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Adding a scalar triplet to the Standard Model is one of the simplest ways of giving mass to neutrinos,
providing at the same time a mechanism to stabilize the theory’s vacuum. In this paper, we revisit these
aspects of the type-II seesaw model pointing out that the bounded-from-below conditions for the scalar
potential in use in the literature are not correct. We discuss some scenarios where the correction can be
significant and sketch the typical scalar boson profile expected by consistency.
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I. INTRODUCTION

More than ever, after the discovery of the Higgs boson,
particle physicists are eager for new results that can shed
light on the symmetry breaking puzzle. The tiny neutrino
masses suggest that probably a different mass generation
scheme associated to their charge neutrality is at work.
Neutrino masses can be introduced in the Standard Model
(SM) through the lepton number violating coupling of a
scalar triplet Δ (hypercharge þ1) with the left-handed
leptons,

YΔ;ij

2
LT
i Cðiτ2ÞΔLj þ H:c: ð1Þ

and generate a neutrino mass matrix YΔhΔ0i after electro-
weak symmetry breaking. Here iτ2 is the weak isospin
conjugation matrix. The vacuum expectation value of the
triplet is proportional to the strength mHΔ of the coupling
HHΔwhich can be an arbitrarily small parameter since this is
the only lepton number violating coupling in the model. This
is arguably themost economical way of realizingWeinberg’ s
dimension five operator [1]. For simplicity here we focus
upon the case of explicit lepton number violation [2] since the
implementation of spontaneous lepton number violation [3]
would require an extended scalar sector containing also a
singlet. In this scheme one “explains” the smallness of
neutrino masses with the smallness of mHΔ—and hence
the smallness of the “induced” vacuum expectation value
(VEV) vΔ ≡ hΔ0i—evenwith a lightmessenger scalar triplet
Δ, potentially accessible at the next run of the LHC.
On the other hand, it is known that the Higgs quartic

coupling in the SM is driven to negative values at high
energies, before the Planck scale is reached [4,5]. With the
triplet scalar field, the situation changes as the new quartic
scalar interactions between H and Δ are able to soften the
decrease of the Higgs quartic coupling λH as the energy

scale is increased [6–9]. The effect is qualitatively the same
if the triplet is replaced by an SUð2ÞL singlet [10–14].
However, with the new triplet scalar, it is no longer enough
to check that the Higgs quartic coupling stays positive, as
the conditions for the potential to be bounded from below
become more elaborate.
Regardless of the energy scale one may ask, under what

conditions is the potential of the type-II seesaw model
bounded from below? An attempt to write down for the first
time these necessary and sufficient vacuum stability con-
ditions taking into account all field directions has been made
in [15]. However, as we point out in this paper, those
conditions are too strong—they are sufficient but not
necessary to ensure that a set of values for the quartic
couplings corresponds to a stable vacuum. The structure of
this paper is the following: after a brief review of the basic
properties of the model (Sec. II) we derive the necessary and
sufficient conditions for the potential to be bounded from
below in Sec. III, discussing the difference with the con-
ditions in use in the literature both from a theoretical point of
view as well as a numerical one. In Sec. IV we apply these
conditions to explore the region in parameter space of the
type-II seesaw where the potential is stable up to some given
scale. Finally, we present some conclusions in Sec. VI.
(Two Appendixes provide supplementary material.)

II. BASIC PROPERTIES OF THE TYPE-II
SEESAW MODEL

Here we consider the simplest neutrino mass generation
scheme based on an effective seesaw mechanism with
explicit lepton number violation described by the complex
triplet, given as

Δ≡
 Δþffiffi

2
p Δþþ

Δ0 − Δþffiffi
2

p

!
: ð2Þ

The most general potential involving Δ and the Standard
Model Higgs doublet H ¼ ðHþ; H0ÞT has a total of eight
parameters which we can take to be real:
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VðH;ΔÞ ¼ −μ2HH†H þ μ2ΔTrðΔ†ΔÞ

þ
�
mHΔ

2
HTðiτ2ÞΔ†H þ H:c:

�
þ 1

2
λHðH†HÞ2

þ λHΔTrðΔ†ΔÞðH†HÞ þ λ0HΔH
†ΔΔ†H

þ λΔ
2
½TrðΔ†ΔÞ�2 þ λ0Δ

2
TrðΔ†ΔΔ†ΔÞ: ð3Þ

The vacuum expectation value of the neutral component
of the triplet, vΔ ≡ hΔ0i, must be significantly smaller than
the one of the standard Higgs, vH ≡ hH0i, otherwise the ρ
parameter will deviate too much from 1. Indeed,

ρ ≈ 1 − 2α2 ð4Þ

with α≡ vΔ=vH so this ratio of VEVs can be at most of the
percent order given the experimental constraints on ρ [16].
Furthermore, since neutrino masses are proportional to vΔ,
this VEV should indeed be very small. Under the approxi-
mation that α ≪ 1, the minimization solution of the
potential requires that

μ2H ≈ λHv2H; ð5Þ

μ2Δ ≈
�
χ

2
− λHΔ − λ0HΔ

�
v2H; ð6Þ

where

χ ≡mHΔ=vΔ: ð7Þ
Using these relations one can write the scalar boson mass
eigenstates as shown in Table I.
Note that if the doubly charged Higgs Hþþ is to be

heavier than half a TeV or so, then χ ≳ 10, making χ
significantly larger than any of the quartic couplings λi
which one expects to be, at most, of order 1. Moreover,
one sees that for a suitable χ the would-be triplet Nambu-
Goldstone boson state A0 can be massive enough to have
escaped detection at LEP.

III. WHEN IS THE SCALAR POTENTIAL
BOUNDED FROM BELOW?

We now turn to the important issue of the stability of the
VEV solution mentioned above. As long as all scalar masses
are positive, the potential will not roll down classically to
another minimum, but this still leaves open the possibility of
a tunneling to a deeper minimum. In order for this not to
happen, it is necessary (although not sufficient) that the
potential does not fall to infinitely negative values in any
VEV direction. In other words, we must ensure that V is
bounded from below, which is equivalent to the requirement
that the quartic part of the potential in Eq. (3), Vð4Þ, must be
positive for all nonzero field values. In the following then,
we shall derive the necessary and sufficient conditions for
this to be true, correcting the result obtained in [15].
While there are ten real degrees of freedom (four in H

plus six in Δ), V depends on them only through four
quantities: H†H, TrðΔ†ΔÞ, H†ΔΔ†H and TrðΔ†ΔΔ†ΔÞ.
In the following, we shall take TrðΔ†ΔÞ to be nonzero.1

We now define r, ζ and ξ as the following non-negative
dimensionless quantities [15]:

H†H ≡ rTrðΔ†ΔÞ; ð8Þ

TrðΔ†ΔΔ†ΔÞ≡ ζ½TrðΔ†ΔÞ�2; ð9Þ

H†ΔΔ†H ≡ ξTrðΔ†ΔÞðH†HÞ; ð10Þ

such that the quartic part of the potential reads

Vð4Þ

½TrðΔ†ΔÞ�2 ¼
1

2
λHr2 þ λHΔrþ λ0HΔξrþ

λΔ
2
þ λ0Δ

2
ζ: ð11Þ

This expression must be positive for all allowed values of r,
ζ and ξ. Consider first r: from Eq. (8) it is clear that r can
take any non-negative value which means that, given the
quadratic dependence of Eq. (11) on r that one must have

0 < λH; ð12Þ

0 < λΔ þ λ0Δζ ≡ F1ðζÞ; ð13Þ

0 < λHΔ þ ξλ0HΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλΔ þ λ0ΔζÞ

q
≡ F2ðξ; ζÞ: ð14Þ

These conditions match those given in [15] with a different
notation. However, what follows differs with [15] in a
crucial way.
In order to obtain the necessary and sufficient conditions

for the quartic couplings λi which yield a potential bounded
from below, one needs to get rid of ζ and ξ from conditions

TABLE I. Scalar mass eigenstates in the type-II seesaw model.
We have defined the dimensionless parameters α≡ vΔ=vH and
χ ≡mHΔ=vΔ.

Mass eigenstate ϕ Mass squared m2
ϕ Composition

Hþþ v2Hðχ2 − λ0HΔÞ Δþþ

Gþ 0 Hþ þ ffiffiffi
2

p
αΔþ

Hþ v2Hðχ2 −
λ0HΔ
2
Þ Δþ −

ffiffiffi
2

p
αHþ

G0 0 H0
I þ 2αΔ0

I

A0 1
2
v2Hχ Δ0

I − 2αH0
I

h0 2λHv2H H0
R þ 2α

χ−2λHΔ−2λ0HΔ
χ−4λH

Δ0
R

H0 1
2
v2Hχ Δ0

R − 2α
χ−2λHΔ−2λ0HΔ

χ−4λH
H0

R

1If this is not the case, the quartic part of the potential is
reduced to 1

2
λHðH†HÞ2 in which case it is clear that one must

have λH > 0.
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(12)–(14). Note that these conditions must be respected
for all ζ and ξ, so one needs to find what are the allowed
values of ðξ; ζÞ from the definition of these two quantities.
We do not show the details here, but the reader can
convince her/himself that ξ can take any value between 0
and 1 and ζ can be anywhere between 1=2 and 1, as noted
in [15].
However, the crucial point is that this does not mean that

ðξ; ζÞ can be anywhere in the rectangle with vertices in
(0, 1

2
) and (1, 1). Indeed, from Eqs. (9) and (10) it can be

shown that the possible values of ðξ; ζÞ correspond to

2ξ2 − 2ξþ 1 ≤ ζ ≤ 1; ð15Þ

which defines the shaded region depicted in Fig. 1. Since the
function F1ðζÞ defined in (13) is monotonic, the condition
“0 < F1ðζÞ for all ζ” is equivalent to “0 < F1ð12Þ and
0 < F1ð1Þ” which translates into the requirement

0 < λΔ þ 1

2
λ0Δ and 0 < λΔ þ λ0Δ: ð16Þ

As for the condition in (14), note that “0 < F2ðξ; ζÞ for
all ξ and ζ” is trivially the same as 0 < minF2ðξ; ζÞ, so one
is left with the job of finding the minimum of F2.
Furthermore, since this function is monotonic in both ξ
and ζ, we know that its minimum occurs at the border of the
shaded region in Fig. 1; to be more specific, this argument
shows that the minimum of the function must occur
somewhere along the line defined by ζ ¼ 2ξ2 − 2ξþ 1,
with 0 ≤ ξ ≤ 1. Then we may take

F̂ðξÞ≡ F2ðξ; 2ξ2 − 2ξþ 1Þ ð17Þ

noticing that the sign of F̂00ðξÞ is constant—it is the same as
the one of λ0Δ. Therefore, one can always find a value ξ0
where F̂0ðξ0Þ ¼ 0. Such a ξ0 will be a minimum if

F̂00ðξ0Þ > 0 and, furthermore, one must also make sure
that 0 ≤ ξ0 ≤ 1 [or equivalently that F̂0ð0Þ < 0 and
F̂0ð1Þ > 0 since F̂0 is a monotonous function]. This will
be true if and only if λ0Δ

ffiffiffiffiffiffi
λH

p
> jλ0HΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

p
, in which

case

F̂ðξ0Þ ¼ λHΔ þ 1

2
λ0HΔ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λHλ0Δ − λ0HΔ

2Þ
�
2
λΔ
λ0Δ

þ 1

�s
:

ð18Þ

The remaining possibility is that the minimum of F̂ in the
interval ξ ∈ ½0; 1� is at ξ ¼ 0 or 1, from which we get the
constraints that both F̂ð0Þ ¼ λHΔ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λHðλΔ þ λ0ΔÞ
p

and
F̂ð1Þ ¼ λHΔ þ λ0HΔ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λHðλΔ þ λ0ΔÞ
p

should be positive
quantities.
In summary, the potential will be bounded from below if

and only if

λH; λΔ þ λ0Δ; λΔ þ 1

2
λ0Δ; λHΔ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλΔ þ λ0ΔÞ

q
; λHΔ þ λ0HΔ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλΔ þ λ0ΔÞ

q
> 0

and

�
λ0Δ

ffiffiffiffiffiffi
λH

p
≤ jλ0HΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

q
or 2λHΔ þ λ0HΔ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λHλ0Δ − λ0HΔ

2Þ
�
2
λΔ
λ0Δ

þ 1

�s
> 0

�
: ð19Þ

The condition in (19) should be compared with the one used up to now in the literature, where the last line of (19) is
replaced by F2ð0; 12Þ; F2ð1; 12Þ > 0, which translates into

λHΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λH

�
λΔ þ 1

2
λ0Δ

�s
; λHΔ þ λ0HΔ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λH

�
λΔ þ 1

2
λ0Δ

�s
> 0: ð20Þ

From the discussion so far it should be clear that this
condition is too strict: potentials V which obey it are
necessarily bounded from below, but not all potentials
which are bounded from below do obey it. Indeed, the

constraint in (20) assumes that by varying the fields H and
Δ the point ðξ; ζÞ can be anywhere within the dashed
rectangle in Fig. 1, when in reality only the shaded region is
allowed, with two thirds of the area of the rectangle.

FIG. 1 (color online). The shaded region is the allowed one for
the parameters ðξ; ζÞ.
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Restricting to the five-dimensional box region where
jλij ≤ 1, a numerical scan indicates that close to 5% of
the valid points are excluded by the constraint in (20),
although in certain special scenarios, as in Fig. 2, this
percentage can be significantly larger.

IV. REGIONS OF STABILITY AND
PERTURBATIVITY

Now that we have the correct stability conditions we
consider the renormalization group evolution of the triplet
seesaw model. Ignoring all Yukawa couplings except the
one of the top, using [17–19] one finds the renormalization
group equations of the model to be the following (see
also [20,21])2:

ð4πÞ2 dgi
dt

¼ big3i with bi ¼
�
47

10
;−

5

2
;−7

�
; ð21Þ

ð4πÞ2 dλH
dt

¼ 27

100
g41 þ

9

10
g21g

2
2 þ

9

4
g42 −

�
9

5
g21 þ 9g22

�
λH

þ 12λ2H þ 6λ2HΔ þ 6λHΔλ
0
HΔ þ 5

2
λ0HΔ

2

þ 12λHy2t − 12y4t ; ð22Þ

ð4πÞ2 dλHΔ

dt
¼ 27

25
g41 −

18

5
g21g

2
2 þ 6g42 −

�
9

2
g21 þ

33

2
g22

�
λHΔ

þ 6λHλHΔ þ 2λHλ
0
HΔ þ 4λ2HΔ

þ 8λΔλHΔ þ 6λ0ΔλHΔ þ λ0HΔ
2 þ 3λΔλ

0
HΔ

þ λ0Δλ
0
HΔ þ 6λHΔy2t ; ð23Þ

ð4πÞ2 dλ
0
HΔ
dt

¼ 36

5
g21g

2
2 −
�
9

2
g21 þ

33

2
g22

�
λ0HΔ þ 2λHλ

0
HΔ

þ 8λHΔλ
0
HΔ þ 4λ0HΔ

2 þ 2λΔλ
0
HΔ

þ 4λ0Δλ
0
HΔ þ 6λ0HΔy

2
t ; ð24Þ

ð4πÞ2 dλΔ
dt

¼ 108

25
g41 −

72

5
g21g

2
2 þ 30g42 −

�
36

5
g21 þ 24g22

�
λΔ

þ4λ2HΔ þ4λHΔλ
0
HΔ þ 14λ2Δ þ 12λΔλ

0
Δ þ 3λ0Δ

2;

ð25Þ

ð4πÞ2 dλ
0
Δ

dt
¼ 144

5
g21g

2
2 −12g42 þ2λ0HΔ

2 −
�
36

5
g21 þ 24g22

�
λ0Δ

þ 12λΔλ
0
Δ þ 9λ0Δ

2: ð26Þ

Using these equations and requiring stability of the scalar
potential in the energy range going from the top mass all the
way to the Planck mass one obtains the regions of quartic
couplings indicated in green in Fig. 3. The right panel
corresponds to the use of the stability conditions used in the
literature, while the left panel refers to our new and less
restrictive stability conditions. On the other hand the
instability regions are indicated in red. Finally those cases
which correspond to a stable vacuum but involve non-
perturbative dynamics because jλij >

ffiffiffiffiffiffi
4π

p
for some quartic

coupling λi are indicated in orange. Notice also that the
stable region becomes bigger if one imposes stability only
up to some intermediate scale, chosen to be 1012 GeV, as
indicated by the light green region in Fig. 3.

FIG. 2 (color online). Regions of stability (green) and insta-
bility (red) of the potential for λΔ ¼ − 1

3
, λ0Δ ¼ 3

4
and λH ≈ 1

4
. The

two plots make it possible to compare the correct stability
conditions as given in Eq. (20) (left) with the ones in use in
the literature (right).

FIG. 3 (color online). Regions of stability (dark green) and
instability (red) considering the energy range going from the top
mass all the way to the Planck mass. Those cases which (appear
to) lead to a stable vacuum but involve nonperturbative dynamics
because jλij >

ffiffiffiffiffi
4π

p
for some quartic coupling λi are shown in

orange. If one requires stability only up to 1012 GeV the stable
region becomes bigger, as indicated by the light green region. The
dashed lines indicate the border between the stable and unstable
regions at low energies (see Fig. 2).

2Using the dictionary in Appendix A, it can be checked that
these expressions match those in (3.2) of [8], the only difference
being that in ð4πÞ2 dλ4

dt , instead of a term þ 9
5
g02, we get þ3g02.
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V. PHENOMENOLOGICAL PROFILE OF THE
TRIPLET SEESAW HIGGS SECTOR

Since its original proposal there have been many
phenomenological studies of the scalar sector of the triplet
model, as it constitutes an essential ingredient of the type-II
seesaw mechanism. For the benefit of the reader we present
in Fig. 5 of Appendix B a schematic view of the scalar
boson mass spectrum in the model given in Table I. One
sees that, in addition to the SM Higgs boson found, one has
heavy neutral (H0,A0), singly (Hþ) and doubly charged
(Hþþ) scalar bosons, whose mass is controlled by χ and
with a small splitting which should not be bigger than
indicated on Fig. 4 if the model is to remain perturbative all
the way up to the Planck scale.
The doubly charged state comes just from the triplet, while

all other heavy states come mainly from the triplet, but with a
small admixture with the standard model Higgs boson,
controlled by the ratio of VEVs α≡ vΔ=vH. Note that the
state A0 is identified with the would-be triplet Nambu-
Goldstone boson associated to spontaneous lepton number
violation which becomes massless as vΔ → 0. All of these
scalar states have a nearly common mass, with a small
splitting, both indicated in Fig. 5. This follows from the
consistency requirements such as perturbativity studied in the
previous section and displayed in Fig. 4. Hence, altogether,
once the lightest Higgs boson discovered at the LHC is
accommodated, one can describe fairly well the scalar sector
with just three parameters (α, λ0HΔ and χ). This is in sharp
contrast with other extended electroweak breaking potentials,
such as those of supersymmetric models.
For example the singly and doubly charged members of

the triplet have been searched for at accelerators such as

LEP as well as hadron colliders [22–25]. If sufficiently
light, say below 400 GeVor so, the Hþþ will be copiously
produced at the LHC, which could enable interesting
measurements of its branching ratios of the various leptonic
decay channels [26], as well as the leading WW decay
branch [27,28]. The former are determined by the triplet
Yukawa couplings. These determine also the pattern of
lepton flavor violation decays. Given the small neutrino
masses indicated by experiment [29–32] and our
assumption that the scalars are in the TeV region, these
Yukawa couplings are expected to be too small to cause
detectable signals.
The near degeneracy of the heavy scalars implies that,

once the constraints on the charged Higgs bosons are
imposed, by choosing a suitably large χ, the neutral ones,
including the would-be Majoron, will also have escaped
detection at LEP. Moreover, the charged components in the
Higgs triplet model provide a potential enhancement of the
H → γγ decay branching [8,33,34] ratio, which can be
probed at the LHC. Last but not least, the triplet introduces
changes to the S, T, U oblique parameters.3

All of the above phenomena should be studied within
parameter regions where the electroweak symmetry break-
ing is consistent and, as we saw in Fig. 3, consistency
implies strong restrictions on quartic parameter values.
Although the relevant restrictions apply mainly to the
quartic scalar interactions, and in principle do not translate
directly into stringent constraints upon the Higgs boson
masses, one has an important restriction on the splitting
between the masses of the heavy states, such as the singly
and doubly charged scalar bosons, illustrated by the funnel
region depicted in Fig. 4. Performing a dedicated phenom-
enological study of the scalar sector lies outside the scope
of this paper but we hope to have given a helpful guideline.
One last word regarding the naturalness of the scalar

potential in the presence of the cubic mass parameter. This
follows from the principle that its removal would lead to a
theory of enhanced symmetry, in which neutrinos would be
massless and lepton number would be conserved. In any
case, a dynamical completion of this theory in which the
cubic term is replaced by a quartic one is possible and has
in fact been suggested long ago [3]. This would imply the
presence of a mainly singlet Nambu-Goldstone boson with
implications for Higgs decays such as invisibly decaying
Higgs bosons [35–37] whose detailed analysis is more
general than the one recently given in Ref. [14] and lies
outside the scope of the present paper.

VI. FINAL REMARKS

In this paper, we have considered the consistency of the
type-II seesaw model symmetry breaking. We included
under consistency both the requirements of boundedness

FIG. 4 (color online). The coupling λ0HΔ must be roughly
between −0.85 and 0.85 if all quartic couplings are to remain
small up to mPlanck (jλij <

ffiffiffiffiffi
4π

p
). This perturbativity requirement

strongly constrains the mass splitting of the triplet components,
particularly if one considers the LHC lower bound mHþþ ∼
400 GeV from direct searches of Hþþ decaying in to leptons
[22,23] (*assuming 100% branching fractions). This plot also
assumes that mHþ > 100 GeV.

3In practice these are expected to be small, just like the changes
in the ρ parameter discussed previously.
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from below as well as perturbativity up to some scale. We
found that the bounded-from-below conditions for the
scalar potential in use in the literature are not correct.
For definiteness and simplicity we focused on the case of
explicit violation of lepton number. We discussed some
scenarios where the correction we have found can be
significant. Moreover we have sketched the typical scalar
boson profile expected by consistency of the vacuum.
Before closing we note that the restrictions discussed in
this paper do not depend on the hypercharge of the scalar

triplet Δ, hence the same set of conditions also applies for
any other model which extends the scalar sector of the
Standard Model with an SUð2ÞL triplet.
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APPENDIX A: CONVERSION BETWEEN DIFFERENT NOTATIONS

Given that different notations are used in the literature to write down the different terms in the scalar potential of the
model, we provide here Table II to facilitate comparisons.

APPENDIX B: REPRESENTATIVE TRIPLET SEESAW SCALAR MASS SPECTRUM

In order to grasp in a visual manner the scalar spectrum of the model (see Table I) as well as the effect on the degeneracy
of the three new scalars of having λ0HΔ constrained to be roughly between −0.85 and 0.85, we present here Fig. 5.

TABLE II. Translation between the notation used in this paper and the one used by other authors. Note that in the cases marked with an
asterisk it is also necessary to flip the sign of the doubly charged component of the triplet.

Source μ2H μ2Δ mHΔ λH λHΔ λ0HΔ λΔ λ0Δ
[15] m2

H M2
Δ

1
2
μ 1

2
λ λ1 λ4 2λ2 2λ3

[8]* −m2 M2
ffiffiffi
2

p
μ 2λ1 λ4 − λ5 2λ5 2λ2 þ 2λ3 −2λ3

[20]* −m2
ϕ M2

ξ −ðλHMξÞ� 1
2
λ λϕ − 1

2
λT λT 4λC þ 1

2
λξ −4λC

[9]* −m2
Φ M2

Δ
ffiffiffi
2

p
Λ6 λ λ4 þ λ5 −2λ5 λ1 þ λ2 −λ2

FIG. 5 (color online). Schematic view of the scalar boson mass spectrum in the triplet seesaw model. The heavy scalars are nearly
degenerate. The ordering of the heavy scalar masses depends on the sign of λ0HΔ as shown in Table I. Recall that χ refers to the ratio
mHΔ=vΔ.
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