
Stealth dark matter: Dark scalar baryons through the Higgs portal

T. Appelquist,1 R. C. Brower,2 M. I. Buchoff,3 G. T. Fleming,1 X.-Y. Jin,4 J. Kiskis,5 G. D. Kribs,6 E. T. Neil,7,8

J. C. Osborn,4 C. Rebbi,2 E. Rinaldi,9 D. Schaich,10 C. Schroeder,9 S. Syritsyn,8 P. Vranas,9 E. Weinberg,2 and O. Witzel11,*

(Lattice Strong Dynamics (LSD) Collaboration)

1Department of Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520, USA
2Department of Physics, Boston University, Boston, Massachusetts 02215, USA

3Institute for Nuclear Theory, Box 351550, Seattle, Washington 98195-1550, USA
4Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA

5Department of Physics, University of California, Davis, California 95616, USA
6Department of Physics, University of Oregon, Eugene, Oregon 97403 USA

7Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
8RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

9Lawrence Livermore National Laboratory, Livermore, California 94550, USA
10Department of Physics, Syracuse University, Syracuse, New York 13244, USA

11Center for Computational Science, Boston University, Boston, Massachusetts 02215, USA
(Received 30 May 2015; published 23 October 2015)

We present a new model of stealth dark matter: a composite baryonic scalar of an SUðNDÞ strongly
coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is
automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in
vectorlike representations of the electroweak group that permit both electroweak-breaking and electro-
weak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson
independent of the dark matter mass itself. We specialize to SUð4Þ, and investigate the constraints on the
model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-
independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations
that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in
order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-
breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect
requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing
properties of stealth dark matter that are worthy of future study, including collider studies of dark meson
production and decay; indirect detection signals from annihilation; relic abundance estimates for both
symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a
detailed study of which will appear in a companion paper.
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I. INTRODUCTION

Composite dark matter, made up of electroweak-charged
constituents, provides a straightforward mechanism for
obtaining viable electrically-neutral particle dark matter that
can yield the correct cosmological abundance while surviv-
ing direct and indirect detection search limits, e.g., [1–3]. In
this paradigm, the dark sector consists of fermions that
transform under the electroweak group and a new, strongly
coupled non-Abelian dark force. This was considered long
ago in the context of technicolor theories, where the strong
dynamics was doing double duty to both break electroweak
symmetry and provide a dark matter candidate [4–7].

In this paper, electroweak symmetry breaking is accom-
plished through the weakly coupled Standard Model Higgs
mechanism, while the new strongly coupled sector is
reserved solely for providing a viable dark matter candi-
date. This dark sector is not easy to detect in dark matter
detection experiments or in collider experiments, and so we
give it the name “stealth dark matter.” Earlier work in this
direction includes [4–28], and except for [29–36] was often
limited by the inability to perturbatively calculate the
spectrum and form factors due to strong coupling.
The proposed dark matter candidate is a scalar baryon of

SUðNDÞ and, hence, ND must be even.1 We take the dark

*Present address: Higgs Centre for Theoretical Physics, School
of Physics and Astronomy, The University of Edinburgh, EH9
3FD, United Kingdom.

1Fermionic baryons arising from odd ND were considered in
Ref. [31] where the limit M ≳ 10 TeV was found to avoid the
direct detection constraints from the magnetic dipole interaction.
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fermions to be in vectorlike representations of the electro-
weak group. Hence, the constituent dark fermions can
acquire bare mass terms (fermion masses that do not require
electroweak symmetry breaking) while also permitting
Yukawa interactions that marry dark fermion electroweak
doublets with singlets. This yields a theory in which dark
matter couples to the Higgs boson in a tunable way that is
essentially independent of the dark matter mass itself. This is
somewhat analogous to dark sector models with a dark U(1)
portal (e.g., [37–41]), where the coupling to the Standard
Model is tunable through an otherwise arbitrary parameter—
the kinetic mixing between the dark U(1) and hypercharge.
The existence of both electroweak-preserving and

electroweak-breaking masses for the dark fermions provides
two main benefits. First, given that the Higgs boson couples
electroweak doublets with singlets, the global flavor sym-
metries of the dark fermions can be completely broken to
just dark baryon number. All mesons can decay through an
electroweak process (e.g., electrically charged mesons
through W exchange) or through the usual chiral anomaly
(e.g., the lightest neutralmeson). Ensuring that these particles
decay before big bang nucleosynthesis sets a weak lower
bound on the Higgs interaction strength. (This is in contrast
with [20,42] where additional interactions were required to
ensure mesons decay, e.g., through higher-dimensional
operators). The second reason is related to the orientation
of the chiral condensate after the dark force confines.
Large vectorlike masses for the dark fermions ensure that
the condensate can be aligned toward the electroweak-
preserving direction, and thus the dark sector leads to only
small corrections to electroweak precision measurements.
We estimate the size of these corrections in this paper.
There are many appealing features of an electroweak-

neutral composite dark matter candidate made up from
fermions transforming under the electroweak group,
including the following:

(i) All of the dimensionful scales are technically natu-
ral, since they arise from fermion masses (vectorlike
and electroweak breaking) and the confinement of a
strong-coupled dark force.

(ii) Dark matter stability is an automatic consequence of
dark baryon number conservation. No additional
global discrete or continuous symmetries are re-
quired. For ND ≥ 3, operators involving dark baryon
decay are necessarily dimension six or higher, and
thus safe from GUT-scale or Planck-scale sup-
pressed violations of dark baryon number.

(iii) There are no dimension-four interactions of the
composite dark matter particle with the Standard
Model except with the Higgs boson. The direct
detection scattering cross section is thus automati-
cally suppressed compared with a generic elemen-
tary WIMP candidate.

(iv) Higher-dimensional interactions of the dark matter
with the Standard Model are suppressed, in the

nonrelativistic limit, by several powers of the dark
matter mass. For a composite scalar, the leading
operators are charge radius (at dimension six) and
polarizability (at dimension seven). The impact of
these (and other) operators on the dark matter
scattering cross section in direct detection experi-
ments has been studied in [9–11,16,43–50].

(v) Interactions of the dark baryon through the neutral
weak current, the charge radius interaction, as well
as the contributions to the electroweak precision T
parameter, are simultaneously eliminated if the fer-
mion interactions obey a global custodial SUð2Þ
symmetry. Additionally, as we will see, dark matter
electric neutrality also follows from custodial SUð2Þ.
To simplify our analysis, herewewill primarily study
the subset of stealth dark matter parameter space in
which the custodial SUð2Þ is preserved. (This sim-
plification is very familiar from composite Higgs
theories, e.g. [51]).

(vi) The abundance of a strongly coupled dark scalar
baryon could arise through several mechanisms: an
asymmetric abundance (such as through electroweak
sphalerons [6,8] or other mechanisms [52]), when
the mass is not too large ≲ fewTeV, or a symmetric
abundance, when the mass is large (perhaps
∼Oð100Þ TeV) [20,53,54].

We focus mainly on a confining SUð4Þ gauge theory
dark sector with dark fermions transforming non-trivially
under the electroweak group. We apply our recent results
[33] using lattice simulations for the spectrum and effective
Higgs interaction for SUð4Þ. As emphasized in [31,33], this
theory is well suited for lattice calculations since we are not
interested in the chiral limit of vanishing dark fermion
masses. Indeed, lattice simulations can efficiently simulate
the parameter region where the dark fermion masses are
comparable to the confinement scale, exactly where the
perturbative estimates are least useful.
The organization of the paper is as follows. In Sec. II we

discuss the assumptions and requirements to construct our
stealth dark matter model. In Sec. III we detail the dark
fermion interactions and masses. In addition, we write the
electroweak currents in terms of the dark fermion mass
eigenstates of the theory, detailed in the Appendix. Until
this point, the discussion of the model is general. In Sec. IV,
we simplify the parameter space for phenomenological and
calculational purposes, applying a global custodial SUð2Þ
symmetry and taking the approximately symmetric dark
fermion mass matrix limit. Then in Sec. V we discuss the
light nonsinglet mesons in the theory, in particular their
decay rates and constraints from nonobservation at LEP II.
In Sec. VI we discuss the stealth dark matter contributions
to the S parameter, and demonstrate the parametric sup-
pression that happens in several regimes. In Sec. VII we
obtain the Higgs boson coupling to the dark fermions. Then
in Sec. VIII we apply our previous model-independent

T. APPELQUIST et al. PHYSICAL REVIEW D 92, 075030 (2015)

075030-2



results on the SUð4Þ spectrum and effective Higgs
coupling to stealth dark matter. We obtain the bounds on
the parameter space from the nonobservation of a spin-
independent direct detection signal at LUX. We briefly
discuss the relic abundance of stealth dark matter in
Sec. IX. Finally we conclude with a discussion in Sec. X.

II. CONSTRUCTING A VIABLE MODEL

A. Basic assumptions

We assume that the dark matter candidate is a composite
particle of a non-Abelian, confining gauge theory based on
the group SUðNDÞ with Nf flavors of fermions trans-
forming in the fundamental representation. The number Nf

is restricted by only the condition of confinement. For
reasons outlined in the introduction (abundance, detect-
ability), the dark fermions carry electroweak charges. Our
model includes a tunable Higgs “portal” coupling between
the dark sector and the Standard Model via dimension-four
Higgs couplings.2 We do not consider QCD-colored dark
fermions since with ND ≠ 3, dark baryons would not
generally be color singlets.3

B. Requirements

We require dark matter stability to be automatic, arising
from a global symmetry. This motivates considering the
dark baryon of the non-Abelian dark sector to be the dark
matter [4–6]. In the presence of GUT-scale or Planck-scale
suppressed operators, the stability of the dark baryon
should be sufficient to avoid cosmological constraints.
The requirement of a sufficiently preserved accidental

baryon number disfavors a dark SUð2Þ group. First, there is
no automatic baryon number in SUð2Þ because there is no
fundamental distinction between mesons and baryons.
Imposing a global Uð1Þ baryon number is possible
(e.g. see [16]) but in addition baryon number violating
dimension-five Planck-suppressed operators such as
fdarkfdarkH†H=MPl must be absent, where fdark is the dark
fermion. (Otherwise, the dark SUð2Þ baryon would decay
on a timescale much shorter than the age of the Universe.)
For ND ≥ 3, operators involving dark baryon decay are

necessarily dimension six or higher and, thus, safe from
GUT-scale or Planck-scale suppressed violations of dark
baryon number. SUðNDÞ with odd ND is a perfectly
interesting theory, having been studied before for ND ¼
3 by our collaboration [31]. There it was found that a
fermionic dark baryon has a magnetic dipole interaction

that leads to a significant contribution to spin-independent
scattering. Constraints from the XENON100 experiment
were satisfied only when the dark matter massM ≳ 10 TeV
[31]. This strong constraint on the mass scale implies the
model is difficult to test at near-future colliders.
The magnetic dipole interaction (and other higher-

dimensional operators that require spin) are absent when
the dark baryon is a scalar. We are thus naturally led to
SUðNDÞ with even ND ≥ 4, for which the otherwise strong
constraints from direct detection are weakened, lowering
the scales of interest into a regime that can be probed by
colliders and other detection strategies.
We assume the dark fermions have masses Mf on the

order of the SUðNDÞ confinement scale ΛD. If the masses
were much smaller, the dark sector would contain light
pseudo-Goldstone pions that transform under the electro-
weak group, which are strongly constrained by collider
experiments. A dark sector with purely vectorlike fermion
masses has approximately stable electrically charged mes-
ons due to dark flavor symmetries. Conversely, a dark
sector with purely electroweak breaking fermion masses
has a dark matter candidate that is ruled out by spin-
independent direct detection through single Higgs
exchange. (For example, quirky dark matter [16] is now
completely ruled out by Higgs exchange, given the direct
detection bounds from LUX [3] combined with the
relatively light Higgs mass [56,57].) Fermions with both
vectorlike and (small) electroweak breaking contributions
to their masses can avoid both problems.
We require the lightest dark baryon to be electrically

neutral. We also require Higgs couplings at dimension four
to pairs of dark fermions. These two requirements impose
restrictions on the electroweak charges of the dark
fermions.
One solution is familiar from old technicolor theories

(e.g. [58,59]): requiring the dark fermion charges to
roughly satisfy jYj≲ jT3j where T3 is the SUð2ÞL isospin.

TABLE I. Dark fermion particle content of the stealth dark
matter model. All fields are two-component (Weyl) spinors.
SUð2ÞL refers to the Standard Model electroweak gauge group,
and Y is the hypercharge. In the broken phase of the electroweak
theory, the dark fermions have the electric charge Q ¼ T3 þ Y as
shown.

Field SUðNDÞ (SUð2ÞL, Y) Q

F1 ¼
� Fu

1

Fd
1

� N (2, 0) � þ1=2
−1=2

�
F2 ¼

� Fu
2

Fd
2

�
N̄ (2, 0) � þ1=2

−1=2

�
Fu
3 N ð1;þ1=2Þ þ1=2

Fd
3

N ð1;−1=2Þ −1=2
Fu
4 N̄ ð1;þ1=2Þ þ1=2

Fd
4 N̄ ð1;−1=2Þ −1=2

2Other portals, such as a dark gauged U(1) group that kineti-
cally mixes with hypercharge, are neither present nor required
here.

3The obvious exception, when ND ¼ Nc ¼ 3, is discussed in
[31,55], which is not a focus for us due to the baryons being
fermions. Construction of QCD-singlet dark baryons with ND ¼
6; 12; 18;… may be possible, but we do not study this possibility
further here.
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Choosing doublets (jT3j ¼ 1=2 under SUð2ÞL) then gives a
finite number of discrete possibilities.
A simple model that satisfies all of these requirements is

shown in Table I. The electric charges of the dark fermions
in the broken electroweak phase are Q ¼ �1=2, ensuring
all hadrons have integer electric charges. So long as the
lightest Q ¼ 1=2 and Q ¼ −1=2 dark fermions are close in
mass, the lightest baryon will be a scalar and electrically
neutral. Finally, with the assignments shown in Table I, all
gauge (and global) anomalies vanish, which is automatic
with fermions that transform under vectorlike representa-
tions of the SUðNDÞ and electroweak groups.

III. DARK FERMION INTERACTIONS AND
MASSES

The fermions Fu;d
i transform under a globalUð4Þ ×Uð4Þ

flavor symmetry with ½SUð2Þ ×Uð1Þ�4 surviving after the
weak gauging of the electroweak symmetry. From this large
global symmetry, one SUð2Þ (diagonal) subgroup will be
identified with SUð2ÞL, one Uð1Þ subgroup will be
identified with Uð1ÞY , and one Uð1Þ will be identified
with dark baryon number. The total fermionic content of
the model is, therefore, eight Weyl fermions that pair up to
become four Dirac fermions in the fundamental or anti-
fundamental representation of SUðNDÞ with electric
charges of Q≡ T3;L þ Y ¼ �1=2. We use the notation
where the superscript u or d (as in Fu, Fd and later ψu, ψd,
Ψu, Ψd) denotes a fermion with electric charge of Q ¼ 1=2
or Q ¼ −1=2, respectively.
The fermion kinetic terms in the Lagrangian are given by

L ⊃
X
i¼1;2

iF†
i σ̄

μDi;μFi þ
X

i¼3;4;j¼u;d

iFj
i
†σ̄μDj

i;μF
j
i ; ð1Þ

where the covariant derivatives are

D1;μ ≡ ∂μ − igWa
μσ

a=2 − igDGb
μtb ð2Þ

D2;μ ≡ ∂μ − igWa
μσ

a=2þ igDGb
μtb� ð3Þ

Dj
3;μ ≡ ∂μ − ig0YjBμ − igDGb

μtb ð4Þ

Dj
4;μ ≡ ∂μ − ig0YjBμ þ igDGb

μtb� ð5Þ

with the interactions among the electroweak group and the
new SUðNDÞ. Here Yu ¼ 1=2, Yd ¼ −1=2 and tb are the
representation matrices for the fundamental of SUðNDÞ.
The vectorlike mass terms allowed by the gauge sym-

metries are

L ⊃ M12ϵijFi
1F

j
2 −Mu

34F
u
3F

d
4 þMd

34F
d
3F

u
4 þ H:c:; ð6Þ

where ϵ12 ≡ ϵud ¼ −1 ¼ −ϵ12 and the relative minus signs
between the mass terms have been chosen for later

convenience. The mass term M12 explicitly breaks an
½SUð2Þ × Uð1Þ�2 global symmetry down to the diagonal
SUð2Þdiag ×Uð1Þ where the SUð2Þdiag is identified with

SUð2ÞL. The mass terms Mu;d
34 explicitly break the remain-

ing ½SUð2Þ ×Uð1Þ�2 down to Uð1Þ ×Uð1Þ where one of
the Uð1Þ’s is identified with Uð1ÞY . (In the special case
when Mu

34 ¼ Md
34, the global symmetry is enhanced to

SUð2Þ × Uð1Þ, where the global SUð2Þ acts as a custodial
symmetry.) Thus, after weakly gauging the electroweak
symmetry and writing arbitrary vectorlike mass terms, the
unbroken flavor symmetry is Uð1Þ × Uð1Þ.
Electroweak symmetry breaking mass terms arise from

coupling to the Higgs field H that we take to be in the
ð2;þ1=2Þ representation. They are given by

L ⊃ yu14ϵijF
i
1H

jFd
4 þ yd14F1 ·H†Fu

4

− yd23ϵijF
i
2H

jFd
3 − yu23F2 ·H†Fu

3 þ H:c:; ð7Þ

where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking,
H ¼ ð 0 v=

ffiffiffi
2

p ÞT , with v≃ 246 GeV. Replacing the
Higgs field by its VEV in Eq. (7), we obtain mass terms
for the fermions, in 2-component notation,

L ⊃ −ðFu
1 Fu

3 ÞMu

�
Fd
2

Fd
4

�
− ðFd

1 Fd
3 ÞMd

�
Fu
2

Fu
4

�

þ H:c:; ð8Þ

with the mass matrices given by

Mu ≡
�

M12 yu14v=
ffiffiffi
2

p

yu23v=
ffiffiffi
2

p
Mu

34

�
ð9Þ

Md ≡ −
�

M12 yd14v=
ffiffiffi
2

p

yd23v=
ffiffiffi
2

p
Md

34

�
: ð10Þ

These Yukawa couplings break the remaining Uð1Þ ×
Uð1Þ flavor symmetry to Uð1ÞD dark baryon number. The
mass matricesMu andMd correspond to the masses of two
sets of fermions with electric charge Q ¼ þ1=2 and
Q ¼ −1=2, respectively, in the fundamental representation
of SUðNDÞ. The two biunitary mass matrices can be
diagonalized by four independent rotation angles,

�
Mu

1 0

0 Mu
2

�
¼ Rðθu1Þ−1MuRðθu2Þ ð11Þ

�
Md

1 0

0 Md
2

�
¼ Rðθd1Þ−1MdRðθd2Þ; ð12Þ

where the rotation matrices are defined by
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RðθjiÞ≡
�
cos θji − sin θji

sin θji cos θji

�
: ð13Þ

The 2-component mass eigenstate spinors are, thus,

�
ψu
1

ψu
2

�
¼ Rðθu1Þ

�
Fu
1

Fu
3

�
ð14Þ

�
ψd
1

ψd
2

�
¼ Rðθu2Þ

�
Fd
2

Fd
4

�
ð15Þ

�
χd1
χd2

�
¼ iRðθd1Þ

�
Fd
1

Fd
3

�
ð16Þ

�
χu1
χu2

�
¼ iRðθd2Þ

�
Fu
2

Fu
4

�
; ð17Þ

where the extra phase in Eqs. (16) and (17) ensures the
Q ¼ −1=2 fermions will have positive mass eigenvalues.
The Lagrangian for the fermion mass eigenstates

becomes

L ⊃ −
X2
i¼1

ðMu
i ψ

u
i ψ

d
i þMd

i χ
d
i χ

u
i þ H:c:Þ ð18Þ

where the mass eigenvalues are Mu
1;2 for Q ¼ 1=2, and the

distinction between fermions ψ and χ allows us to write the
Q ¼ −1=2 fermion masses as Md

1;2. The Dirac spinor mass
eigenstates are constructed from the 2-component Weyl
spinor mass eigenstates in the usual way,

Ψu
i ≡

�
ψu
i

ψd
i
†

�
i ¼ 1; 2 ð19Þ

Ψd
i ≡

�
χdi
χui

†

�
i ¼ 1; 2 ð20Þ

giving the Dirac fermion masses

L ⊃ −
X2
i¼1

ðMu
iΨ

u
iΨ

u
i þMd

iΨ
d
iΨ

d
i Þ: ð21Þ

The fermion masses themselves are obtained from a
straightforward diagonalization of the mass matrices,

Mu
1;2 ¼

M12 þMu
34

2
∓
��

M12 −Mu
34

2

�
2

þ yu14y
u
23v

2

2

�
1=2

;

ð22Þ

with mixing angles

tan 2θu1 ¼
2

ffiffiffi
2

p
vðM12yu23 þMu

34y
u
14Þ

2M2
12 − 2ðMu

34Þ2 þ ðyu14vÞ2 − ðyu23vÞ2
ð23Þ

tan 2θu2 ¼
2

ffiffiffi
2

p
vðM12yu14 þMu

34y
u
23Þ

2M2
12 − 2ðMu

34Þ2 − ðyu14vÞ2 þ ðyu23vÞ2
; ð24Þ

with identical expressions for Md
1;2 and tan 2θd1;2 with the

replacement u ↔ d everywhere.
It is important to note that the electroweak currents

(jμþ, jμ−, j
μ
3, j

μ
Y) play an important role in the upcoming

phenomenological discussions. Due to the extended
expressions for these quantities in terms of our Dirac
spinors, we have relegated a detailed derivation of the
electroweak currents to the Appendix.

IV. SIMPLIFICATIONS

Our main interest is the more specialized case where the
lightestQ ¼ þ1=2 and Q ¼ −1=2 fermions are degenerate
in mass to a very good approximation. This leads to a
neutral scalar baryon with a vanishing charge radius. While
there are several ways this could be accomplished, we can
simply impose a custodial SUð2Þ global symmetry on the
Lagrangian. In order to simplify notation, we define
cji ≡ cos θji , s

j
i ≡ sin θji and PL;R ¼ ð1∓γ5Þ=2. In the cus-

todial SUð2Þ symmetric theory, cui ¼ cdi and sui ¼ sdi .

A. Custodial SU(2)

An exact custodial SUð2Þ symmetry implies the masses
and interactions are symmetric with respect to the inter-
change u ↔ d. This means the Lagrangian parameters
satisfy

yu14 ¼ yd14 ≡ y14; yu23 ¼ yd23 ≡ y23;

Mu
34 ¼ Md

34 ≡M34: ð25Þ

Defining the overall vectorlike mass scaleM and difference
Δ to be

M ≡M12 þM34

2
Δ≡

				M12 −M34

2

				; ð26Þ

the dark fermion mass eigenvalues are

M1;2 ¼ M∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ y14y23v2

2

r
: ð27Þ

We assume Δ < M, such that fermion masses remain
positive, to avoid further fermion field rephasings. No u
or d labels are necessary since custodial SUð2Þ symmetry
implies that there is one pair of Dirac fermions with electric
chargeQ ¼ ðþ1=2;−1=2Þwith massM1 (the lightest pair),
as well as a second pair of Dirac fermions with electric
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chargeQ ¼ ðþ1=2;−1=2Þwith massM2 (the heavier pair).
The spectrum is illustrated in Fig. 1.
In the limit y14; y23 → 0, the fermions acquire purely

vectorlike masses, and thus the chiral condensate of the
dark force is aligned to a purely electroweak-preserving
direction. In order that the chiral condensate’s
electroweak-preserving orientation is not significantly
disrupted, we consider small electroweak breaking
masses, y14v; y23v ≪ M.
This leaves two distinct regimes for the spectrum,

depending on the relative sizes of
ffiffiffiffiffiffiffiffiffiffiffiffi
y14y23

p
v and Δ.

B. Approximately symmetric mass matrices

A second simplification, useful to analytically and
numerically evaluate our results, is to take y14 ≃ y23.
The mass matrices Eqs. (9) and (10) are approximately
symmetric. Specifically, we can write

y14 ¼ yþ ϵy; y23 ¼ y − ϵy; jϵyj ≪ jyj: ð28Þ

and expand in powers of ϵy. For example, the dark fermion
masses become simply

M1;2 ¼ M∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ y2v2

2

r
: ð29Þ

to leading order in OðϵyÞ.
The distinct regimes are thus yv ≫ Δ and yv ≪ Δ. In the

linear case yv ≫ Δ, electroweak symmetry breaking is

(dominantly) responsible for the mass splitting between
Ψu;d

1 andΨu;d
2 . In the quadratic case yv ≪ Δ, the splitting is

dominantly attributed to the vectorlike mass splitting Δ. As
we shall see, the primary distinction between these two cases
is in the Higgs coupling to the fermion mass eigenstates:
proportional to y for the linear case and y2 for the quadratic
case, hence, the case names. A similar observation was also
found in Ref. [60].
From this point forward unless noted otherwise, we

assume the fermion mass parameters satisfy an exact
custodial SUð2Þ and the mass matrices are approximately
symmetric.

V. LIGHT NONSINGLET MESON
PHENOMENOLOGY

Theories with new fermions that transform under vector-
like representations of the electroweak group generically
have enlarged global flavor symmetries that can prevent
decay of the lightest nonsinglet mesons and baryons. In the
case of dark baryons, this is a feature, providing the
rationale for the stability of the lightest dark baryon of
the theory.
In the case of the lightest nonsinglet mesons, this can be

problematic, since some of these mesons carry electric
charge.4 Stable integer charged mesons are strongly con-
strained from collider searches as well as cosmology. One
solution is to postulate additional higher-dimensional oper-
ators that connect a dark fermion pair with a StandardModel
fermion pair [20,42]. This must be carefully done to avoid
also writing operators that violate the approximate global
symmetries protecting the stability of the dark matter. In the
stealth dark matter model, however, electroweak symmetry
breaking can provide the source of global flavor symmetry
breaking, leading to the decay of the lightest charged
mesons. (We will not discuss the lightest neutral mesons,
but they are generically more difficult to produce in
colliders, and they will decay through essentially the same
mechanism as we describe for the charged mesons.)
The lightest electrically charged mesons are composed

dominantly of the dark fermion pairs Πþ ¼ ðΨd
1Ψ

u
1Þ and

Π− ¼ ðΨu
1Ψ

d
1Þ. We can estimate the lightest meson lifetime

by generalizing pion decay of QCD to our model. The
relevant matrix element is (see, e.g., [61])

h0jjμ�;axialjΠ�i ¼ ifΠpμ; ð30Þ

where fΠ is the “pion decay constant” associated with the
dark force in this paper. The axial part of the electroweak
current can be read off from the electroweak currents given
in Eqs. (A5) and (A6)

FIG. 1. Illustration of the fermion mass spectra considered in
the paper. Four Dirac fermions (Ψu

1 , Ψ
d
1 , Ψ

u
2 , Ψ

d
2) have masses

(Mu
1 , M

d
1 , M

u
2 , M

d
2). The u (d) fermions have electric charge Q ¼

þ1=2 (Q ¼ −1=2); we assume an exact custodial SUð2Þ global
symmetry that ensures each Q ¼ þ1=2 fermion is accompanied
by aQ ¼ −1=2 fermion with equal mass as shown in the figure. If
Δ ≪ ffiffiffiffiffiffiffiffiffiffiffiffi

y14y23
p

v (Δ ≫ ffiffiffiffiffiffiffiffiffiffiffiffi
y14y23

p
v) the mass splitting is dominated

by electroweak breaking (preserving) masses that we call the
“linear (quadratic) case.” See the text for details.

4We use the term “lightest mesons” and not “pions” since the
would-be global symmetry that protects pion masses is com-
pletely broken by the dark fermion vectorlike masses. Never-
theless, we use the symbol Π to denote the corresponding fields.
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jμþ;axial ⊃ caxialΨ̄u
1γ

μγ5Ψd
1; ð31Þ

where

caxial ¼
cu1c

d
1 − cu2c

d
2ffiffiffi

2
p ð32Þ

and jμ−;axial is identical upon u ↔ d. In the custodial limit,
Eq. (25), the axial coefficient is

caxial ¼
ðy214−y223Þv2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð8M2þðy14−y23Þ2v2Þð8Δ2þðy14þy23Þ2v2Þ
p :

ð33Þ

Some insight can be gained using approximately symmetric
mass matrices, Eq. (28). We then obtain

caxial ¼
ϵyyv2

2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ2 þ y2v2

p
≃ ϵyv

2M
×



1 linear case

yv=ð ffiffiffi
2

p
ΔÞ quadratic case:

ð34Þ

The decay width can be obtained from the pion decay of
QCD by replacing Vud in the Standard Model with caxial for
the dark mesons. Since the charged dark mesons of this
model are much heavier than the QCD pions, there are
many possible decay modes. For a general decay into a
Standard Model doublet ðff0Þ, assuming mf ≫ mf0 , the
decay width is

ΓðΠþ → ff̄0Þ ¼ G2
F

4π
f2Πm

2
fmΠc2axial

�
1 −

m2
f

m2
Π

�
: ð35Þ

If mΠ > mt þmb, the dominant decay mode is expected to
be Πþ → tb̄, otherwise Πþ → τþντ and Πþ → s̄c, with
branching ratios of roughly 70% and 30%, respectively.
Note that the decay width has several enhancement factors
relative to the QCD pion decay width

ΓðΠþ → ff̄0Þ
Γðπ → μþνμÞ

≃ c2axial
jVudj2

�
fΠ
fπ

�
2
�
mf

mμ

�
2
�
mΠ

mπ

�
; ð36Þ

where for simplicity we have neglected kinematic suppres-
sion. As an example, if fΠ ≃mΠ ≃ v, we find the lightest
charged dark mesons decay faster than QCD charged pions
so long as caxial ≳ 10−8. This is easy to satisfy with small
Yukawa couplings and dark fermion masses at or beyond
the electroweak scale.
We can now make some comments about existing

collider constraints on nonsinglet mesons. The lightest
charged mesons Π� can be pair produced in particle
colliders through the Drell-Yan process, and will decay
through annihilation of the constituent fermions into a W
boson. Because the Drell-Yan production is mediated by a

photon and the mesons have unit electric charge, the
production cross-section is substantial, leading to robust
bounds from LEP-II. For charged states near the LEP-II
energy threshold, the dominant decay mode is expected to
be Πþ → τþντ as noted above. Reinterpreting the LEP-II
bound from the pair production of supersymmetric partners
to the tau (with the stau decaying into a tau and a nearly
massless gravitino), we find mΠ ≳ 86.6 GeV [62–66].
Stronger bounds from the LHC may be possible, although
existing searches do not yet give any significant constraints
on the charged mesons [20]; we briefly highlight the signals
in the discussion.
Using our lattice results from Ref. [33], we can translate

the experimental bound on the mass of the pseudoscalar
meson into a bound on the baryon mass, mB > 245;
265; 320 GeV when the ratio of the pseudoscalar mass to
the vector meson mass is mΠ=mV ¼ 0.77; 0.70; 0.55.

VI. CONTRIBUTIONS TO ELECTROWEAK
PRECISION OBSERVABLES

Stealth dark matter contains dark fermions that acquire
electroweak symmetry breaking contributions to their
masses. Consequently, there are contributions to the electro-
weak precision observables of the Standard Model, gen-
erally characterized by S and T [67,68]. In the custodial
SUð2Þ limit, Eq. (25), the contribution to T vanishes. There
is a contribution toS, controllable through the relative size of
the electroweak breaking and electroweak preserving
masses of the dark fermions.
The S parameter is defined in terms of momentum

derivatives of current-current correlators [67,68],

S≡ 16πΠ0
3Yð0Þ

¼ d
dq2

�
16π

3

�
gμν −

qμqν

q2

�
Xμνðq2Þ

�
q2¼0

ð37Þ

Xμνðq2Þ≡
Z

d4xe−iqxhjμ3ðxÞjνYð0Þi; ð38Þ

where the currents jμ3ðxÞ and jνYðxÞ for the stealth dark
matter model are defined in Eqs. (A7) and (A8). After some
algebra and identifications of symmetric contractions, these
definitions of the currents in terms of 4-component fermion
fields lead to the current-current correlator. In the custodial
limit, we obtain

2hjμ3ðxÞjνYð0Þi¼c21s
2
1ð11Gμν

LLþ22Gμν
LL−12Gμν

LL−21Gμν
LLÞ

þc22s
2
2ð11Gμν

RRþ22Gμν
RR−12Gμν

RR−21Gμν
RRÞ

þc21s
2
2ð11Gμν

LRþ22Gμν
RLÞ

þc22s
2
1ð11Gμν

RLþ22Gμν
LRÞ

−c1c2s1s2ð12Gμν
LRþ12Gμν

RLþ21Gμν
LRþ21Gμν

RLÞ;
ð39Þ
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where the connected contributions to the correlation func-
tions are given by

ijGμν
AB ≡ hΨ̄u

i γ
μPAΨu

j Ψ̄
u
j γ

νPBΨu
i ijconnected: ð40Þ

Here, A;B ¼ L;R and the flavor indices i; j ¼ 1; 2, where
it is understood that the flavors labeled 2 have larger
fermion masses than the flavors labeled 1. Since the u; d
flavors have the same mass, the u and d labels are
interchangeable (i.e. everything is written in terms of the
u flavors).
We can obtain expressions for the mixing angle coef-

ficients. Like the case of light meson decay, if we consider
an approximately symmetric mass matrix, with Yukawa
couplings given by Eq. (28), all of the mixing angle
coefficients are approximately equal to each other, differing
only at first order in ϵy, i.e.,

c21s
2
1 ≃ c22s

2
2 ≃ c21s

2
2 ≃ c22s

2
1 ≃ c1c2s1s2

¼ 1

4

y2v2

y2v2 þ 2Δ2
½1þOðϵyÞ…�

≃ 1

4
×



1 linear case

y2v2=ð2Δ2Þ quadratic case:
ð41Þ

In the linear case, the mixing angles are approximately
equal c1 ≃ s1 ≃ c2 ≃ s2 ≃ 1=

ffiffiffi
2

p
. In the quadratic case, all

of the contributions to the S parameter are suppressed by
ðyv=ΔÞ2. To calculate the S parameter in general requires
lattice methods, paying close attention to the heavy-light
splitting of the fermions, M2 −M1. To a first approxima-
tion we expect that in the limit of small mass splitting,
M2 −M1 ≪ M,

Gμν
AB ≡ 11Gμν

AB ≃ 22Gμν
AB ≃ 12Gμν

AB ≃ 21Gμν
AB: ð42Þ

This gives for the current–current correlator

2hjμ3ðxÞjνYð0Þi≃ ½c21s22 þ c22s
2
1 − 2c1c2s1s2�Gμν

LR

≃ ϵ2yv2

2M2
Gμν

LR; ð43Þ

where all of the GLL and GRR contributions self-cancel.
Hence, we see that the contribution to the S parameter is
suppressed as M ≫ v or ϵy ≪ 1, as expected.

VII. FERMION COUPLINGS TO THE
HIGGS BOSON

In terms of the gauge-eigenstate fields, the interactions of
the Higgs boson with the dark-sector fermions are, in
matrix notation,

L ⊃ −
hffiffiffi
2

p ðFu
1 Fu

3 Þ
�

0 yu14
yu23 0

��
Fd
2

Fd
4

�

þ hffiffiffi
2

p ðFd
1 Fd

3 Þ
�

0 yd14
yd23 0

��
Fu
2

Fu
4

�

þ H:c: ð44Þ

These matrices are not simultaneously diagonalizable with
the mass matrices, Eqs. (9) and (10). This means that the
Higgs boson in general has off-diagonal, “dark flavor-
changing” interactions with the mass eigenstate fields.
Explicitly, we find in terms of the mixing angles

L ⊃
hffiffiffi
2

p ð Ψ̄u
1 Ψ̄u

2 Þ

×

�
cu1s

u
2y

u
14 þ su1c

u
2y

u
23 cu1c

u
2y

u
14 − su1s

u
2y

u
23

cu1c
u
2y

u
23 − su1s

u
2y

u
14 −su1cu2yu14 − cu1s

u
2y

u
23

��
Ψu

1

Ψu
2

�

þ ðu ↔ dÞ: ð45Þ

In the custodial SUð2Þ limit, we can drop the u and d labels
since the Higgs coupling matrix is identical for both sets of
fields. If we further take the limit of an approximately
symmetric mass matrix, Eq. (28), the Higgs couplings
simplify to

L ⊃
yh

M2 −M1

ð Ψ̄1 Ψ̄2 Þ
��

yv −
ffiffiffi
2

p
Δ

−
ffiffiffi
2

p
Δ −yv

�
þOðϵyÞ

�

×

�
Ψ1

Ψ2

�
: ð46Þ

We observe both diagonal and off-diagonal Higgs cou-
plings to the fermions. The off-diagonal dark flavor-
changing interactions vanish in the limit Δ → 0 and
ϵy → 0. In this limit an enhanced flavor symmetry among
the fermions is restored, and the analogue of the GIM
mechanism forbids such interactions at tree level. The off-
diagonal Higgs couplings lead to an inelastic scattering
cross section when a single Higgs is exchanged. This is
highly suppressed unless the mass difference M2 −M1 is
near the (nonrelativistic) kinetic energy of the dark matter
in galaxy. Two off-diagonal Higgs couplings can be
combined in a loop involving one heavier dark fermion
and double Higgs exchange, but this is suppressed by the
square of the Higgs couplings times a loop factor, as well as
by the mass of the heavier fermions.
The single Higgs coupling to the lightest fermions is

finally

L ⊃ yΨhΨ̄1Ψ1 ð47Þ

where
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yΨ ¼ y2v
M2−M1

þOðϵyÞ ≃
8<
:

yffiffi
2

p linear case

y2v
2Δ quadratic case:

ð48Þ

(Note also that the single Higgs coupling to the heaviest
fermions Ψ2 is identical up to an overall sign.) Depending
on the relative size of yv and Δ, the Higgs boson couples
linearly or quadratically proportional to the Yukawa cou-
pling y. The additional suppression of yv=Δ in the
quadratic case will imply that spin independent scattering
through single Higgs exchange can be significantly weaker
when the mass difference between the lightest and heaviest
fermions is dominated by the electroweak preserving
mass Δ.

VIII. DIRECT DETECTION BOUNDS FROM
HIGGS EXCHANGE

In a previous paper [33], we set up a framework for the
study of direct-detection bounds on scalar baryonic dark
matter candidates through Higgs exchange, and we pre-
sented detailed numerical results for an SUð4Þ gauge
group. Our notation in this section closely follows [33].
The model-independent result was expressed in terms of
the effective Higgs coupling to the baryon

gB ¼ mB

v
αfðBÞf : ð49Þ

The first factor, the baryon mass mB (divided by the
electroweak VEV), as well as the third factor,

fðBÞf ¼ hBjM1Ψ̄1Ψ1jBi
mB

¼ M1

mB

∂mB

∂M1

;

are extracted from our lattice results [33]. The second
factor,

α≡ v
M1

∂M1ðhÞ
∂h

				
h¼v

≃
( yvffiffi

2
p

M1

linear case
ðyvÞ2
2M1Δ

quadratic case;
ð50Þ

provides the effective coupling of the Higgs boson to the
fermions (multiplied by v=M1), and we have evaluated the
derivative for the two cases in our model.
Given the dark fermion mass parameters M1 and Δ,

combined with the dark baryon mass and the coupling fðBÞf

as determined in [33], we can in principle calculate a bound
on the Higgs couplings to stealth dark matter, which could
provide useful input into more precise calculations for
electroweak precision tests and dark matter abundance.
However, we currently only know the “bare” fermion mass
parameters in units of the lattice spacing. We, therefore,
characterize the fermion mass using the ratio of pseudo-
scalar to vector meson masses mΠ=mV as a proxy. We
can construct a regularization-independent parameter, the

effective Yukawa coupling yeff , that is closely related to the
model parameters:

yeff ≡

 y mBffiffi

2
p

M1

linear case

y mBffiffiffiffiffiffiffiffiffi
2ΔM1

p quadratic case:
ð51Þ

The α parameter is, therefore,

α≃
(
yeff v

mB
linear case

y2eff
v2

m2
B

quadratic case:
ð52Þ

Recasting our previous constraints in α-mB space into
yeff -mB space, we can identify the region of parameter
space that remains viable. The constraints for the linear
case are shown in Fig. 2 and the quadratic case in Fig. 3. In
the top two plots for the respective figures, the region above
the LUX bounds represents the excluded parameter space
for the model at a given dark matter mass (mB) and effective
Yukawa coupling (yeff ). The figures show a clear qualitative
trend in how the predictions change as a function of dark
matter mass. In particular, the cross section is independent
ofmB for the linear case and inversely proportional tomB in
the quadratic case. The bottom plots in Figs. 2 and 3 show
the maximum yeff allowed for a given dark matter mass. By
increasing the splitting Δ between the vectorlike mass
terms, significantly more yeff parameter space becomes
available.

IX. ABUNDANCE

We now provide a brief discussion of the relic abundance
of stealth dark matter. In the regime where the dark
fermions have masses comparable to the confinement scale
of the dark force, calculating the relic abundance is an
intrinsically strongly coupled calculation. Unfortunately,
this calculational difficulty is not easily overcome with
lattice simulations, due to the different initial and final
states. Nevertheless, it is straightforward to see that the relic
abundance can match the cosmological abundance through
at least two distinct mechanisms that lead to two different
mass scales for stealth dark matter. In this section we
discuss obtaining the abundance of stealth dark matter
through thermal freezeout, leading to a symmetric abun-
dance of dark baryons and antibaryons. Separately, we
consider the possibility of an asymmetric abundance
generated through electroweak sphalerons.

A. Symmetric abundance

In the early universe at temperatures well above the
confinement scale of the SUð4Þ dark gauge force, the dark
fermions are in thermal equilibrium with the thermal bath
through their electroweak interactions. As the universe
cools to temperatures below the confinement scale, the
degrees of freedom change from dark fermions and gluons
into the dark baryons and mesons of the low-energy
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description. Some of the dark mesons carry electric charge,
and so the dark mesons remain in thermal equilibrium with
the StandardModel quarks, leptons, and gauge fields. Since
the dark baryons are strongly coupled to the dark mesons,
they also are kept in thermal equilibrium. As the temper-
ature of the universe falls well below the mass of the dark

baryons, they annihilate into dark mesons that subsequently
thermalize and decay (or decay then thermalize) into
Standard Model particles. The symmetric abundance of
dark baryons is, therefore, determined by the annihilation
rate of dark baryons into dark mesons.
The annihilation of dark baryons to dark mesons is a

strongly coupled process. We expect B�B → ΠΠ, B�B →
3Π, and B�B → 4Π, (and to possibly more mesons if
kinematically allowed) to occur, but we do not know the
dominant annihilation channel. If the 2-to-2 process B�B →
ΠΠ dominates, one approach is to use partial wave unitarity
to estimate the thermally averaged annihilation rate [53,69],

hσvi ∼ 4πhv−1i
m2

B
; ð53Þ

FIG. 3 (color online). Same as Fig. 2 but for the quadratic case
of the model. In this case, yeff ≈ ymB=

ffiffiffiffiffiffiffiffiffiffi
M1Δ

p
.

FIG. 2 (color online). Constraints on the stealth dark matter
model in the linear case of the model. The top and middle figures
show the predicted values for the smallest and largest fermion
mass explored in our simulations (corresponding to the pseudo-
scalar to vector mass ratio mΠ=mV ¼ 0.55; 0.77) as well as LUX
bounds. Various yeff values are plotted on the figure, where yeff ≈
ymB=M1 in this case. The dark grey region is excluded by the
LEP constraints on charged dark mesons. The bottom figure
displays the maximum yeff allowed for a given dark matter mass.
Each of the green curves represents a different fermion mass in
the lattice calculation, mΠ=mV ¼ 0.55; 0.7; 0.77 from top to
bottom, and the bottom red curve is the result in the heavy
fermion limit.
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where hv−1i≃ 2.5 at freeze-out [69]. Matching this cross
section to the required thermal relic abundance yields
mB ∼ 100 TeV. An alternative approach is to use naive
dimensional analysis [70–72], which appears to lead to a
larger dark matter mass.
If the 2-to-3 or 2-to-4 processes dominate instead, the

additional phase space and kinematic suppression lowers
the annihilation rate and, therefore, lowers the scalar baryon
mass needed to obtain the cosmological abundance. For
recent work that has considered the thermal relic abundance
in multibody processes, see [25,28]. Suffice it to say a
symmetric thermal abundance of dark baryons will match
the cosmological abundance for a relatively large baryon
mass that is of order tens to hundreds of TeV.

B. Asymmetric abundance

Early work on technibaryons demonstrated that strongly
coupled dark matter could arise from an asymmetric
abundance [4–8]. The main ingredient to obtain the correct
cosmological abundance is the electroweak sphaleron (the
non-perturbative solution at finite temperature that allows
for transitions between vacua with different5 Bþ L num-
bers).6 In the early Universe, at temperatures much larger
than the electroweak scale, electroweak sphalerons are
expected to violate one accidental global symmetry, Bþ
LþD number, leaving B − L and B −D numbers unaf-
fected [7,8,16]. Here D number is proportional to the dark
baryon number, with some appropriate normalization (for
examples; see [7,16]).
Given a baryogenesis mechanism, the electroweak spha-

lerons redistribute baryon number into lepton number and
dark baryon number. As the Universe cools, the mass of the
technibaryon becomes larger than the temperature of the
Universe. Eventually, the Universe cools to the point where
electroweak sphalerons “freeze out” and can no longer
continue exchanging B, D, and L numbers. The residual
abundance of dark baryons is ρ ∼mBnB where the number
density is proportional to exp½−mB=Tsph�, where Tsph is the
temperature at which sphaleron interactions shut off.
If the baryon and dark baryon number densities are

comparable, the would-be overabundance of dark matter
(from mB ≫ mnucleon) is compensated by the Boltzmann
suppression. Very roughly, mB ∼ 1–2 TeV is the natural
mass scale that matches the cosmological abundance of
dark matter [6]. A crucial component of the early techni-
baryon papers [4–6] is that the technifermions were in a
purely chiral representation of the electroweak group, like
the fermions of the Standard Model.

In stealth dark matter, given an early baryogenesis
mechanism (or other analogous mechanism to generate
an asymmetry in a globally conserved quantity [8,74–80]),
it is possible that electroweak sphalerons could also lead to
the correct relic abundance of dark baryons consistent with
cosmology.
There is one critical difference from the early technicolor

models (as well as the quirky dark matter model): The dark
fermions in stealth dark matter have both vectorlike and
electroweak symmetry breaking masses. This leads to a
suppression of the effectiveness of the electroweak spha-
lerons by a factor of α, cf. Eq. (50), leading to a somewhat
smaller stealth baryon mass to obtain the correct relic
abundance compared with a technicolor model (all other
parameters equal). A more quantitative estimate is com-
plicated by several factors:

(i) Determining how the electroweak sphaleron redis-
tributes the conserved global charges in the presence
of fermions that acquire both electroweak preserving
and electroweak breaking masses. To the best of our
knowledge, this calculation has never been done.

(ii) Determining the precise temperature at which
electroweak sphalerons shut off, in the presence
of both the Standard Model and stealth dark matter
degrees of freedom contributing to the thermal bath.

(iii) The baryogenesis mechanism itself, that determines
the initial B − L and B −D numbers.

Given the exponential suppression of the asymmetric
abundance as the dark baryon mass is increased, it is clear
that the upper bound on the dark baryon mass is nearly
the same as the technibaryon calculation (updated to the
current cosmological parameters), when stealth dark fer-
mions have vectorlike masses comparable to electroweak
symmetry breaking masses. (This case is, however, con-
strained by the S parameter; see Sec. VI). We can, therefore,
anticipate that a range of stealth dark matter masses will be
viable, up to about a TeV. More precise predictions require
further detailed investigation that is beyond the scope of
this paper.

X. DISCUSSION

We have presented a concrete model, “stealth dark
matter,” that is a composite baryonic scalar of a new
SUðNDÞ strongly coupled confining gauge theory with
dark fermions transforming under the electroweak group.
Though the stealth dark matter model has a wide parameter
space, we focused on dark fermion masses that respect an
exact custodial SUð2Þ. Custodial SUð2Þ implies the lightest
bosonic baryonic composite is an electrically neutral scalar
(and not a vector or spin-2) of the SUðNDÞ dark spectrum,
and in addition does not have a charge radius. This yields
an exceptionally “stealthy” dark matter candidate, with
spin-independent direct detection scattering proceeding
only through Higgs exchange (studied in this paper) and
the polarizability interaction (studied in our companion

5In this section, B refers to baryon number and is to not be
confused with the field defined earlier.

6In addition, an asymmetric abundance could be generated
through other mechanisms, see Ref. [73], in which case the mass
scales and parameters depend on the details of the particular
mechanism.
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paper [81]). Custodial SUð2Þ also allows for stealth dark
matter to completely avoid the constraints from the T
parameter. While contributions to the S parameter are
present, they are suppressed by the ratio of the electroweak
symmetry breaking mass-squared divided by a vectorlike
mass squared of the dark fermions. We also verified the
lightest non-singlet mesons decay rapidly (so long as
ϵy ≠ 0), avoiding any cosmological issues with stable
electrically charged dark mesons.
Specializing to the case of ND ¼ 4, we then applied our

earlier model-independent lattice results [33] to the param-
eters of stealth dark matter, and obtained constraints on the
effective Higgs interaction. We find that the present LUX
bound is able only to mildly constrain the Higgs coupling
to stealth dark matter for relatively light dark baryons. Even
weaker constraints arise when the effective Higgs inter-
action is quadratic in the Yukawa coupling, which is a
natural possibility when the two pairs of dark fermions are
split dominantly by vectorlike masses, i.e., yv ≪ Δ.
While we have considered many aspects of stealth dark

matter, several avenues warrant further investigation:
(i) Chiral symmetry forbids additive renormalization of

the fermion masses; we have focused on the regime
where the constituent fermion mass is comparable to
the confinement scale Mf ∼ ΛD, since this is best
suited for lattice simulations, exactly where analytic
estimates are least useful. It would be interesting to
consider a broader range of fermion masses relative
the confinement scale, to understand the relative
scaling of the Higgs interactions.

(ii) A more precise calculation of the S parameter is
possible using lattice simulations for the relevant
correlators. This would allow us to place numerical
bounds on the parameters of the theory, that could be
stronger than the bounds from the non-observation
through direct detection.

(iii) We would like to unpack yeff [cf. Eq. (51)] and
obtain constraints on the Yukawa couplings of the
model. However, this requires translating the fer-
mion masses from the lattice regularization into a
continuum regularization.

(iv) Dark meson production and decay at the LHC is ripe
for exploration. Dark meson pair production would
proceed through off-shell EW gauge bosons,
qq̄ → ΠþΠ−, qq̄ → Π0Π0, and qq̄0 → Π�Π0. These
could have spectacular signals at the LHC. Neutral
mesons decay into fermion pairs and dibosons (ex-
plored in other related models in [20,42,82,83]). For
charged dark mesons, with masses in the range
mΠ�∼90–180GeV, the decayΠþ→τþντ dominates,
while for masses above this, Πþ → tb̄ is dominant.
Chargedpion pair production could, therefore, lead to
tb̄bt̄ signals with the tb̄ and bt̄ pairs reconstructing to
the samemass. To the best of our knowledge, this type
of resonance search is not being performed at
the LHC.

(v) More insight into the thermal abundance of stealth
dark matter, perhaps using lattice simulations, would
help narrow the interesting mass range that matches
cosmological data.

(vi) Asymmetric production of stealth dark matter seems
very promising, but has several calculational ob-
stacles to overcome to arrive at a quantitative
relationship between the abundance and the other
parameters of the theory.

(vii) If stealth dark matter has an asymmetric abundance,
there are potential limits from neutron star lifetimes
[84–86] though the precise bounds depend sensi-
tively on the equation of state of the neutron stars.

(viii) There are tantalizing signals of a γ-ray excess
between about 1–10 GeV in the Galactic center
(see for example [87–91]). A recent analysis [92]
suggests that this could arise from dark matter up to
300 GeV. It is intriguing to consider the γ-ray signal
spectrum that could arise from a symmetric abun-
dance of stealth dark matter with annihilation into a
multibody final state [93] with mixtures of four or
more heavy fermions and multi-gauge bosons (from
BB� → ΠΠ… → SM states).

Clearly there are several characteristic signals of stealth
composite dark matter. If the Higgs couplings to stealth
dark matter are significant, this could also lead to mod-
ifications of Higgs properties, and provide a channel for
direct production of the dark baryons at colliders. On the
other hand, if the Higgs couplings are suppressed, then we
find that direct detection proceeds through the electromag-
netic polarizability, which is discussed in our companion
paper [81]. The polarizability channel is particularly
interesting, with a double-photon exchange interaction
which gives a per-nucleon cross section expected to scale
as Z4=A2 (where Z and A are the atomic and mass numbers
of the target nucleus, respectively), favoring larger nuclei
over smaller ones.
An unambigious prediction of stealth dark matter is the

rich spectrum of other composite states made from the
constituent dark fermions. The states most likely to be
accessible to collider energies are the dark mesons, and
their production and detection may provide the best way to
investigate the presence of a new strongly coupled sector.
The excited states of dark matter itself—the heavier dark
baryons—may also provide complementary evidence of the
compositeness of the dark sector, for example through
emission lines detectable in gamma-ray telescope experi-
ments. We leave detailed investigations to future work.
Finally, there are broader model-building questions to

consider. One is the choice of scalesMf ∼ ΛD that has been
the focus of this work. This could arise dynamically. For
example, if there are sufficient flavors in the SUðNDÞ gauge
theory such that it is approximately conformal at high
energies, then as the theory is run down through the dark
fermion mass scaleMf, the dark fermions integrate out, and
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confinement sets in atΛD ∼Mf. This is well known to occur
for supersymmetric SUðNÞ theories in the conformal win-
dow that flow to confining theories once the number of
flavors drops below Nf < 3N=2 [94]. The origin of the
vectorlike masses of the fermions is also an interesting
model-building puzzle. However, just as SM fermion
masses are vectorlike below the electroweak breaking scale,
we can imagine dark fermion vectorlike masses could be
revealed as arising from dynamics that breaks the flavor
symmetries of our dark fermions at some higher scale.
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APPENDIX: WEAK CURRENTS

We examine the dark fermion contributions to the
electroweak currents. In the gauge eigenstate basis, the
currents are

jμþ ¼ −
1ffiffiffi
2

p ðFu
1
†σ̄μFd

1 þ Fu
2
†σ̄μFd

2Þ ðA1Þ

jμ− ¼ −
1ffiffiffi
2

p ðFd
1
†σ̄μFu

1 þ Fd
2
†σ̄μFu

2Þ ðA2Þ

jμ3 ¼ −
i
2

X
i¼1;2

ðFu
i
†σ̄μFu

i − Fd
i
†σ̄μFd

i Þ ðA3Þ

jμY ¼ −
i
2

X
i¼3;4

ðFu
i
†σ̄μFu

i − Fd
i
†σ̄μFd

i Þ: ðA4Þ

In the mass eigenstate basis given by Eqs. (14)–(17), the
currents can be rewritten in terms of the 4-component Dirac
fermions defined by Eqs. (19) and (20). After some algebra,
one obtains

jμþ ¼ −
1ffiffiffi
2

p ½Ψu
1γ

μðcu1cd1PL þ cu2c
d
2PRÞΨd

1 þΨu
2γ

μðsu1sd1PL þ su2s
d
2PRÞΨd

2

þΨu
1γ

μðcu1sd1PL þ cu2s
d
2PRÞΨd

2 þΨu
2γ

μðsu1cd1PL þ su2c
d
2PRÞΨd

1� ðA5Þ

jμ− ¼ −
1ffiffiffi
2

p ½Ψd
1γ

μðcd1cu1PL þ cd2c
u
2PRÞΨu

1 þΨd
2γ

μðsd1su1PL þ sd2s
u
2PRÞΨu

2

þΨd
1γ

μðcd1su1PL þ cd2s
u
2PRÞΨu

2 þΨd
2γ

μðsd1cu1PL þ sd2c
u
2PRÞΨu

1� ðA6Þ

jμ3 ¼
1

2
½Ψu

1γ
μððcu1Þ2PL þ ðcu2Þ2PRÞΨu

1 þΨu
2γ

μððsu1Þ2PL þ ðsu2Þ2PRÞΨu
2

−Ψd
1γ

μððcd1Þ2PL þ ðcd2Þ2PRÞΨd
1 −Ψd

2γ
μððsd1Þ2PL þ ðsd2Þ2PRÞΨd

2

þΨu
1γ

μðcu1su1PL þ cu2s
u
2PRÞΨu

2 þΨu
2γ

μðsu1cu1PL þ su2c
u
2PRÞΨu

1

−Ψd
1γ

μðcd1sd1PL þ cd2s
d
2PRÞΨd

2 −Ψd
2γ

μðsd1cd1PL þ sd2c
d
2PRÞΨd

1� ðA7Þ

jμY ¼ 1

2
½Ψu

1γ
μððsu1Þ2PL þ ðsu2Þ2PRÞΨu

1 þΨu
2γ

μððcu1Þ2PL þ ðcu2Þ2PRÞΨu
2

−Ψd
1γ

μððsd1Þ2PL þ ðsd2Þ2PRÞΨd
1 −Ψd

2γ
μððcd1Þ2PL þ ðcd2Þ2PRÞΨd

2

−Ψu
1γ

μðcu1su1PL þ cu2s
u
2PRÞΨu

2 −Ψu
2γ

μðsu1cu1PL þ su2c
u
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1

þΨd
1γ

μðcd1sd1PL þ cd2s
d
2PRÞΨd

2 þΨd
2γ

μðsd1cd1PL þ sd2c
d
2PRÞΨd

1�; ðA8Þ
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where cji ≡ cos θji , s
j
i ≡ sin θji and PL;R ¼ ð1∓γ5Þ=2 are

the left- and right-handed projectors. In general, the dark
fermions contribute to both the vector and axial currents
with strengths given by the mixing angles. It is easy to
verify that the electromagnetic current,

jμem ¼ jμ3 þ jμY ¼
X
i¼1;2

½QuΨu
i γ

μΨu
i þQdΨd

i γ
μΨd

i �; ðA9Þ

with Qu;d ¼ �1=2, is consistent with a pure vector cou-
pling of the dark fermions to the photon independent of
mass mixing angles.
Interestingly, if the mass matrices Eqs. (9) and (10) are

symmetric, i.e., yu14 ¼ yu23 and yd14 ¼ yd23, then just two
mixing angles are required, i.e., θu1 ¼ θu2 and θd1 ¼ θd2. In
this case, the mixing angles factor out of the left-right
gamma matrix structure, leaving all of the electroweak
currents to be purely vector (with vanishing axial current).
This is unlike the Standard Model, where the SUð2ÞL
currents are purely V − A. The difference between this
model and the Standard Model is the structure of the dark
fermion mass matrices that include both vectorlike and
electroweak symmetry breaking masses.
It is also interesting to calculate the neutral current,

jμZ ¼ jμ3 − sin2 θWj
μ
em: ðA10Þ

For the neutral baryon state,

hBjjμZjBi≃þ1

4
ððcu1Þ2þðcu2Þ2−ðcd1Þ2−ðcd2Þ2ÞhBjΨ̄1γ

μΨ1jBi

þ1

4
ð−ðcu1Þ2þðcu2Þ2þðcd1Þ2

−ðcd2Þ2ÞhBjΨ̄1γ
μγ5Ψ1jBi: ðA11Þ

In the limit of zero momentum exchange (Q2 ¼ 0), the
vector form factor hBjΨ̄1γ

μΨ1jBi evaluates to 1, while the
axial-vector form factor hBjΨ̄1γ

μγ5Ψ1jBi for a scalar
baryon vanishes. In the presence of an exact custodial
SU(2) symmetry, which is the focus of this paper, we have
cui ¼ cdi and the Z coupling vanishes identically at any
momentum exchange.
On the other hand, if custodial symmetry is broken,

then the lightest neutral baryon acquires tree-level cou-
plings to the Z boson. To illustrate the size of these
couplings, consider taking the dark fermion mass matrices
to be exactly symmetric (y23 ¼ y14) but allowing for a
small, custodial symmetry-violating difference in the
Yukawas, yu ¼ yþ ξ and yd ¼ y − ξ where ξ=y ≪ 1.
The coefficient of the weak neutral vector current
becomes

ðcu1Þ2 þ ðcu2Þ2 − ðcd1Þ2 − ðcd2Þ2

≃
8<
:

2
ffiffiffi
2

p
ξ
y
Δ
yv linear case

ξ
y
ðyvÞ2
Δ2 quadratic case:

ðA12Þ

Custodial symmetry violation is, therefore, restricted by
requiring the coupling of the lightest neutral baryon to
the Z boson be small enough to have evaded direct
detection. There are several limits in which this can
occur: ξ=y ≪ 1 (any scenario), Δ=ðyvÞ ≪ 1 (linear case),
or ðyvÞ=Δ ≪ 1 (quadratic case). This suggests that
modest custodial symmetry violation is possible but
rather constrained.
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