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We consider the minimal 3-3-1 model with a heavy scalar sextet and realize, at the tree level, an effective
dimension-five interaction that contributes to the mass of the charged leptons. In this case the charged
leptons masses arise from a sort of type-II seesawlike mechanism while the neutrino masses are generated
by a type-I mechanism. We also show that the parameters giving the correct lepton masses also
accommodate the Pontecorvo-Maki-Nakawaga-Sakata matrix. We give the scalar mass spectra of the
model and analyze under which conditions the fields in the scalar sextet are heavy even with small or zero
vacuum expectation values. We also show the conditions under which it is possible to have a stable
(bounded from below) potential and also a global minimum.
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I. INTRODUCTION

Although we have known since 2012 that there exists a
neutral spin-0 resonance with properties (mass and cou-
plings) that are compatible within the experimental error
with those of the scalar SM-Higgs boson [1,2], these data
do not exclude the existence of more fields of this sort. In
fact, almost all the extensions of the standard model (SM)
include extra scalar multiplets: complex [3] or real singlets
[4-6], two [7] or more doublets [8], and Hermitian [9] and/
or non-Hermitian triplets [10—13]. Moreover, extra scalar
multiplets are usually introduced in a given model just in
order to give masses to the neutrino and/or charged leptons.
Hence, they may have small vacuum expectation values
(VEV). However, this usually implies that there might be
light neutral scalars which can be easily ruled out by
phenomenology. In two-Higgs doublets this is not the case
when there is a positive quadratic term x> > 0, which
behaves like a positive mass square term in the scalar
potential. In this case such parameters may dominate the
contributions to the masses of the multiplets’ members,
which are almost mass degenerated, i.e., in the context of
models with one or more inert doublets (see [8] and [14]).

The 3-3-1 models are intrinsically multi-Higgs models.
For instance, in the minimal 3-3-1 model (here denoted by
m331 for short), the charged leptons gain mass from a triplet
and a sextet and the neutrino gain Majorana masses only
through the sextet [15—17]. On the other hand, in the model
with heavy charged [18] or neutral leptons [19], only the
triplets are needed if right-handed neutrinos are introduced
and the type-I seesaw mechanism is implemented.

Because of the sextet, the scalar potential in the m331
becomes more complicated; for this reason it was pointed
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outin Ref. [20] that the sextet can be omitted if a dimension-
five effective operator, involving only triplets, is in charge of
the mass generation of the charged leptons and neutrinos.
The m331 model without the sextet was called the “reduced”
m331 model in Ref. [21] because only the triplets p and y are
introduced. However, there are important differences
between our model and those in Refs. [20,21] as we will
discuss in Sec. V. Moreover, as in the case of the SM, the
question now is, how does this effective operator arise at tree
and/or loop level [22-24]? In the context of the m33 1 model,
mechanisms for generating effective dimension-five oper-
ators for the case of the neutrino masses were given in
Ref. [25]. However, in those works the Pontecorvo-Maki-
Nakawaga-Sakata (PMNS) matrix was not considered. It is
far from obvious that the same parameters that allow us to
obtain the correct lepton masses also accommodate a
realistic PMNS matrix. We show that it is possible in the
m331 model with a heavy sextet which implements a sort of
type-II seesawlike mechanism in the charged lepton sector
and, by introducing right-handed neutrinos, neutrino masses
arise from a type-I seesaw mechanism.

In fact, we show that the sextet is just a way to generate, at
the tree level, the effective five-dimensional operator pro-
posed in Ref. [20] in order to give the charged leptons their
correct masses. This happens if all fields in this multiplet are
heavy and its neutral components gain a small (s3) or a zero
(s9) VEV. We also study in this model the conditions upon
the dimensionless coupling constants that imply a scalar
potential bounded from below, with a global minimum as
well. We obtain a realistic PMNS mixing matrix as well.

The outline of this paper is the following. In Sec. II we
give the scalar representation content of the m331 model and
the scalar potential of the model. In Sec. III we obtain the
scalar mass spectra of the model under the conditions of
Z; @ Z5 discrete symmetries. In Sec. IV we obtain the
charged lepton and neutrino masses and the corresponding
PMNS matrix. Our conclusions appear in Sec. V. The
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conditions for a stable minimum, at tree level, of the scalar
potential are obtained in Appendix A. In Appendix B we
consider the Goldstone bosons in the model with exact mass
matrices.

II. THE SCALAR SECTOR IN THE M331 MODEL

The scalar potential in several 3-3-1 models was con-
sidered in Refs. [26-29]. Here, however, we will study only
the m331 model in the situation in which the sextet gain a
small VEV, the extra scalars in the sextet are heavy, and
there is no explicit total lepton number violation in the
scalar potential, which is avoided by an appropriate discrete
symmetry.

In the m331 model the scalar sector is composed of a
sextet S~ (6,0) and three triplets: 7 = (n° —nyny )T~
(3.0). p=(p*p°%™ ") ~(3.1), and y= (rx x")'~
(3,-1), where (x,y) refer to the (SU(3),,U(1)y) trans-
formations. Only the triplet # and the sextet S,

0 S u
L va V2
ST S S(,)
S = ﬁ S1 % | (1)
58 ++
5 4 s

couple to the leptons through the Yukawa interactions

(\IIL)C\IJLS* and (\IIL)C\I}LT’].
We can write the SU(3) multiplets above in terms of the
SU(2) ones. For the triplets we write

n=(Z>~@®,

x:(§)~@—u @)

The sextet in Eq. (1) can be written as

D * D
T 7 ) T 7
s=1, s = LB
& g o gt
V2 T2 V2 T2

where ®! means the transpose of the doublet ®,. Under the
SU(2) ® U(1)y group, the multiplets P in Egs. (2)
and (3) transform as

0 () ()
0e(D) () e

U4
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where these are doublets with weak hypercharge ¥ = —1,
+1, =3, +1, and T in Eq. (3),

N
Sy

V2
STT

—o

; (5)

S

is a triplet with ¥ = 2. The SU(2) singlets 3, p™*, ¥, S5~
have Y = 42, +4, 0, +4, respectively.

The total lepton number assignment in the scalar sector
is [30]

L(T*"E’ (I);ﬂp__’ SE_) =<2, L((I)r/,p,s’ﬂfo) =0.

(6)

Notice that the only scalar doublet carrying lepton number

is ®,, and both members of the doublet have electric
charge; for this reason, (®,) = 0 always. The existence of

scalars carrying lepton number implies the possibility of
explicit breaking of this quantum number in the scalar
potential. It is possible to avoid such terms by imposing an
appropriate discrete symmetry. We show one possibility in
Table 1. In the table, Q , denote the quark triplets and Q3,
the quark antitriplet. j,,r and J are exotic quarks carrying
electric charge of —4/3 and 5/3, in units of the positron
charge e. For more details, see Ref. [31].

Since the complex triplet 7 and the singlet [under SU(2)]
S; " carry lepton number, they do not mix with ®, ,  if
there are no lepton number violating terms in the scalar
potential. As we will show below, there is some range of the
parameter space that allows (s¥) =0 and (s9)/vy < 1,
where vy, = 246 GeV is the electroweak energy scale. In
this situation the neutral scalar s does not participate in the
spontaneous symmetry breaking, and s9 has a small effect
on the vector and charged lepton masses. At this stage,
active neutrinos are massless and the charged leptons gain a
rather small mass. However, these scalar fields are heavy,
and the charged leptons gain the appropriate mass through
the interaction with the triplet # and an effective interaction
involving the triplets p and y. Similar to the standard model,
a non-Hermitian scalar triplet generates, at tree level, the
neutrino masses by the interaction (1/A)¢°¢°vv through
the exchange of a complex triplet [22] (see Fig. 1).

The most general scalar potential involving the three
triplets and the sextet is [30]

TABLE I. Transformation properties of the fermion and scalar
fields under Z; ® Z;. Here w = ¢27/7 and w = 27/,

Q(1,2)L Osr Uig Dag Var Vvar 1 X P S Jmr Jr

Z; 1 o @ @ 0 0 @ 0° @ ot 0 &

Zy 1w woowow o owow 1l ww I w
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FIG. 1. Tree-level realization of the effective dimension-five
operator in Eq. (24) with heavy scalar sextet.

V(. p.x,S) = VO 4 VO vl 4yl (7)
where
> BTHXX),
X=n.px.,S
1
Ve = yfleijkrlipj)(k + L0 S p +p"S*y)
% f K Qi
+ f%’?TS n+= 3 UkemnlSzmS]nSkl’
VED = a;(n'n)* + ax(p"p) + a3 (' x)?
+ 1" x(agm’n + asp’p)
+ag(n'n)(p*p)a; (c'n) (n'x) + as(x'p) (p'x)
+ao(n'p)(p'n) + [ar (") (p'n) +Hel,
V) = by Sgn + byp" Spn + ban' S[gp — px] + Hec.,
V) = ¢ Tr[SAS] + ¢, Tr[pSES] + Hec.,
VO = d, (" y)TrSS* + ds[(x'S)(S*x)]
+ ds(n"n)Tr(SS*) + dyTr[(S*n) (1))
+ds(p"p)TrSS* + dgTr[(S*p) (p'S)],
V) = ¢ (TrSS*)? + e, Tr(SS*SS*), (8)

and we have defined in the V(*) and V() terms %; i = €ijiXks
with x =7, p, y. Notice also that ST = S* since S is a
symmetric matrix. The conditions for having a potential
bounded from below in Eq. (8), under the conditions in
Table I, are given in Appendix A.
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Concerning the vacuum alignment and the conservation
of the lepton number L, five possibilities can be considered
(see also Ref. [30]):

(a) Explicit L violation and (s 12) # 0 and arbitrary. This
is the most general case and it has not been consider in
the literature.

Explicit lepton number violation in the scalar potential
and (s%) = 0 and (s9) # 0 at tree level, but (s9) # 0 by
loop corrections [18,32].

No explicit L violation and (s9) =0 and (s9) = 0.
Notwithstanding, the latter condition is not stable
under radiative corrections unless a fine-tuning is
imposed.

No explicit lepton number violation but (s9) # 0 and
(s9) # 0. In this case there is a triplet Majoron that has
been ruled out by the Z invisible width [33].

No explicit L violation and (s9) =0 but (s9) # 0.
Although L is conserved, there is violation of the
family numbers L, , .. In this case (s) = 0 is stable at
tree and higher-order level [17,18].

Here we will consider the last case, (), with (s9) =0
and (s9) /vy < 1. This case occurs if the constraint v2, =
S v? = (246 GeV)? (note that i = p, i, 51, 5,) is saturated
with the v; and v3 as in Ref. [31]. Moreover, as we said
before, in order to simplify the scalar potential, we impose a
Z, discrete symmetry which forbids the L violating terms,
f3s f4, ayo, b3, c; = 0, but also the terms c; and b, are
forbidden if we impose an additional discrete Z; symmetry.
See Table I.

(b)

(©)

(d)

(e)

III. SCALAR MASS SPECTRA IN THE MODEL

Let us consider the scalar potential in Eq. (8) with the
Z; ® Z; symmetries given in Table I. We make as usual
¥ = (1/V2)(v, + X9 +il9), where y =1, p, y and s,.
The constraint equations, obtained by imposing that
0V/Ovy, =0, being V the potential in (8), under the
conditions of the item e) above and considering all
VEVs real, are given by

[,u,,+a1v +7U/,+ ) Z+d3v +£i/§v =0,

Up|:,u/%+?l) +ayf 3 v§+d§6 2 +(f'v”2%;:”) Zl =0,

Uy ['”)%_'— 2" + 2 vy + azvy + dypvi, +(flvﬂ02p\j_§£jvsz>vp- =0,
[2/4s+d3vﬂ_|_d;6 2+% v2 +2ep0?, gf/%vsz_ =0, 9)
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where we have defined dsq = 2ds + dg, dir, = 2d; + d»,
and e, = 2e; + e,. Notice that no VEV can be zero
unless f; = f, = 0. However, if this were the case, the
scalar potential has a non-Abelian symmetry larger than
the rest of the Lagrangian. Hence, f;, f, # 0 in order
that the gauge symmetry of the scalar potential is the
same as the other terms of the Lagrangian. In the case of
the sextet, even if we had begun with ,u§ > 0 and v, =0,
the term f, # 0 induces a tadpole which implies a
counterterm, leaving this VEV arbitrary. Hence, we assume
,u_% <0 and v, #0 but is small in the sense that
vy, /vy < 1. In Appendix B we show explicitly the Gold-
stone bosons.

Here we will consider the mass matrices of the CP-even
scalars and other mass matrices in Appendix B, assuming
that v, /v, < 1. We also disregard some off-diagonal
|

PHYSICAL REVIEW D 92, 075031 (2015)

terms besides the ones from the assumption just mentioned,
assuming that the respective diagonal elements are much
bigger, to further simplify the matrices. In this approxi-
mation it is possible to obtain exact eigenvectors, but the
case of the CP-even neutral scalars is more complicated
and we will not consider here in detail. We show only that
at least the two neutral scalars in the sextet are heavy.
Analytical expressions, within the approximation above, of
the masses and the eigenstates of the neutral CP-odd and
charged sectors are given.

A. Neutral CP-even scalars

In this sector the mass matrix m? is 5 x 5 decompose, in
the approximation used, into 4 x4+ 1 x 1, where the
4 x 4 matrix, in the basis (X)), X9, X9, X9,), is given by

2a,v} —J"\/QT”::’ agv,v, +f‘—\/”2} fiy o v, dsv,v,,
dayv3—(V2f 10, —fr05, )V f favg
2Up 21];/),7 2%/ % % + asvpv}( %[(2615 + dG)U/JUsz +f2’l]x} (10)
4a>1)3—\/§f v, 0,—f20,0 ’
WAL (£, 4 (2, + dy)u, )
(2¢) + ey)v3, —f;)—’;‘
|
and the 1x1 part implies the eigenvalue is mi=  M?=M3=0
dyv24-2d4 v —dgv2—2e,02 Vv, =215, .. .
(dyv3+2dyv; 61)/41)52621) 2% =220 % o () which implies d,v2 /4 — M= _fl(v%(vg + v2) + viv2) AL >0
2f20,0,/v5, > (2d402 — dgv2 —2¢,0%) /4. Recall that — ° V20,0, V2vu,
: 2

f2 < 0. Here the mass eigenstates are denoted by my, f, <0, (12)

i=1,...,5 In fact, we can see that m3 ~ (1/4)d,v:—
fav,v,/v,,; hence, this is a large mass. One of them must
be mainly that of the 125 GeV discovery at the LHC.
Although we have not given details, according to the results
in Ref. [31],if Rep® = 0.42 h + - - - this scalar has the same
coupling with the top quarks that is numerically equal to
that from the Higgs boson in the SM.

B. Neutral CP-odd scalars

The mass matrix in Eq. (B1), in the approximation of
subsection III A, also decomposes in 3 x 3 and diagonal
2 x 2 matrices. The 3 x 3 matrix, in the basis (1), I9, I9), is

flUpV;( f]”)( f]vﬂ

Vi, V2R

1 fiv fio,v fiv

2 ~ _ 1Y% 1Y% 1%
f] 'U/) M fl 1),,’!}/,
V2 VR

This matrix has two zero eigenvalues and another non-
Zero one,

with respective eigenvectors given by the columns of the
matrix:

U _ v,y v,
\/1;,%+1;)2( \/(113,+1;§)((vﬁ+1;f)1;3,4»1;,%1)%) v, \/(FLZ+FL2)1)§+1

VAR

0 VoA | T2 2.2 U§+§§ ) ik
PA| (vp4vy)vg+vv5 (2+02) o2 +0202

2, -

Uy _ Uy Uy 0,0,
\/v3,+1)§ \/(vf,wwf;)((U/Z,Jrﬂf)vf,ﬂ),z,vf) \/(1),%+v}2()17,2,+11%1;}2(

(13)

The eigenvalues for the 2 x 2 part are M3 and M2:

v,V
Mﬁ:—M>o, f2<0
2vy,
dyvg v2 4+ 2f50,0
M= 20X f27 L0 2| falv, > dyvy,.

4p ’

$2

(14)
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We see from Eqgs. (12) and (14) that the three physical
pseudoscalar fields are heavy and also induce the type-II
seesawlike mechanism in the charged lepton sector.

C. Singly charged scalars 1

If the lepton number is conserved in the scalar potential
(7) under the conditions in Table I, as we are assuming, the
charged scalar mass matrix splits in two sectors (p*, nf,
ht) and (/F, 13, hy).

In the basis (p™, 7], k™), the mass matrix is

PHYSICAL REVIEW D 92, 075031 (2015)

mi =
fov,v
mizz—ﬁ>0, f2<0
m2 o (U% + vg)(a9vn1}p - \/Eflv)() ~ _Lflvnvx =0
B ~ .
20,0, V2 v,
(16)

and the eigenvectors are given by the column of the matrix

v, 0 — vy
\/v%-&-v/z, \/b,27+1/%
v v,
_Zﬁf]vq:;i/}—Zaguf,v/, %—aw;% 0 \/v;_;,_yg 0 \/vglﬂ_»,_,;g (17)
1 : , Wife 0 1 0
m% ~s ,‘%_L 2 4 (2a9 v3 _7{};%1@) 0 ,
0 0 fav,, According to (16), both physical charged scalar in this
T 20, sector are very heavy.
15
(15) D. Singly charged scalars 2
In the other singly charged sector, the mass matrix in the
with the following eigenvalues, basis (yT, 172+, h; ) is
V,V,—d UZ’L'
22 ’7421 2oty %(6171),71))( - \/Efl Up) 0
1 VaF
M2~ | e, = Vafin,) o (o, - 20) 0 , (18)
O 0 _ 1})( (2f2v/7+d21)s2 7“‘;()
4vy,
the mass eigenvalues are Y Yy
Vit Voiits
M?, =0 Uy U 20
o Vi Ee 20
MZ — _ U}((dZU.Vzv;( + 2f2vp) >0 0 1 0
+2 4o '
S
2|f>lv, > dyv,,v, Again, the charged scalar masses in this sector might be
heavy [see Eq. (19)].
v2 + v2)(agv,v, — V2f v
M%H:(n )()(;'7)( \/_fl l’)>0’ (19)
: v,V
mx E. Doubly charged scalars
with the following eigenvectors: The mass matrix in the basis (y*+, p*+, ST, §57) is
U —V2
—U”(agt”v;ﬂl f1v) Iagv,v, — \/iflvn) 0 0
1| 3 (asv,v, = V2f10,) —U*(asv”yz”v_pﬁf'y”) 0 0
M2y~ , (21)
2 0 0 _ UI(Zfop-Fdzsz v,) 0
4vy,
O O 0 U;((dZUsz D;(_szU/J>
4v;,
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and the masses squared of the fields are

Mi+1 =0
v, (dyvs, v, —2f50,)
M, =+ 24;“2 >0,
v (dz’l). v +2f27) )
M2 = _Z 52V 2
++3 av,, =
v2 + v2)(agv,v, — V2f v
M1+4:(p )()(Sp;( \/_fl n)>0’ (22)
2v,v,
with the following respective eigenvectors:
———Z— 0 0 —=L
L 0 0 =
\/ vg+1/‘§ 1/“2,+v% . (23)
0 0 1 0
0 0 0

In this doubly charged sector, all physical scalars might be
heavy.

IV. THE LEPTON MASSES AND
THE PMNS MATRIX

The problem of the leptonic mixing matrix has already
been considered in the context of some 331 models without
quarks with exotic charge, right-handed neutrinos trans-
forming nontrivially under SU(3),, three right-handed
Majorana leptons, and with flavor symmetries like 77
[34], A4 [35] and extra scalars transforming as singlets
under SU(3). In these sorts of models an S5 [36] symmetry
is also used. Here, however, we will consider the m331
using only the gauge symmetries and also right-handed
neutrinos as the extra degrees of freedom.

As said before, the possibility that the lepton masses are
generated by an effective dimensional operator was pre-
sented in Ref. [20]. However, here we will consider the case
when the sextet is introduced but its degrees of freedom are
heavy enough to generate an effective nonrenormalizable
interaction. This implements a type-II seesaw mechanism in
the charged lepton sector. The latter situation arises when the
members of the sextet are very heavy and one of the neutral
scalars gains a zero VEV and the other one gains a small VEV.

The Yukawa interactions are given by

—LP = — e (V) Gl Wy
L
oA,
+ (War)(G*) apVarl + War) (MR) apVor
+ (U)°G3, WS, + He., (24)

[\ R

()G p™ + 01T,

PHYSICAL REVIEW D 92, 075031 (2015)

where A; is a mass scale related to the origin of the
dimension-five interaction. The second term in the first line
of Eq. (24), the dimension-five operator, is generated by the
loop in Fig. 1. Notice that in Eq. (24) the interactions with
the sextet appear and, although they do not contribute
significantly to the charged lepton masses, the degrees of
freedom in this multiplet might be exited at high energies.

We will assume, for the sake of simplicity, that My is
diagonal and that msgp =M > mp;, mg, and Mgz' =
(1/M)My, where M = diag(r,r,,1) and r; = M/mp,,
ry = M /mpg,. In this case we have the mass matrices in the
lepton sector:

Ml — G’? Up 1 Gs
ab — Yab ﬁ + Kl abUpUy-
(25)
If it is the sextet, through the interaction (V¥ ,;)°G?,V ,,S;;
and the f, trilinear term in the scalar potential involving p,
%, and S, then we have 1/A; = f,/m? and G* = G".
These mass matrices are diagonalized as follows:
M =viImevy, M =viMIVE (26)
where MY = diag(m, my, ms), M = diag(m,,m,, m,).
The relation between symmetry eigenstates (primed) and
mass eigenstates (unprimed) are [ p = Vi xlpr and
vy, = Viup, where I} p = (¢' . ) . 7)] o lir = (e. 4. T) &
and Z/L = (VeUMVT)Z’ vp = (UIUZV?))L‘
In the following we assume v, ~ A; and, as in Ref. [31],
v, ~ 54, v, ~ 240 GeV. The neutrino mass matrix is as in
Eq. (25). Solving simultaneously the following equations,

v w = Vi M,V
ViM'MITV, = viiM MV = (M1')2,
Vemns = VZLT 4% (27)

where M¥ and M! are defined in Eq. (25), and Vpyns i the
mixing matrix in the lepton sector (PMNS), the values for
the charged lepton masses obtained are (in MeV)
(mg,m,,m;) = (0.509648, 105.541,1775.87) and for the
neutrinos masses (in eV) (m,, m,, m3) = (0.051, -0.0194,
0.0174) which are consistent with Am3; =2.219 x
1073 (eV)? and Am3, = 7.5 x 1075 (eV)?. These values
for the masses arise from the following values for the
Yukawa matrices: v;/M = 0.33 eV, G4, = 0.109, G%, =
0.097, G%; =0.101, G5, =0.09, G4 =-0.02, G4; =
0.0106 in the neutrino sector, and Gf, = —0.0453,
G, = —0.0076, Gji; =—0.0008, G5, =0.0015, G3; =
0.0001, G5;=184x107, Gl,= G, =Gl =
—0.00001 in the charged lepton sector. The only way to
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avoid the latter fine-tuning is to consider v, smaller, but in
the context of Ref. [31] this VEV is already fixed.
We obtain for the diagonalization matrices:

—0.24825 —0.57732 0.77786
Vi~ | 0.73980 —0.40539 0.53698 (28)
—0.62535 —-0.70877 0.32647
and
—0.00985 0.01457 —0.99984
Vi ~ | —0.31848 —0.94787 -0.01067 |,
0.94788 —0.31833 —-0.01398
0.00501  0.00716  0.99996
Vi~ [ 0.00261 09910 —0.00717 |. (29)
0.99998 —0.00265 —0.00499

Notice that we have defined the lepton mixing matrix as

Vemns = VIZ V%, which means that this matrix appears in
the charged currents coupled to W~. We obtain from
Egs. (28) and (29) the following values for the PMNS
matrix:

0.826 0.548 0.130
0.506 0.618 0.602 |, (30)
0.249 0.563 0.788

|Vemns| =

which are in agreement, within 3¢, with the experimental
data given in Ref. [37],

0.795-0.846 0.513-0.585 0.126—-0.178
0.205-0.543 0.416—-0.730 0.579-0.808 |,

0.215-0.548 0.409—-0.725 0.567—0.800
(31)

|Vemns |~

and we see that it is possible to accommodate all lepton
masses and the PMNS matrix. We do not consider CP
violation here.

V. CONCLUSIONS

We have shown that even if we introduce the sextet in
such a way that it practically does not contribute to the
lepton masses because of the small VEVs, and since its
components are very heavy, it might generate the dimen-
sion-five operator involving only the triplets p and y in
Eq. (24) trough a process like the one shown in Fig. 1. A
similar operator can be obtained for the neutrinos as in
Ref. [20], but here we prefer to introduce right-handed
neutrinos in order to implement a type-I seesaw mecha-
nism. Moreover, in the charged lepton sector the mass
generation is similar to the type-II seesaw mechanism
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inducing small masses for neutrinos through the exchange
of a heavy non-Hermitian triplet [10—12]. The existence of
several mechanisms to generate this interaction in the
context of the standard model have been shown in the
literature [22-24]. Notwithstanding, the effective operator
in Eq. (24) can be originated by the effects of higher-
dimension operators.

In our case, the sextet is introduced in the model as in the
m331 model, and through its interactions with the other
scalars in the scalar potential and with leptons in the
Yukawa interactions, their degrees of freedom can be exited
at high energies mainly in lepton colliders. Notice that all
extra scalars in the model are heavy except for two neutral
scalars that correspond to the fields in a two-Higgs-doublet
extension of the SM. We also show the conditions under
which we have a weak copositivity of the scalar potential
and generate the vacuum stability at tree level and a global
minimum as well. It is interesting to study the same
problem at the one-loop level. For instance, in a model
with two doublets (one of them inert) taking into account a
neutral scalar with a mass of 125 GeV, the stability of the
vacuum was shown in Ref. [38]; however, such analysis is
beyond the scope of our paper.

In order to obtain the correct mass for the charged
leptons, besides the effective interaction, it is necessary to
consider the interactions with the triplet #. For neutrinos, as
we are considering that v, = 0, we have introduced right-
handed components to generate the type-I seesaw mecha-
nism. With the unitary (orthogonal if we neglect phases)
matrices that diagonalize the mass matrices in the lepton
sector, it is possible to accommodate a realistic Pontecorvo-
Maki-Nakawaga-Sakata matrix. The constraints on the
masses of the extra particles in the m331 model coming
from lepton violation processes will be considered else-
where. In the present context we recall that it is the neutral
scalar p® which has the larger projection on the neutral
scalar with a mass of near 125 GeV. For details
see Ref. [31].

Finally, we would like to discuss the differences between
our present model and those in Refs. [20,21]. Our model is
the usual minimal 3-3-1 (in the sense that the lepton sector
consists only of the known leptons) and the four scalar
multiplets, three triplets, and one sextet plus right-handed
neutrinos. Although the sextet has interactions mediated by
scalars [see Eq. (24)], its neutral components do not
contribute significantly to the lepton masses. The degrees
of freedom in the sextet decouple at low energies; however,
its interactions have to be taken into account for some
phenomenology at sufficiently high energy. For instance, if
this mechanism is implemented at the 100 GeV-1 TeV
scale, the interactions of the charged leptons with the left-
handed neutrinos could have some signature at the LHC or
other colliders. (See [39] and references therein.)

In Ref. [20], only three triplets #, p, and y were
considered, being the sextet avoided at all, with the charged
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leptons and neutrinos gain mass only through nonrenor-
malizable interactions. The model in Ref. [21] is considered
the so-called “reduced” 3-3-1 model with only the triplets p
and y (with no # and § at all). Therefore, for generating all
the fermion masses they need, besides the usual Yukawa
interactions with these triplets, nonrenormalizable inter-
actions involving the same triplets. Although this is an
interesting situation, the model with only the triplets p and
x has experimental troubles if we accept the existence of
the Landau-like pole. See Ref. [40] for a discussion of the
3-3-1 models with only two triplets, in particular the
troubles with the “reduced” minimal 3-3-1 model [21].

Thus, in the limit of a heavy sextet, our model is a 3-3-1
model with three triplets and the sextet, but the latter one
does not contribute to the lepton masses and almost not at
all to the spontaneous symmetry breaking since its VEVs
are zero or very small in the sense of vy, /vy < 1. The
lepton interactions with the sextet and the interactions
among all the scalars become important only at high
energies. Our case is more similar to the type-II seesaw
mechanism in which a complex heavy triplet is in charge of
generating the neutrino masses [22].
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APPENDIX A: STABILITY OF THE SCALAR
POTENTIAL

The scalar potential has to be bounded from below to
ensure its stability. In the SM this is easy: we just have to
ensure that 4 > 0O (this also ensure the existence of a global
minimum). In theories that increase the number of scalars, it
is more difficult to ensure that the potential is bounded from
below in all directions. The following cases are based on the
copositivity matrix presented in Eq. (A2) below. Each case
corresponds to different sign possibilities of the matrix
elements. Also, for every case, all diagonal elements have to
be positive. Here we follow Refs. [41,42]. The copositivity
criteria only assure that the potential is bounded from below.
In order to verify if there exists a global minimum, it must be
calculated only numerically. This is very complicated even
for the case of the SM extensions with two [43] and three
[44] scalar doublets. However, we show below that there is a
global minimum in the scalar potential if some reasonable
conditions are imposed.

A scalar potential has a quadratic form in the quadratic
couplings in the form A,,¢2¢;; if the matrix A,, is
copositive it is possible to ensure that the potential has a
global minimum. To do this analysis, we can ignore any
terms with couplings with dimension, mass, or soft terms
since in the limit of large field values, terms with dimension
smaller than four are negligible in comparison with the
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quartic part of the scalar potential V*. In addition, we will
assume the conditions from Table I, so that f3, f4, a9, by,
b,, bz, c;, ¢, = 0. Taking the potential in Eq. (8), we
redefine the triplets and the sextet as
\H\» =h,  HH;=hhr;e, (A1)

where Hy,34 =n,p,x,S. The parameters r;; and 6;; are
not physical parameters, ranging from 0 to 1 and 0 to 27,
respectively. They are used to analyze the four-field
direction by demanding the maximization of the parameter
space. Then they should be set to values which allow the
most parameter space.

Rewriting the quartic terms of the potential in Eq. (8),
and using Egs. (A1) and Table I, we find that the matrix A
in the basis (A7, h3, h3, h}) is written as

a ag+agri, as+aqriy dy+dyri,
a5—|-a8r%3 d5—|-d6r%4
di+dyr3,

4 | gotas 4
as+as r%3 as+ agr%3 as

d3+d4r%4 d5+d67‘%4 d1+d27'§4 €1+€2

(A2)

In order to analyze the copositivity of the matrix A
above, we have to choose values for the r;; that minimize
the entries of the matrix. For the off-diagonal elements,
which involve sums, two cases are relevant: if both
coupling constants are positive/negative, the minimum
comes from choosing rij =0; if the constants have
opposite signs, the minimum comes from r;; = 1. For
the sake of simplicity, we will assume all coupling con-
stants on each entry to have the same sign; therefore, we
make all r;; = 0 and consider six cases for the copositivity.

Below are shown the different conditions under which
the potential is bounded from below. All indices i, j, k, [, ...
are fixed and different from each other. Also, we want to
remind the reader that all diagonal elements from matrix A
given in Eq. (A2) should be positive to have copositivity.

Case 1. All A;; positive.

All couplings positive, and E = ¢ + e, > 0.

Case 2. A;; <0 with i, j and the other entries positive.

(1) If ag <0 we have a;a, —a? > 0.

(2) If a4 <0, then a;a; — a3 > 0.

(3) If a5 <0, then asaz — az > 0.

(4) If d3 <0, then a,E — d5 > 0.

(5) If ds <0, then —d? + a,E > 0.

(6) If d; <0, then —d; + a3E > 0.

Case 3. A;; <0, Ay, <0, and the other entries positive.

(1) If a5 <0 and ag <0, we have aja, —ai>0

and aya; — a2 > 0.
(2) If ag<0 and ds <0, then aja, —a’>0 and
—dg + arE > 0.
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(3) If ag <0 and d; £0, then aja, — aé >0 and (1) Ifas<0 and ag <0,
—& + a3E > 0. _ 2 _ 2
@) If a, <0 and ds <0, then ajas—a2 >0 and \/(a‘a3 as)(araz = ag) > 0.
~d% + ayE > 0. 2) If ag<0 and d3<0,
(5) If ay <0 and d, <0, then ayas—a2>0 and \/(a1a2 —a2)(~&2 + a,E) > 0.
—di + a;E > 0. B3)If a;<0 and d; <0,
6) If 2a5 <0 and d; <0, then aa3—a2 >0 and S@ras =) (=& + aE) > 0.
~d;+a B> 0. @ If a;<0 and d5 <O,
(7) If as<0 and d; <0, then asa;—a?>0 and P
—d? + a;E > 0. \/(a2a3 —as)[—d5 + ayE] > 0.
Case 4. As in case 3: A;; <0, Aj <0 and the other Case 5. A;; <

entries positive. positive.

(1) If a4, as, ag <0, then
\/a1a2+a6>0, \/a1a3—|—a4>0, \aras +a5>0,
aasasz — a,aj — alag + 2a4asag — a3ag > 0.
(2) If dg, ds, d3 < 0, then
w/(11612+d6>0, d3+\/a1E>0, d5+\/02E>0,
- azd% + 2(l6d3d5 —_ aldg + (alaz —_ aé)E > 0
(3) If Aay, dl’ d3 < 0, then
vaias —|—a4>0, d3+\/(11E>0, d1+ 613E>O,
2(14d1d3 — (1361% + (ala3 - Cli)E — ald% > 0.
4) Tf as, d,, ds <0, then
Varas + as >O, d5+\/(12E>O, d1+ G3E>O,

- azd% + 2a5d1d5 - a3d§ + a,ase| — Clgel + a,aszey) — (1%62 > 0

Case 6. A;; <0, Ay <0, Aj; £0, and the other entries positive.
(1) If dy, g, d3 < 0, then

alaz—a§>0, aja; —al >0, —d§+a1E>O,

a,as — asag + \/(a1a3 —al)(aja, —a2) > 0,

ads + \/(alaz — ag)[~d5 + a,E] > 0,

aldl + \/(a1a3 — aﬁ)[—d% + alE] > 0,

— a}{-2aya,4d,d; + arazd} — aid; + 2a,asd;ds — ajd:

+ aya3E + ai(—d} + a3E) + 2ag(asd,ds + aud,ds — asdsds — agasE)

+ ay(=2asd,ds + a3d3 + aZE + ay(dt — a3E))} > 0.
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(2) If ds, dg, ds < 0, then

aya, — a% > 0,

a,as; — ag > 0,

PHYSICAL REVIEW D 92, 075031 (2015)

—d5+[12E>0,

2 2
aas — asag + \/(a2a3 —az)(aya; — ag) > 0,
— a3{—aid} + 2a,a¢d,ds + aja3d? — ajd% + asalE

+ aZalE + 2as(—a,d,ds — asa6E)

+ ay[+a,d® + d3E — aza,E]} > 0.

(3) If ay,, ds, d1 < 0, then

a,as — aﬁ > 0,

+ a%alE + 2a5(—a1d1d5 - a4a6E)

+a, + a1d? + a3E — aza,E)]} > 0.

@) It dy, ds, ds <0, then

—d§+a1E>0,

a6E + /[~ + @ E|[~d2 + aE] > 0,

aiE+\[ [~ + a\E][~d} + a3E] > 0,

The potential at the minimum is

1
2

1 1
V == (uiv} + plvd + p2vl + pivd) + 2_\/2<f1”n”p”x + fav20,v,) + — (208, (2e; + €3)

(A8)
(12(13—(1§>O, —d1+a3E>O,
— a4as + aszag + \/(ala3 - a3)(aza3 — a3) > 0,
—ayd, + \/(a1a3 —a})[-d® + a3E] > 0,
— a3{—ad} + 2a4a¢d,ds + aya3d? — aid? + aza’E
(A9)
—d? 4+ a,E > 0, —d* + a;E > 0,
— dldS + a5E + \/[—Jé + azE} [—Jf + a3E] > O,
E2{2a2a4d1d3 - a2a3d§ + a5d§ - 2a4a5d3d5 + a%d% - azaﬁE
+ (l%(d% - a3E) + 2a6(—a5d1d3 - a4d1d5 + a3d3d5 + a4a5E)
- al(—2a5d1d5 =+ a3d§ 4+ ClgE + az(J% - a3E))} > 0. (AIO)
4
(A11)

1
+ 02 (2d30%, + agvl + agvl + a\v3)) + - (v2((2d) + dy) v}, + asva + azvl) + v2((2ds + dg)v2))).

4

and since all VEVs are positive and u%, f, f» < 0, if we
impose that a4 < 0, a3 < |ay4| and ag, a;, as < |ay|, the
potential is at a global minimum independent of the sign of
the other terms in (A11) once they are negligible.

APPENDIX B: GOLDSTONE BOSONS

In this appendix we present all the mass matrices for the
scalars in the potential without any approximation. When

[
analytical results are available for the mass eigenvalues,
they are presented right below the mass matrix. We also
present the Goldstone eigenvectors for the applicable
matrices.

1. Neutral CP-odd scalars

Mass matrix M7, in the basis (I9I01919), is given
by
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Ty _fiy _hw 0
V2, V2 V2
(\/iflﬂq""fz”sz)’/‘l M f21}s2 l
- 20, 22 —zfzv;( (Bl)
vp(\/ifl vrl+f2vs2) 1
=, = T2/
_fzvpzzl
21)S2
The mass eigenvalues are denoted by m%, i =1,...,5. This matrix also decomposes into 4 x 4 + 1 x 1, and it has the
following eigenvalues. The eigenvalue for the 1 x 1 part is denoted by A5 and is presented below.
M2=M5=0
2
M3 = = ———{[[V2f 10, [15(v] + 23) + vj03) + fo, [0} (03, + 03) + 3,07
nYpVs; Yy
— 4V2f | frv, 030, 020203, + 0302 4+ 03]+ V2 0, (02 (02 + 02) + 0202) + fru, (0303, + 02) + v} 02)}
1
Mﬁ = m{[[\/—fﬂ}b(vn(iﬁv =+ 1})() + Up”)(] +f2”n(vp(vsz + U;{) =+ vsz”;())z
nYpVs, Uy
— 4V2f 1 froguivg, v [vpel + vl (o + 03] = V2F 10, [0 (0] + 03) + 0303] = fou, [02(03, + v}) + v, 03]}
M% = ﬁ (d2vs2 Y -+ 2d41] dGU/) 55 262’1)32 - 2f2’l}/,’l)}(), (BZ)
52
where we have defined v}, = v + v3 + v2. We write explicitly only the Goldstone eigenvectors:
1
G(l) :ﬁ(vn,o, _v)(’USZ’O)T (B3)
A/ Uy Uy v,
_ 03
(v3+03,+v3)
V0 V3 4 V3 + v
GO — : e | (B4)
\/va%v + 02 (02 + 02 2+, +22)
_ 7/}27)%
(vg+v5, +v3)
0
2. Singly charged scalars 1
The mass matrix is M?2,, with the basis (p*7] h*) given by
2—dev? v, — ) SV )V v Ao,V
S ) L -y (dgoy,, +2/30,)
: (2(191)% 2\/—f’1 e £/ LR d4v32) —rdyvvg, (B5)
dw%vxz—v/,(dﬁv/,vS2+2f2vl)
4vy,
The mass eigenvalues are
m21 =0, mzzz—il (A+B), mzq):——l (A_B)v (B6)
* * 8v,,v;, + 8v,v,vs,

where
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A = 0,00, [(2ag(v2 + v2) + dy (12 + 12)) — dg(V2 + v3)) = 20,(V2f 10, (02 + 02) + fov, (02 + 12)))>

nYp
— 40}, (2a9v,v,(dyviv,, — v,(dev,vs, + 2f>0,)) +2\/§f1v){(vp(d6vp v, + 2f2v,) — dsvivy,)
- d4”i7 <d6vpvs7 + 2f2v;())]%

B = v,0,0,,[=2a9(vy + v3) = du(v; = 03,) + do (0} + v3,)] + 20, [V2f 10, (v + 0}) + f2, (0] + 03,)]. (B7)

The Goldstone eigenvector is

1

[2 2 .2
vp vy + v,

3. Singly charged scalars 2

Gy = (v, vy, v,)7. (BS)

pr Y

The mass matrix is M2,, with the basis (y*75 h) given by

2a7v v2—2\/§f 0,0, =2f20,0, —dy V2V
s 1 ﬂ4,17;l S %(071),71)){ - \/Eflvp) %(2f21j + dZUrz )()
V2fiy,

: (dw?z + 2, (awl - 1—;””)) rdyv,v,, . (B9)

d41,,1)32—1 (2f211‘,+d21z&2111)

4vy,
The mass eigenvalues are
1 1
M2, =0 M2, =————[A'+ B M2, =———[A' - B (B10)
+1 J +2 J +2 )
8v,v,,0, 811,711?2 v,

where
A = [(v,(2f20,(v3, + v}) — v, 0,(2a7 (v} 4+ v7) — da(V3, + v3) + dy(v; + 03)))
+2V2f 10,0, (V2 + 02))? + dv,y v, v, (03 + 02, + 02) (davyvg, (—2a7030, + dyv2 v,
F2V2f 100, + 2f20,,) + 20, (az0,0, — V2f10,)(dyvy, v, + 2f0,))]
B = —v,(v,,v,(2a7(v; + v3) — dy (v}, + v2) + ds(v} + 03)) = 2fo0,(v3, + v2)) + ZﬁflvvaZ(U% +v2).  (BI11)
In this case the Goldstone boson is given by

1
/2 2 2
vy + vy + s,

4. Doubly charged scalars

The mass matrix is M% |, with the basis (y"™"p™"S;*S; ") given by

G; = (vl,—vn,vS2)T. (B12)

v,(=V2f v, — fov,, + agv,v,) 1

(M2++)11 =L ! 2 : R (M?H)lz = 5(—\/§f1”n +f2”s2 + 618”/)”1)7
x
(M), = 2fov, + dyv,,v, 02.), _ dyg,, (M), — U)((—\/Eflv,7 = favy, +agv,v,)
W I =T )2 20, ;

dev, v, dev, v, + 2fv 262’05 + dsvivg, — v, (2f2v, + davg,v )

(M3L+)2’% = 72\/}52 J (Mi+)24 =—t2—"Z 22\@ £, (Mi+) - . 4o, : =
2 3 2

e, v’ 2e,v5, — dgvsvs, + v, (dyvg v, —2f50,)

(Mi+)34 = D) 2, (Mi+)44: : — 41}){ = . (B13)

52
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This mass matrix has only one analytical eigenvalue: Mi +1 = 0. The respective Goldstone boson is

1
G__ =

,/v/2,+v)2(—|—4v§2

(v =0y 05, —V20,))T. (B14)
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