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We examine the deflected mirage mediation supersymmetry breaking (DMMSB) scenario, which
combines three supersymmetry breaking scenarios, namely anomaly mediation, gravity mediation and
gauge mediation using the one-loop renormalization group invariants (RGIs). We examine the effects on
the RGIs at the threshold where the gauge messengers emerge, and derive the supersymmetry breaking
parameters in terms of the RGIs. We further discuss whether the supersymmetry breaking mediation
mechanism can be determined using a limited set of invariants, and derive sum rules valid for DMMSB
below the gauge messenger scale. In addition we examine the implications of the measured Higgs mass for

the DMMSB spectrum.
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I. INTRODUCTION

Supersymmetry remains at present a favored solution to
the hierarchy problem of the standard model (SM).
Supersymmetry is obviously a broken symmetry, as none
of the superpartners of the SM particles have been
experimentally observed so far. The idea of weak scale
supersymmetry, as embodied, for example, in the minimal
supersymmetric standard model (MSSM), as a solution to
the gauge hierarchy problem has already been partly tested
at the Large Hadron Collider (LHC) [1,2]. The most
minimal constrained model is found to be disfavored,
and the emphasis in the studies has moved to other
well-motivated models.

The mechanism of supersymmetry breaking, which is
crucial for determining the masses of the superpartners of
the SM particles, is not known at present. There are
different viable models of supersymmetry breaking in
which supersymmetry breaking is mediated by a specific
interaction in a hidden sector and is communicated to the
visible sector via some mediator fields. Well-known exam-
ples of hidden sector supersymmetry breaking include
gravity mediated supersymmetry breaking [3], gauge
mediated supersymmetry breaking [4], and anomaly medi-
ated supersymmetry breaking [5], respectively. It is usually
assumed that one mediation mechanism dominates, which
depends on the type of problem that one wishes to address
in the context of MSSM. In fact, it may well be that a single
mediation mechanism does not dominate. In some situa-
tions the anomaly mediated and gravity mediated contri-
butions to the supersymmetry breaking can coexist and
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manifest at a comparable value, leading to what is known as
mirage mediation, a situation that naturally arises in some
string theories [6]. The name derives from the fact that soft
gaugino masses unify at a scale (the mirage scale) which is
lower than the grand unification or GUT scale. Models
based on mirage mediation can solve the tachyonic slepton
mass problem of the anomaly mediation models. The
mirage mediation models have been studied extensively
in the literature [7—-10].

However, in the absence of any definite experimental
indication regarding the mass spectrum of the sparticles, it
is important to consider the case where all the three types of
supersymmetry breaking mechanisms contribute to the soft
masses, and ultimately determine the mass spectrum of the
supersymmetric partners of the SM states. Such a scenario
has been dubbed as deflected mirage mediation [11]. In the
deflected mirage mediation the gaugino mass unification
is deflected by the threshold effect from the messenger
fields associated with the gauge mediation contribution.
The messenger fields are included at scales g > pess, and
the renormalization group running is affected by the
threshold corrections at this scale. It is worthwhile to note
that in a broad class of supergravity models, which might
be realized in string theory, the contributions to soft
supersymmetry breaking masses from the three different
mediation mechanisms are comparable [12]. This makes
the study of deflected mirage mediation models rather
compelling.

As discussed above, in order to predict the masses of the
superpartners of the SM particles, it is essential to under-
stand the nature of supersymmetry breaking. The usual
approach to this has been to consider a particular model of
supersymmetry breaking, e.g. the gravity mediated super-
symmetry breaking model (usually referred to as
mSUGRA) with a limited number of parameters at the
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high scale (possibly the GUT scale), and evolve these,
using renormalization group equations, to the electroweak
scale and fit them to the data [13—19]. This method, the so-
called “top-down” approach has some drawbacks, namely
that the reliability of the fit decreases with the increase of
the number of parameters at the high scale. This approach is
also sensitive to uncertainties of the measured quantities,
which includes gauge couplings at the electroweak scale
and the masses of the SM particles.

An alternative approach, which is complementary to the
“top-down” approach, that has been advocated involves the
measured masses at the electroweak scale and evolve these
to the high scale where supersymmetry is broken [20-23].
The resulting structure is then analyzed and conclusions
about the underlying theory at high scales obtained. This
approach, which can be called the “bottom-up” approach,
has uncertainties resulting from the present experimental
uncertainties in the measurement of gauge and Yukawa
couplings.

Another alternative to obtaining information on the
nature of supersymmetry breaking is to obtain specific
relations among the masses of the superpartners of the SM
particles which result from the structure of the underlying
theory at the high scale. In this approach the Yukawa
couplings of the first- and second-generations are usually
ignored and the renormalization group is used to evolve the
parameters from high scale to the low scale, and then
specific relations among sparticle masses are derived based
on the particular theory at the high scale [24-31]. In this
context it has also been pointed out that there are a set of
combinations of parameters of a supersymmetric model
that are renormalization group invariant (RGI) at the 1-loop
level [32-38]. Although the argument regarding RGI holds
only at the leading-log order, 2-loop corrections are
expected to be small and are likely to be negligible
compared with the experimental uncertainties. Thus, these
higher order effects can either be neglected or absorbed into
a shift of the measured values of the renormalization group
invariants. It has been argued that these RGIs can be used to
extract the parameters of different supersymmetry breaking
models at the high scale, and thereby establish the
mechanism of supersymmetry breaking. RGIs can also
be used for constructing sum rules relating the particle
masses, and they are discussed in this context in
[25,26,28,37-39].

In this paper we derive the renormalization group
invariants for deflected mirage mediation and examine
how the appearance of messenger particles at the specific
energy scale lower than the GUT-scale affects the invar-
iants. We investigate the GUT-scale parameters of the
deflected mirage mediation in terms of the RGIs, and
examine validity of sum rules derived previously of the
RGIs and derive new ones specific to the deflected mirage
mediation. In particular, we derive soft supersymmetry
breaking parameters in terms of the RGIs. We also examine
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the Higgs mass in the deflected mirage mediation scenario
to constrain the parameters of the model.

The plan of this paper is as follows. In Sec. II, we
describe the deflected mirage mediation mechanism that
we consider in this paper. Here we analyze the soft
supersymmetry breaking gaugino and scalar masses of
the model, and the boundary conditions on these param-
eters. Phenomenological implications, which include the
Higgs mass, are studied in this section. In Sec. III we
describe the renormalization group invariants and calcu-
late these invariants for the deflected mirage mediation
supersymmetry breaking model. We then use these invar-
iants to solve for the parameters of the model. In Sec. IV
we obtain sum rules for the deflected mirage mediation
scenario and discuss some special cases. In Sec. V we
proceed to compare the predictions of the pure mirage
mediation scenario with those of the gravity, anomaly
mediated supersymmetry breaking (AMSB), and the
gauge mediation of supersymmetry breaking models,
respectively. Finally, in Sec. VI we present our
conclusions.

II. DEFLECTED MIRAGE MEDIATION

The deflected mirage mediation mechanism for super-
symmetry breaking mechanism involves contributions of
comparable scale from gravity mediation, anomaly media-
tion and gauge mediation as opposed to the mirage
mediation which excludes the contribution from gauge
mediation The quantity

ay = myp/(MologMp/my)), (2.1)
parametrizes the anomaly to gravity mediation ratio, while
M, describes the mass scale of soft supersymmetry break-
ing terms [40]. Here mj3 ) is the gravitino mass and M p the
reduced Planck mass. The ratio of the gauge mediated
contribution to its anomaly mediated counterpart is para-
metrized by a,. It is related to the messenger fields by the
equation

|ag| = A/m3/2, (2.2)
where A is a mass scale associated with the messenger
fields. The absolute value allows , to have negative values.
The parameters a,, and @, can be considered continuous but
in string motivated scenarios they usually have discrete
values of the order one [12]. The messenger sector is
assumed to come in complete GUT representations in order
to preserve gauge coupling unification. N represents the
number of copies of 5, 5 representations under SU(5). The
original Kaluza-Klein compactification is obtained with
a,, = 1 and N = 0. Both positive and negative values are
possible for a,. Phenomenological implications of various
values of the parameters are discussed in e.g. [12,41],
especially regarding the Higgs mass.
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Above the messenger scale the renormalization group
equations are modified from the MSSM form by adding the
number of messenger pairs to the f-function coefficients b,
[40]. Thus,

b, =b, +N, (2.3)

where {b,,b,,b3} ={33/5,1,-3}. At the GUT scale pgyr,
the gaugino mass boundary conditions can be written as [11]:
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Ma(ﬂGUT) = M()(l + 9a ln(MP/m3/2)bagaam)

/

=M+ g3(u )im )
0 T Jalkcur) 165 M3/2:
(a=1,2,3). (2.4)

Here ugyr is the high scale which we take to be the GUT
scale. Similarly the scalar masses can be written as
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FIG. 1 (color online). Higgs mass as a function of a,. np = ny = np =n; = ng = 1/2, and pip,ees = 10'> GeV. Thick lines in the
order of increasing dash length correspond to N = 0 (solid), 3, 10. The Higgs mass is within current experimental limits between the
dashed horizontal lines. (a) a,, = 0.5, My =3 TeV, (b) a,, = 1, My =3 TeV, (¢) a,, =2, My =3 TeV, (d) a,, = 0.5, My =2 TeV,

@ a, =1, My =2 TeV, () a,, =2, My =2 TeV.
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0;
Ay ln(MP/m3/2)

2 =M2|(1=-n)—-
m; (ﬂGUT) 0 ( nl) 167[2

Vi
" 67 (@ In(Mp/ms5))?
0; Vi
= Mj(1—n;) - @mmMo - mmg/z»
(2.5)

where n; are the modular weights for the scalar masses, y; are
the anomalous dimensions,

Vi = Zzggca(q)i) - %Zlyilm
a Im

in which ¢, is the quadratic Casimir operator for the field ¥;,
and y;;,,, are the normalized Yukawa couplings. 7, and 6, are
defined as

2, (2.6)

i =2 G4baca(®) =Y |Yiml*by,,. (27
a Im
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0, = 4295%(‘1’1') - Zk:lyijk|2(P —ni—nj—ng), (2.8
a Js

in which b, is the beta function for the Yukawa coupling
Yiim- V; 1s obtained by replacing b, with b, = b, + N. For
explicit values of &, 7; see [40]. One-loop renormalization

group equations give the boundary condition at the mes-
senger scale .. for the soft gaugino mass parameters:

/

by by H
M, = gﬁ—mg/z + M, [1 ~-Ja Py log (/;:ﬂ

167>
+ AM, (a=1,2,3), (2.9)
where
M
AM, = —NMO%am(l + aq)ln—P (2.10)
7 |

msz

is a threshold contribution that arises when the messenger
fields are integrated out. Similarly, scalar masses receive a
threshold correction,

FIG. 2 (color online).

The first and the third generation soft scalar mass parameters plotted as a function of @,. In the order of

increasing dash length: m;; (solid), my ., mg, mj, and my. ng =ny =np = n;, = ng = 1/2, fiypess = 102 GeV, and N = 3. In (c) and
(d) Higgs mass is in the allowed range on the left-hand side of the dashed vertical line. (a, b) 1. generation. ,, = 0.5, My, = 3 TeV, (c,

d) 1. generation. a,, = 1.0, My, =2 TeV.
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FIG. 3 (color online).

The gaugino masses plotted as a function of a,. We have set e = 10" GeV, ng =ny=np=n; =

ng = 1/2, and N = 3. In the order of increasing dash length the lines correspond to M (solid), M,, M5. In (b) Higgs mass is in the

allowed range on the left-hand side of the dashed vertical. (a) a,,

4
Am¥l = M3S 2¢, (W Jaimes) {

(167[2)2 m';/Q
(2.11)
The gaugino masses unify at the mirage scale [40]
ns amp/2
Hmirage = HGUT <M—;> ’ (212)
in which
NG . M
1 + e U 1n M GUT
_ 7’ Hmess
p= —1 N My . (2.13)
1672 msy

When p = 1, this reduces to the mirage scale of pure mirage
mediation as the deflection is removed. We note that even if
gauge mediation is turned off by setting a, = 0, mirage
mediation is not recovered. This is achieved only by
removing the messenger fields by setting N = 0. This is
due to the messenger particles affecting the beta functions
and thus anomaly mediation at high scales.

To examine the sparticle spectrum of the deflected
mirage mediation we have calculated the soft scalar and
gaugino masses using one-loop renormalization group
equations and the lightest Higgs mass using the one-loop
radiative corrections presented in [42]. In Fig. 1 we have
plotted the lightest Higgs mass for several values for the
parameters a,,, M, and N as a function of a,. The current
experimental limits for the Higgs mass are represented as
horizontal dashed lines [43]. Although not all the parameter
combinations satisfy the experimental bounds on the Higgs
mass, for any two values of the studied parameters o, a,,,
M, N, a viable set can be found. We note that larger values
for M, and negative values for a, are favored. Smaller M,
requires small @, in order to have the Higgs mass in the
allowed range.

(1 —l—ag)ln—] 5.

=05, My =3TeV, (b) a, =10, My =2 TeV.

In Figs. 2 and 3 we have plotted the first and the
third generation scalar mass parameters and the gaugino
mass parameters as a function of a, for N = 3. We note
that the difference of the mass scale of m; and m i to the
rest of the scalars is a good indicator for the magmtude of

a,, with large difference implying a larger absolute value
for a,. For a,, = 1 and M, = 2 TeV only q, close to —1 is
allowed by the Higgs mass limit (represented here
by the vertical dashed line). In such a case the squark
masses turn out to be several TeVs while slepton masses
can be of the order of one TeV. Similarly, the ratios of the
gaugino mass parameters M; to M| and M; to M,
correspond the value of a, with a large ratios implying a
a, close to —1.

III. RENORMALIZATION GROUP INVARIANTS
IN DEFLECTED MIRAGE MEDIATION

Renormalization group invariants are linear combinations
of the soft mass parameters that remain constant under
one-loop renormalization group running. Complete renorm-
alization group invariants for the MSSM together with
corresponding sum rules have been derived in [34]. The
RGIs are derived under several assumptions, including
the vanishing of first and second generation Yukawas
[20]. We have derived the invariants for general b; in order
to determine their values above the messenger scale (Table I).
Since in deflected mirage mediation new particles are
introduced at a certain renormalization scale and integrated
out below, one should verify whether the RGIs are affected
by the modified spectrum. By considering the renormaliza-
tion group beta functions [with B(p)= 167> ‘;’t’ and
t = log(p/pg)] for the gauginos and for the coupling con-
stants (a = 1,2, 3),

ﬂ(ga) = bagiiz,

BM,) = 2b,g2M,

(3.1)

(3.2)
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TABLE I. The renormalization group invariants /, involving scalar masses, gaugino masses and coupling constants. The second
column defines the invariant in terms of soft masses and couplings without messenger fields present. The third column describes the
difference of the value of the invariant above and below messenger scale; the masses and the couplings are to be evaluated at the
messenger scale. The fourth column describes the value of the invariant at the GUT scale; the couplings are to be evaluated at the GUT
scale. The quantity Am? is defined as N/(167%)(Ma,, (1 + a,)In %;’2)2 The combinations of modular weights 7, are defined in
(3.65)-(3.67). '

Invariant Definition Correction at the messenger scale Value at the GUT scale
IB,. Mr/g% AM,/Q% jw()/g2 + 1b60,,/2 ms;»
I, MR- —mE) 20 AMy - MG+ - )~ Amtgt M1+ n b))

Ly, M3+ ;’—f‘ (9(m§1I — m%] —2M,AM, — AM3 - %(9(111?]] - m%l) + 16m%l - m%l) M3(1 +n,,by)

+16m2i] - m%l) —I—%Ang‘z‘

Iy, Mi+2 (5m§1] +md —md)  2M3AMs+ AM3 -2 (Smgl +md —m2)+ 3 AmPgh M3(1 + n. bYy)

L, 1/g1 = (b1/b2)g3” 28N/(5g3(1 +N)) 1/g°(1 = b} /b))

L, 1/g1 = (b1/b3)g5° —16N/(543(3 = N)) 1/g°(1 = b} /b3)

and by noting that ﬂ(%) = 0, we can define a quantity thatis ~ to gaugino and scalar masses, and pu;,.s as evaluation at

constant under renormalization group evolution, Hmess With the usual MSSM coefficients b, and with
threshold corrections added. Below the messenger scale
Iy = %zr ) (3.3) the gaugino masses receive the threshold correction (2.10).

"9 Consequently just below the messenger scale

Similarly from the full set of MSSM renormalization group

equations one can define 12 other invariants that we have ~ M, (Himess) M, (fihess) AM,
enumerated in Tables I and II. If the messenger fields would I, (Hmess) = 2( ) = 2( ) 2( )

not enter the theory at an energy scale different of the GUT- JriHmess JriHmess JriHmess

scale, the invariants would remain unchanged at all scales. =Ip, (MGur) + Al B, (3.5)

Since the appearance of the messengers modifies the beta
functions and contributes to gaugino and scalar masses at the
messenger scale j4,,., the invariant can have a different value
above and below the scale.

Just above the messenger scale the value is equal to the _ )
GUT-scale value Alp, =AM,/ g; (mess)

where AM, is as in (2.10) and we have defined

M
= —NMy/(167%)(1 + a,)a, lnm—P. (3.6)

M, (Miness) 3/2

I (Mress) = QZ(T) = I (uGur)- (3.4)

We define phe as evaluation at up. with modified  We evolve the couplings down from the GUT scale and
coefficients b/, and without the threshold corrections added ~ obtain

TABLE II. The invariants D; and their GUT-scale values parametrized as D;(ugyr) = y,mg )+ 5,M%. See (3.19)—(3.27).

I Definition Y1 o7
D, 3(mi - ms )+ 2(111%z —mjy ) Yzqa + Yz,0° 2n,
D, 3(3m‘2~]l - Z(mzél - m%]) - m%l) - m%l ng
2 2 2 2

Dy, Z(mLI - mL3) —m; +mg 0
Dy, 2(my —my, ) —mg +mi —m? 4 m Yp.a+ Y09 0

2 2 2 2 2 _10(,2 2 2 2 2 2 2 10 2 1
Dy,.. mg = 2m; + mg = m; +m; —ﬁ(mé3 = 2m; + mg = m; +mz, +my —my, 13 (=Yu = Y0g) -5y
Dya (m%{ —méd JFden(sz —2m%+m3—m% +m2))/ g glz(Yal +Yp) —#né
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210z
5 (/"mess) = > 5 s
V4072 / 3 4 (33 + 5N ) e

( ) 2\/§7t

92Mmess) = s
’ \/8”2/92 + (1 + N)tmess
2V 2%

g3 (ﬂmess) (37)

B \/87[2/92 + (N - 3)tmess ’

where e = InUGUT/Hmess- Thus while the invariants
remain invariant from messenger scale to GUT scale as
well as from the eletroweak scale to messenger scale, there
is a discontinuity at the messenger scale, which must be
taken into account, unless the threshold contributions are
cancelled out.

The invariants designated D; are linear combinations of
the squared scalar masses with the GUT-scale value of the
form

Dy = ym3, + 8 M. (3.8)
The invariants are constructed in such a way that threshold
corrections (2.11) cancel at the messenger scale, thus
D;(utev) = Dy(ugur), and they are “true" invariants in
models that include gauge mediated supersymmetry break-
ing such as the deflected mirage mediation. We present D,
as an example with the GUT-scale value

by, =30, 2y )=

= M}(5+3ny —9np —6n, + ng +6ny).  (3.9)
We use the scalar mass based invariants D; to derive the
high energy parameters of the deflected mirage mediation
in terms of the scalar masses. The three invariants 1), are
linear combinations of the squares of both scalar and
gaugino masses, and are also explicitly dependent
on b,, e.g.

Sby

— 2
IMI_MI_ 8

(mi - m%I - mgl)’

(3.10)

where b, is replaced by b} = b; + N above the messenger
scale. Thus the shift at the messenger scale has a complex
form,

AIM] = IM] (/"IJquess) _IM] (/"r_ness)

5b
=(M, +AM1)2——1((’"3] +Am§])— (m3 +Am; )

8
2 2 2 Sbll 2 2 2
—(m3 +Am3 ) —Mj +T(m?11 —m; —m; )
SN
=—2M,AM, — AM? +?(Wl51 —mi —m?)
5h,
_?(Amtgj] —Am; —Am; ), (3.11)

PHYSICAL REVIEW D 92, 075037 (2015)

where the gaugino mass and the scalar squareds are
evaluated at ul. and AM, and Am; are defined in
(2.10) and (2.11). Since Al depends on masses at the
messenger scale, accessing GUT-scale values from the TeV
scale measurements is not as straightforward as with D;. As
with other invariants, Alj, is generated by the messengers
and vanishes when the messengers are removed with
N =0.

We have listed the correction at the messenger scale and
the value at the GUT-scale for each invariant in Table I,
except for the D; invariants which are listed in Table II.
Figure 4. shows the values of the invariants /z and the
square roots of 1), , and D; above and below the messenger
scale at the point My = 3 TeV, N =3, a, = 1,a, = —0.5,
IMESS = —10, n, = 1/2, and n, = 1.

A. Solving parameters using the invariants

We will now attempt to utilize the RGIs to solve high
scale parameters mj3;,, My, the messenger scale piy, and
the number of messenger pairs N in terms of low energy
masses and mass parameters.

Following (3.5) we can write three equations involving
the invariants Iz by setting the low energy scale value of
I equal to the value at the GUT-scale corrected by the
difference at the messenger scale,

I, (ugur) = Ip, (Hrev) — Alp,, (3.12)
where I is defined in (3.3) and Al in (3.6). We note that
Alp vanishes if a, = —1. Thus the equivalence of the TeV-
scale value of /5 to its GUT-scale value cannot be taken as
proof of the absence of gauge messengers.

Equations (3.12) provide three independent solutions for
ms,, and a,, which we distinguish from each other by
designating with the subindex (a),

3
Zb.c:l €abclp,

m3/2((1> — 16][2 ZZ . €adebe ) (a = 1,2, 3), (313)
_ bag’mspy —162°g* g, +162° M, s
Ug(a) = 7 . (a=1,2,3).
g m3pN
(3.14)

It is easy to verify by evolving g; that the deflected mirage
mediation coupling constant at the GUT scale, g, is related
to ggur, Which is the coupling constant at the GUT-scale
with N =0, by

1 1 Ntpess
== 5 (3.15)
g JGur 87
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FIG. 4 (color online).

The renormalization group invariants I (blue, solid) and the square roots of the absolute value of the invariants

D, (red, small dash) and ), (green, large dash). Here n, = 1/2, n, =, My =3 TeV a,, = 1, a, = 0.5, uygss = 10'> GeV, and

N =3. D, =0 is not shown.

A different set of parameters to eliminate could, of course,
be chosen, but this choice proves to be most convenient for
solving all parameters, as M, is readily solved from the
scalar mass involving invariants D; which do not allow the
determination of a,.

The invariants D, , Dg ., Dy, Dz, and Dya are
composed of linear combinations of soft scalar mass
parameters and have identical values above and below
the messenger scale. This follows from their form of their

at the GUT scale We have listed the values in Table II,
where

Ny =ng, —np, (3.17)
nﬁ55+3nu—9nD—6nL+nE+6nQ, (318)

n, =3np +3ng + 10ny, — 10ny, —3n; + 3ng — 6ny,

boundary condition which ensures the canceling out of (3.19)

threshold corrections (2.11) (for the proof see the

Appendix). The invariants have the schematic form ns=3np +3ng —ny, +ny —3n, +3ny — 6ny,

Dy = ym3, + 6 Mg, (3.16) (3.20)

at the GUT scale, where the coefficients y;, §; are
determined by the Yukawa couplings y,, v, and y, and ¢ e =Ny + g +ny =3, (3.21)

|

1
Ve = 55007 [1440y5 + 240y} y? 4 240y3y? — 1440y} — 240y7y? + 240y7y7 — 480y7y? + 1440y9 — 1440y7], (3.22)
1
Yg.p= 3072077 [—2105y} + 2105y2 — 2208y7 + 2208y?], (3.23)
1
Y= 102207 [1440y8 + 240y$y? + 240y}y? + 1440y} — 720y2y? — 240y2y? — 640y%], (3.24)
7
1

Yz, = ——————[-2105y} + 2105y% + 768y2], 3.25
% = 1032077 | Yy + 2105y, + 768y7] (3.25)
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1
Y, =—
= 3072074

1
Y=
2= 307207

PHYSICAL REVIEW D 92, 075037 (2015)

[1440y8 + 240y%y2 4 240yty? — 1440y — 960y2y? — 480y2y# + 240y2y? — 960y — 2880y¢ + 2880y?],

The parameter M, is easily solved using the GUT-scale value of D, ,

D, =3(3m? —2(m>

X1 d,

to obtain

M, = %’
np

For solving g we use the GUT-scale values of the two invariants Dy ., Dya, defined as

2
it

— 2
Dy, = my, —2m

10 1
= B (_Y{zl - Y(IZgz)mg/Q - BnyM(z)a

Yukawa-dependent terms Y ,; and Y, can be eliminated by
forming the linear combination

104° 10
DY13H +TDY{X = —BM%(n5+ny) (332)
‘We obtain the solution
V(ng,)
2 —=_ re. 3.33
10Dy, ( )
where we have defined
ng, = ns+n, =2n,— lny + 1lny , (3.34)
V(ny) = 13Dy + 10Mjn,. (3.35)
Using the solution (3.29) for M|, we write
7= -10D, (ns +n,) — 13DY13Hn/,,’ (3.36)
10Dya\/ﬁ/}
10n
Y(ny) = 13Dy, + nﬁf‘ D, (3.37)

Since from (3.15) we have

2 _ 2 2 W
+m§l, mzl—l—mé1 (m

(3.26)
[—2105y + 2105y2 + 1152y2 + 4416y} — 4416y?]. (3.27)
2 2 _

) —mg ) —m3 = ngM, (3.28)
for ny # 0. (3.29)

b, 20—, )
(3.30)

2 1 2 2 ! 2
F+mz) /g :?(Ym +g Yaz)m3/2_?n5M0’ (3.31)
|
872(& — g

IMESS = 8719 = Gour) GUT), (3.38)

gzgéUTN

the relation of fypgs and N is fixed once g° is measured. In
addition to (3.33), equations

__ 10 1
{ DY13H - 1_3 (_Yal - Yazgz)m%/z - BnyM(z)’ (3 39)

Dy, = gl2<Ya1 + YaZ)m%/z - g%l’l{;MZ,

produce a solution to mj,,

32302 /Dy, Y1)

a \/YaZy(n(Sy) - IODY(IY(II ‘

By solving simultaneously the equations

{DBB = (YBlsa + YBl3bgz)m§/2 (341)

Dy = 2n,M5 + (Yz4 + Y297 )m3),°

we find alternative solutions to M, and ms,, that are
dependent on the Yukawa couplings
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32v/30,/Dp,, 320v/3,/Dp,,\/Dya\/7;

m3/2 = = s (342)
\/92Y813b + Yp,4 V/10DyanyYp o = Y, Y (n5))
Y \/30313 (Y25 +Y2,) —72*D7 (Y gy + Yi,30)
0 =
\ﬁﬂz\/—”a(gzymb + Yp,a)
_ (”4DZYBI3[7 - 3DBI3YZh)y(n6y) - ]ODYtln/J(”4DZYB|3a - 3DB,3YZa) (3 43)
2ﬂ4n(1(YB]3b(y(n6y) - IODYanﬂYB|3a) . .
1. Yukawa couplings in terms of invariants Y5 =— 2105% 2208y +2208y2,  (3.45)
Instead of the mass parameters it is possible to use D; to
determine the values of the Yukawas at the GUT scale, Y, =0, (3.46)
although the necessary parameters for running the Yukawas
up from the low energy scale are solvable independently of Yz, = 2105y3, (3.47)
the Yukawas. We assume a small y, and y, compared to y,
and small enough y, to neglect terms with y® and higher Y, = 2880y%, (3.48)
order, and y}, y# and higher order. Equations (3.22)—(3.27)
are then reduced to Yoo = 2105y2 + 11522 4 4416y} — 4416y7.  (3.49)
Ypa == 1440y;, (3.44) From (3.39), and (3.41) we can then solve
|
44/5, /——DY(,\/60DBH — 74(13)(n,) — 10D, + 20M2n,,)
v, = : , (3.50)
3, /mg/zy(ngy)
64/ 2:7°\/=Dy,(Dz — 2M2n,,)
Yy = B N (351)
m3/2y(n5y)
1 {
= 4761m% .,V (ng,)* + 69Y(n
M om? 12(23Y(ns,) — 150Dy,) 329 (ney) (n57)
+ \/38400Dyam§ 12(3Dy,, + 7 (Dy — 2M3n,)) (23V(n5,) - 150Dm)}. (3.52)
Note that while the solution D, /n; can be substituted for , 5by, 5 5
M}, and 167%(Ip —1Ip,)/ (b — b3) for my,, here, the Iy, = M —?(m;,l —mg —mg ), (3.53)
solution (3.43) for M, and the solutions (3.40) and
(3.42) for ms,, derived above, are not independent from b
(3.50)—(3.52) and thus cannot be used. Iy, = M% _I_ﬁ@(mg] _ mil) + 16m%1 _ mgl)’ (3.54)
2. Solving N
For solving N we use the remaining three invariants 5
Iy, = M3 + = (5m? 2 —m2). 3.55
composed of the mass parameters, Ms 3t 16( T me'> ( )
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We remind the reader that parameter b}, = b, + N is to be replaced with b, below the messenger scale. In order to connect
TeV scale measurements to the GUT scale parameter values, we examine /), above the messenger scale:

5b
Iy, (Mwess) = M7 (Hess) — ?1 (ngi, (Hisss) = m%] (Hiess) = mél (Mvess)) = Iy, (HGur)- (3.56)

By using the relations

I, (ugur) = I, (uiess) = M1 (yess)/ 91 (niEss )

m; (Hess) = M7 (Hyess) — Am;, (3.57)
we eliminate the mass parameters measured above messenger scale and obtain
2 4 5%, 5 _ 2 (- 2 (- 5b) 2 2 2
Iy, (Gur) = I, (MGur) 91 (Mness) —?(mal (Mmess) — M3, (Myess) — M, (Mygss)) +?(Amgl +Amg; —Amz ). (3.58)

Directly from (3.53) and (3.57) we see that below the messenger scale 5b1/8(m5 - m3 —m%l) =1y —M; =
Iy, — I}, 1 (umEss)- Thus

/

b 5b,
Ly, (uGur) = I3, (Bcur) g} (#mEss) + b—i(IM1 — I3, 91 (#mess)) + ?1 (Amél +AmZ —Am?). (3.59)
We have dropped the argument iypgg SO that the low scale value of the invariants are meant unless otherwise specified.
Analogously
/ /

b b
Iy, (Hour) = I3, (HGur) 9 (HmEss) + b—i(IM1 — 13,95 (vess)) = 2_i (9(Am3] —Am; ) + 16Am%1 —Amz),  (3.60)

/ /

b b
Iy, (Hour) = I3, (Hour) 93 (Hmess) + b—i (Int, = 15,95 (#ness)) — % (SAmi +Am; — AmZ ). (3.61)

After substituting the GUT scale values I (ucyr) and I, (Hgur). the corrections to the scalar masses (2.11) with a,
from (3.14), g,(pmess) from (3.7), and ay,)» Egs. (3.59)—(3.61) can be collectively written as

256”4{_[’5(92 - géUT)Z(IM,, - M%) + bagzN(gz(M% - ZIMa)géUTIMa) - 94IM,1N2}
+ g4I%aN(bu +N)+ 32ﬂ2bagzgéUTIBnM0N =0, (a=1,2,3), (3.62)

where we have defined

T, = (bamsjs = 162° 15, ) gy (3.63)
IM(I = IMa —_ baM%nea, (364)
where

5

I’lel E§(1+nD—ne_nU), (365)
1

ey =57 (15 =9np + n + 9ny = 16n,), (3.66)

1
I’l€3 = 1_6 (5 - SHD + n, — nu). (367)

All m3,-dependence in (3.62) is now contained in Z , and can be eliminated with the solution to mj , (@) from (3.13) to
obtain

Zb,ceabc(baIB[ - bcIBa)
Zd,eeadebe

Ty, = 16227 (3.68)
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A solution for N can be obtained from each of the equations (3.62),
N =-5737 b 7
2g (IBa —2567%Zy)

{ (T3, + 25674 (=21, — M3)) + 32081 (7T 5, My + 167°T,, )

+ (Zp, + 167*M,) \/94(ZBE — 167°M,)* + 647rzgzgéUT(IBaM0 - 167:21Ma) + 10247t4g‘éUTIMa}. (3.69)

Solutions can also be obtained for M, n, , m3,, or g:

Ng* + b,g?
M, = a 4 sN b/22 b/4 N4I —b 4N b; 11—2
0(a) nea(Ngz+bg’2)2+bg’4+Ng4 \/(n ( ¢+ bg?)* + bg* + Ng*) M, ¥ (ne, by +1) 3
o (3.70)
1672(Ng* + b,g?) ,
o _ I, (Ng'Ty, —16°b,g*Mo)* + byNg* (T, + 167°My)? (3.71)
u baM(z) 256”4baM(2)(Ng2 +bag/2)2 ) .
(Ng* + b,g*)\/N(bL Ly, — b,M3)
2 IBa MO g a¥ a=M, atvlo
m3/2(a) — 167[ b_a - gzb; Nb/abag2(gz _ g/2) ’ (372)
2= 167° g5urba(Zu, — Mj)
Il = , (3.73)
167%(b, Ly, — b,M§) +Zp MoN £ (I, + 16n2M0)\/N(b;IMa — b,M3)
where
ba=ba+N. (3.74)
9% =9~ Gur- (3.75)

The correct signs have to be determined by other means such as by comparing the solutions and discarding negative values
for the parameters. Only the solutions with a different index are independent; i.e. we cannot use the solution N = Ny to
solve M) etc. Three linearly independent solutions can be “picked,” each with a different index, e.g. M1y, N(2), g(3), and
the supplemented with the solutions obtained from D; and /I .

1.295x 107 - 1.300x 107 ]
7L N
1.290%107 1.295x 10

1.290x 107 f b

— 7L 1 &

< 1.285x10 £
& S 1.285x107f ]

3 1.280x107} 1=
1.280x 107 f ]

7L
1.275%10 1275x 107k ]
1.270x 107 | = ’ ’ ’ , ' 1.270x 107} | , , , , R
6800 6820 6840 6860 6880 6900 6800 6820 6840 6860 6880 6900
Ip,(GeV) I5,(GeV)
(@) (b)

FIG. 5 )gcolor online). The number of messenger field pairs N, and a, as predicted by (3.69) and (3.14). M, = 2.0 TeV, a,, = 1, and
9= = 0.80, and n, = 1/2. (a) N. (b) .
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Summary of the solutions for the parameters derived in Sec. III.

Condition Iy (TeV) = I (GUT) + Al D;(TeV) = D,;(GUT) Iy, (TeV) = Iy (GUT) + Al ; (1IL14)
(M, (IIL30) 3x {N(Mg,m3p,9) (IIL73)
111.43)
. 3% {my, (IL13 {’"3/2(9) ( 3% {g(N, Mg, m3),) (1L77)
Solution 3 {ay(My.N.my) (IIL14) My(g)  (II1.34)
g(My) (II1.34)
)’r(Mo, m3/2) (HI-SS)
ye(Mo,m3p)  (IL53)
N, My, g, 111.76
o (Mo.may2) (IL54) 3o {maa(N: Mo g0) - (TL76)

Figure 5 illustrates the behavior of N and a, as a function
of Iz, and I, as predicted by (3.69) and (3.14). We assume
n, =1/2,and Dy,, Dy .., D, , and two of the Iz to have
been measured to fix g = 0.80, a,, = 1, and My, = 2 TeV.
Thus I, and 1), determine the values of N and ;. Small
variation in [y, and I point to significantly different
values of N and a,; if I, = 1.29 x 107 GeV?, a difference
of 50 GeV in I, separates N =4 and N = 12. Table III
summarizes the solutions derived above.

3. The modular weights

In terms of universal modular weights n, = ny, = ny,
and n, = ny = np = n;, = ng = ngp, for which

Ng = Ny — Ny, (376)

ng =5(1-n,), (3.77)

n, =ngs =ng =0, (3.78)
5

e, = g (1 - nu)? (379)
5

e, :g(l _nu)7 (380)
5

ne, :1—6(1 -n,), (3.81)

the M-term is removed from the solution of g, thus (3.33)
is simplified to

13Dy,
10Dy,

g =

(3.82)
Determining an analytical solution for n, requires solving
two of the three equations (3.62) simultaneously for N and
n,. While the solution exists, it is too complex to be

presented explicitly. A simpler way may be to determine 7,
numerically or by guessing from the equation

(3.83)

The third independent equation N3y then remains for
determining N. M, mj3;,, pngss, and N are now known,
thus the Yukawas at the GUT scale can be evaluated
through conventional method of the renormalization group
running. Then n;, can be determined from
Dy = 2Mg(ny —ny) + (Yzq + Y707 )m3 . (3.84)
A measurement of D, = 0 would present the problem of
determining whether My = 0 or n,, = 1. If we assume the
latter, two of the equations (3.62) could be solved simulta-
neously for M, and N. Then the value of mj3,, from the
remaining independent equation (3.72) can be evaluated and
checked for consistency with (3.13), to verify the hypothesis.
In the general case it is not possible to determine all seven
combinations of the modular weights since after solving the
five parameters only five independent RGIs remain. Some of
n., can be solved from (3.71) and sum rules discussed in
Sec. IV could be helpful in determining ng, n,, n,, and ns.

IV. SUM RULES IN DEFLECTED
MIRAGE MEDIATION

Renormalization group invariants can be used to con-
struct sum rules by applying various conditions to reduce
variables, e.g. mass unification. As a generic example we
assume gaugino mass unification at some scale and write
M] = M2 = M3 = Ml/2' From (33),

M12
IBa: 2/ .
Ya

(4.1)

By combining this to the definitions of the invariants 7,
and / 950
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TABLEIV. Sum rules derived from the condition of gauge coupling unification, gaugino mass unification and scalar mass unification.
Third and fourth rows describe whether the sum rule is valid above and below the messenger scale, respectively. The bottom three sum
rules involving scalar masses are valid only above messenger scale and with the condition of universal modular weights

ng = ny = np = ng = n, = n,. Above the messenger scale b/, is to be substituted for b,,.

Sum rule H < Piness H > Piness

Il]1_1(12(1_b1/b2)/(1_b1/b3):O OK OK

( B, — (bl/b3)183)1g2 = (IB, - (bl/b2)182)1g3 OK OK

1, =(Iy, =%D, )1, -1 (I, = %D, 7P, X n; =n,

1{/3 = (IM] _%DXI)_I/ZIBI + (1M3 +11)%D)(1) 1/2133 X =y
— (2by + b3)/(2b; + b%)IMa +2(by = by)/(2by + b3)Iy, =0 X n;=1

(b1/b2)g3*.

(b1/b3)g5°.

If}z = l/g%_

1!13 - l/g%_

(4.2)
(4.3)

we can eliminate M;,, from the resulting group of
equations to obtain the sum rule

UBI - (bl/bS)IBJIgg - [IBl - (bl/b2)132]1g3- (4-4)

If we assume the gaugino mass unification to occur in
conjunction with a scalar mass unification (with the
common scalar mass squared value m(z)) at the same scale,
the RGIs 1), have the values

33m?2
IMI ] 0+M1/2a (45)
Sm?
Iy, = TO + M3, (4.6)
15m3
This allows us to write the sum rule
811y, — 561y, — 251y, = 0. (4.8)

Similarly from the assumption of gauge coupling unifica-
tion at the GUT scale one can derive

1, = 1,,(1=by/by)/ (1= by /b3) =0 (4.9)
In the specific case of deflected mirage mediation we can
verify the formula easily for renormalization scales above the
messenger scale by substituting 4/, for b, and plugging in the
GUT-scale values for the gaugino masses (2.4). To examine

the equation below the messenger scale we restore b, and
|

write the invariants at the scale pq. Using (4.3), (3.7), and
(3.5) it is straightforward to verify that (4.4) is valid below
messenger scale as well. Similarly one can derive sum rules
based on scalar mass unification and scalar mass unification
combined to gaugino mass unification at the same unifica-
tion scale [37]. Validity of the sum rules derived in [37] at
regions above and below the messenger scale is listed in
Table IV for deflected mirage mediation.

We will attempt to derive sum rules valid at all energies
using the RGIs, that are not dependent on other parameters

than n; and N. From Table II we see that D; , = 0 and thus
we immediately have
2 2 2 2 _
2(mZl - mi3) —mz +m; =0. (4.10)

More sum rules can be constructed by combining the
solutions to the mass parameters and g. For instance by
equating the two expressions for mj3,; (3.13), and (3.72)
with a = 1, we obtain

165
E949éUTN(5N+33)(IB, —1Ip,)

= \/5929%}UT(92(5N +33) - 33géUT)

33
\/ <IM ny(SN +33) = ==D, )
Vl/j

D
+ 5% 9&urls, N(5N + 33) = 165¢°gurN [,
n
p

(4.11)

where we have again used M2 IZ‘“ and ¢ —M
Similarly from the solutions of 92 (3. 36) and (3. 73) we
obtain

16072 gGUTDYa (n/)’IMz )(1 )

- lonﬁrD)m - 13DY13H”/} =

167> ((1 + NIy, —

Z X Dl '
- ) + Ty, [N - (IBZ + 16712./”—/;) \/N((l + NIy, —n—l;>
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To construct sum rules independent on N, one can
combine to solutions (3.69) to form three sum rules

(4.13)

We leave out the explicit formula for brevity. The sum rules
provide a possible way to determine some of the modular
weights. Additional sum rules can be formed in a similar
manner from (3.40), (3.42), (3.43), and (3.70) or by
combining other solutions summarized in Table III.

A. Special cases

In order to draw distinctions between the supersymmetry
breaking scenarios and identify dominating contributions
we consider sum rules in some special cases obtained from
the deflected mirage mediation boundary conditions.

1. The case N = 0

In the absence of messenger fields, Alg = Al =0,
and all the invariants have equal values at the TeV scale and
the GUT scale. As noted before, since the threshold
correction for I ,

M
Aly = —NMy/(162°)(1 + a)a, In—2,  (4.14)
vanishes for a, = —1 as well as for N =0, we cannot

deduce the absence of the messenger fields from the
condition 7 (utev) = I, (4cur) alone. On the other hand,
from (3.11), the threshold correction for ), reads

5N
Aly, = =2M \AM = AM] + == (m? (jess)
- m%q (MiEss) — mgl (Mess))
Sby 2 2 2
-3 (Amgl1 — Am;, — Amg ). (4.15)

If @y = —1, the corrections to scalar and gaugino masses
vanish, leaving

SN

Aly, = K3 (msl (#vEss)

- ml%, (”K_/IESS>

- m%. (Mygss)).  for a, =—1. (4.16)

As one can see, Aly =0 only if N=0 (or
m? —mj —m3 =0, which would imply a constant M,
above the messenger scale). A similar condition obviously
applies for Iy, and I),. Consequently, the equation
Iy, (uGur) = Iy, (urey) provides us with a better condition
for the absence of messengers. Thus we write,

for N = 0.
(4.17)

Iy (wrev) = Iy (Hur) = ME(1 + bun,),

PHYSICAL REVIEW D 92, 075037 (2015)

From (3.65)-(3.67) we see that in the case of universal
modular weights n, = n., =2n,, =5/8(1-n,). Now
the n, can be eliminated from (4.17) and three conditions
obtalned

V30, + 20,

My = , 4.18

0 \/§ ( )
2(Iy, — Iy,)

5/8(1 —n,) = —2—-=, 4.19

=) =3 (@)

SIIM2 —561M3 —251M1 =0. (4.20)

Equation (4.20) can in fact also be derived from the
assumptions of scalar mass and gaugino mass unification
at the same scale without additional assumptions about the
supersymmetry breaking scenario [37]. We then use the

solution M} :% from (3.29), and the first two

equations yield (after eliminating n, and M),

D, =16/5(

» for N =0,

IMZ_IM3)’ nu¢]. (421)
Equations (4.20) and (4.21) now provide a simple test for
determining the existence of the messenger sector, with the

restriction that universal modular weights are required.

2. The cases My =0, m3,, = 0, g = gur

In the case of zero M, and m3,, we obtain from (3.29),
(3.13),

D, =0,

X1

for My =0, (4.22)

3
Z €uthB(,. =0,

b,c=1

(021,2,3), for m3/2:0.

(4.23)

The case g = ggyr implies either pygss = pgur or N = 0.
From (3.33)

13Dy, + 10M( (4.24)

n, + ns) = 10g& 1Dy,
If we assume universal modular weights this is
simplified to

13Dy, (4.25)

= 109%}UTD Ya-

V. COMPARISON WITH SUGRA, AMSB, GAUGE
MEDIATION AND PURE MIRAGE MEDIATION

Deflected mirage mediation includes contributions
from three separate supersymmetry breaking mechanisms,
namely gravity mediation (SUGRA) [3,44-47], gauge
mediation (GMSB) [48-50], and anomaly mediation

075037-15



KATRI HUITU, P.N. PANDITA, AND PAAVO TIITOLA

(AMSB) [51,52]. The boundary conditions for the scalar
and the gaugino masses can be parametrized as

SUGRA: m; (ugur) = (1 = n;)Mg; M, (ucur) = Mo,
(5.1)
o
AMSB m; (MGUT) (167[ ) 3/2’
b,

M(ugur) = ° —16 ms)s, (5.2)

3

GMSB: m; (pyess) = Z i)9a;
=1
Nga

M (pvess) = 1622 (5.3)

D. Mirage with
KMESS = HGUT

PHYSICAL REVIEW D 92, 075037 (2015)

Note that the GMSB boundary conditions are defined on
the messenger scale possibly different from the GUT scale
while the AMSB and SUGRA boundary conditions are
defined at the GUT scale. Additionally, two combinations
of the above exist: mirage mediation [6] is obtained from
DMMSB by removing the messengers and deflected
anomaly mediation (DAMSB) [53-55] is obtained by
setting M, to zero.

The boundary conditions for the five models can be
extracted from (2.4), (2.5), (2.11), and (2.10) with the
following prescriptions:

SUGRA: my, =0; N =0, (5.4)
AMSB: My=0; N =0, (5.5)
GMSB: MO = 0, m3/2 = 0, (56)

| DAMSB
| KGUT = UMESS

AMSB ’

D. Mirage
m3 /=0

£0

DAMSB ’

]

MUMESS = MGUT;
m3/2 =0

e
|

‘ D. Mirage with |

—

FIG. 6 (color online).

Implications of measurement of RGIs for the supersymmetry breaking mechanism with the assumption of

n, =ny, =ny, and n, = ny = np = n; = ng = ngp, assuming that one or two of the mechanisms dominate. On the left side of the

10Dy,
T 13Dy,

red dotted line all endpoints have n, = 1. 2 =

and Zfa]M,, = 8]1M2

— 561y, — 251,
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Pure mirage: N =0, (5.7)

DAMSB: M, = 0. (5.8)
Here we assume universal modular weights for all
applicable models and the parameters not specified to be
nonzero. In the case that one of the mechanisms clearly
|

PHYSICAL REVIEW D 92, 075037 (2015)

dominates the supersymmetry breaking scenario can then
in principle be resolved or narrowed by measuring the
parameters in terms of RGIs. By comparing to the solutions
for the parameters in terms of invariants (3.13), (3.29), and
(3.38), along with the sum rules (4.20)—(4.25), we can
deduce from the measured invariants I g , I ., I3, , Dy, and
Dy, the following:

for mSUGRA, GMSB

O’
Ip —Ip. xm , 5.9
BB =T 2{ >0, for AMSB, Mirage, DAMSB (5.9)
, [ =0. for AMSB, GMSB

D, = (1=n)M} | , (5.10)

«(1 —n,), formSUGRA, Pure Mirage, DAMSB
10Dy, 1 1 1 { =0 for mSUGRA, AMSB, Pure Mirage (5.11)

13Dy, G&ur Geur & | <tupssN. for GMSB, DAMSB ’ '
=0, for AMSB, mSUGRA, Pure Mirage

811y, — 561y, — 251y, . . (5.12)

’ #0, for Deflected Mirage, GMSB, DAMSB

Thus e.g. observing D, = 0 would exclude mediation
mechanism with a gravity mediated contribution with
n, # 1, but deflected or pure mirage with n, = 1 cannot

10D
be ruled out. On the other hand a nonzero —2Pre 4 -
13DY13H Jcur

implicates a gauge mediated contribution, with the mes-
senger scale different from the GUT scale. We have
illustrated the implications of different values of (5.12)
in Fig. 6 by starting from the measurement of D, .

VI. CONCLUSIONS

Deflected mirage mediation is the most general type of
mechanism for supersymmetry breaking in the sense that
it includes contributions from three supersymmetry break-
ing mechanisms, namely gravity-, anomaly-, and gauge
mediation. The renormalization group invariants provide
a way of determining the values of the supersymmetry
breaking parameters, but in the case of DMMSB, the
emergence of gauge messenger fields at a scale possibly
different from the GUT scale complicates their use by
inducing corrections to the gaugino and the scalar masses
and modifying the beta functions at this threshold. Thus
the invariants have differing values above and below the
messenger scale. In order to connect the TeV scale
measurements of the particle masses to the GUT-scale
parameters we have derived the threshold corrections to
the RGIs and derived the RGIs for arbitrary b,-coef-
ficients of the beta functions. It is shown that the high
scale parameters which include N, pygss, m3/2, Mo, and
a, can be analytically solved in terms of the RGIs, and

g
the explicit formulas are provided. We have then

|

examined various limits of DMMSB to see how any
of the contributing three pure supersymmery breaking
scenarios can be detected by measuring the RGIs at the
TeV scale.

We have also discussed how the solutions to the
supersymmetry breaking parameters can be used to con-
struct sum rules that would allow further testing of the
theory and determine the modular weights for the scalar
masses. The lightest Higgs mass measurement allows the
restriction of the parameter space of DMMSB. We have
discussed the implications of the measured Higgs mass of
125.7 GeV to the mass spectrum and the parameters
of DMMSB.
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APPENDIX: PROOF OF AD; =0

We show that the absence of mj3/,;, M, mix terms at the
input scale for a linear combination of squares of scalar
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masses implies the vanishing of threshold correction for the
said combination. Let us assume that the linear combina-
tion Dy = > ", aimi(l.) has at an input scale pyy > ppgess
a boundary condition of the form
Dy(Huv) = yam3, + 4 Mg, (A1)

i.e. does not contain terms dependent on mj3,, M. The
boundary condition according to (2.5) is

MOZO{,(I
L m?, Z“‘?ko
2 2 3 1 1
(167%) —

For the coefficient of Myms,-term to vanish, we require

n 3 n
Z a0 = 4 Z a(uuv) Z ;¢ (Pi(i))

i=1 = i=1
- Z t|yk lm|

i,l,m=1

Dy (puv) Mom3/2209k (i)

(A2)

P — N -n;—ny,) =0,

(A3)

where we have used the explicit formula (2.8) for 6;. The
parametrization (A1) is to be valid for arbitrary values of
Yukawa couplings, thus the two terms of (A3) must vanish

PHYSICAL REVIEW D 92, 075037 (2015)

independently. Furthermore, in a general case we do not
require coupling constants to unify at the boundary and
indeed expect for (A3) to be satisfied for arbitrary values of
g,- Each addend of the first sum should therefore vanish
separately. From the first term we deduce

Z aica(q’k(iﬂ =0,
i=1

On the other hand the threshold correction for Dy
reads

fora=1,2,3. (A4)

ADA = Z aiAmi(i)
i=1

_2M2N
~ (1672%)?

3 n
X Z 92 (,umess) Z aica<\Ijk(i))
a=1 i=1

where we have used the formula (2.11) for scalar mass
correction. From (A4) and (A5) it is obvious that the
threshold correction vanishes. We conclude that

Mo12
a, (1 +ay) lnP}
ms;,

(AS)

AD, =0, (A6)

for any linear combination of squares of scalar masses that
has a boundary condition of the form (Al).
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