main
part of this work, concerned with the critical dynamics
at nonvanishing temperature (cf. Sec. VI), we employ the
following frequency-independent regulator function,

RkðpÞ ¼ Z⊥
k ðk2 − p2Þθðk2 − p2Þ; ð35Þ

while at zero temperature we choose to work with a
similar ðdþ 1Þ-dimensional Euclidean regulator
(cf. Sec. V). Z⊥

k is a scale-dependent factor which appears
in the definition of our truncation for the effective action
Γk (see Sec. IV B). Equation (35) is also known as the
Litim regulator and satisfies an optimization criterion that
reduces the spurious scheme dependence from the

4By writing the flow equation in the frequency-momentum
representation, we assume that the limits ti → −∞ and tf → ∞
have been taken, thus restoring time translation invariance. Here
and in the following we define the frequency-momentum
integration as

R
p � � �≡ 1

ð2πÞdþ1

R
dωddjpj � � �.
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truncated flow equations [77]. Compared to other regu-
lator functions it has the clear advantage that it allows us
to derive analytic expressions for the nonperturbative RG
functions. However, a word of caution is in order at this
point: Different choices of regulators might affect the
quality of the final results. To understand the possible
effects that such a choice might entail, we compare the
performance of different regulators in Sec. VII. That is, we
apply an expansion around the upper critical dimension
dcr ¼ 4 for the classical phase transition and compare to
known results from the ϵ-expansion. A similar analysis is
provided for the large-N expansion. This will give an
indication to what extent results obtained within the
functional renormalization group are regulator dependent
for a given truncation of the scale-dependent effective
action.
Before we proceed, let us remark that we will drop the

index k from now on to avoid a proliferation of notation,
unless it is necessary to highlight the scale dependence of
parameters or couplings of the model.

IV. RELATIVISTIC OðNÞ MODEL

In this section, we discuss the general structure of the
CTP effective action and its truncations with the objective
to smoothly connect the coherent and incoherent dynamics
in the UVand IR, respectively. In Sec. IVA the CTP action
at T ¼ 0 is discussed in detail, whose structure governs the
microscopic coherent dynamics at arbitrary T. In Sec. IV B,
our ansatz on the two-point propagators is explicitly
constructed so that the fluctuation theorem holds exactly

at the linear level. This fixes the scaling dimensions of the
fields, which we provide in Sec. IV C. Finally, in Sec. IV D,
we discuss consistent truncations of the vertex expansion of
the CTP effective action. These considerations allow us to
address the effectiveness as well as the limitations of the
assumptions implicit in our ansatz.

A. Microscopic theory (T ¼ 0)

Here, we provide the CTP action for the relativisticOðNÞ
theory at zero temperature.We employ the ðφþ;φ−Þ basis on
the Cþ ⊕ C− contour (see Sec. II) and start with the non-
interacting theory S ¼ S0, for which we derive the propa-
gators and discuss the implications of the CF-functional
[cf. Eqs. (10) and (12)]. This section serves essen-
tially as an introduction to the structure of the OðNÞ theory
in the real-time formalism (see also Ref. [78] which
provides an extensive introduction to real-time methods
in field theory). The propagators are defined and their
properties outlined. While most of them generalize also
beyond perturbation theory, care is taken to clearly
highlight these properties and distinguish them from the
assumptions valid only in the perturbative regime. At
the example of the free theory, we argue that the effect of
the boundary constraints and initial fluctuations can be fully
captured by introducing an effective CTP action. The
free action can be written in terms of contributions
from the two distinct branches of the contour plus an addi-
tional contribution that takes the form of a mixing
term ∼φþφ−:

S0½φþ;φ−� ¼
1

2

Z
p
ðφþð−pÞ;φ−ð−pÞÞ

�
ω2 þ i0þ − ω2ðpÞ −i0þðsgnðωÞ þ 1Þ
i0þðsgnðωÞ − 1Þ −ðω2 − i0þ − ω2ðpÞÞ

��
φþðpÞ
φ−ðpÞ

�
; ð36Þ

where ωðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
defines the characteristic frequency of the modes. Note that the spectrum of characteristic

frequencies and propagators of (36) are invariant under OðNÞ symmetry (internal indices are not explicitly written out,
unless necessary). This is by no means obvious: In fact, a naive doubling of the degrees of freedom on the CTP would yield
a theory which is invariant under independent OðNÞ-rotations of the φþ and φ− fields. However, such a symmetry is
unphysical—the fields on the upper and lower branch of the CTP are not independent due to the presence of the boundary
conditions that enter in the construction of the path integral; cf. Sec. II. We include the nondiagonal mixing contributions
∼φþ;aφ

a
− in Eq. (36) precisely to account for the nonvanishing correlation of the fields and to constrain the spectrum of the

theory.5 Clearly, their effect is identical to imposing the boundary constraint φaþðt ¼ tfÞ ¼ φa
−ðt ¼ tfÞ at final time tf.

5This situation is very much reminiscent of the situation that one encounters in the replica approach to spin glasses [79]. As an
example consider two identical copies of a classical lattice Ising-spin model fsαi g, where the greek index α labels the different replicas,
while the latin indices i; j label the sites of the discrete spatial lattice. The Hamiltonian, H ¼ P

α¼1;2

P
i;j Jijs

α
i s

α
j − ε

P
is

1
i s

2
i , is defined

via the exchange couplings Jij, which are not necessarily nearest-neighbor and randomly alternate in sign. It includes an additional
mixing term which introduces nonvanishing correlations between replicas. Depending on the specific choice for the probability
distribution of the couplings, one might observe a large degeneracy of equilibrium states for such a spin system at sufficiently low
temperatures. The correlations between different replicas define an order parameter qαβðεÞ ∼P

ihsαi sβi i for the low-temperature glassy
phase [80]. The existence of one or more (coexisting) equilibrium states can be monitored by observing if qαβðεÞ is continuous or
discontinuous when ε changes sign [81], and the presence of a discontinuity is related to the spontaneous breaking of the replica
symmetry qαβð0Þ ¼ qβαð0Þ [82–84]. In the context of the CTP action the replica symmetry breaking is expressed
on the level of the frequency-dependent propagators, i.e., GαβðωÞ ≠ GβαðωÞ, α; β ∈ fþ;−g.
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The presence of the infinitesimal i0þ contributions
furthermore ensures the proper causality structure of the
propagators and enforces a relation between the positive
and negative frequency modes. In the given field repre-
sentation the free propagators read

GðpÞ ¼
�
GþþðpÞ Gþ−ðpÞ
G−þðpÞ G−−ðpÞ

�
; ð37Þ

where

GþþðpÞ ¼
−1

ω2 − ω2ðpÞ þ i0þ
; ð38Þ

Gþ−ðpÞ ¼ 2πiθðωÞδðω2 − ω2ðpÞÞ; ð39Þ

and the following symmetry relations hold:

GþþðpÞ ¼ −½G−−ðpÞ�†; ð40Þ

Gþ−ðpÞ ¼ G−þð−pÞ: ð41Þ

The diagonal elements of the propagator (37) correspond to
the usual time-ordered (and reverse time-ordered) Green
functions. However, not all of the components are inde-
pendent. Apart from the relations (40) and (41) the
following algebraic identity holds:

GþþðpÞ þ G−−ðpÞ ¼ Gþ−ðpÞ þ G−þðpÞ; ð42Þ

as one may easily verify. Eqs. (40)–(42) reduce the number
of independent degrees of freedom and are valid also
beyond perturbation theory. Given these relations one
might argue that the propagator (37) can be expressed in
terms of three independent real-valued components only.
However, the presence of a fluctuation theorem [50,85] and
the dispersion relation [86] further reduces the number of
independent degrees of freedom. Both of these relations are
most easily derived in the retarded/advanced (RA) basis.
Therefore, as we have done already in Secs. II and III we
will switch to this basis, where the properties of the action
and the consequences of the i0þ insertion become some-
what more transparent. In that basis, the free action takes
the following form:

S0½φ; ~φ� ¼
1

2

Z
p
ðφð−pÞ; ~φð−pÞÞ

�
0 ðωþ i0þÞ2 − ω2ðpÞ

ðω − i0þÞ2 − ω2ðpÞ i0þ

��
φðpÞ
~φðpÞ

�
: ð43Þ

Here, we see that the infinitesimal regulating contribution
appears as a positive-definite imaginary contribution ∼ ~φ2

to the action. Not only does this guarantee the convergence
of the generating functional, but it also ensures that the
dynamic correlations of the system are related to
the response with respect to an external perturbation. In
the RA representation, the free propagator is given by

GðpÞ ¼
�

iFðpÞ GAðpÞ
GRðpÞ 0

�
; ð44Þ

where

GRðpÞ ¼ −1
ω2 − ω2ðpÞ þ iπsgnðωÞδðω2 − ω2ðpÞÞ; ð45Þ

FðpÞ ¼ πδðω2 − ω2ðpÞÞ ð46Þ

define the free retarded propagator and statistical correla-
tion function, respectively. By conjugation symmetry (24)
the advanced propagator GA is seen to satisfy

GAðpÞ ¼ ½GRðpÞ�†: ð47Þ
All components in (44) are either purely real or imaginary,
i.e., ½GR=AðpÞ�† ¼ GR=Að−pÞ and ½iFðpÞ�† ¼ −iFð−pÞ, in
contrast to the propagators in the ðφþ;φ−Þ basis. This is

one of the advantages of expressing the action in the form
(43)—it clearly emphasizes the relevant degrees of free-
dom. Furthermore, from the propagators (45) and (46) we
may easily read off the following relation,

Fðω; pÞ ¼ sgnðωÞImGRðω; pÞ ¼ ρðω; pÞ
2jωj ; ð48Þ

where in the last step, we have defined the spectral density
ρðω; pÞ. In fact, this relation is exact—it holds for any
theory that is prepared in the ground state (T ¼ 0).
Equation (48) is a fluctuation theorem which relates the
correlation for zero point fluctuations Fðω; pÞ to the
spectral density (or alternatively the imaginary part of
the response function). When the system is in its ground
state, all it can do is to absorb energy and without any
coupling to a dissipative environment, the only possibility
for nonzero fluctuations is to allow for virtual particle-
antiparticle pair creation (and annihilation). This point of
view can be supported by the following derivation which
starts from the relation

Z
ω
ðαþ jωjÞ2Faðω; pÞ ≥ 0; ð49Þ
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where the correlation function is expressed in the mass
eigenbasis, FabðpÞ ¼ FaðpÞδab. The components FaðpÞ,
a ¼ 1;…; N, are real which follows from the reflection
symmetry ½FðpÞ�† ¼ Fð−pÞ, while positivity follows
from the stability of the action.6 Exploiting these properties,
we may write Eq. (49) which is obviously satisfied for any
real-valued parameter α. In particular, it holds true at the
minimum (with respect to α) for which we obtain

�Z
ω
Faðω; pÞ

��Z
ω
ω2Faðω; pÞ

�
≥
�Z

ω
jωjFaðω; pÞ

�
2

:

ð50Þ

We use the following identities,

Δφ2
aðpÞ≡

Z
ω
Faðω; pÞ

¼ 1

2

Z
x
hfφ̂aðx0; xÞ; φ̂aðy0; 0Þgijx0¼y0e

−ip·x; ð51Þ

Δπ2aðpÞ≡
Z
ω
ω2Faðω; pÞ

¼ 1

2

Z
x
hfπ̂aðx0; xÞ; π̂aðy0; 0Þgijx0¼y0e

−ip·x; ð52Þ

where π̂ðx0; xÞ ¼ ∂
∂x0 φ̂ðx0; xÞ defines the conjugate mo-

mentum to φ̂. Together with the fluctuation theorem (48)
we write

Z
ω
jωjFaðω; pÞ ¼

1

2

Z
ω
ρaðω; pÞ ¼

1

2
: ð53Þ

In the last step of Eq. (53) we have employed the sum rule
for the spectral density (see below), which follows by using
the definition of the spectral function
Z
ω
ρaðω; pÞ ¼ −

i
2

Z
x
h½φ̂aðx0; xÞ; π̂aðy0; 0Þ�ijx0¼y0e

−ip·x;

ð54Þ
and the canonical equal-time commutation relations for the
field and conjugate momentum operators. This allows us to
express Eq. (50) in the well-known form

Δφ2
aðpÞΔπ2aðpÞ ≥

1

4
: ð55Þ

Finally, using the above expressions for the free propagators
(45) and (46) one may easily check that the uncertainty
relation is in fact saturated in the ground state, where
Δφ2

aðpÞ ¼ 1=ð2ωaðpÞÞ. Thus, for any finite momentum
the ground state features nonvanishing zero-point fluctua-
tions, which shows that Eq. (48) is satisfied nontrivially.
For completeness, we also provide the following fre-

quency integrals:

Z
ω

ρaðω; pÞ
2ω

¼ 0;
Z
ω
ρaðω; pÞ ¼ 1; ð56Þ

that follow from the canonical equal-time commutation
relations. In general, Eqs. (53), (55), and the normalization
of the spectral function (56) hold true also in the interacting
theory. This applies both to the bare and renormalized
fields, for which the kinetic term has coefficient 1 in the
effective action.7

Apart from the fluctuation theorem, there is a dispersion
relation that relates the real and imaginary parts of the
response function. It is a direct consequence of analyticity
of the retarded (advanced) propagator in the upper (lower)
half of the complex plane

1

2
ReGRðω; pÞ ¼ −P

Z
ω0

ImGRðω0; pÞ
ω − ω0 ; ð57Þ

where P denotes the Cauchy principal value. The reader
may easily verify that this relation is satisfied by the free
propagators, but it also holds for the exact propagators.
Thus, it is clear that the propagator (44) of any system
prepared in its ground state can be described in terms of a
single real-valued function. In fact, this statement is also
true at nonvanishing temperatures (see Sec. IV B). This
greatly simplifies the diagrams that one needs to evaluate in
perturbative calculations and similarly, in the framework of
the nonperturbative functional RG.
Let us move on to the interacting case. The vertices in the

CTP action S ¼ S0 þ Sλ derive directly from the construc-
tion of the theory in the RTF illustrated in Sec. II. For the
λφ4 theory, we obtain two vertices in the physical RA
representation, parametrized by the same coupling λ, but
different prefactors:

Sλ½φ; ~φ� ¼ −
λ

3!

Z
x

�
~φaðxÞφaðxÞφ2ðxÞ

þ 1

4
φaðxÞ ~φaðxÞ ~φ2ðxÞ

�
: ð58Þ

6In the mass eigenbasis, where the propagators are diagonal,
the statistical correlation function can be written as

FaðpÞ ¼ jGR
a ðpÞj2

ð2πÞdþ1

Voldþ1

1

i
δ2Γ½ϕ; ~ϕ�

δ ~ϕað−pÞδ ~ϕaðpÞ
> 0;

where Γ is the effective action (and corresponds to S0 in the free
theory).

7However, note that certain truncations of the effective
action (encountered in the framework of the functional RG,
cf. Sec. IV B) might not retain the full spectrum of the theory, and
in these cases the sum rule (56) has to be modified accordingly. In
particular, this depends on the quality of the employed approxi-
mation for the frequency dependence of the self-energy.
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Their origin derives from the field degrees of freedom that
propagate on the two distinct branches of the time contour
C (cf. Sec. II) which can be seen explicitly, by changing the
field representation:

Sλ½φþ;φ−� ¼ −
λ

4!

Z
x
fφ4þðxÞ − φ4

−ðxÞg: ð59Þ

The additional minus sign originates from the reverse time
ordering along the C− path. Thus, the two coupling terms in
the RTF are simply inherited from the doubling of the field
degrees of freedom on the Cþ ⊕ C− time integration
contour.
In the presence of interactions, both the mass parameter

and the coupling of the theory are renormalized. This is due
to the coherent interaction of bare particles with excitations
from the vacuum and can be compensated by absorbing the
associated UV divergences in appropriate counterterms. At
nonvanishing temperature, however, we expect an addi-
tional IR renormalization which is due to incoherent
collisions with renormalized quasiparticles. These two
processes lead to two different scales in the problem,
which are characterized by the scattering length and mean
free path of the system. The purpose of the following two
sections is to illustrate the effect of these competing
processes on the basis of an appropriate truncation of
the CTP effective action. Equations (43)–(58) define our

microscopic model that we will use as a starting point for
the RG investigation.

B. Low-energy effective theory

In the framework of the nonperturbative functional RG,
we employ an ansatz for the scale-dependent CTP effective
action, which corresponds to a suitable truncation of the
gradient expansion and an expansion in field monomials
(see, e.g., Refs. [87,88]). Projecting the flow (34) onto
those contributions included within our ansatz, we obtain a
finite set of RG equations for the corresponding parameters
and couplings. This necessarily constitutes an approxima-
tion of the otherwise exact flow equation. Here, we provide
the specific form of the truncated CTP effective action in
the OðNÞ model and discuss the properties of the physical
spectrum and dynamical behavior as a result of the finite
truncation. Fluctuations in the equilibrium state are
reflected in the CTP effective action and it will therefore
depend on temperature. We consider different temperature
regimes and discuss how they are reflected within our
ansatz.
In the real-time formalism, the CTP effective action is

most conveniently expressed in the frequency-momentum
representation. We work in the RA basis and assume that
the effective action takes the following form,

Γ½ϕ; ~ϕ� ¼ 1

2

Z
p
ðϕð−pÞ; ~ϕð−pÞÞ

�
0 Z∥ω2 − Z⊥p2 þ iΩω=β

Z∥ω2 − Z⊥p2 − iΩω=β iðΩω=βÞcothðβω=2Þ

��
ϕðpÞ
~ϕðpÞ

�
−
Z
x
Uðϕ; ~ϕÞ; ð60Þ

to second order in the gradient expansion. In contrast to the
spatial momenta, an infinite series of frequency terms is
taken into account, which is necessary to implement the
fluctuation-dissipation theorem [50,85] at nonvanishing
temperature exactly at the level of the propagators
[cf. (70)]. The systematic construction of more elaborate
truncations of the equilibrium effective action in the RTF
significantly benefits from symmetry considerations [89].
In particular, one may show that fluctuation relations
between different ðm; nÞ-point functions, Γðm;nÞ ≡ δmþnΓ

δϕmδ ~ϕn,
that characterize the properties of the equilibrium state,
follow as Ward-Takahashi identities associated with time-
reversal symmetry [89–91].
The generalized potential U ¼ Uðϕ; ~ϕÞ includes terms

that appear to lowest order in the frequency and momentum
expansion, while the wave function renormalization Z⊥ and
the renormalization factor Z∥ parametrize those terms that
enter at quadratic order in momentum and frequency,
respectively. The coefficient Ω measures the strength of
the imaginary contributions to the 1PI two-point functions
Γð1;1Þ and Γð0;2Þ. All renormalization factors Z⊥, Z∥, and Ω
are assumed to be field independent but depend on the RG

scale parameter s. The consistency of Eq. (60) requires that
Ω > 0, β > 0, a constraint imposed by the stability of the
effective action, and Z∥, Z⊥ ≥ 0.8 Uðϕ; ~ϕÞ is also scale
dependent and defines the mass parameters and couplings
of the theory. That is, the spectrum of the theory is given in
terms of the N eigenvalues of the mass matrix squared9:

m2
ab ≡ −lim

p→0
Γð1;1Þ
ab ðpÞjmin ¼

∂2U

∂ϕa∂ ~ϕb

����
min

; ð63Þ

8Note that our definition of the renormalization constants is
different from the standard convention; i.e., Z⊥ is defined as the
inverse of the field renormalization defined in Refs. [92,93].

9Here, we define the two-point functions in the frequency-
momentum representation with an appropriate factor for nor-
malization:

Γð1;1ÞðpÞ ¼ ðΓð1;1Þð−pÞÞ† ¼ ð2πÞdþ1

Voldþ1

δ2Γ½ϕ; ~ϕ�
δ ~ϕð−pÞδϕðpÞ ; ð61Þ

Γð0;2ÞðpÞ ¼ ð2πÞdþ1

Voldþ1

δ2Γ½ϕ; ~ϕ�
δ ~ϕð−pÞδ ~ϕðpÞ : ð62Þ
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where the second functional derivative is evaluated at the
global minimum of the effective potential,

∂V
∂ϕa

����
min

≡ −lim
p→0

Γð0;1Þ
a ðpÞjmin ¼ 0: ð64Þ

In equilibrium, the field configuration at the minimum of
the effective potential is homogeneous and, without loss of
generality, we assume that the field expectation value points
in the 1-direction:

ϕa ¼ vδa1; ~ϕa ¼ 0: ð65Þ
The propagators are most conveniently expressed in the
basis, where the mass matrix is diagonal, i.e.,
m2

ab ¼ m2
aδab, and the two-point functions are diagonal.

In particular, we have

Γð1;1Þ
ab ðpÞjmin ¼ ½Z∥ω2 − Z⊥ω2

aðpÞ − iΩω=β�δab; ð66Þ

with the characteristic field-dependent frequencies

ωaðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

R;aðvÞ
q

, a ¼ 1;…; N, expressed in

terms of the renormalized masses m2
R;a ¼ m2

a=Z⊥. The
two-point function Γð2;0Þ is exactly zero, while

Γð0;2Þ
ab ðpÞjmin ¼ iðΩω=βÞcothðβω=2Þδab; ð67Þ

at the minimum of the effective potential (65). Within our
truncation there are no field-dependent contributions to
Γð0;2Þ. This is enforced by two requirements: (1) that the
linear frequency contribution should be field independent
and (2) that a fluctuation-dissipation theorem should hold.
Before we comment on the properties of fluctuations and
consistent truncations of the CTP effective action, we
provide the general form of the propagators within our
ansatz (60). In the basis where the mass matrix is diagonal,
the retarded propagator reads

GR
abðpÞ ¼

−1
Z∥ω2 − Z⊥ω2

aðpÞ − RðpÞ þ iΩω=β
δab; ð68Þ

and the statistical correlation function takes the form

FabðpÞ ¼
ðΩω=βÞcothðβω=2Þ

½Z∥ω2 − Z⊥ω2
aðpÞ − RðpÞ�2 þ ðΩω=βÞ2 δab:

ð69Þ
In contrast to the free propagators, they include the
momentum-dependent function RðpÞ in the denominator
which provides a regularization of massless modes. The
propagators corresponding to the 1PI CTP effective action
are obtained only in the limit when the RG scale parameter
is removed, k ¼ 0, and all modes have been taken into
account, i.e., RðpÞ ¼ 0.

With the given form of the scale-dependent propagators
it is easy to check that the following fluctuation-dissipation
theorem (FDT) is satisfied:

Fabðω; pÞ ¼
1

ω

�
nðωÞ þ 1

2

�
ρabðω; pÞ; ð70Þ

where nðωÞ ¼ ðeβω − 1Þ−1 is the thermal occupation num-
ber, and the spectral density is given by

ρabðω; pÞ ¼ 2ωImGR
abðω; pÞ: ð71Þ

Let us briefly comment on the properties of Eq. (70) and
its relation to the fluctuation theorem stated earlier in
Sec. IVA. As far as our setup goes, we consider a closed
system at a nonvanishing temperature; i.e., it is understood
that different macroscopic subsets of the system are
mutually in equilibrium. In a thermal state, we have the
possibility that a given subsystem might fluctuate and
exchange energy or particles with another subsystem. The
total energy is conserved in this process and thus, strictly
speaking, there is no dissipation. However, when degrees of
freedom outside a given subset are integrated out, their
combined effect might yield a dissipative coupling to a
(classical) random potential in the resulting effective theory
(see, e.g., Ref. [94]). In a similar spirit, the successive
integrating out of modes that underlies the Wilsonian RG
[95] provides a low-energy effective description of the
dynamics, where dissipation appears naturally through
thermal fluctuations. Our aim is to show how the relativistic
OðNÞ vector model acquires a dissipative coupling and in
what way it determines the dynamic universality class
when the system is tuned to a second-order phase tran-
sition. To understand the transition from unitary to dis-
sipative dynamics Eq. (60) should interpolate between
zero-point fluctuations at the smallest scales and macro-
scopic thermal fluctuations that appear only through the
RG averaging procedure. This is achieved by taking into
account the exact form of the fluctuation theorem (70) in
the framework of the CTP effective action. Indeed, taking
the limit β ¼ 1=T → ∞, we see that the FDT reduces to the
fluctuation theorem provided in Sec. IVA and by con-
struction, the linear FDT is implemented exactly within our
ansatz. Similar fluctuation theorems also hold for higher
n-point functions characterizing the nonlinear response of
the system [96]. We will come back to the nonlinear version
of the FDT in Sec. IV D, when we construct consistent
truncations of the functional RG.
Equation (60) constitutes the simplest possible ansatz

that allows us to understand the competition between
coherent propagation of particles and dissipation. It is
important to understand the limitations of such an approxi-
mation. For that purpose let us take a closer look at the
limits of the effective CTP action and the associated
dynamic behavior. At T ¼ 0 the CTP effective action
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(60) maps onto the free microscopic action (43), up to wave
function renormalization factors Z∥ and Z⊥, that satisfy
Z∥ ¼ Z⊥ ¼ 1 in the noninteracting case. In the presence of
interactions—when all fluctuations have been integrated
out—the phase structure of the model is captured fully by
the parametrization of the effective potential, while the
dynamics is governed by N propagating modes

ω ¼ �ðZ⊥=Z∥Þ12ωaðpÞ þ
i
2
ðΩ=Z∥Þβ−1 þOðβ−3Þ: ð72Þ

In the low-temperature regime the characteristic frequen-
cies are renormalized, i.e., to leading order: ωR;aðpÞ ¼
�ðZ⊥=Z∥Þ12ωaðpÞ þOðβ−1Þ. A nonvanishing imaginary
part corresponding to a finite dissipative width appears
at subleading order in the low-temperature expansion. If
Ω=Z∥ is sufficiently small and Z⊥, Z∥ ≃ 1, one may speak
of well-defined single-particle excitations (quasiparticles)
with a nonvanishing mass and finite lifetime.
This is in contrast to the high-temperature limit, where

we are concerned with the dynamics of collective modes

ω ¼ iðZ⊥=ΩÞω2
aðpÞβ þOðβ3Þ: ð73Þ

Their renormalized characteristic frequencies are given by
ωR;aðpÞ ¼ ðZ⊥=ΩÞω2

aðpÞβ.10 We first consider the hydro-
dynamic regime jpjξ ≪ 1 in the disordered phase, where
the correlation length ξ ¼ m−1

R is finite. We observe that the
characteristic frequencies do not vanish in this regime—
any long-wavelength excitation will relax locally to the
thermal state, with the typical relaxation time τ ¼ ω−1

R ∼ ξ2.
Thus, the hydrodynamics in the disordered phase is
described completely in terms of nonpropagating relaxa-
tional modes. As we lower the temperature to its critical
value, the correlation length ξ diverges and the order
parameter experiences critical slowing down τ ∼ ξz (for
p ¼ 0), where z is the dynamic critical exponent. The value
of this exponent depends critically on the presence of slow
(massless) modes and on whether they couple to the order
parameter [11,97]. While the presence of such massless
modes is ruled out in the disordered phase (assuming that
there are no conserved quantities that couple to the fields),
this is not so in the symmetry-broken phase, where N − 1
Nambu-Goldstone modes govern the low-energy dynam-
ics. It is these modes that will—in principle—couple to the
order parameter and determine the dynamic universality
class of the phase transition [11,12].
In effective theories for critical dynamics, this mode

coupling appears as a phenomenological input from hydro-
dynamics [98]. However, within a first-principles approach
that starts from the microscopic action and attempts to

connect to the low-energy dynamics, it is clear that they
must follow from general symmetry considerations, that is,
the fulfillment of conservation laws and Ward identities
[99,100]. Within the framework of the functional RG these
identities are satisfied only with the accuracy of the
employed truncation [101,102] and in that sense, our
ansatz Eq. (60) defines a nonconserving approximation
to the low-energy dynamics.
We therefore expect that within our approximation the

low-energy dynamics in the vicinity of the continuous
phase transition should follow that of model A [11,103]
which is defined in terms of a nonconserved order
parameter in the presence of thermal noise. This makes
it clear that our truncation will not allow us to distinguish
different types of relaxational behavior (as required, e.g., to
identify the proper dynamic universality class for the given
microscopic model). Nevertheless, Eq. (60) serves as a
simple, well-controlled starting point to explore the RG
flow in the RTF and to identify how dissipative dynamics
emerges in the effective description at large scales. We
leave a systematic study of different truncations and their
associated possibilities for the dynamic critical behavior for
future work.

C. Scaling dimensions and dynamic scaling relations

It is instructive to consider the dimensions of the fields
and parameters that appear in the microscopic theory and
their scaling behavior when fluctuations are taken into
account. The scaling dimension ΔΦ ≡ ½Φ� of the (possibly
composite) scaling field Φ is defined in terms of its
behavior under scaling transformations x → e−sx and
t → e−szt:

ΦðxÞ ¼ e−sΔΦΦðe−szt; e−sxÞ; ð74Þ

where s ¼ lnk=Λ is the scaling parameter (as defined in
Sec. III). Φ could correspond to the φþ and φ− fields (or
their counterparts in the RA basis) in the CTP action (36),
or the corresponding effective degrees of freedom that
appear in our ansatz for the scale-dependent CTP effective
action, Eq. (60). In general, each of these fields might have
different associated scaling dimensions.
The scaling dimensions of the spatial and time deriva-

tives follow from their properties under scaling trans-
formations:

½∂� ¼ 1; ½∂0� ¼ z: ð75Þ

In the presence of spacetime symmetries the scaling
dimensions are not independent and the dynamic exponent
z can be expressed in terms of the scaling dimension of the
spatial derivative operator. In particular, at T ¼ 0, Lorentz
symmetry enforces z ¼ 1 exactly for the relativistic OðNÞ
vector model. However, to define a nonvanishing temper-
ature, we need to specify a fixed reference frame. This

10Note that another set of finite-frequency modes decouples in
the limit of small β and does not contribute to the low-energy
dynamics.
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breaks the Lorentz symmetry and for a thermal ensemble
we find z ≠ 1.
To determine the dynamic scaling exponent z, or the

scaling dimension ΔΦ of the scaling field Φ, is a difficult
problem in general: It requires us to solve for the spectrum
of the dilatation operator, i.e.

ðΔΦ þ zt∂0 þ x · ∂ÞΦðt; xÞ ¼ 0: ð76Þ

In the absence of interactions and at zero temperature
however, this is an easy exercise: Assuming for the moment
that the fields ϕþ and ϕ− (or equivalently φþ and φ−) are
scaling, we obtain their scaling dimensions11:

Δþ ¼ Δ− ¼ 1

2
ðD − 2Þ; ð77Þ

where D ¼ dþ z, and z ¼ 1 at zero temperature. The
equality Δþ ¼ Δ− follows from the constraint imposed by
the fluctuation relation at T ¼ 0 and does not apply for
nonvanishing T [see Eqs. (84)–(86) below]. In fact, for
T ≠ 0, the fields ϕþ and ϕ− do not correspond to scaling
fields (see Sec. IV C 2 below) and the corresponding
scaling dimensions Δ� are not well defined.
In the presence of interactions, the fields are renormal-

ized and the canonical dimensions (77) are modified. This
holds true even at zero temperature, where the difference in
the scaling dimensions is captured by a single multiplica-
tive factor Z⊥

α :

ffiffiffiffiffiffi
Z⊥
α

q
ϕα ¼ ϕR;α; ð78Þ

where α ∈ fþ;−g and ϕR;α define the renormalized degrees
of freedom corresponding to the bare fields ϕα (in the limit
k → Λ, Z⊥ → 1). Although the renormalization factors
appear as a simple rescaling of the fields, it should be kept
in mind that they are in fact associated to the renormalization
of composite operators, i.e., ∼Z⊥

α ð∂ϕαÞ2. In the RA repre-
sentation, we use the following definition of Z⊥,

Z⊥þð∂ϕþÞ2 − Z⊥
−ð∂ϕ−Þ2 ≡ Z⊥∂ ~ϕa · ∂ϕa; ð79Þ

while Z∥ is defined as

Z∥
þð∂0ϕþÞ2 − Z∥

−ð∂0ϕ−Þ2 ≡ Z∥∂0
~ϕa∂0ϕa: ð80Þ

1. Quantum scaling regime (T ¼ 0)

At T ¼ 0, we have Z∥ ¼ Z⊥ ≡ Z by Lorentz symmetry.
Here, our interest lies in the scaling behavior at the
continuous quantum phase transition where the fields

exhibit scaling. That is, in the IR limit 0 ≤ k=Λ ≪ 1, when
all fluctuations have been taken into account and the
microscopic parameters have been tuned appropriately,
the wave function renormalization satisfies Z⊥ ∼ e−sη

⊥
.

In this quantum critical regime we may define the anoma-
lous scaling exponent,

η⊥ ¼ −
∂
∂s lnZ

⊥; ð81Þ

and it is clear that Z∥ ∼ e−sη
∥
with η∥ ¼ η⊥ ≡ η. From the

multiplicative renormalization of the fields we find that the
scaling dimension of the renormalized composite operator
∂ ~ϕR;a · ∂ϕa

R is given by

Δþ ~Δ ¼ D − 2þ η⊥: ð82Þ
This result follows from an appropriate rescaling of the
fields ϕR and ~ϕR, from which we deduce the scaling
dimensions:

Δ ¼ ~Δ ¼ 1

2
ðD − 2þ η⊥Þ: ð83Þ

As in the free massless theory they are degenerate, which
follows simply from the properties of the propagators under
scaling transformations

GRðω; pÞ ¼ e−sðΔþ ~Δ−DÞGRðeszω; espÞ; ð84Þ

Fðω; pÞ ¼ e−sð2Δ−DÞFðeszω; espÞ; ð85Þ

and the presence of the T ¼ 0 fluctuation theorem

FðωÞ ¼ sgnðωÞImGRðωÞ: ð86Þ

2. Classical scaling regime (T ≠ 0)

At T ≠ 0 the characteristic fluctuations in the vicinity of
the classical phase transition (CPT) show a different
behavior that is dictated by the scaling form of the FDT.
In particular, we observe that

FðωÞ ¼ T
ω
ImGRðωÞ; ð87Þ

in the scaling region jωj ≪ T. We might encounter such a
scaling regime if T is much larger than the cutoff scale, i.e.,
0 ≤ jωj ≤ Λz ≪ T. Using the scaling form of the propa-
gators Eqs. (84) and (85), we derive the scaling dimensions
for the fields in the RA representation:

Δ ¼ ~Δ − z: ð88Þ
Thus, we observe that the presence of a nonvanishing
temperature lifts the degeneracy in the scaling spectrum.

11The microscopic fields φα and effective fields ϕα;k (in the
effective theory at scale k) have the same scaling dimensions in a
free theory, i.e., φα ¼ ϕα;k.
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This is equivalent to the statement that the retarded and
statistical propagators acquire different scaling properties at
the classical phase transition (and the difference is quanti-
fied in terms of the dynamic critical exponent z). In
contrast, at the QCP, both the correlations and the response
are described by the same scaling behavior (Δ ¼ ~Δ).
Although Eq. (88) indicates that the fields must scale
differently, it does not provide the explicit form for the
scaling dimensions at nonvanishing temperature. In
Sec. VI, we show that relation (88) is solved by

Δ ¼ 1

2
ðd − 2þ η⊥Þ; ~Δ ¼ 1

2
ðd − 2þ η⊥Þ þ z: ð89Þ

We may therefore conclude that there is a crossover
between the quantum and classical scaling regimes that
is characterized by a continuous transition in the scaling
dimensions of the fields, parametrized by the effective
dimension dε:

Δ ¼ 1

2
ðdε − 2þ η⊥ðdεÞÞ; ð90Þ

i.e., from dε ¼ dþ 1 (ω ≫ T) to dε ¼ d (ω ≪ T). In the
literature this is often referred to as dimensional reduction.
However, from our discussion it should be clear that this
statement applies only to the scaling properties of the
theory—the real dimensionality of the system remains
unchanged.

3. Dynamic scaling relations

Let us consider the dynamic properties at the continuous
phase transition: In general two parameters, Z⊥=Z∥ and
Ω=Z∥, are necessary to specify the dynamics of our model
[cf. Eqs. (72) and (73)], while the wave function renorm-
alization Z⊥ contributes to the renormalized mass spec-
trum. At zero temperature the finite renormalization of the
theory requires only a single independent parameter Z⊥
(while Z⊥=Z∥ ¼ 1 and Ω ¼ 0þ) and there is only a single
anomalous scaling exponent, i.e., η≡ η⊥ ¼ η∥, that fea-
tures in the scaling spectrum. In contrast, at T ≠ 0 we have
up to three anomalous exponents that contribute to the
dynamic scaling in the vicinity of the classical phase
transition. They are given by

η∥;⊥ ¼ −
∂
∂s lnZ

∥;⊥; ηΩ ¼ −
∂
∂s lnΩ: ð91Þ

With these we obtain the dynamic critical exponent z from
the scaling behavior of the retarded propagator (84) and the
statistical correlation function (85). If Z⊥, Z∥, and Ω ≠ 0,
then each of the corresponding anomalous dimensions will
contribute in the scaling regime. Using the scaling
assumption, we may derive the following relations within
our truncation,

Z∥ > 0∶ − η∥ þ 2z − 2þ η⊥ ¼ 0; ð92Þ

Ω > 0∶ − ηΩ þ z − 2þ η⊥ ¼ 0: ð93Þ

If both Z∥ and Ω are nonvanishing, we arrive at the
following scaling relation:

2þ 2ηΩ − η⊥ − η∥ ¼ 0: ð94Þ
Thus, in general, it is possible to characterize the dynamic
scaling in terms of two independent anomalous exponents
only, which we choose to be η⊥ and ηΩ. The presence of
additional symmetries may further reduce the number of
independent exponents that characterize the dynamic cor-
relations. In particular, in the presence of Lorentz symmetry

(Ω ¼ 0þ) we observe that z ¼ 1þ η∥−η⊥
2

≡ 1.
To summarize, regarding the dynamic critical behavior,

we may distinguish between two scaling regimes:

z ¼
�
1 ; T ¼ 0;

2 − η⊥ þ ηΩ ; T ≠ 0:
ð95Þ

At zero temperature, in the absence of a dissipative
coupling Ω, the system is invariant under Lorentz trans-
formations, which implies η∥ ¼ η⊥ ≡ η, and we find that
the dynamic critical exponent z ¼ 1, independent of the
local interactions (provided that they do not break the
Lorentz symmetry). However, the presence of a nonvanish-
ing temperature leads to an additional relevant parameter,
which leads to a dynamic scaling exponent z > 1.

D. Local interaction approximation

Our ansatz for the scale-dependent CTP effective action
relies on a truncation of an expansion in gradients, as well
as on a truncation of an infinite series of vertices. Here, we
address the properties of the finite vertex expansion, which
rests on two assumptions:

(I) We assume that the generalized potential U ¼
Uðϕ; ~ϕÞ takes the form of a formal series expansion
that is local both in space and time:

U ¼ ~ϕa ∂V
∂ϕa þ

X
n≥2

~ϕa1 ~ϕa2 � � � ~ϕanF a1a2…an ; ð96Þ

where V ¼ VðϕÞ corresponds to the effective po-
tential and the coefficients F a1a2…an ¼ F a1a2…anðϕÞ
define the fluctuation amplitudes.

(II) We assume that a truncation of the series (96) at
fourth order in the fields provides a reasonable
approximation of our theory in the low-energy
regime. In this case, the only nonvanishing ampli-
tudes F a1a2…an that contribute in the generalized
potential are given by
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F a1a2 ¼ δa1a2F2;0 þ ϕa1ϕa2F2;2; ð97Þ

F a1a2a3 ¼ δða1a2ϕa3ÞF3;1; ð98Þ

F a1a2a3a4 ¼ δða1a2δa3a4ÞF4;0: ð99Þ

Here, the brackets denote a complete symmetriza-
tion in the indices, e.g., δða1a2ϕa3Þ ¼ 1

3
ðδa1a2ϕa3þ

δa1a3ϕa2 þ δa2a3ϕa1Þ.
Typically one expects that such a finite expansion is valid

to a good approximation in the vicinity of a continuous
phase transition, where higher order contributions in the
fields are irrelevant in the RG sense. In the real-time
formalism however, this might not be sufficient to resolve
the appropriate low-energy dynamics. The vertices might
carry a frequency or momentum dependence and this
information needs to be taken into account to address
the question of the relevance or irrelevance of hydro-
dynamic modes in the low-energy limit. Indeed, using a
local series expansion (96) in our ansatz for the CTP
effective action we may only determine the dynamics of the
order parameter, without any coupling to long-wavelength
modes. Thus, within our truncation, we expect that the IR
dynamics is purely dissipative and the dynamic universality
class of the theory is given by that of model A [11], in line
with our arguments at the end of Sec. IV B.
The presence of a fluctuation theorem in the ground state

or thermal equilibrium constrains the form of the gener-
alized potential. One finds that in general the vertices are
not independent (see, e.g., Ref. [96] where the fluctuation
relations are given on the level of the three- and four-point
functions). These nonlinear fluctuation relations take a
simple form if one uses a local vertex expansion. Together
with the conjugation symmetry Uðϕ; ~ϕÞ� ¼ −Uðϕ;− ~ϕÞ, we
find at fourth order in the fields F a1a2 ¼ F a1a2a3a4 ¼ 0.
However, we point out that we obtain a nonvanishing
contribution ðiΩ=β2Þ Rx ~ϕ2 to the CTP effective action from
the zero-frequency limit of the quadratic term ~ϕ2 in
Eq. (60). The simplification on the level of vertices is
essentially a consequence of our assumption of locality and
the requirement of consistency that we impose on our
ansatz. That is, in our construction of the 1PI CTP effective
action, we have chosen to incorporate the properties of the
equilibrium state exactly by imposing fluctuation relations
between ðmþ nÞ-point functions Γðm;nÞ. Any consistent
truncation of the full equilibrium CTP effective action
should take into account these relations [89] and this is
what we have done here.
In the following it will be useful to consider an alternative

representation of the fields. In particular, we introduce the
following invariants under OðNÞ transformations,

σ1 ¼
1

2
ϕaϕa; σ2 ¼ ϕa ~ϕa; σ3 ¼

1

2
~ϕa ~ϕa; ð100Þ

in terms of which U ¼ Uðσ1; σ2; σ3Þ. This choice of para-
metrization makes the OðNÞ-symmetry of the theory
manifest and proves to be especially convenient in the
derivation of the RG equations. Using the constraints that
follow from conjugation symmetry and nonlinear fluc-
tuation relations, we obtain the following form of the
generalized potential:

U ¼ m2σ2 þ λ1;2ðσ1 − v2=2Þσ2 þ λ2;3σ2σ3; ð101Þ

which we expand around the scale-dependent minimum
σ1jmin ¼ v2=2. In the disordered phase (symmetric regime),
m2 > 0 and v2 ¼ 0, while in the ordered phase (symmetry
broken regime), m2 ¼ 0 and v2 > 0. Since the functional
RG provides a regularization of IR divergences associated to
massless modes, we can follow the RG flow of the theory,
through the phase transition, from the symmetry broken into
the symmetric phase. Thus, we will encounter both scenar-
ios when we solve for the RG flow equations.
Note that all parameters and couplings of our model are

real valued. A generic ansatz for the generalized potential
might also include imaginary couplings, e.g., iλ1;3σ1σ3 (see
our discussion at the end of Sec. II). The reason that they
are not present here is a consequence of the fluctuation
relations. Furthermore, not all couplings in Eq. (101) are
independent. We may establish a relation between λ1;2 and
λ2;3. We demonstrate this relation explicitly at the example
of the flow equations (cf. Sec. V).

V. QUANTUM REGIME (T ¼ 0)

The general form of the flow equations within our
truncation is given in the Appendix. Here, we provide
the RG flow equations specifically in the quantum regime.
This section summarizes well-known results [20,104,105]
and serves to provide a complete picture in the context of
the quantum-to-classical transition (cf. Secs. VI and VIII).
The flow equations are derived by using a Euclidean
regulator function after a Wick rotation to imaginary times
and frequencies. We employ the ðdþ 1Þ-dimensional Litim
regulator function [77]. To solve the flow equations it is
useful to apply our knowledge of the possible scaling
solutions (cf. Sec. IV C): We define dimensionless renor-
malized parameters and couplings in terms of which it is
convenient to identify possible fixed point (FP) solutions
of the RG flow. Let us consider the scaling dimensions
for the parameters and couplings that enter in our model
at T ¼ 0:

½v2� ¼ D − 2þ η⊥; ð102Þ

½λm;n� ¼ 4 −D − 2η⊥: ð103Þ

We may define the following quantities,
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v̄2 ¼ Z⊥k2−Dv2; ð104Þ

λ̄m;n ¼ ðZ⊥Þ−2kD−4λm;n; ð105Þ

that are scale independent at the critical point. This is
immediately clear, since we have Z⊥ ∼ e−sη

⊥
in the scaling

regime, so that the scaling behavior of the parameters v2

and couplings λm;n is exactly canceled. To highlight the fact
that we have rescaled the fields in such a way to
compensate for the scaling (102) and (103) in the quantum
critical regime, we denote the corresponding parameters
and couplings with a bar. We also define Ω̄≡ Ω, Z̄∥ ≡ Z∥,
and Z̄⊥ ≡ Z⊥ even though these parameters have not been
rescaled.
In the absence of a temperature scale Lorentz symmetry

requires z ¼ 1 and the RG equations simplify considerably.
In particular, we find that no dissipative coupling is
generated by the RG flow:

∂Ω̄
∂s ¼ 0: ð106Þ

Furthermore, no imaginary couplings are generated and
therefore they do not enter in the low-energy effective
theory. This holds true independent of the choice of our
truncation. In the following we use the relation Z̄∥ ¼ Z̄⊥ ≡
Z̄ and define the anomalous dimension η≡ − ∂

∂s lnZ̄ also
outside the critical region. Thus, η will in general be scale
dependent, i.e., η ¼ ηk, and takes on its critical value only
in the scaling regime.
The RG flow equations for the squared field expectation

value and quartic couplings are given by

∂v̄2
∂s ¼ ð2 −D − ηÞv̄2

þ δDðηÞ
�

3

ð1þ v̄2λ1;2Þ2
þ N − 1

�
; ð107Þ

∂λ̄1;2
∂s ¼ ðD − 4þ 2ηÞλ̄1;2

þ δDðηÞλ̄21;2
�

9

ð1þ v̄2λ̄1;2Þ3
þ N − 1

�
; ð108Þ

∂λ̄2;3
∂s ¼ ðD − 4þ 2ηÞλ̄2;3

þ δDðηÞλ̄1;2λ̄2;3
�

9

ð1þ v̄2λ̄1;2Þ3
þ N − 1

�
: ð109Þ

Here, the factor

δDðηÞ ¼
1

2D−1π
D
2ΓððDþ 2Þ=2Þ

�
1 −

η

Dþ 2

�
ð110Þ

originates from the spherical integration in momentum
space for the contributing diagrams. Observe that the
quartic couplings satisfy the following relation:

λ̄1;2
∂λ̄2;3
∂s ¼ λ̄2;3

∂λ̄1;2
∂s ; ð111Þ

which clearly shows that they are not independent. From
the microscopic action (43) we see that λ1;2 ¼ 4λ2;3 ≡ λ=3.
By an appropriate rescaling of λ and by virtue of Eq. (111)
this relation between the couplings holds true for all RG
trajectories in the quantum regime (T ¼ 0).

FIG. 4 (color online). N ¼ 1 scalar model (D ¼ 3, T ¼ 0). As we tune the (bare) quartic coupling λ̄Λ ¼ λΛ=Λ at a fixed value of the
squared field expectation value v̄2Λ ¼ v2Λ=Λ ¼ 0.078, we observe a phase transition, when the renormalized mass m2

R vanishes. We
definem2

R ¼ λRv2R in the symmetry broken regime and v2R ¼ kv̄2, λR ¼ kλ̄. This is shown in the left panel where we follow the RG flow
of m2

R as the bare coupling λ̄Λ is tuned through its critical value λ̄Λ;cr. In the middle panel we display the scale dependence of the
renormalized coupling. At the quantum critical point the correlation length ξ≡m−1

R diverges and the theory exhibits scaling. This
scaling at the QCP is governed by the IR stable Wilson-Fisher fixed point, for which we determine the scaling exponents η≃ 0.055 and
z ¼ 1. The scale dependence of the anomalous dimension is shown in the right panel. If λ̄Λ ¼ λ̄Λ;cr the anomalous dimension assumes a
constant value in the scaling regime (k → 0).
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To close the system of RG equations, we need to provide
the anomalous dimension:

η ¼ δDð0Þ
v̄2λ̄21;2

ð1þ v̄2λ̄1;2Þ2
: ð112Þ

We find two possible fixed points (imposing the require-
ment that the squared field expectation value v̄2 is positive,
and both couplings λ̄1;2 and λ̄2;3 are non-negative):

(I) Gaussian fixed point

λ̄1;2 ¼ λ̄2;3 ¼ 0; ð113Þ
and η ¼ 0.

(II) Wilson-Fisher fixed point (2 < D < 4):

λ̄1;2 ¼ 4λ̄2;3 ¼
λ̄

3
> 0 ð114Þ

and η determined by Eq. (112) where λ̄1;2 and v̄2 are
set to their respective fixed point values.

The behavior of the RG flow can be illustrated by
considering the D ¼ 3 scalar theory (N ¼ 1) as an exam-
ple; cf. Fig. 4. In this case both fixed point solutions are
present and the theory admits nontrivial IR scaling in the
Ising universality class. We obtain η≃ 0.055 at the phase
transition. This result should be compared with η ¼
0.03639ð15Þ from the high-temperature expansion [106]
which seems to be the most precise determination to date
(see, e.g., Ref. [24] for a compilation of results and
corresponding references). The discrepancy is not very
surprising, since we have chosen a very crude truncation.
Typically higher orders in the gradient expansion, e.g., to
fourth order [72,75,88,107] provide a better numerical
estimate of the scaling exponents in the context of the
functional RG. InD ¼ 4 dimensions the only fixed point is
the Gaussian one and the static and dynamic scaling

properties are characterized by the respective mean-field
values: z ¼ 1 and η ¼ 0. The trajectories of both fixed
points in the space of parameters and couplings, as we
continuously vary the dimension D ¼ dþ 1, are shown
in Fig. 5.
The RG flow in the OðNÞmodel features a characteristic

scale at which fluctuations become important. This is
shown in Fig. 6 at the example of the D ¼ 3 scalar model
(N ¼ 1): Starting from the microscopic action, the anoma-
lous scaling exponent crosses over from the canonical
scaling behavior with η ¼ 0 in the vicinity of the Gaussian
FP, to the Wilson-Fisher FP with η ≠ 0 at some character-
istic scale k�. This crossover scale depends only on the
value of the dimensionless quartic coupling λ̄Λ ≡ λΛΛD−4

and is to a good approximation independent of v̄2Λ. When
the coupling λ̄Λ is small, e.g., for D ¼ 4 − ϵ close to the
upper critical dimension, the λ̄Λ dependence of k� is seen to
originate from the perturbative one-loop corrections. That
is, in a RG treatment these perturbative contributions

FIG. 5 (color online). N ¼ 1 scalar model (T ¼ 0). Gaussian
FP and Wilson-Fisher FP as a function of dimension D ¼ dþ 1.
Both fixed points merge at the upper critical dimension Dcr ¼ 4.

FIG. 6 (color online). N ¼ 1 scalar model (D ¼ 3, T ¼ 0). The
crossover scale k� that separates the canonical from the nontrivial
scaling region is set by the quartic coupling at the cutoff scale Λ.
There is a one-to-one correspondence between the scale k� (upper
panel) to points that lie on the curve connecting the Gaussian FP
with the Wilson-Fisher FP (lower panel). As we move along the
phase boundary (indicated by the arrow), separating the sponta-
neous symmetry broken phase (SSB) from the symmetric phase
(SYM), towards the Wilson-Fisher FP the crossover scale is
shifted to the left (upper panel). Here, the maximum correlation
length ξ≡m−1

R takes a finite value since both the bare values of
the coupling λ̄Λ and field expectation value v̄2Λ have not been
tuned perfectly to the phase separation line.
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become large when the RG scale parameter k approaches
k�. In Fig. 6 we see that this perturbative argument remains
valid even if ϵ ¼ 4 −D is of order 1.

VI. CLASSICAL REGIME (T ≠ 0)

In the presence of a nonvanishing temperature we obtain
a different set of flow equations. Here, we examine the
scenario where the temperature is comparable (or much
larger) than the cutoff scale Λ, i.e., βΛz ¼ 1=TΛ ≲ 1,
and the thermal occupation of modes, nðωÞ∼
TΛðω=ΛzÞ−1 ≫ 1, is strongly enhanced. In this regime,
the FDT takes the form

Fðω; pÞ ¼ TΛ

ωΛ−z ImGRðω; pÞ: ð115Þ

As in the zero temperature case, it is useful to express the
flow equations in terms of the dimensionless renormalized
couplings and parameters, which allows us to easily
identify scale-invariant behavior. However, in contrast to
the scaling behavior given in Eqs. (102) and (103), there is
an additional scale dependence in the classical regime
which is introduced by the temperature T ∼ Λz. By an

appropriate rescaling of the fields (cf. Sec. IV C) we find
that the scaling dimensions of the parameters and couplings
are modified. In particular, the rescaled field expectation
value squared and couplings take the form

¯̄v2 ¼ v̄2ðk=ΛÞz; ð116Þ

¯̄λm;n ¼ λ̄m;nðk=ΛÞðmþn−4Þz: ð117Þ

This rescaling is sufficient to eliminate the explicit k
dependence in the flow equations. Apart from the param-
eters and couplings in Eqs. (116) and (117), we define
¯̄Z∥;⊥ ¼ Z∥;⊥ and ¯̄Ω ¼ Ω in the classical regime. The
anomalous dimensions are given by η∥;⊥ ≡ − ∂

∂s ln
¯̄Z∥;⊥

and ηΩ ≡ − ∂
∂s ln

¯̄Ω also outside the critical region; i.e., in

general they can be scale dependent, η∥;⊥ ¼ η∥;⊥k and
ηΩ ¼ ηΩk . Fixed points of the RG equations are identified
by identifying constant values for all ðη⊥; η∥; ηΩÞ.
In the classical regime the RG equations for the squared

field expectation value and the couplings are given by

∂ ¯̄v2
∂s ¼ ð2 − d − η⊥Þ ¯̄v2 þ TΛδdðη⊥Þ

�
3

ð1þ ¯̄v2 ¯̄λ1;2Þ2
þ N − 1

�
; ð118Þ

∂ ¯̄λ1;2
∂s ¼ ðd − 4þ 2η⊥Þ ¯̄λ1;2 þ ¯̄λ21;2TΛδdðη⊥Þ

�
9

ð1þ ¯̄v2 ¯̄λ1;2Þ3
þ N − 1

�
; ð119Þ

∂ ¯̄λ2;3
∂s ¼ ðdþ 2z − 4þ 2η⊥Þ ¯̄λ2;3 þ ¯̄λ1;2

¯̄λ2;3TΛδdðη⊥Þ
�

9

ð1þ ¯̄v2 ¯̄λ1;2Þ3
þ N − 1

�
: ð120Þ

The anomalous dimensions associated to the renormalization factors read

η⊥ ¼ TΛδdð0Þ
¯̄v2 ¯̄λ21;2

ð1þ ¯̄v2 ¯̄λ1;2Þ2
; ð121Þ

ηΩ ¼ δdðη⊥Þ
TΛ

¯̄v2

�
1þ 1

ð1þ ¯̄v2 ¯̄λ1;2Þ2
−

32

½4þ ¯̄v2 ¯̄λ1;2ð2þ ¯̄κ ¯̄v2 ¯̄λ1;2Þ�2
�
; ð122Þ

η∥ ¼ ηΩ

2
−
δdðη⊥Þ

2

TΛ

¯̄v2
1

¯̄κ ¯̄v2 ¯̄λ1;2

�
1 −

1

ð1þ ¯̄v2 ¯̄λ1;2Þ2
−

128¯̄v2 ¯̄λ1;2½1 − ð ¯̄κ ¯̄v2 ¯̄λ1;2Þ2�
½4þ ¯̄v2 ¯̄λ1;2ð2þ ¯̄κ ¯̄v2 ¯̄λ1;2Þ�3

�
; ð123Þ

and are derived for ¯̄κ > 0 and ¯̄Ω > 0. Apart from a possibly
nonvanishing anomalous dimension ηΩ, and the lifting of
the degeneracy of η∥ ¼ η⊥, we observe two important
differences to the RG flow equations at T ¼ 0
[cf. Eqs. (107)–(112)]: (1) Instead of D ¼ dþ 1 we see
that the spatial dimension d appears in the canonical scaling
contributions to the RG flow. (2) The loop contributions are

not only controlled by the couplings λ1;2 and λ2;3 but also
by the temperature.
Note that both anomalous dimensions ηΩ and η∥ depend

on the parameter

¯̄κ ¼ e2s ¯̄Z⊥ ¯̄Z∥=ðTΛ
¯̄ΩÞ2: ð124Þ
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Its significance is clear from the discussion at the end of
Sec. IV B: It defines a ratio between the parameters, ¯̄Z⊥= ¯̄Z∥

and ¯̄Ω= ¯̄Z∥, that determine the low-energy dynamics of our
model. In particular, we note the two interesting limiting
scenarios: (1) ¯̄κ → ∞, with ¯̄Z∥ ¼ ¯̄Z⊥ ¼ 1, TΛ

¯̄Ω → 0þ
corresponding to the microscopic model with relativistic
dynamics and vanishing ¯̄Ω (TΛ ≠ 0), and (2) ¯̄κ ¼ 0, with
¯̄Z∥ ¼ 0, ¯̄Z⊥ ≥ 1, TΛ

¯̄Ω > 0 in the classical regime.
To close the set of flow equations (118)–(125) we

provide the flow equation for the coefficient ¯̄κ,

∂ ¯̄κ
∂s ¼ ½2ð1þ ηΩÞ − η∥ − η⊥� ¯̄κ ¼ ðzþ ηΩ − η∥Þ ¯̄κ; ð125Þ

and use the relation z ¼ 2 − η⊥ þ ηΩ that defines the
dynamic critical exponent.
Even without solving the full set of equations, we may

infer the dynamics of this model and determine the
associated fixed points. However, this discussion is

somewhat subtle—substituting the given expressions for
the anomalous dimensions into Eq. (125) one might
conclude that there is only one solution for non-negative
¯̄κ, which is reached in the ¯̄κ → ∞ limit (see Fig. 7). Further
fixed points exist, but all of them lie in the region of
¯̄κ < 0.12 Such negative solutions are clearly unphysical and
are not allowed within our truncation (which requires that
¯̄Z∥; ¯̄Z⊥ ≥ 0, and ¯̄Ω > 0). Hence, when the renormalization
group flow reaches ¯̄κ ¼ 0 we stop the evolution of ¯̄Z∥

which is then set to zero for the remaining flow. Thus, it
appears that within our truncation only two independent
scaling solutions exist, corresponding to ¯̄κ ¼ 0 (Z∥ ≡ 0)
and ¯̄κ → ∞ (Z∥ > 0). Thermal fluctuations drive the
system towards the IR stable FP at ¯̄κ ¼ 0 and we are able
to identify a dynamic crossover (cf. Figs. 7, 8). This
scenario is of course in line with our expectation that
the dynamics is governed by nonrelativistic relaxational
modes well below the thermal scale. We provide further

FIG. 8 (color online). The scale dependence of the renormal-
ization parameters ¯̄Ω and ¯̄Z∥ for the N ¼ 1 scalar model is shown
for different values of the temperature: TΛ ≤ TΛ;cr (TΛ;cr: solid,
blue curve). As the temperature is increased towards its critical
value, the parameter ¯̄Ω displays scaling behavior, i.e., ¯̄Ω ∼ e−sη

Ω

and ηΩ ¼ const., while Z∥ vanishes at some finite scale before the
asymptotic scaling regime is reached.

FIG. 7 (color online). Upper panel: Renormalization group
flow for the parameter ¯̄κ evaluated at the Wilson-Fisher FP
(TΛ ¼ TΛ;cr) for the N ¼ 1 scalar model. We map the infinite
range of values ¯̄κ ∈ ½0;∞Þ to a compact interval ¯̄κ↦ ¯̄κð1þ ¯̄κÞ−1
in order to illustrate the ¯̄κ → ∞ limit. The solution at ¯̄κ ¼ 0
(dissipative dynamics) is IR attractive as indicated by the arrows
on the horizontal axis. The limit ¯̄κ → ∞ corresponds to the
relativistic fixed point and is IR repulsive. Lower panel: Dynamic
crossover between the two scaling solutions ¯̄κ ¼ 0 and ¯̄κ → ∞
shown for different temperatures, TΛ ≤ TΛ;cr (TΛ;cr: solid, blue
curve). As the temperature increases the crossover scale is shifted
towards the UV.

12The presence of such solutions within our truncation might
be related to the neglect of higher order Oðω3Þ terms in the
frequency expansion of Γð1;1Þ that may stabilize the large-
frequency behavior of the renormalization group flow.
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interpretation of these results in the concluding section
(Sec. VIII) where we also comment on how different
truncations might affect this picture of the dynamic cross-
over between the ¯̄κ ¼ 0 and ¯̄κ → ∞ scaling solutions.
Let us focus on this asymptotic scaling regime where the

¯̄κ ¼ 0 solution takes over (Z∥ ¼ 0). We observe that in this
regime, Eq. (122) is identical to the anomalous dimension
ηΩ of the relaxation coefficient derived in the context of the
functional RG for model A [28,29]. We identify the
following scaling solutions in this regime:

(I) Gaussian fixed point:

¯̄λ1;2 ¼ ¯̄λ2;3 ¼ 0 ð126Þ

and the anomalous dimensions vanish, i.e., η⊥ ¼
ηΩ ¼ 0. The dynamic critical exponent is z ¼ 2.

(II) Wilson-Fisher fixed point (2 < d < 4): The squared
field expectation value ¯̄v2 and the quartic coupling
¯̄λ1;2 show a temperature dependence:

¯̄v2ðTΛÞ ¼ TΛ ¯̄v2ð1Þ; ð127Þ
¯̄λ1;2ðTΛÞ ¼ T−1

Λ
¯̄λ1;2ð1Þ; ð128Þ

while

¯̄λ2;3ðTΛÞ ¼ 0; ð129Þ

at the fixed point. The anomalous dimensions are
nonvanishing: η⊥; ηΩ ≠ 0.

Although both FPs depend on the temperature, the scaling
exponents do not. This is easily checked, if we substitute
the scaling form (127) and (128) in our result for the
anomalous dimension,

η⊥ ¼ δdð0Þ
¯̄v2ð1Þ ¯̄λ21;2ð1Þ

½1þ ¯̄v2ð1Þ ¯̄λ1;2ð1Þ�2
; ð130Þ

and the dynamic critical exponent,

z ¼ 2 − η⊥ þ δdðη⊥Þ
¯̄v2ð1Þ

�
1þ 1

½1þ ¯̄v2ð1Þ ¯̄λ1;2ð1Þ�2
−

8

½2þ ¯̄v2ð1Þ ¯̄λ1;2ð1Þ�2
�
: ð131Þ

We therefore conclude that as a function of temperature
both FPs describe a continuous line of phase transitions
which lie in the same universality class. Depending on
spatial dimension either one of the two FPs is IR stable and
characterizes the scaling properties at the transition. In
particular, it is the Wilson-Fisher FP that is stable below the
upper critical dimension dcr ¼ 4 and we find that the
dynamic scaling is determined by the universality class
of model A (within the limits of our truncation).
We proceed to discuss the behavior of the theory as we

vary the temperature TΛ through its critical value TΛ;cr (in
units of the cutoff scale Λ). Our results are illustrated at the
example of the N ¼ 1 scalar model in d ¼ 3 dimensions;
cf. Figs. 7, 8, and 9. As we have already discussed the static
properties of the three-dimensional Ising universality class
in the previous section, we focus only the dynamic proper-
ties. As we have already argued, we expect a dynamic

crossover well below the thermal scale. This is verified by
examining Fig. 8 where we see that the renormalization
coefficient Z∥ runs to zero before the system enters the
scaling region. The scaling behavior in this asymptotic
regime k ≪ Λ is fully characterized by the Wilson-Fisher
FP, for which we obtain the dynamic critical exponent
z≃ 2.025, in the dynamic universality class of model A.
Our result agrees well with Monte Carlo estimates: z ¼
2.032ð4Þ [108], z ¼ 2.055ð10Þ [109], field-theory methods
z ¼ 2.0237ð55Þ [110], and is consistent with the functional
RG results from Ref. [28] to the given order of our
truncation.
The following picture emerges: In the classical regime,

we obtain a continuous line of phase transitions that lie in
the d-dimensional static universality class of the OðNÞ
model. The critical exponents at the phase transition
depend on nature of the IR stable fixed point. For N ≥ 2

FIG. 9 (color online). N ¼ 1 scalar model (d ¼ 3, TΛ > 0). As
we tune the temperature TΛ through its critical value TΛ;cr at fixed

values of ¯̄v2Λ ¼ v2Λ=Λ ¼ 0.078 and ¯̄λΛ ¼ λΛ=Λ ¼ 1, we observe a
phase transition, where the theory exhibits scaling. We show the
scale dependence of the dynamic scaling exponent z ¼ 2 − η⊥ þ
ηΩ and find z≃ 2.025 in the scaling regime.
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and 2 < d < 4 the Wilson-Fisher FP is the stable one and
we observe nontrivial scaling, i.e., η ≠ 0, z > 2. For d ≥ 4
the Gaussian FP takes over and we obtain mean-field
exponents, η ¼ 0, z ¼ 2. For N ¼ 1 (Ising universality
class), the lower critical dimension is d ¼ 1 and we observe
nontrivial scaling for any dimension between 1 < d < 4.
The dynamic critical exponent is z > 2 for 1 < d < 4
(which is consistent with the results from Ref. [111] and
those compiled in Ref. [11]).

VII. LIMITING BEHAVIOR
OF RENORMALIZATION GROUP EQUATIONS

IN THE CLASSICAL REGIME

Here, we examine the properties of the OðNÞ Wilson-
Fisher scaling solution in the classical regime (T ≠ 0), by
considering an expansion around the upper critical
dimension of the model dcr ¼ 4 and the behavior in the
large-N limit. Although we do not expect to reproduce the
known results from the ϵ- or the 1=N-expansion (which is
due to threshold effects in the nonperturbative functional
RG), this analysis nevertheless provides important
insights into the quality of our truncation in these limiting
cases.

A. Expansion around the upper critical dimension

As we have already noted in the previous section, the
coupling ¯̄λ2;3 vanishes exactly at the Wilson-Fisher fixed
point. Thus, the only relevant parameters that characterize
this scaling solution are the coupling ¯̄λ1;2 and the field
expectation value ¯̄v. For the following discussion it will
prove useful to introduce the parametrization: x ¼ ¯̄v2 ¯̄λ1;2
and y ¼ δdð0ÞTΛ

¯̄λ1;2, for which fixed point equations take a
somewhat simpler form

0 ¼ ð2 − d − η⊥Þxþ δdðη⊥Þ
δdð0Þ

�
3

ð1þ xÞ2 þ N − 1

�
y;

ð132Þ

0 ¼ ðd − 4þ 2η⊥Þ þ δdðη⊥Þ
δdð0Þ

�
9

ð1þ xÞ3 þ N − 1

�
y:

ð133Þ

The anomalous dimension is given by

η⊥ ¼ xy
ð1þ xÞ2 ; ð134Þ

and dynamic critical exponent takes the form

z ¼ 2þ δdðη⊥Þ
δdð0Þ

2ðxþ 1Þ
ðxþ 2Þ2 η

⊥: ð135Þ

Equations (132) and (133) imply that the leading contri-
bution to the parameters x and y in an expansion around the
upper critical dimension ϵ ¼ 4 − d is of order ϵ. Up to
second order, we find

x ¼ N þ 2

2ðN þ 8Þ ϵþ
ðN þ 2Þ2ðN þ 33Þ

4ðN þ 8Þ3 ϵ2 þOðϵ3Þ; ð136Þ

y ¼ 1

N þ 8
ϵþ 25ðN þ 2Þ

2ðN þ 8Þ3 ϵ
2 þOðϵ3Þ: ð137Þ

Thus, within our truncation the anomalous dimension is
given by

η⊥ ¼ 1

2

N þ 2

ðN þ 8Þ2 ϵ
2 þ N þ 2

ðN þ 8Þ2


14N þ 37

ðN þ 8Þ2 −
1

4

�
ϵ3

þOðϵ4Þ; ð138Þ

to third order in ϵ, while the dynamic critical exponent
reads

z ¼ 2þ


1

2
þOðϵ2Þ

�
η⊥; ð139Þ

to the same order as the anomalous dimension. Let us
comment to what extent the limiting behavior (138) and
(139) reproduces the known ϵ-expansion result. For the
anomalous scaling exponent η⊥ we observe that the Oðϵ2Þ
contribution is exactly reproduced, while higher-order
terms appear to be inconsistent [112,113]. This is in
contrast to other critical exponents. In particular, from
the eigenvalues of the stability matrix at the Wilson-Fisher
FP, we determine the correlation length exponent

ν ¼ 1

2
þ ðN þ 2Þ
4ðN þ 8Þ ϵþ

ðN þ 2Þ
8ðN þ 8Þ3



N2 þ 1

3
ð152N þ 574Þ

�
ϵ2 þOðϵ3Þ; ð140Þ

and Wegner’s exponent ω

ω ¼ ϵ −
25ðN þ 2Þ
2ðN þ 8Þ2 ϵ

2 þOðϵ3Þ; ð141Þ
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which governs corrections to asymptotic scaling. Since
there are only two independent exponents at the FP, we may
determine the remaining exponents by use of scaling
relations below the upper critical dimension [114]; e.g.,
we may apply Fisher’s scaling relation γ ¼ ð2 − η⊥Þν to
determine the susceptibility exponent

γ ¼ 1þ ðN þ 2Þ
2ðN þ 8Þ ϵþ

ðN þ 2Þ
4ðN þ 8Þ3

×



N2 þ 1

3
ð149N þ 550Þ

�
ϵ2 þOðϵ3Þ: ð142Þ

We observe that the given exponents and scaling relation
match those of the ϵ-expansion [115] perfectly to linear
order; however, discrepancies appear for contributions of
order ϵ2. In fact, linear contributions in ϵ are in general
independent of the chosen regulator function [116,117],
while this does not hold true for higher-order contributions
(at least within the employed truncation of the effective
action).
We demonstrate the regulator dependence of the two-

loop result explicitly for the anomalous dimension which is
seemingly consistent at Oðϵ2Þ. Consider a momentum-
dependent regulator RðpÞ ¼ Z⊥p2rðp2=k2Þ that is in gen-
eral arbitrary up to the specification of r ¼ rðyÞ, y ¼ p2=k2.
This function that implements the IR cutoff should be non-
negative rðyÞ ≥ 0 and we impose the following limiting
properties, limy→0rðyÞ≃ 1=y → ∞, and decay sufficiently
fast at infinity, i.e., limy→∞rðyÞ → 0 and limy→∞r0ðyÞ → 0

(cf. Sec. III). Using a regulator function that satisfies these
conditions but is otherwise arbitrary, we derive the general
expression for the anomalous dimension to leading order
Oðϵ2Þ in the local interaction approximation of the OðNÞ
model:

η⊥ ¼ ðN þ 2Þϵ2
ðN þ 8Þ2

XrYr;1

Y2
r;2

þOðϵ3Þ; ð143Þ

where the coefficients Xr and Yr;n are given by

Xr ¼
Z

∞

0

dy

�
d
dy

1

1þ rðyÞ
�

2

; ð144Þ

Yr;n ¼
Z

∞

0

dyy2−n
d
dy

1

ð1þ rðyÞÞn : ð145Þ

Their numeric values depend on the specific choice of the
regulator function. Let us consider a few examples: We start
with the optimized Litim regulator

roptðyÞ ¼ ð1=y − 1Þθð1 − yÞ; ð146Þ

employed in this work; cf. Secs. V–VI. The corresponding
coefficients read Xopt ¼ 1 and Yopt;n ¼ n=2. Thus we see

that the ratio XoptYopt;1ðYopt;2Þ−2 ¼ 1=2, and we confirm
our result Eq. (138) for the anomalous dimension. To check
how (146) compares to other regulators, we consider the
exponential cutoff

rexpðyÞ ¼ ðey − 1Þ−1; ð147Þ

which is also frequently used and serves as a useful
benchmark. This function yields Xexp ¼ 1=2 and the lowest
coefficients Yexp;n in the series n ¼ 1; 2; 3;… are 1, 1,
3lnð4=3Þ;…, etc. Thus, we obtain the ratio
XexpYexp;1ðYexp;2Þ−2 ¼ 1=2 and the same leading-order
result in the ϵ-expansion for η⊥ as for the Litim regulator.
From these examples we conclude that although the result
to two-loop order, Eq. (143), is regulator dependent in
general, that it is nevertheless possible to find a class of
regulator functions with improved behavior at Oðϵ2Þ. A
counterexample that fails to produce the known result for
η⊥ to leading order is the sharp cutoff [118,119], which is
known to introduce strong regulator artifacts [63,77,119].
For the dynamic critical exponent z, the result from

the ϵ-expansion is expressed in the form z ¼ 2þ cη⊥ [11],
with the coefficient c ¼ 0.7261ð1 − 1.69ϵþOðϵ2ÞÞ [103].
Here, we observe a clear difference to order ϵ2, where we
find c ¼ 1=2þOðϵ2Þ within our truncation, and employ
the Litim cutoff. While the anomalous dimension η⊥ is
correctly reproduced to order ϵ2 for this choice of the
regulator function, this must not necessarily hold for ηΩ. To
parametrize the regulator dependence of our results, we
write ηΩ as

ηΩ ¼ Yr;3

Xr
η⊥ þOðϵ3Þ; ð148Þ

where the coefficients Xr and Yr;n are defined in
Eqs. (144)–(145). From the definition of the dynamic
critical exponent z ¼ 2 − η⊥ þ ηΩ ¼ 2þ cη⊥, we may
therefore express c in the form

c ¼ Yr;3

Xr
− 1: ð149Þ

Using the previously derived values, we obtain to leading
order in ϵcopt ¼ 1=2 for the optimized Litim cutoff, while
for the sharp cutoff we find csharp ¼ −1. Considering this
discrepancy, it is quite surprising to note that the same
coefficient takes a different value for the exponential cutoff,
cexp ¼ 6lnð4

3
Þ − 1≃ 0.72609, in perfect agreement with the

ϵ-expansion.
We may conclude that in general the scaling exponents,

both static and dynamic, are regulator dependent at Oðϵ2Þ,
while the result to linear order in ϵ is correctly reproduced
independent of the choice of cutoff (see also
Refs. [116,117]). Nevertheless, certain regulators might
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show improved behavior atOðϵ2Þ (at least within the scope
of the employed truncation of the scale-dependent effective
action). A summary of these results is shown in Table I.

B. Large-N expansion

In the same representation of the parameters (132) and
(133), we may consider the large-N behavior as an
alternative approach to understand the properties of our
RG equations. In this limit, we find that

x ¼ 4 − d
d − 2

þO
�

1

N2

�
; ð150Þ

y ¼ ð4 − dÞ 1
N
þO

�
1

N2

�
; ð151Þ

up to order 1=N. The result for the anomalous dimension
reads

η⊥ ¼ ðd − 2Þð4 − dÞ2
4

1

N
þO

�
1

N2

�
; ð152Þ

while the dynamic critical exponent is given by

z ¼ 2þ


4ðd − 2Þ

d2
þO

�
1

N

��
η⊥: ð153Þ

In d ¼ 3 dimensions results are readily available in the
literature: In the large-N limit the value for η⊥ is given by
η⊥ ¼ 8

3π2
1
N [121]. Clearly, this result does not match the

limiting behavior in Eq. (152) which is known to exhibit a
regulator dependence within our finite truncation of the
vertex expansion [105]. The difference can be explained by
the infinite resummation of diagrams in the large-N result,
but which cannot be accounted for in the context of our
ansatz for the CTP effective action. Our result for the
dynamic critical exponent should be compared with pre-
dictions for the dynamic critical behavior of model A, for
which the dynamic exponent reads z ¼ 2þ cη⊥, with c ¼
0.5 in the large-N limit [11,122].

VIII. QUANTUM-CLASSICAL TRANSITION

Although in principle the flow equations can be derived
also for the intermediate temperature region (0 < TΛ ≲ 1)
we find that they take a rather complicated form and
therefore require a more elaborate numerical treatment. We
postpone this to future work. Here, we examine possible
scenarios of the quantum-to-classical crossover based on
our understanding of the low- and high-temperature limits,
developed in Secs. V and VI. The general picture of the
phase structure is the following: The d-dimensional OðNÞ
theory is characterized by a continuous line of classical
phase transitions that terminates at T ¼ 0. Along this line
the dynamic scaling exponent is z ≥ 2. At the end point, the
system lies in a different universality class, namely that of
the ðdþ 1Þ-dimensional Euclidean theory with z ¼ 1.
Essential to the picture of the dynamic crossover is the

observation that both in the quantum and classical case we
may find two fixed points: the Gaussian FP (η ¼ 0) and
Wilson-Fisher FP (η ≠ 0). The existence of a nontrivial IR
stable FP depends subtly on the dimensionality and
temperature of the system. In contrast, the dynamic scaling
properties turn out to be much more simple—they com-
pletely decouple from the statics for any T > 0. This is
immediately clear from the inspection of the RG flow
Eqs. (118)–(125) where we see that the parameter ¯̄κ and the
anomalous dimensions ηΩ and η∥ do not feed back into the
RG flow of the static quantities. In fact, we have used this
property explicitly to determine the dynamic FPs of the RG
flow, i.e., ¯̄κ ¼ 0 and ¯̄κ ¼ ∞ for any T > 0. Thus, the
problem of determining the dynamics at nonvanishing
temperature reduces to the problem of understanding
how the Wilson-Fisher FP and in particular η⊥ depends
on the effective dimension dε (cf. Sec. IV C 2). Between the
quantum and classical regime, η⊥ varies continuously with
dε, from dþ 1 to d. This fact can be understood from the
perspective of Euclidean finite size systems where one
observes a continuous dimensional crossover [123].
Possible scenarios for the RG flow are illustrated in

Fig. 10 at the example of the N ¼ 1 scalar theory. We
examine the scale-dependent anomalous dimension η⊥ ¼
−ð∂=∂sÞlnZ⊥ which provides information on relevant

TABLE I. Numerical coefficients ar and cr that determine the quality of a given cutoff in the local interaction approximation are
compared with the Oðϵ2Þ result from the ϵ-expansion, i.e., η⊥ ¼ ar

Nþ2
ðNþ8Þ2 ϵ

2 and z ¼ 2þ crη⊥. Overall, the exponential regulator

provides an Oðϵ2Þ improvement for both η⊥ and ηΩ. This is in contrast to the optimized Litim and sharp cutoff functions that fail to
reproduce the known results. Note that the sharp cutoff limit and its shortcomings are well documented in the literature (see, e.g.,
[63,77,87,116]).

Regulator function ar ¼ XrYr;1=Y2
r;2 cr ¼ Yr;3=Xr − 1

Exponential cutoff [104,120] rexp ¼ ðey − 1Þ−1 1=2 6lnð4=3Þ − 1

Litim cutoff [77] ropt ¼ ð1=y − 1Þθð1 − yÞ 1=2 1=2
Sharp cutoff [118,119] rsharp ¼ 1=θðy − 1Þ − 1 ∞ −1
ϵ-expansion [103,112,113] 1=2 6lnð4=3Þ − 1
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fluctuations in different regions of the RG flow. The
maximum achievable correlation length ξ ¼ m−1

R is deter-
mined by how close the microscopic parameters have been
tuned to their respective critical values, and we assume that
ξ → ∞ in the limit k → 0. For small temperatures
(0≲ TΛ ≪ 1), the RG flow enters a regime where quantum
fluctuations are present but do not play out their full effect.
Instead, close to the classical phase transition the character-
istic scale at which fluctuations become important are fully
determined by the temperature. We point out that the
possible situations illustrated in Fig. 10 have to be modified
in the case of a system with continuous OðNÞ symmetry,
where for d ¼ 2 and N ¼ 2 the system experiences
Kosterlitz-Thouless transition, while a thermal phase tran-
sition is absent for N ≥ 3.

IX. CONCLUSIONS

In this work, we have applied the nonperturbative
functional RG in the real-time formalism to the problem
of the low-energy dynamics of a relativistic OðNÞ theory.
Our approach relies on a truncation of the scale-dependent
CTP effective action and we have shown that our ansatz
admits two possible fixed points at T > 0 that determine
the low-energy dynamics of the order parameter. Only one
of them is IR stable which characterizes the relaxational
dynamics of a dissipative mode. We find that the dynamic
universality class associated to this scaling solution is
identical to that of model A, for which z ¼ 2þ cη⊥
[11,103]. This observation is based on an exact equivalence
of the flow equations derived in this work in the IR scaling
regime, with those obtained in the framework of the
effective model given in Refs. [28] and [29]. At T ¼ 0,
we find only one fixed point, with unitary dynamics z ¼ 1
protected by Lorentz symmetry. We show that there is a

continuous crossover that smoothly connects the micro-
scopic theory (z ¼ 1) with a nonrelativistic effective theory
(z ≥ 2) that corresponds to model A, if the theory is tuned
to criticality.
We emphasize that the existence of the model A fixed

point in the high-temperature limit (within our truncation of
the scale-dependent effective action) is essentially required
by consistency of our ansatz (cf. Sec. VI). The stability of
the theory (i.e., ¯̄Z∥; ¯̄Z⊥ ≥ 0, ¯̄Ω > 0) had to be imposed to
rule out a renormalization group flow to negative values of
¯̄Z∥ that are clearly unphysical. Although the relativistic UV
fixed point seems to be unstable, which is certainly
expected at nonvanishing temperatures, the apparent lack
of a solution, where ¯̄Z∥ ¼ 0 is reached asymptotically, is
certainly surprising. We suspect that this is an artifact of our
truncation that includes only a linear contribution in the
frequency expansion of the self-energy and is therefore
insufficient to capture the large-frequency behavior of
correlation or response functions. To reach a conclusion
on this issue other types of approximations will need to be
employed that take into account the full frequency depend-
ence of the self-energy and vertex functions [124–127].
Within our truncation, we were able to observe a

dynamic crossover induced by thermal fluctuations.
However, as far as the low-energy limit is concerned,
one might also imagine a different scenario, where the
system features a crossover to the nonrelativistic limit well
above the thermal scale. This would have dramatic con-
sequences, since the corresponding nonrelativistic action
conserves particle number [115,128]. Thus, the question
that remains is, What is the nature of the nonrelativistic
limit? We see that an answer to this question is intimately
tied to that of the dynamic universality class for the given
microscopic theory. In either one of the above scenarios the

FIG. 10 (color online). N ¼ 1 scalar model for spatial dimensions d ¼ 2 and d ¼ 3. Schematic scale dependence of the anomalous
dimension η⊥. We tune the bare field expectation value v2Λ as a function of the temperature, so that the theory exhibits scaling in the
k → 0 limit. We assume that the bare coupling λΛ is fixed at a given value. In d ¼ 2 dimensions, where the theory admits a QCP
characterized by nontrivial scaling the system features a crossover scale to the IR scaling region (left panel). This scale is set by the
quartic coupling. As we turn on temperature, quantum critical fluctuations die out and thermal fluctuations take over. In d ¼ 3
dimensions (right panel) the QCP lies in the ð3þ 1Þ-dimensional (Euclidean) universality class which is characterized by mean-field
scaling—fluctuations become important only at nonvanishing temperatures. The curves are shown to scale with η⊥ ¼ 1=4 ðd ¼ 2Þ and
η⊥ ¼ 0.03639ð15Þ ðd ¼ 3Þ for the Ising model.
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nonrelativistic action will feature different symmetries that
determine the presence or absence of further slow modes at
the phase transition. To capture these possibilities different
truncations of the scale-dependent effective action will
have to be considered that are able to take into account
conservation laws and Ward identities consistently.
Thus, within our current ansatz for the CTP effective

action Eq. (60) it is therefore not possible to provide a
definitive answer to the question of the dynamic univer-
sality class of the OðNÞ theory. It is only possible to follow
the transition from the microscopic coherent dynamics
(without dissipation) to the situation where the dynamics is
dissipative nonrelativistic, without additional conserved
quantities—which corresponds to model A dynamics in
the critical region. The simplest possible extension of this
work would be to allow for a diffusive relaxation of the
order parameter in addition to a purely dissipative
behavior. This might allow one to distinguish between
two dynamic fixed points associated to the universality
classes of model A and model B in the Halperin-Hohenberg
classification. A corresponding ansatz for the CTP effective
action should include a momentum-dependent as well
as a field-dependent kinetic coefficient, i.e., Ωab ¼
ΩabðϕÞ þΩ0

abðϕÞp2 þOðp4Þ. We do not expect this to
be sufficient however, to address the dynamic properties of
the OðNÞ model in the low-energy limit. Certainly, the
interplay of massless Nambu-Goldstone modes and the
possible presence of particle number and energy conser-
vation allow for very complicated dynamics with compet-
ing mode couplings. To distinguish between generic
dynamic universality classes, we expect that a nonlocal
expansion in the vertices (both in space and in time) is
necessary (see, e.g., Refs. [124–127,129]). Such a treat-
ment is in particular required to address the issue of the

nature of the nonrelativistic limit. We refer to future work
which is currently in progress.
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APPENDIX: RENORMALIZATION GROUP
EQUATIONS

The flow equations for the ðmþ nÞ-point functions
Γðm;nÞ are derived from Eq. (34) by taking functional
derivatives with respect to the fields and evaluating these
expressions in the homogeneous background field con-
figuration ϕa ¼ vδa1, v ≥ 0, and ~ϕ ¼ 0. Within our trun-
cation, we assume that all ðmþ nÞ-point functions Γðm;nÞ,
with mþ n > 4, are zero. Furthermore, four-point func-
tions are assumed to be local in both space and time, while
this is not true in general for two- or three-point functions.
The presence of a nonlinear fluctuation theorem implies
that only two of the four-point vertices Γð1;3Þ and Γð3;1Þ are
nonzero (cf. Sec. IV D). With these approximations we
obtain the flow equations for the (amputated) 1PI two-point
function Γð1;1Þ

∂
∂sΓ

ð1;1ÞðpÞ ¼ −
1

2

Z
q

∂R
∂s

∂
∂RTrfFðqÞΓð3;1Þ þ 2FðqÞΓð2;1Þð−p; pþ qÞReGRðpþ qÞΓð2;1Þðp; qÞg; ðA1Þ

and the (nonvanishing) 1PI three- and four-point functions

∂
∂sΓ

ð2;1Þðp; p0Þ ¼ −
Z
q

∂R
∂s

∂
∂RTrfFðqÞΓð2;1Þð−q; pþ p0 þ qÞReGRðqÞΓð3;1Þ þ � � �g; ðA2Þ

∂
∂sΓ

ð3;1Þ ¼ −
Z
q

∂R
∂s

∂
∂RTrfFðqÞΓð3;1ÞReGRðqÞΓð3;1Þ þ � � �g; ðA3Þ

∂
∂sΓ

ð1;3Þ ¼ −
Z
q

∂R
∂s

∂
∂RTrfFðqÞΓð3;1ÞReGRðqÞΓð1;3Þ þ � � �g: ðA4Þ

We define the four-momenta p ¼ ðp0; pÞ, q ¼ ðq0; qÞ, etc. and the frequency-momentum integrationR
q � � �≡ 1

ð2πÞdþ1

R
dq0ddq, while the trace Trf� � �g runs over internal field indices. In Eqs. (A1)–(A4) we have pulled

out the derivative operator, ð∂R=∂sÞð∂=∂RÞ, which acts on the regulator function. This greatly simplifies the evaluation of
the terms on the rhs. In particular, using a frequency-independent regulator (at nonvanishing temperature), we may calculate
the frequency integral on the rhs before evaluating the R-derivative. Finally, those terms that are omitted in Eqs. (A2)–(A4)
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(denoted by the ellipsis) correspond to all possible contributions (allowed by the diagrammatic rules) where the four-point
vertices of the first term on the rhs are substituted by the dumbbell diagram as illustrated in Fig. 11. This is done explicitly in
Eq. (A1).
Equations (A2)–(A4) provide the RG flow of the generalized potential in the limit of zero external momenta, i.e., p → 0

and p0 → 0. Similarly, we obtain the flow equations for the wave function renormalization Z⊥ and the dynamic parameters
Ω and Z∥ of our model by a suitable projection onto the flow equation for Γð1;1Þ:

∂Z⊥
∂s ¼ lim

p→0

∂
∂p2

Z
q

∂R
∂s

∂
∂RTrfFðqÞΓð2;1Þð−p; pþ qÞReGRðpþ qÞΓð2;1Þðp; qÞg; ðA5Þ

∂Z∥

∂s ¼ −
1

2
lim
p→0

∂2

∂ω2

Z
q

∂R
∂s

∂
∂RTrfFðqÞΓð2;1Þð−p; pþ qÞReGRðpþ qÞΓð2;1Þðp; qÞg; ðA6Þ

∂Ω
∂s ¼ −iβlim

p→0

∂
∂ω

Z
q

∂R
∂s

∂
∂RTrfFðqÞΓð2;1Þð−p; pþ qÞReGRðpþ qÞΓð2;1Þðp; qÞg: ðA7Þ

In practice, one usually considers only the contribution from the Goldstone modes on the rhs, since it is understood that they
give the dominant contribution to the wave function renormalization Z⊥ [63,105] (and similarly to the dynamic coefficients
Z∥ and Ω). Here, we follow the same strategy and therefore, instead of evaluating the trace, we carry out a projection onto
the Goldstone modes in Eqs. (A5)–(A7). The diagrams that we evaluate to obtain the RG flow of the parameters are shown
in Fig. 12.

FIG. 11. Substitution rule illustrated at the example of the amputated four-point function Γð3;1Þ in terms of two three-point vertices
Γð2;1Þ [cf. Eq. (A1)]. External lines indicate the inflowing momenta and the inserted fields in the RA representation (full lines correspond
to ϕ field insertions, while dashed lines to insertions of the ~ϕ field). The notation Γð2;1Þðp; qÞ refers only to the incoming momenta. The
lines that connect the two vertices on the rhs correspond to (nonperturbative) retarded/advanced propagators, i.e., GR=A.

FIG. 12. Diagrams that contribute on the rhs of Eqs. (A5)–(A7). Partially dashed lines correspond to (nonperturbative) retarded/
advanced propagators GR=A, while the full lines denote statistical propagators F. Full/dashed external legs denote ϕ= ~ϕ-field insertions.
Next to the momenta we indicate the relevant modes indicated (r: radial mode, g: Goldstone mode).
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