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In order to significantly reduce the fine-tuning associated with the electroweak symmetry breaking in the
minimal supersymmetric standard model (MSSM), we consider not only the minimal gravity mediation
effects but also the minimal gauge mediation ones for a common supersymmetry breaking source at a
hidden sector. In this “minimal mixed mediation model,” the minimal forms for the Kähler potential and the
gauge kinetic function are employed at tree level. The MSSM gaugino masses are radiatively generated
through the gauge mediation. Since a “focus point” of the soft Higgs mass parameter, m2

hu
appears around

3–4 TeVenergy scale in this case, m2
hu

is quite insensitive to top squark masses. Instead, the naturalness of

the small m2
hu

is more closely associated with the gluino mass rather than the top squark mass, unlike the

conventional scenario. As a result, even a 3–4 TeV top squark mass, which is known to explain the
125 GeV Higgs mass at three-loop level, can still be compatible with the naturalness of the electroweak
scale. On the other hand, the requirements of various fine-tuning measures much smaller than 100 and
jμj < 600 GeV constrain the gluino mass to be 1.6 TeV ≲m~g ≲ 2.2 TeV, which is well inside the
discovery potential range of LHC Run II.
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I. INTRODUCTION

How to naturally keep the small Higgs boson mass
against its quadratically divergent radiative corrections has
been one of the most important issues in the particle
physics community for the last four decades. Since this
question raised in the Standard Model (SM) is associated
with stabilization of the EW scale against the grand unified
theory (GUT) scale or the Planck scale, many ideas and
theories beyond the SM and towards the fundamental
theory have been motivated and suggested in order to
address this question. The supersymmetric (SUSY) reso-
lution to it is to cancel the quadratic divergences by
introducing superpartners with spins different by 1=2 from
those of the SM particles, and their interactions with the
same strength as those of the SM. All of them can
consistently be controlled within the SUSY framework [1].
Since the top quark and its superpartner the top squark

dominantly contribute to the radiative Higgs mass via the
large top quark Yukawa coupling, the top squark mass has
been regarded as a barometer for naturalness of the minimal
SUSY SM (MSSM): a top squark mass lighter than 1 TeV
is quite essential for keeping the naturalness of the EW
scale and the Higgs boson mass. However, the experimental
mass bound on the top squark has already exceeded
700 GeV [2]. Thus, it would be very timely to ask whether

the low energy SUSY can still remain natural even with a
somewhat heavy top squark mass greater than 1 TeV.
On the other hand, the gluino is not directly involved in

this issue, because it does not couple to the Higgs boson at
tree level. Instead, the gluino mass dominantly influences
the renormalization group (RG) evolution of the top squark
mass parameters. In this sense, the gluino affects the Higgs
mass parameter m2

hu
just indirectly in the ordinary MSSM.

In this paper, however, we attempt to investigate another
possibility: the gluino can play a more important role in the
naturalness of the small Higgs boson mass. As a conse-
quence, the top squark mass can be much less responsible
for it: it can be much heavier than the present experimental
bound. Indeed, the gluino can be more easily explored than
the top squark at the Large Hadron Collider (LHC). Thus, if
a relatively light gluino mass turns out to be needed, this
scenario could readily be tested at LHC Run II.
Because of the top quark Yukawa coupling constant yt of

order unity, as mentioned above, the top quark and top
squark make the dominant contributions not only to the
renormalization of a soft mass parameter of the Higgs hu
(≡Δm2

hu
), but also to the radiative physical Higgs mass

(≡Δm2
H) [1,3]:
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wheremt ( ~mt) denotes the top quark (top squark) mass, and
vh is the vacuum expectation value (VEV) of the Higgs
boson, vh ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhui2 þ hhdi2

p
≈ 174 GeV with tan β≡

hhui=hhdi. For simplicity, here we assumed that the
SUð2ÞL-doublet and SUð2ÞL-singlet top squarks (“LH
and RH top squarks”) are degenerate, and the “A-term”
coefficient corresponding to the top quark Yukawa cou-
pling, At, dominates over μ · cot β, where μ is the
“Higgsino”mass. By introducing SUSY, thus, the quadratic
dependence on the ultraviolet (UV) cutoff Λ in the SM for
Δm2

hu
j1-loop is replaced by a logarithmic one as seen in

Eq. (1). For a small enough Δm2
hu
j1-loop, however, the top

squark mass should necessarily be small enough.
Otherwise, the Higgs mass parameters, m2

hu
and m2

hd
,

should be finely tuned with μ to yield the measured value
of the Z boson mass mZ ≈ 91 GeV, because they are
related to each other via the minimization condition of
the Higgs potential [1],

1

2
m2

Z ¼ m2
hd
−m2

hu
tan2 β

tan2 β − 1
− jμj2: ð3Þ

As seen in Eq. (2), the radiative correction to the physical
Higgs mass depends logarithmically on the top squark
mass. Actually the tree level Higgs mass in the MSSM
should be lighter even than the Z boson mass
(< mZ · cos 2β) [1]. Thus, the radiative Higgs mass
Eq. (2) is also quite essential for explaining the observed
Higgs boson mass. In view of Eq. (2), however, the recently
measured Higgs boson mass, 125 GeV [4] is indeed too
heavy as a SUSY Higgs mass, because it would require a
too heavy top squark mass (“little hierarchy problem”).
Many SUSY models have been proposed for raising the
Higgs boson mass by extending the MSSM, but still
assuming a relatively light top squark, ~mt ≲ 1 TeV [5].
However, the experimental mass bound on the top squark
has already exceeded 700 GeV [2], as mentioned above. Of
course, the second term in Eq. (2) could be helpful for
raising the Higgs mass, when it is almost maximized,
A2
t = ~m2

t ≈ 6 [1,3]. But it is not easy to realize at low energies
from a UV model via its RG running, unless we suppose a
tachyonic top squark at the GUT scale (MG) [6].
According to the recent analysis based on three-loop

calculations in Ref. [7], a 3–4 TeV top squark mass can
account for the 125 GeV Higgs boson mass with ignorable
At terms. Such a heavy top squark mass would give rise to a
more serious fine-tuning problem associated with the light
Z boson mass as seen in Eqs. (1) and (3), particularly, when
the cutoff scale Λ is about GUT scale (∼1016 GeV):
apparently a fine-tuning of order 10−4 (or Δm2

0
∼ 10þ4 in

terms of the fine-tuning measure defined later) looks
unavoidable in the MSSM. To more precisely discuss
the UV dependence of m2

hu
, addressing the little hierarchy

problem, however, one should analyze the full RG

equations under a given specific UV model. If a SUSY
UV model turns out to be simple enough, addressing the
above question, SUSY could still be recognized as an
attractive solution to the gauge hierarchy problem.
A potentially promising UV model is the “focus point

(FP) scenario” [8]. Since it is based on the minimal gravity
mediation (mGrM) of SUSY breaking, all the soft squared
masses, including the two Higgs mass parameters m2

hu
and

m2
hd
, LH and RH top squark’s squared massesm2

q3 and m
2
uc
3
,

etc., as well as the MSSM gaugino masses, take the
universal forms [1,9]:

m2
hu

¼ m2
hd

¼ m2
q3 ¼ m2

uc
3
¼ � � �≡m2

0 and

M3 ¼ M2 ¼ M1 ≡m1=2; ð4Þ

where M3;2;1 denote the gluino, wino, and bino masses,
respectively. In this case, as noticed in Ref. [8], the RG
flows of m2

hu
converge about the Z boson mass scale to a

small negative value, regardless of its initial values taken at
the GUT scale, i.e., various m2

0 values, only if the At and
m1=2 are sufficiently suppressed. Since m2

hu
is almost

independent of m2
0, a small enough m1=2 turns out to be

responsible for a small negative m2
hu
, naturally explaining

the smallness of the EW scale or mZ compared to the GUT
or Planck scale. Such a parameter choice can indeed reduce
the fine-tuning considerably. Several different definitions of
the fine-tuning report a similar tendency around the “FP
region” in the MSSM parameter space [10]. On the other
hand, the low energy values of other soft mass parameters
such as m2

q3 and m2
uc
3
are very sensitive to m2

0 values. These

features in the mGrM might open a possibility to naturally
explain the smallness of m2

hu
in contrast to large top squark

mass parameters.
However, the experimental gluino mass bound has

already exceeded 1.3 TeV [11], and so the unified gaugino
mass m1=2 cannot be small any longer. Also the naturalness
on a small A-term would be questionable. Most of all, if the
top squark masses are around 3–4 TeV, they should
decouple below the 3–4 TeVenergy scale from the ordinary
MSSM RG equations, and so the FP behavior of m2

hu
becomes seriously spoiled below the top squark mass scale
[12]. Basically the FP scale in the mGrM is too far below
the top squark mass scale desired for explaining the
125 GeV Higgs boson mass. All such problems in the
FP scenario arise because heavier masses for the Higgs, top
squark, and gluino are experimentally and/or theoretically
compelled.
The best resolution to such problems would be to

somehow push the FP scale from the Z boson mass scale
to the desired top squark mass scale (“shifted FP” [13])
such that the m2

0 dependence of m2
hu

becomes suppressed
before top squarks are decoupled from the RG equation of
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m2
hu

[12,13]. Actually, it is indispensable for restoring the
naturalness of the low energy SUSY in the framework of
the FP scenario. m2

hu
below the top squark mass scale or at

the Z boson mass scale can be estimated using the
Coleman-Weinberg potential [1,14]:

m2
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16π2
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; ð5Þ

where the cutoff ΛT is set to the top squark decoupling scale
(≈ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimq3muc

3

p ). The last term of the second line in Eq. (5) is

relatively suppressed. Since the m2
0 dependence of top

squark masses would be loop suppressed, m2
hu

needs to be
well focused around ΛT . Due to the additional negative
contribution to m2

hu
ðmZÞ below ΛT, a small positive

m2
hu
ðΛTÞ would be more desirable.

In order to push the FP scale up to the desired top squark
mass scale, 3–4 TeV, we will consider the gauge mediation
effects as well as the mGrM effects for a common SUSY
breaking source at the hidden sector, introducing some
messenger fields: we will attempt to combine the two
representative SUSY breaking mediation scenarios, the
mGrM and the minimal gauge mediation (mGgM) at the
GUT scale in a single supergravity (SUGRA) framework
[13]. We call it the “minimal mixed mediation” of SUSY
breaking. For a qualitative understanding on the FP
behaviors, in this paper we will present the semianalytic
solutions to the relevant RG equations for small tan β cases.
Also we will perform their full numerical analyses for large
tan β cases. Based on these results, we will explore the
parameter space that can naturally explain the small Higgs
mass parameter, and then derive the gluino mass bound
consistent with it.
This paper is organized as follows: in Sec. II we will

present semianalytic RG solutions for m2
hu

and the top
squark masses in the MSSM with a small tan β. They will
be utilized in the subsequent sections. We will leave the
details of their derivations to the Appendix. In Sec. III, we
will discuss why the fine-tunings become more serious in
the mGrM with relatively heavy top squark masses. In
Sec. IV, we will introduce the minimal mixed mediation of
SUSY breaking and show that it significantly reduces the
fine-tunings of the MSSM. In this section, we will derive a
proper gluino mass bound consistent with the naturalness
of the EW scale and the Higgs boson mass. Section V will
be devoted to the Conclusion.

II. SEMIANALYTIC RG SOLUTIONS

In this section, we will first present our semianalytic
solutions to the RG equations of some soft SUSY breaking
mass parameters in small tan β cases. When tan β is large,
the expressions on them are not simple enough, and so one
should perform a full numerical analysis. As will be seen
later, however, large tan β cases turn out to be much more
useful for reducing the fine-tuning of the EW scale.
Nonetheless, discussions on the small tan β case would
be helpful for a qualitative understanding on the structure of
the FP ofm2

hu
and for getting an intuition on how to resolve

the problem.
When tan β is small enough and the RH neutrinos are

decoupled (by assuming their small Yukawa couplings), the
RG evolutions of the soft mass parameters, m2

q3 , m2
uc
3
,

m2
hu
, and At are described with the following simple

equations [1]:

16π2
dm2

q3

dt
¼ 2y2t ðXt þA2

t Þ−
32

3
g23M

2
3 − 6g22M

2
2 −

2

15
g21M

2
1;

ð6Þ

16π2
dm2

uc
3

dt
¼ 4y2t ðXt þ A2

t Þ −
32

3
g23M

2
3 −

32

15
g21M

2
1; ð7Þ

16π2
dm2

hu

dt
¼ 6y2t ðXt þ A2

t Þ − 6g22M
2
2 −

6

5
g21M

2
1; ð8Þ

8π2
dAt

dt
¼ 6y2t At −

16

3
g23M3 − 3g22M2 −

13

15
g21M1; ð9Þ

where t parametrizes the renormalization scale Q,
t − t0 ¼ log Q

MG
, and Xt is defined as m2

q3 þm2
uc
3
þm2

hu
.

Here we neglected the bottom quark Yukawa coupling yb,
the sbottom quark’s squared massm2

dc
3
, and also the leptonic

contributions due to the smallness of tan β. In the above
equations, the RG evolutions for the MSSM gauge cou-
plings g3;2;1 and the gaugino massesM3;2;1 are already well
known [1]:

g2aðtÞ ¼
g20

1 − g2
0

8π2
baðt − t0Þ

; and
MaðtÞ
g2aðtÞ

¼ m1=2

g20
; ð10Þ

where g0 and m1=2 denote the unified gauge coupling
constant and the unified gaugino mass, respectively, and ba
(a ¼ 3; 2; 1) means the beta function coefficients for
the MSSM field contents, ðb3; b2; b1Þ ¼ ð−3; 1; 33

5
Þ. For

the full RG equations valid when tan β is large, refer to the
Appendix of Ref. [12]. The semianalytic solutions for m2

q3,
m2

uc
3
, and m2

hu
turn out to take the following forms:
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m2
q3ðtÞ ¼ m2
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where the subscript 0 in m2
q30

, m2
uc
3
0, m2

hu0
, and X0

(≡m2
q30

þm2
uc
3
0 þm2

hu0
) means the values of the correspond-

ing mass parameters at the GUT scale, or t ¼ t0 ≡
logðMG=GeVÞ. In these solutions, FðtÞ is given by
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where A0 ≡ Atðt ¼ t0Þ, and GA and G2
X are defined as

GAðtÞ≡
�
16

3
g43ðtÞ þ 3g42ðtÞ þ

13

15
g41ðtÞ

�
and

G2
XðtÞ≡

�
16

3
g63ðtÞ þ 3g62ðtÞ þ

13

15
g61ðtÞ

�
; ð15Þ

respectively. For details of the above solutions, refer to the
Appendix. Numerical calculation shows that the sign of
FðtÞ is negative, and jFðtÞ=2j is larger than the second line
of Eq. (13), which is positive. Consequently larger values
of ðm1=2=g20Þ and A0 lead to large negative values of m2

hu
at

low energies [12].
The initial values, m2

q30
, m2

uc
3
0, and m2

hu0
, should be

determined by a UV model. They would be associated
with a SUSY breaking mechanism. We will discuss it in the
following sections.

III. MINIMAL GRAVITY MEDIATION

The FP scenario is based on the mGrM model. In this
section, we will first review the mGrM of SUSY breaking,
particularly investigating the UV boundary conditions on
the relevant soft mass parameters, and then discuss the FP
in the mGrM model.

A. Basic setup in the minimal gravity mediation

The N ¼ 1 SUGRA Lagrangian is described basically
with the Kähler potential K, superpotential W, and gauge
kinetic function fab. In the mGrM scenario or minimal
SUGRA (mSUGRA) model, particularly, the minimal form
of the Kähler potential is employed, and the superpotentials
of the hidden and observable sectors are separated:

K¼
X
i

jzij2þ
X
r

jϕrj2; W¼WHðziÞþWOðϕrÞ; ð16Þ

where zi (ϕr) denotes scalar fields in the hidden (observ-
able) sector. The kinetic terms of zi and ϕr, hence, have the
canonical form. For the hidden sector scalar fields zi’s and
the hidden sector superpotential WH, nonzero VEVs are
assumed [9]:

hzii¼biMP; h∂ziWHi¼a�i mMP; hWHi¼mM2
P; ð17Þ

where ai and bi are dimensionless numbers and MP

(≈2.4 × 1018 GeV) means the reduced Planck mass.
Then, hWHi or m yields the gravitino mass, m3=2 ¼
ehKi=ð2MPÞjhWij=M2

P ¼ e
P

i
jbij2=2m.

The soft SUSY breaking terms can read from the scalar
potential in SUGRA:
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VF ¼ e
K
M2
P

�X
i

jFzi j2 þ
X
r

jFϕr
j2 − 3

M2
P
jWj2

�
; ð18Þ

where the “F-terms,” FX [¼ ðDXWÞ� ¼ ð∂XWþ
∂XKW=M2

PÞ�], are, in the minimal SUGRA, given by

F�
zi ¼

∂WH

∂zi þ z�i
W
M2

P
¼ MP

�
ða�i þ b�i Þmþ b�i

WO

M2
P

�
;

F�
ϕr

¼ ∂WO

∂ϕr
þ ϕ�

r
W
M2

P
¼ ∂WO

∂ϕr
þ ϕ�

r

�
mþWO

M2
P

�
: ð19Þ

Note that VEVs of Fzi are of order OðmMPÞ. For the
vanishing cosmological constant (C.C.), a fine-tuning
between hFzii and hWHi,

P
ihjFzi j2i ¼ 3jhWHij2=M2

P, orP
ijai þ bij2 ¼ 3, is required from Eq. (18). Neglecting the

Planck-suppressed nonrenormalizable terms, Eq. (18) is
rewritten as [9]

VF ≈ j∂ϕr
~WOj2 þm2

0jϕrj2
þm0½ϕr∂ϕr

~WO þ ðAΣ − 3Þ ~WO þ H:c:�; ð20Þ

where summations for ϕr are assumed. AΣ is defined as
AΣ ≡P

ib
�
i ðai þ biÞ andm0 is identified with the gravitino

mass m3=2 (¼ e
P

i
jbij2=2m). ~WO (≡e

P
i
jbij2=2WO) means

the rescaledWO. From now on, we will drop out the “tilde”
for simplicity. In Eq. (20), the first term is nothing but the
F-term scalar potential in global SUSY. The second and
other terms imply that the soft scalar mass terms and soft
SUSY breaking A-terms parametrized with m0 are univer-
sal at the GUT scale in the mGrM. If there are no quadratic
or higher powers of ϕr in WO, one can get negative
(positive) A-terms with AΣ < 2 (AΣ > 2). Here the univer-
sal A-parameter (≡A0 ¼ At) does not include Yukawa
coupling constants, but it is proportional to m0. We will
set the universal A-term to

A0 ≡ aYm0; ð21Þ

where aY is a dimensionless number. Using the
vanishing C.C. condition, the universal soft mass param-
eter, m0 (¼ ehKi=ð2M2

PÞhWHi=M2
P) can be expressed as

ehKi=ð2M2
PÞðPijhFziij2Þ1=2=

ffiffiffi
3

p
MP. It is the conventional

form of m0 in the mGrM scenario.
In N ¼ 1 SUGRA, the gauge kinetic function fab, which

is a holomorphic function of scalar fields, not only
determines the form of the gauge fields’ kinetic terms
[¼ − 1

4
ðRefabÞFaμνFb

μν], but also contributes to the gaugino
mass term [9]:

MP

4
eG=ð2M2

PÞ ∂f�ab∂z�i
∂G
∂zi λ

aλb ¼ 1

4
e
P

i
jbij2=2 ∂f�ab∂z�i F�

ziλ
aλb;

ð22Þ

where G is defined as G≡ K þM2
P logðW=M3

PÞ, and λa;b

stand for the gaugino fields. If SUSY is broken (Fzi ≠ 0)
and the gauge kinetic function is nontrivial (∂fab=∂zi ≠ 0),
the gaugino masses can be generated. In the mGrM
scenario, the unified gaugino mass m1=2 is regarded as
an independent parameter, assuming the canonical kinetic
terms for the gauge fields. In our model that will be
discussed in Sec. IV, however, we will employ the minimal
form of the gauge kinetic function (¼ δab) at tree level: the
gaugino masses can be generated radiatively.

B. Focus point in the minimal gravity mediation

As seen in Eq. (20), the soft SUSY breaking masses
squared for the superpartners of chiral fermions are
universal at the GUT scale in the mGrM. Accordingly,
the m2

q30
, m2

uc
3
0, and m

2
hu0

in Eqs. (11), (12), and (13) should
be set to be the same as m2

0 in the mGrM:

m2
q30

¼ m2
uc
3
0 ¼ m2

hu0
¼ m2

0; and so X0 ¼ 3m2
0: ð23Þ

Thus, the semianalytic RG solutions take the following
form:

m2
hu
ðtÞ ¼ 3m2

0

2

�
e

3

4π2

R
t

t0
dt0y2t −

1

3

�
þ FðtÞ

2
−
�
m1=2

g20

�
2

×

�
3

2
fg42ðtÞ − g40g þ

1

22
fg41ðtÞ − g40g

�
ð24Þ

and

fm2
q3ðtÞ þm2

uc
3
ðtÞg ¼ 3m2

0

2

�
e

3

4π2

R
t

t0
dt0y2t þ 1

3

�
þFðtÞ

2

þ
�
m1=2

g20

�
2
�
16

9
fg43ðtÞ− g40g

−
3

2
fg42ðtÞ− g40g−

17

198
fg41ðtÞ− g40g

�
;

ð25Þ
where FðtÞ has been presented in Eq. (14). The A-term
contributions to the above solutions are all included in FðtÞ.
The independent parameters in Eqs. (24) and (25) are, thus,
m2

0, ðm1=2=g20Þ, and aY : we regard t0 (or MG) as a given
parameter, whose value is determined with the MSSM field
contents and their interactions. Note that the above semi-
analytic solutions are valid only for small tan β cases.
For the solutions in larger tan β cases, numerical analyses
on the full RG equations should be implemented. Most of
all, the above solutions are not valid any longer below the
top squark mass scale, since the top squarks should
decouple from the RG equations: the RG equations should
be modified below that scale.
In the original FP scenario [8], it was pointed out that

e
3

4π2

R
t

t0
dt0y2t in Eq. (24) happens to be almost 1

3
for t ∼ tZ
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[≡ logðMZ=GeVÞ], if the top squarks were not decoupled
and Eq. (24) was valid down to the Z boson mass scale. In
that case, the coefficient of m2

0 in Eq. (24) becomes very
small, and so m2

hu
can almost be independent of m2

0 around
the Z boson mass scale. It implies that a FP of m2

hu
ðtÞ

appears around the Z boson mass scale. Note that the top
squark masses squared are quite sensitive to m2

0 for

e
3

4π2

R
tZ
t0

dt0y2t ≈ 1
3
, as seen in Eq. (25). The coefficient of

ðm1=2=g20Þ2 included in FðtÞ=2, which is generically bigger
than those in the second line of Eq. (24), turns out to be
negative. Unlike the top squark masses, therefore, m2

hu
can

be naturally small at the Z boson mass scale, only if
ðm1=2=g20Þ and aY are small enough.

As mentioned in the Introduction, however, the top
squark mass needs to be about 3–4 TeV for explaining
the 126 GeV Higgs mass. It means that Eqs. (24) and (25)
are valid just down to 3–4 TeV, and below the top squark
mass scale the estimation Eq. (5) should be applied form2

hu
.

This process would leave a sizable coefficient of m2
0 in

m2
hu
ðtZÞ, particularly in large tan β cases. Hence a quite

heavy top squark mass would spoil the FP behavior of
m2

hu
ðtÞ. To get a top squark mass of 3–4 TeV, moreover, m2

0

needs to be large enough in Eq. (25), which could require a
large enough ðm1=2=g20Þ2 for EW symmetry breaking in
large tan β cases.
The coefficients of m2

0; ðm1=2=g20Þ2;…, etc. in Eqs. (24)
and (25) can numerically be calculated:

m2
hu
ðtTÞ ≈ ½0.03 − 0.11a2Y �m2

0 − 0.25

�
m1=2

g20

�
2

− 0.16

�
m1=2

g20

�
aYm0;

fm2
q3ðtTÞ þm2

uc
3
ðtTÞg ≈ ½1.03 − 0.11a2Y �m2

0 þ 1.20

�
m1=2

g20

�
2

− 0.16

�
m1=2

g20

�
aYm0; ð26Þ

which are the values at the top squark decoupling scale,
t ¼ tT ≈ 8.2 (i.e. QT ¼ 3.5 TeV) with tan β ¼ 5. From the
above expression of m2

hu
ðtTÞ, we can expect that a FP of

m2
hu

appears below (above) tT (or QT ¼ 3.5 TeV) when
a2Y < 0.03=0.11 ≈ 0.27 (a2Y ≳ 0.27). As mentioned above,
fm2

uc
3
ðtTÞ þm2

q3ðtTÞg should be constrained to be around

2 · ð3.5 TeVÞ2 in order to get the 126 GeV Higgs boson
mass. While the top squark masses would be frozen, thus,
m2

hu
further decreases below the top squark mass scale

dominantly through the top quark Yukawa coupling:m2
hu
at

the Z boson mass scale can be estimated using Eq. (5). It
has the following structure:

m2
hu
ðtZÞ ¼ Csm2

0 − Cg

�
m1=2

g20

�
2

− CmaYm0

�
m1=2

g20

�
;

ð27Þ

where the coefficients, Cs, Cg, and Cm are approximately
given by

Cs ≈ 0.03 − 0.11a2Y −
3jytj2
16π2

× ð1.03 − 0.11a2YÞ;

Cg ≈ 0.25þ 3jytj2
16π2

× 1.20; and

Cm ≈ 0.16 −
3jytj2
16π2

× 0.16; ð28Þ

for tan β ¼ 5. Since the SUð3Þc gauge coupling becomes
almost unity around the 3.5 TeVenergy scale, ðm1=2=g20Þ in

the above equations can approximately be regarded as the
low energy gluino (running) mass:

m1=2

g20
¼ M3ðtTÞ

g23ðtTÞ
≈M3ðtTÞ: ð29Þ

For m2
0 ≫ M2

3ðtTÞ and a2Y ≪ 1, m2
0 ∼ ð4.2 TeVÞ2–

ð5.6 TeVÞ2 is needed for 3–4 TeV top squark masses in
Eq. (26). Although the semianalytic solutions, Eqs. (24)
and (25), are not valid any longer for large tan β cases, the
basic structure ofm2

hu
ðtZÞ in those cases would still have the

form of Eq. (27), but with different values for Cs, Cg, and
Cm from Eq. (27).
Figure 1 displays the full numerical results on the RG

behaviors of m2
hu
ðtÞ for tan β ¼ 50 (solid lines) and tan β ¼

5 (dotted lines) under various trial m2
0, based on the full

RG equations including yb;τ, Ab;τ, m2
b;τ;hd

, etc., when
ðm1=2=g20Þ ¼ 2.3 TeV and At ¼ aY ¼ 0 at the GUT scale.
In fact the RG runnings ofm2

hu
ðtÞ had to be modified below

the top squark decoupling scale. Nonetheless, we extrapo-
late m2

hu
ðtÞ’s below t ¼ tT, keeping heavy superpartners in

the RG evolutions, in order to discuss the FPs of m2
hu
. As

seen in Fig. 1, the FP appears at a scale relatively close to tT
for tan β ¼ 5, when aY ¼ 0. That is the reason why the
coefficient of m2

0 in m2
hu
ðtTÞ of Eq. (26) is small. For

tan β ¼ 50, thus, we can expect that the coefficient of m2
0 is

quite sizable, since the FP is relatively far from tT .
From Eq. (27), we see that the gluino mass should be

heavier than 1.3 TeV for EW symmetry breaking, i.e.
m2

hu
ðtZÞ < 0 with m2

0 ∼ ð4.5 TeVÞ2 and a2Y ≪ 1. To meet
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the experimental boundM3ðtTÞ > 1.3 TeV, therefore, tan β
should be larger than 5, when top squark masses are
3–4 TeV top squark masses and jaY j ≪ 1. For larger
tan β cases, heavier low energy gluino masses are necessary
for EW symmetry breaking. Since yb;τ, Ab;τ, etc. are quite
small in small tan β cases, however, the RG evolution of
m2

hd
would be negligible and so its low energy values are

almost the same as m2
0. As a result, jμj consistent with

mZ ≈ 91 GeV in Eq. (3) exceeds 900 GeV for tan β ¼ 5

and m2
0 ¼ ð4.5 TeVÞ2. A larger m2

0 or a larger ðm1=2=g20Þ2
requires a larger jμj2 in general.
In fact, the RG equation of μ is completely separated

from those of the soft parameters at one-loop level.
Moreover, its generation scale is quite model dependent.
Thus, we do not discuss them in this paper. To avoid a
potentially problematic fine-tuning issue associated with μ,
however, we will consider only the cases of 1

2
m2

Z=jμj2 >
0.01 or jμj < 600 GeV. Numerical analyses show that tan β
should be larger than 8 for jμj < 600 GeV, when m2

0 ¼
ð4.5 TeVÞ2 and jaY j ≪ 1. In this case, the low energy
gluino mass should be heavier than 1.9 TeV for EW
symmetry breaking.
Since the coefficients of m2

0 change slowly under a small
variation δm2

0, the small change of δm2
hu
under δm2

0 at the Z
boson mass scale is roughly estimated as

δm2
hu

δm2
0

≈ Cs −
aYCm

2m0

�
m1=2

g20

�
; ð30Þ

which makes contribution to the fine-tuning measure [15],

Δm2
0
¼ δ logm2

Z

δ logm2
0

¼ m2
0

m2
Z

δm2
Z

δm2
0

¼ 2

�
m2

0

m2
Z

��ðδm2
hd
=δm2

0Þ − tan2βðδm2
hu
=δm2

0Þ
tan2β − 1

�
: ð31Þ

Note that ðm2
0=m

2
ZÞ is a very large number, because a

quite large m2
0 [ð4.2 TeVÞ2–ð5.6 TeVÞ2] is necessary for a

3–4 TeV top squark mass. Hence, the other parts in Eq. (31)
should sufficiently be suppressed to get a small enough
Δm2

0
. As clearly seen in Eq. (30), the variation of m2

hu
under

δm2
0, ðδm2

hu
=δm2

0Þ cannot be zero at the top squark mass
scale, unless aY is finely tuned. As mentioned above,
moreover, low energy values of m2

hd
are almost the same as

m2
0’s in small tan β cases. Accordingly, ðδm2

hd
=δm2

0Þ would
be about unity in Eq. (31). Therefore,Δm2

0
and jμj cannot be

small enough in small tan β cases, when top squark masses
are 3–4 TeV or heavier.
In large tan β cases, ðδm2

hd
=δm2

0Þ is relatively suppressed
as seen in Eq. (31). In fact,m2

hd
is not focused at all. Hence,

a larger tan β would be more desirable in the FP scenario. In
the case of tan β ¼ 50, for instance, the physical (low
energy running) gluino mass should be heavier than
2.6 TeV (2.2 TeV) for EW symmetry breaking, but lighter
than 2.8 TeV (2.6 TeV) for jμj < 600 GeV, when m2

0 ¼
ð4.5 TeVÞ2 and jaY j ≪ 1. However, the FP scale is
basically too far from the top squark mass scale as shown
in Fig. 1. Consequently, ðδm2

hu
=δm2

0Þ in Eq. (31) or Cs in
Eq. (27) is quite sizable, and so Δm2

0
is hard to be small

enough also in large tan β cases. We should note here that a
sizable Cs in Eq. (27) requires also a sizable Cgðm1=2=g20Þ2
or CmaYðm1=2=g20Þ for EW symmetry breaking.
Table I lists soft squared masses of the top squarks and

Higgs bosons at t ¼ tT ≈ 8.2 (QT ¼ 3.5 TeV) for various
trial m2

0’s and A0, when tan β ¼ 50 andM3ðtTÞ ¼ 2.5 TeV.
They are results generated by SOFTSUSY-3.6.2 [16], analyzing
the full RG equations. We can see that Δm2

0
’s for m2

hu
are of

order 102 for jμj < 600 GeV. It is because the FP of m2
hu

appears too far below t ¼ tT as discussed above.
To summarize, jμj and Δm2

0
are too large in small tan β

cases in the mGrM, even if the FP emerges somewhat close
to the top squark mass scale. It is because them2

0 needed for
the desired top squark mass is quite heavy, and m2

hd
(≈m2

0)
is not focused at all. In large tan β cases, on the other hand,
the FP scale ofm2

hu
is too low compared with the top squark

mass scale.
To keep a small enough μ even with 3–4 TeV top squark

masses, thus, we should consider a large tan β case. But we
need to somehow push the FP scale up to the desired top
squark mass scale in order to reduce Δm2

0
in this case. Of

course, there still remains a possibility to achieve it by

0 5 10 15 20 25 30 35

0

1 107

2 107

3 107

4 107

5 107

t

m
hu

2

FIG. 1 (color online). RG evolutions ofm2
hu
in the mGrM with t

[≡ logðQ=GeVÞ� for m2
0 ¼ ð7 TeVÞ2 (red), ð4.5 TeVÞ2 (green),

and ð2 TeVÞ2 (blue), whenm1=2=g20 ¼ 2.3 TeV and At ¼ 0 at the
GUT scale. The tilted solid (dotted) lines correspond to the case
of tan β ¼ 50 (tan β ¼ 5). The vertical dotted line at t ¼ tT ≈ 8.2
(QT ¼ 3.5 TeV) indicates the desired top squark mass scale.
Below the top squark decoupling scale, in fact, the RG evolutions
should be modified from this figure. The FP of m2

hu
would appear

around t ≈ 5.3 (Q ≈ 200 GeV) [t ≈ 7.0 (Q ≈ 1.1 TeV)], how-
ever, if its RG evolutions are extrapolated below t ¼ tT, keeping
heavy superpartners.
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assuming a (fine-tuned) aY with a large tan β. A fine-tuned
Dirac Yukawa coupling of a RH neutrino, yN , is also
helpful for pushing the FP [12,17]. However, it is very hard
to contrive a model to naturally explain such a special value
of aY or yN, reducing also ΔA0

or ΔyN. In the next section,
we will propose another way to move the FP scale up to the
desired top squark mass scale in a large tan β case.

IV. MINIMAL MIXED MEDIATION

In large tan β cases, as mentioned above, Cs is sizable
in Eq. (27) because the FP of m2

hu
is far below the

top squark decoupling scale, and Cgðm1=2=g20Þ2 and/or
CmaYðm1=2=g20Þ are also required to be large enough for
EW symmetry breaking. While the Cs term makes a
positive contribution to m2

hu
ðtZÞ for small aY’s, the other

terms make negative contributions to it. In this section, we
will attempt to investigate a mechanism in which the two
sizable contributions can automatically be canceled to
eventually yield a small enough Cs even in a large
tan β case.

A. Basic setup in the minimal mixed mediation

On top of the mGrM setup, we consider also the mGgM
effects by introducing one pair of messenger fields

f5M; 5̄Mg which are the SU(5) fundamental representa-
tions. Through their coupling with an MSSM singlet
superfield S,

Wm ¼ ySS5M5̄M; ð32Þ

the soft masses of the MSSM gauginos and scalar super-
partners are generated at one- and two-loop levels, respec-
tively, if the scalar and F-term components of S develop
nonzero VEVs [1]:

MajM ¼ g2aðtMÞhFSi
16π2hSi ;

δm2
ϕr
jM ¼ 2

X3
a¼1

�
g2aðtMÞhFSi
16π2hSi

�
2

CaðrÞ; ð33Þ

where CaðrÞ denotes the quadratic Casimir invariant for a
superfield Φr; ðTaTaÞr0r ¼ CaðrÞδr0r ; and ga (a ¼ 3; 2; 1) is
the MSSM gauge couplings. hSi and hFSi are VEVs of the
scalar and F-term components of the superfield S. Note that
Ma and m2

Φr
are almost independent of yS only if hFSi ≲

yShSi2 [1]. However, such mGgM effects appear below the
messenger mass scale, yShSi. In this paper, we assume the
messenger mass scale is lower than the GUT scale.
Otherwise, δm2

ϕr
jM and MajM could become relatively

universal at the GUT scale (as in the mGrM), respecting
the relations required by a given GUT, since non-MSSM
gauge sectors contained in a SUSY GUT such as “X” and
“Y” in the SU(5) GUT also contribute to δm2

ϕr
jM.

Once the hidden sector superpotential WH develops a
VEV, the F-term of S and the F-terms of superfields in the
hidden sector can also get VEVs proportional to hWHi
(≡mM2

P). For instance, let us consider the following Kähler
potential in addition to Eq. (16):

K ⊃ fðzÞSþ H:c:; ð34Þ

where fðzÞ is a holomorphic monomial of hidden sector
fields zi’s with VEVs of order MP in Eq. (17), and so fðzÞ
should be of order OðMPÞ. Its specific form can be
controlled by introducing hidden local symmetries. Note
that the above term leaves intact the kinetic terms of zi ’s,
and so they still remain as the canonical form. MPfðzÞS
in the superpotential can be forbidden by the Uð1ÞR
symmetry. By including the SUGRA corrections with
hWHi ¼ mM2

P, then, hFSi can be

hF�
Si ≈m½hfðzÞi þ hS�i�; ð35Þ

if h∂SWi is relatively suppressed by relevant small (or zero)
Yukawa couplings. Thus, the VEV of FS is of order
OðmMPÞ like Fzi in Eq. (19). They should be fine-tuned
for the vanishing C.C.: a precise determination of hFSi is

TABLE I. Soft squared masses of the top squarks and Higgs
bosons at t ¼ tT ≈ 8.2 (QT ¼ 3.5 TeV) in the mGrM for various
trial m2

0’s when tan β ¼ 50. Δm2
0
indicates the fine-tuning measure

for m2
0 around ð4.5 TeVÞ2 for each case.

A0=m0 ¼ 0.3 M3ðtTÞ¼2.5TeV jμj¼903GeV Δm2
0
¼ 276

m2
0 ð5.5 TeVÞ2 ð4.5 TeVÞ2 ð3.5 TeVÞ2

m2
q3ðtTÞ ð4437 GeVÞ2 ð3817 GeVÞ2 ð3238 GeVÞ2

m2
uc
3
ðtTÞ ð3857 GeVÞ2 ð3329 GeVÞ2 ð2839 GeVÞ2

m2
hu
ðtTÞ ð461 GeVÞ2 −ð694 GeVÞ2 −ð1007 GeVÞ2

m2
hd
ðtTÞ ð2585 GeVÞ2 ð2032 GeVÞ2 ð1450 GeVÞ2

A0=m0 ¼ 0 M3ðtTÞ¼2.5TeV jμj¼387GeV Δm2
0
¼ 378

m2
0 ð5.5 TeVÞ2 ð4.5 TeVÞ2 ð3.5 TeVÞ2

m2
q3ðtTÞ ð4497 GeVÞ2 ð3870 GeVÞ2 ð3285 GeVÞ2

m2
uc
3
ðtTÞ ð3933 GeVÞ2 ð3396 GeVÞ2 ð2897 GeVÞ2

m2
hu
ðtTÞ ð1044 GeVÞ2 ð442 GeVÞ2 −ð721 GeVÞ2

m2
hd
ðtTÞ ð2749 GeVÞ2 ð2189 GeVÞ2 ð1607 GeVÞ2

A0=m0¼−1.0 M3ðtTÞ¼2.5TeV jμj¼753GeV Δm2
0
¼ 83

m2
0 ð5.5 TeVÞ2 ð4.5 TeVÞ2 ð3.5 TeVÞ2

m2
q3ðtTÞ ð4427 GeVÞ2 ð3840 GeVÞ2 ð3289 GeVÞ2

m2
uc
3
ðtTÞ ð3840 GeVÞ2 ð3354 GeVÞ2 ð2900 GeVÞ2

m2
hu
ðtTÞ ð105 GeVÞ2 −ð478 GeVÞ2 −ð702 GeVÞ2

m2
hd
ðtTÞ ð2385 GeVÞ2 ð1952 GeVÞ2 ð1498 GeVÞ2
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indeed associated with the C.C. problem. Here we set
hFSi ¼ m0MP. Fϕr

is still given by Eq. (19), which induces
the universal soft mass terms at tree level for the observable
scalar fields. Consequently, both the gravity and gauge
mediation effects are induced from a single SUSY breaking
source, and they all are parametrized with m0.
We assume that hSi has the same magnitude as the

VEV of the SU(5) breaking Higgs (≡vG), h24Hi ¼
vG × diagð2; 2; 2;−3;−3Þ= ffiffiffiffiffi

60
p

. It can be realized by
constructing a proper model, in which a GUT breaking
mechanism causes hSi. For example, let us consider the
following Kähler potential and superpotential:

K ⊃ zcz̄cSþ H:c:;

W ⊃ ðzz̄Þ2ScSc þ ðzcz̄cÞ2Tr½2424� þ ΣRTr½240240�
þ Tr½240fðSþ λzz̄Þ24c − ðzz̄Þ224c24cg�; ð36Þ

where we drop the Oð1Þ dimensionless coupling constants
and set MP ¼ 1 for simple expressions except for λ
(∼10−2). Here we introduced a Uð1ÞZ gauge symmetry
and supposed that some hidden sector fields fz; z̄; zc; z̄cg
[⊂ fzig in Eq. (16)], which are nontrivial representations of
a hidden gauge group GH (fR; R̄g), carry Uð1ÞZ charges as
well. We also introduce the global Uð1ÞR symmetry and the
SU(5) visible gauge symmetry [18], under which
fz; z̄; zc; z̄cg remain neutral. The other relevant superfields
and their charges are presented in Table II. f240; 24; 24cg
are all SU(5) adjoint representations, while fS; Scg are
singlets. ΣR denotes a spurion field, whose VEV breaks the
Uð1ÞR to the Z2 symmetry. Wm in Eq. (32) can be
reproduced by assigning the unit Uð1ÞR charge to
f5M; 5̄Mg from Wm ¼ zcz̄cS5M5̄M. Note that the field
contents in Table II do not yield any gauge anomaly.
As in fzig of Eq. (17), fz; z̄; zc; z̄cg in Eq. (36) are

assumed to get VEVs of the Planck scale. Note that the
combinations of them, zz̄c (≡u) and z̄zc (≡v) do not carry
any quantum numbers. Thus, the Kähler potential and
superpotential in the hidden sector would take the forms
of KH ¼ KHðu; vÞ and WH ¼ WHðu; vÞ, neglecting the
asymmetric term K ⊃ zcz̄cSþ H:c: because of its small-
ness: the consistency of hSi ≪ MP will be confirmed.
Accordingly, the F-terms of fz; z̄; zc; z̄cg are given by F�

z¼∂zWHþWH∂zKH¼ z̄cð∂uWHþWH∂uKHÞ, F�
z̄c¼∂ z̄cWHþ

WH∂ z̄cKH¼zð∂uWHþWH∂uKHÞ, etc., which are all
assumed to be of order OðmMPÞ. Since jzj ¼ jz̄cj mini-
mizes jFzj2þjFz̄c j2 [¼ ðjzj2þjz̄cj2Þj∂uWH þWH∂uKHj2],
hzi and hz̄ci would be developed along the direction of
jhzij ¼ jhz̄cij. Note that the minimization of j∂uWH þ
WH∂uKHj2 would determine just u or v. Similarly, hzci
and hz̄ci would be developed along the jhzcij ¼ jhz̄cij
direction, minimizing jFz̄j2 þ jFzc j2. Moreover, such direc-
tions are the D-flat directions of GH. Although the full
F-term potential could be further minimized, both jhzij ¼
jhz̄cij and jhzcij ¼ jhz̄cij should still be maintained.

Due to the mass terms by the VEVs of fz; z̄; zc; z̄cg and
ΣR in the superpotential of Eq. (36), then, we have hSci ¼
h24i ¼ h240i ¼ 0 even after including the SUGRA correc-
tions. On the other hand, 24c can develop a VEV of the
order GUT scale in the Uð1ÞY direction from the second
line ofW in Eq. (34) as in the ordinary minimal SU(5) GUT
[19]. It is identified with 24H discussed above. Both h24ci
and hSi are completely determined by the minimum
conditions for F240 and the D-term of Uð1Þz [9],

Dz ¼ gz
X
j

qj

�
∂φj

K þM2
P

∂φj
W

W

�
φj

¼ gzðjSj2 − Trj24cj2 þ � � �Þ; ð37Þ

where gz and qj mean the Uð1Þz gauge coupling and charge
of a field φj. “� � �” contains the contributions by
fz; z̄; zc; z̄cg and other scalar fields with zero VEVs.
However, the VEVs of zi are canceled out from Eq. (37)
because of jhzij ¼ jhz̄cij and jhzcij ¼ jhz̄cij. In the SUSY
limit, thus, all the VEVs of the fields in Table II have been
determined: hSi ¼ vG and others are vanishing. By includ-
ing the SUGRA corrections by hWHi ¼ mM2

P, we can
read the SUSY breaking effects: hF�

Si ¼ mðzcz̄c þ S�Þ ≫
hF24ci ¼ mvG. Thus, VEVs of FS and fFz; Fz̄; Fzc ; Fz̄cg
are all OðmMPÞ. They should be fine-tuned for the
vanishing C.C.: precise determination of hFSi is associated
with the C.C. problem as mentioned above.
vG induces the superheavy masses of X and Y gauge

bosons and their superpartners in the SU(5) GUT, MX and
MY . Since the GUT gauge interactions would become
active above their mass scale, M2

X ¼ M2
Y ¼ 5

24
g2Gv

2
G [19], it

is identified with the MSSM gauge coupling unification
scale. Thus, hSi (¼ vG) is fixed by the relation with the
unification scale. When the superpartners of the SM chiral
fermions are heavier than 3–4 TeV, the unification scale is
about ð0.9–1.7Þ × 1016 GeV. In fact, the three MSSM
gauge couplings are not exactly unified at a unique scale
only with the MSSM field contents, because the super-
partners are relatively heavy in this case. However, various
threshold effects would arise around that scale. Here we
will take the central value of the above range, i.e. 1.3 ×
1016 GeV for the unification scale. Then the mGgM SUSY

TABLE II. Quantum numbers of superfields for a local Uð1ÞZ,
hidden gauge GH , and the global Uð1ÞR symmetries. Only the
hidden sector fields fz; z̄; zc; z̄cg carry proper nontrivial quantum
numbers fR; R̄g under a hidden gauge group GH .

S Sc 240 24 24c z z̄ zc z̄c ΣR

Uð1ÞZ þ1 −1 0 þ1 −1 þ1
2

þ1
2

−1
2

−1
2

0
GH 1 1 1 1 1 R R R R 1
Uð1ÞR 0 1 2 1 0 0 0 0 0 −2
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breaking effects in Eq. (33) can be estimated with a
parameter fG:

fG ·m0 ≡ hFSi
16π2hSi ¼

m0MP

16π2MX

ffiffiffiffiffi
5

24

r
gG ≈ 0.36m0: ð38Þ

Note that the m0 dependence appears because FS is
proportional to m0 in the minimal mixed mediation as
discussed above. fG is basically a parameter determined by
a model. From now on, however, we will leave fG as an
unknown parameter.
From Eq. (33), the soft squared masses for the MSSM

Higgs and the superpartners of (the third generation of)
chiral fermions at the messenger scale are expressed as
follows:

δm2
hu
jM ¼ δm2

hd
jM ¼ δm2

l3
jM

¼ f2Gm
2
0

�
3

2
g42ðtMÞ þ

3

10
g41ðtMÞ

�
; ð39Þ

δm2
q3 jM ¼ f2Gm

2
0

�
8

3
g43ðtMÞ þ

3

2
g42ðtMÞ þ

1

30
g41ðtMÞ

�
; ð40Þ

δm2
uc
3
jM ¼ f2Gm

2
0

�
8

3
g43ðtMÞ þ

8

15
g41ðtMÞ

�
; ð41Þ

δm2
dc
3
jM ¼ f2Gm

2
0

�
8

3
g43ðtMÞ þ

2

15
g41ðtMÞ

�
; ð42Þ

δm2
ec
3
jM ¼ f2Gm

2
0

�
6

5
g41ðtMÞ

�
; ð43Þ

where gaðtMÞ’s (a ¼ 3; 2; 1) denote the MSSM gauge
coupling constants at the messenger scale. Hence, δXjM
(≡δm2

q3 jM þ δm2
uc
3
jM þ δm2

hu
jM) is given by

δXjM ¼ f2Gm
2
0

�
16

3
g43ðtMÞ þ 3g42ðtMÞ þ

13

15
g41ðtMÞ

�
: ð44Þ

Note that the above soft masses, Eqs. (39)–(43) are not
universal even around the GUT scale unlike the mGrM,
since only the MSSM gauge sector makes contributions to
δm2

ϕr
jM and superheavy gauge sectors contained in a SUSY

GUT would decouple at the GUT scale.
In contrast to the soft masses for the superpartners of SM

chiral fermions, the gaugino masses are assumed to be
generated dominantly only by the mGgM effect, i.e.,Ma of
Eq. (33). It is possible by employing the constant gauge
kinetic function (¼ δab) at tree level, which is the minimal
gauge kinetic function, yielding the canonical kinetic terms
for gauge fields. Above the messenger mass scale, hence,
the gaugino mass contributions to the RG equation should
be negligible: the gaugino masses via mGrM must be small
as seen in Eq. (22). On the contrary, A-terms in the mGgM

are generically much suppressed compared to those in the
mGrM [1]. So the universal A-terms coming from Eq. (20),
which are proportional to m0, should be dominant ones.
Since the MSSM RG equations are valid below the

messenger scale, the boundary conditions at the messenger
scale, Eqs. (33) and (38), yield

MaðtÞ
g2aðtÞ

¼ MaðtMÞ
g2aðtMÞ

¼ fG ·m0: ð45Þ

Hence, the low energy gaugino (running) masses are
determined with the low energy values of the SM gauge
couplings and fGm0:

MaðtTÞ ¼ fGm0 × g2aðtTÞ: ð46Þ
As discussed before, m0 is determined such that the low
energy top squarkmasses are around 3–4TeV for explaining
the 126 GeV Higgs mass. We will discuss the valid range of
fG in view of naturalness. Note that the low energy gaugino
masses, Eq. (46), are not affected by a messenger scale.
Above the messenger mass scale, however, the RG

evolution of the MSSM gauge couplings should be modi-
fied by the messenger fields, f5M; 5̄Mg: the mGgM effects
enter in the RG equations at the messenger mass scale
yShSi. Accordingly, all the RG evolutions of the MSSM
Yukawa couplings and soft mass parameters should also be
modified above the messenger scale.
Although yS does not contribute to the soft masses in

Eq. (33), it does to the messenger mass scale. Nonetheless,
we will show later that the low energy mass spectra are not
sensitive to yS. Since FS is proportional to m0, the MSSM
gaugino masses are also proportional to m0. As a result,
they could be useful for reducing the size of the m2

0

coefficient, and so for improving the fine-tuning associ-
ated with the EW scale and the Higgs boson mass in the
mGrM or mSUGRA. We will discuss this issue in more
detail later.

B. Focus point in the minimal mixed mediation

In this subsection we will discuss the focus point of m2
hu

and fine-tunings in the minimal mixed mediation of SUSY
breaking.

1. Case for QM ≲MGUT

We first consider the case that the messenger mass scale
is of order the GUT scale or slightly lower. It corresponds to
the case of jySj ∼Oð1Þ, assuming hSi ∼OðMGÞ. For
simplicity, we neglect the contributions from GUT gauge
multiplets such as X, Y, and their superpartners to Eq. (33),
since they would not much affect the low energy values
of fm2

hu
; m2

q3 ; m
2
uc
3
g as in the case of jyShSij ≪ OðMGÞ.

The discussion on such a relatively simple case is necessary
also for the discussion on the case of jySj ≪ Oð1Þ, i.e., the
case of low messenger scale. As will be seen later, how
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small the messenger mass scale is compared to the GUT
scale is indeed not very important. Since the gaugino
masses are assumed to be generated dominantly by mGgM,
“ðm1=2=g20Þ” in Eqs. (9)–(14) is just replaced by

m1=2

g20
≈ fGm0; ð47Þ

because they are generated around the GUT scale, Maðt0Þ
g2aðt0Þ ¼

fGm0 (a ¼ 3; 2; 1) in this case. As a result, we can expect

that in the minimal mixed mediation, the Cg terms, as
well as the Cm terms in Eq. (27), are converted to members
of Cs terms. Since they make negative contributions to
m2

hu
ðtTÞ, they would be helpful for reducing the size

of Cs and eventually Δm2
0
[20], particularly in large

tan β cases.
On the other hand, the soft squared masses are induced

by both the mGrM and mGgM effects at the GUT scale. In
Eqs. (11), (12), and (13), hence, m2

q30
, m2

uc
3
0, m

2
hu0

, and X0

are written down as follows:

m2
q30

≈m2
0 þ f2Gm

2
0

�
8

3
g43ðt0Þ þ

3

2
g42ðt0Þ þ

1

30
g41ðt0Þ

�
≈m2

0

�
1þ 21

5
f2Gg

4
0

�
ð48Þ

m2
uc
3
0 ≈m2

0 þ f2Gm
2
0

�
8

3
g43ðt0Þ þ

8

15
g41ðt0Þ

�
≈m2

0

�
1þ 16

5
f2Gg

4
0

�
ð49Þ

m2
hu0

≈m2
0 þ f2Gm

2
0

�
3

2
g42ðt0Þ þ

3

10
g41ðt0Þ

�
≈m2

0

�
1þ 9

5
f2Gg

4
0

�
ð50Þ

X0 ≈ 3m2
0 þ f2Gm

2
0

�
16

3
g43ðt0Þ þ 3g42ðt0Þ þ

13

15
g41ðt0Þ

�
≈ 3m2

0

�
1þ 46

15
f2Gg

4
0

�
: ð51Þ

For t ≤ t0, therefore, the semianalytic RG solutions Eqs. (11)–(13) are given as the following expressions in the mGgM
case:

m2
hu
ðtÞ ≈ 3m2

0

2

�
e

3

4π2

R
t

t0
dt0y2t −

1

3

�
þ f2Gm

2
0

�
3

2
g42ðt0Þ þ

3

10
g41ðt0Þ

�

þ f2Gm
2
0

2

�
16

3
g43ðt0Þ þ 3g42ðt0Þ þ

13

15
g41ðt0Þ

�h
e

3

4π2

R
t

t0
dt0y2t − 1

i

þ FðtÞ
2

− f2Gm
2
0

�
3

2
fg42ðtÞ − g42ðt0Þg þ

1

22
fg41ðtÞ − g41ðt0Þg

�
ð52Þ

and

fm2
q3ðtÞ þm2

uc
3
ðtÞg ≈ 3m2

0

2

�
e

3

4π2

R
t

t0
dt0y2t þ 1

3

�
þ f2Gm

2
0

�
16

3
g43ðt0Þ þ

3

2
g42ðt0Þ þ

17

30
g41ðt0Þ

�

þ f2Gm
2
0

2

�
16

3
g43ðt0Þ þ 3g42ðt0Þ þ

13

15
g41ðt0Þ

�h
e

3

4π2

R
t

t0
dt0y2t − 1

i
þ FðtÞ

2

þ f2Gm
2
0

�
16

9
fg43ðtÞ − g43ðt0Þg −

3

2
fg42ðtÞ − g42ðt0Þg −

17

198
fg41ðtÞ − g41ðt0Þg

�
; ð53Þ

where FðtÞ is basically given by Eq. (14) except that m1=2=g20 should be replaced by fGm0. In fact, g43;2;1ðt0Þ in the above
equations are all the same as the unified gauge coupling constant g40. For future convenience, however, we leave them in the
present form. Note that these solutions are valid only when tan β is small enough to neglect yb;τ, Ab;τ, m2

dc
3
;ec

3
;l3;hd

, etc. The

above semianalytic solutions admit the following numerical estimations:

m2
hu
ðtTÞ ≈m2

0½0.03 − 0.52f2G − 0.16fGaY − 0.11a2Y �;
fm2

q3ðtTÞ þm2
uc
3
ðtTÞg ≈m2

0½1.03þ 2.22f2G − 0.16fGaY − 0.11a2Y � ð54Þ

for tan β ¼ 5 and t ¼ tT ≈ 8.2 (QT ¼ 3.5 TeV).

NATURALNESS-GUIDED GLUINO MASS BOUND FROM THE … PHYSICAL REVIEW D 92, 075025 (2015)

075025-11



For larger tan β cases, refer to Table III: it shows the
results obtained by performing numerical analyses for the
full RG equations with tan β ¼ 50 (cases I, II, and III) and
tan β ¼ 25 (case IV) [13]. In all the cases, f2G is set to be
0.13 (i.e. fG ≈ 0.36). The fine-tuning measure Δm2

0

(≡j∂ logm2
Z∂ logm2
0

j¼j m2
0

m2
Z

∂m2
Z∂m2
0

j [15]) listed for each case is indeed

amazing:

Δm2
0
≈ f1; 16; 9; 57g ð55Þ

around m2
0 ¼ ð4.5 TeVÞ2 for cases I, II, III, and IV,

respectively. Case I in Table III actually gives almost the

minimum value of it for tan β ¼ 50. ΔA0
(¼ j A0

m2
Z

∂m2
Z∂A0
j) are

ΔA0
≈ f0; 10; 118; 0g ð56Þ

for cases I, II, III, and IV, respectively. The m2
hu
’s at the top

squarkmass scale inTable III further decrease tobenegative at
theZ bosonmass scale byEq. (5).UsingEq. (3), jμj’s required
for the desired value of m2

Z ≈ ð91 GeVÞ2 are estimated as

jμj ≈ f485 GeV; 392 GeV; 516 GeV; 586 GeVg ð57Þ

for cases I, II, III, and IV, respectively.WhenA0=m0 ¼ þ0.1,
fΔm2

0
;ΔA0

; jμjg turn out to be about f22; 33; 569 GeVg.
Therefore, we can conclude that the parameter range

−0.5 < A0=m0 ≲þ0.1 and tan β ≳ 25 ð58Þ

allows fΔm2
0
;ΔA0

g and jμj to be smaller than 100 and
600 GeV, respectively. Note that tan β ¼ 50 is easily
achieved, e.g., from the minimal SO(10) [19] or even from
the MSSM embedded in a class of the heterotic stringy
models [21].
fG is also a UV parameter in the minimal mixed

mediation and so a comment on ΔfG might be needed.
While hSi can be fixed to be vG by a GUT model, hFSi=m0

is associated with the vanishing C.C. as discussed in
Sec. III. Once hFSi=m0 is determined through a fine-tuning
with other F-term VEVs divided bym0 and hWHi=m0 such
that the C.C. vanishes, its variation yields a nonzero C.C.
This problem also arises even in the mGrM or mSUGRA,
as discussed below Eq. (19). Also in the mGgM scenario, a
variation of hFSi=hSi could give a different C.C.
Discussions on the vanishing C.C. are beyond the scope
of our paper. We will present the valid range of fG in
Sec. IV C.
With f2G ¼ 0.13 and m2

0 ¼ ð4.5 TeVÞ2, Eq. (46) yields
the gluino, wino, and bino masses as follows:

M3;2;1 ≈ f1.7 TeV; 660 GeV; 360 GeVg ð59Þ

for all the cases considered in Table III. Note that they are
all low energy running masses. The physical mass particu-
larly for the gluino would be a bit heavier than it [22]. Since
low energy gaugino masses are not affected by a messenger
scale, Eq. (59) should be valid even for other choices of yS.
In the above cases, the sbottom and sleptons turn out to

be quite heavier than 3 TeV. The first two generations
of SUSY particles must be much heavier than them because
of their extremely small relevant Yukawa couplings.
Accordingly, the bino is the lightest superparticle (LSP).
To avoid overclose of the bino dark matter in the Universe,
some entropy production [23] or other lighter dark matter
such as the axino and axion is needed [24].

TABLE III. Soft squared masses of the top squarks and Higgs
bosons at t ¼ tT ≈ 8.2 (QT ¼ 3.5 TeV) for various trial m2

0’s
when the messenger scale is QM ≈ 1.3 × 1016 GeV with f2G ¼
0.13 [13]. Δm2

0
indicates the fine-tuning measure for m0 ¼

4.5 TeV for each case. m2
hu
’s further decrease to be negative

below t ¼ tT. The above mass spectra are generated using
SOFTSUSY.

Case I A0 ¼ 0 tan β ¼ 50 Δm2
0
¼ 1

m2
0 ð5.5 TeVÞ2 ð4.5 TeVÞ2 ð3.5 TeVÞ2

m2
q3ðtTÞ ð4363 GeVÞ2 ð3551 GeVÞ2 ð2744 GeVÞ2

m2
uc
3
ðtTÞ ð3789 GeVÞ2 ð3098 GeVÞ2 ð2406 GeVÞ2

m2
hu
ðtTÞ ð431 GeVÞ2 ð189 GeVÞ2 −ð251 GeVÞ2

m2
hd
ðtTÞ ð2022 GeVÞ2 ð1512 GeVÞ2 ð1008 GeVÞ2

Case II A0 ¼ −0.2m0 tan β ¼ 50 Δm2
0
¼ 16

m2
0 ð5.5 TeVÞ2 ð4.5 TeVÞ2 ð3.5 TeVÞ2

m2
q3ðtTÞ ð4376 GeVÞ2 ð3563 GeVÞ2 ð2752 GeVÞ2

m2
uc
3
ðtTÞ ð3798 GeVÞ2 ð3106 GeVÞ2 ð2413 GeVÞ2

m2
hu
ðtTÞ ð539 GeVÞ2 ð361 GeVÞ2 −ð44 GeVÞ2

m2
hd
ðtTÞ ð2053 GeVÞ2 ð1565 GeVÞ2 ð1046 GeVÞ2

Case III A0 ¼ −0.5m0 tan β ¼ 50 Δm2
0
¼ 9

m2
0 ð5.5 TeVÞ2 ð4.5 TeVÞ2 ð3.5 TeVÞ2

m2
q3ðtTÞ ð4284 GeVÞ2 ð3532 GeVÞ2 ð2630 GeVÞ2

m2
uc
3
ðtTÞ ð3755 GeVÞ2 ð3088 GeVÞ2 ð2373 GeVÞ2

m2
hu
ðtTÞ −ð363 GeVÞ2 −ð41 GeVÞ2 −ð546 GeVÞ2

m2
hd
ðtTÞ ð1447 GeVÞ2 ð1359 GeVÞ2 −ð950 GeVÞ2

Case IV A0 ¼ 0 tan β ¼ 25 Δm2
0
¼ 57

m2
0 ð5.5 TeVÞ2 ð4.5 TeVÞ2 ð3.5 TeVÞ2

m2
q3ðtTÞ ð4915 GeVÞ2 ð4025 GeVÞ2 ð3134 GeVÞ2

m2
uc
3
ðtTÞ ð3770 GeVÞ2 ð3086 GeVÞ2 ð2400 GeVÞ2

m2
hu
ðtTÞ ð152 GeVÞ2 −ð220 GeVÞ2 −ð293 GeVÞ2

m2
hd
ðtTÞ ð5057 GeVÞ2 ð4136 GeVÞ2 ð3215 GeVÞ2
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2. Case for QM ≪ MGUT

Since the mass of the messenger fields f5M; 5̄Mg is given
by yShSi, the RG evolutions of the gauge and Yukawa
coupling constants and soft mass parameters should be
modified by them from those of the MSSM above the
messenger mass scale, Q > yShSi. Although hSi can be
fixed with a proper UV model, yS still remains as a free
parameter. Thus, one might anticipate that low energy
values of m2

hu
would be quite sensitive to yS. In this

subsection, we attempt to show that fm2
hu
; m2

q3 ; m
2
uc
3
g at

the top squark decoupling scale are very insensitive to yS
unlike the naive expectation. Although we first discuss a
small tan β case for a qualitative understanding, using
semianalytic expressions, the result is quite general:
we will display later the numerical result for a large
tan β case.
In the energy scale between the GUT and the

messenger scales, only the mGrM effects are active:
the mGgM effects come in below the messenger scale.
Since we neglect the gaugino masses by mGrM in
this paper, m2

q3 , m2
uc
3
, and m2

hu
for tM < t < t0 are

simply

m2
q31

ðtÞ ¼ m2
0 þ

3m2
0

6

h
e

3

4π2

R
t

t0
dtȳ2t − 1

i
þ F1ðtÞ

6
; ð60Þ

m2
uc
3
1ðtÞ ¼ m2

0 þ
3m2

0

3

h
e

3

4π2

R
t

t0
dtȳ2t − 1

i
þ F1ðtÞ

3
; ð61Þ

m2
hu1

ðtÞ ¼ m2
0 þ

3m2
0

2

h
e

3

4π2

R
t

t0
dtȳ2t − 1

i
þ F1ðtÞ

2
; ð62Þ

where ȳt means the top quark Yukawa coupling constant
modified by the messenger fields for t > tM. They can
be obtained from Eqs. (11)–(13) and (23). F1ðtÞ in the
above equations is obtained just by neglecting m1=2=g20
and setting A0 ¼ aYm0 in Eq. (14):

F1ðtÞ ¼ a2Ym
2
0e

3

4π2

R
t

t0
dtȳ2t

h
e

3

4π2

R
t

t0
dt0ȳ2t − 1

i
: ð63Þ

Hence, we have

Xt1ðtÞ ¼ m2
q31

ðtÞ þm2
uc
3
1ðtÞ þm2

hu1
ðtÞ

¼ 3m2
0e

3

4π2

R
t

t0
dtȳ2t þ F1ðtÞ: ð64Þ

At the messenger scale t ¼ tM, the mGgM effects
become active: the additional soft masses squared,
Eqs. (39)–(41), and the gaugino masses by Eq. (33) should
be imposed to the RG solutions, Eqs. (11)–(13), at t ¼ tM.
For tT ≤ t ≤ tM, therefore, we get

m2
q3ðtÞ ¼ m2

q3ðtMÞ þ
XtðtMÞ

6

h
e

3

4π2

R
t

tM
dt0y2t − 1

i
þ F2ðtÞ

6

þ f2Gm
2
0

�
8

9
fg43ðtÞ − g43ðtMÞg −

3

2
fg42ðtÞ − g42ðtMÞg −

1

198
fg41ðtÞ − g41ðtMÞg

�
; ð65Þ

m2
uc
3
ðtÞ ¼ m2

uc
3
ðtMÞ þ

XtðtMÞ
3

h
e

3

4π2

R
t

tM
dt0y2t − 1

i
þ F2ðtÞ

3
þ f2Gm

2
0

�
8

9
fg43ðtÞ − g43ðtMÞg −

8

99
fg41ðtÞ − g41ðtMÞg

�
; ð66Þ

m2
hu
ðtÞ ¼ m2

hu
ðtMÞ þ

XtðtMÞ
2

h
e

3

4π2

R
t

tM
dt0y2t − 1

i
þ F2ðtÞ

2
− f2Gm

2
0

�
3

2
fg42ðtÞ − g42ðtMÞg þ

1

22
fg41ðtÞ − g41ðtMÞg

�
; ð67Þ

where m2
q3ðtMÞ ¼ m2

q31
ðtMÞ þ δm2

uc
3
jM, m2

uc
3
ðtMÞ ¼ m2

uc
3
1ðtMÞ þ δm2

uc
3
jM, m2

hu
ðtMÞ ¼ m2

hu1
ðtMÞ þ δm2

hu
jM, XtðtMÞ ¼

Xt1ðtMÞ þ δXtjM, etc., and so

m2
q3ðtMÞ ¼

3m2
0

2

�
1

3
e

3

4π2

R
tM
t0

dtȳ2t þ 1

3

�
þ F1ðtMÞ

6
þ f2Gm

2
0

�
8

3
g43ðtMÞ þ

3

2
g42ðtMÞ þ

g41ðtMÞ
30

�
; ð68Þ

m2
uc
3
ðtMÞ ¼

3m2
0

2

�
2

3
e

3

4π2

R
tM
t0

dtȳ2t þ 0

�
þ F1ðtMÞ

3
þ f2Gm

2
0

�
8

3
g43ðtMÞ þ

8

15
g41ðtMÞ

�
; ð69Þ

m2
hu
ðtMÞ ¼

3m2
0

2

�
e

3

4π2

R
tM
t0

dtȳ2t −
1

3

�
þ F1ðtMÞ

2
þ f2Gm

2
0

�
3

2
g42ðtMÞ þ

3

10
g41ðtMÞ

�
; ð70Þ

XtðtMÞ ¼ 3m2
0e

3

4π2

R
tM
t0

dtȳ2t þ F1ðtMÞ þ f2Gm
2
0

�
16

3
g43ðtMÞ þ 3g42ðtMÞ þ

13

15
g41ðtMÞ

�
: ð71Þ
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Here, g4i ðtMÞ’s (i ¼ 3; 2; 1) are extrapolated from their low energy values, using the ordinary MSSM RG equations without
the messenger fields. In the above equations, F2ðtÞ is basically given by Eq. (14), but t0 should be replaced by tM. For its
definition, refer to the Appendix.
We should note that the top quark Yukawa coupling in the presence of the messengers f5M; 5̄Mg, ȳðtÞ is not much

different from ytðtÞ, i.e., that in the absence of them above the messenger scale. As a result, we have

e
3

4π2

R
tM
t0

dtȳ2t

e
3

4π2

R
tM
t0

dty2t
≈ 1.005 ½1.014; 1.032� ð72Þ

even for tM ≈ 23.0 (QM ≈ 1.0 × 1010 GeV) [tM ≈ 18.4 (QM ¼ 1.0 × 108 GeV), tM ≈ 13.8 (QM ¼ 1.0 × 106 GeV)],
namely, yS ∼Oð10−6Þ [Oð10−8Þ, Oð10−10Þ]. For a higher scale tM, of course, the ratio must be closer to unity. With

much larger tan β’s, we get almost the same results. From now on, thus, we will set e
3

4π2

R
tM
t0

dtȳ2t ¼ e
3

4π2

R
tM
t0

dty2t , just when we
show the insensitivity of m2

hu
ðtTÞ to yS. Then, one can arrive at the following results:

m2
hu
ðtÞ ≈ 3m2

0

2

�
e

3

4π2

R
t

t0
dt0y2t −

1

3

�
þ f2Gm

2
0

�
3

2
g42ðtMÞ þ

3

10
g41ðtMÞ

�

þ f2Gm
2
0

2

�
16

3
g43ðtMÞ þ 3g42ðtMÞ þ

13

15
g41ðtMÞ

�h
e

3

4π2

R
t

tM
dt0y2t − 1

i

þ a2Ym
2
0

2
e

3

4π2

R
t

t0
dt0y2t

h
e

3

4π2

R
tM
t0

dtȳ2t − 1
i
þ F2ðtÞ

2
− f2Gm

2
0

�
3

2
fg42ðtÞ − g42ðtMÞg þ

1

22
fg41ðtÞ − g41ðtMÞg

�
; ð73Þ

and

fm2
q3ðtÞ þm2

uc
3
ðtÞg ≈ 3m2

0

2

�
e

3

4π2

R
t

t0
dt0y2t þ 1

3

�
þ f2Gm

2
0

�
16

3
g43ðtMÞ þ

3

2
g42ðtMÞ þ

17

30
g41ðtMÞ

�

þ f2Gm
2
0

2

�
16

3
g43ðtMÞ þ 3g42ðtMÞ þ

13

15
g41ðtMÞ

�h
e

3

4π2

R
t

tM
dt0y2t − 1

i

þ a2Ym
2
0

2
e

3

4π2

R
t

t0
dt0y2t

h
e

3

4π2

R
tM
t0

dtȳ2t − 1
i
þ F2ðtÞ

2

þ f2Gm
2
0

�
16

9
fg43ðtÞ − g43ðtMÞg −

3

2
fg42ðtÞ − g42ðtMÞg −

17

198
fg41ðtÞ − g41ðtMÞg

�
; ð74Þ

where F2ðtÞ is recast to

F2ðtÞ ≈
f2Gm

2
0

64π4

��
e

3

4π2

R
t

tM
dt0y2t

Z
t

tM

dt0GAe
−3
4π2

R
t0
tM

dt00y2t
�

2

− 2e
3

4π2

R
t

tM
dt0y2t

Z
t

tM

dt0GA

Z
t0

tM

dt00GAe
−3
4π2

R
t00
tM

dt000y2t
�

−
f2Gm

2
0

4π2

�
e

3

4π2

R
t

tM
dt0y2t

Z
t

tM

dt0G2
Xe

−3
4π2

R
t0
tM

dt00y2t −
Z

t

tM

dt0G2
X

�

þ fGaYm2
0

4π2
e

3

4π2

R
t

t0
dt0y2t

�Z
t

tM

dt0GA − e
3

4π2

R
t

tM
dt0y2t

Z
t

tM

dt0GAe
−3
4π2

R
t0
tM

dt00y2t
�

þ a2Ym
2
0e

3

4π2

R
t

t0
dt0y2t

h
e

3

4π2

R
t

t0
dt0y2t − e

3

4π2

R
tM
t0

dt0ȳ2t
i
: ð75Þ

The coefficients of a2Y in Eqs. (73) and (74) are determined
from the third lines of them and the last line of Eq. (75):

a2Ym
2
0

2
e

3

4π2

R
t

t0
dt0y2t

h
e

3

4π2

R
t

t0
dt0y2t − 1

i
; ð76Þ

which is coincident with those of Eqs. (52) and (53). See
the last line of Eq. (14).
Now let us compare Eq. (73) with (52). The first two

terms of Eq. (73) are the same as those of (52). The largest
terms among the other ones would be those proportional to
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g43ðtMÞ. Interestingly enough, the terms in the second line of
both equations are almost the same:

�
16

3
g43ðtMÞ þ 3g42ðtMÞ þ

13

15
g41ðtMÞ

�h
e

3

4π2

R
tT
tM

dty2t − 1
i

≈
�
16

3
g43ðt0Þ þ 3g42ðt0Þ þ

13

15
g41ðt0Þ

�h
e

3

4π2

R
tT
t0

dt0y2t − 1
i

ð77Þ

even for tM ≪ t0. Figure 2 shows the ratio between the left-
hand side (“L”) and the right-hand side (“R”) of Eq. (77)
with t [≡ logðQ=GeVÞ]: Eq. (77) becomes approximately
valid for t≳ 18.4 or Q≳ 108 GeV regardless of the size of
tan β. Note that both g4i ðtMÞ’s in Eq. (73) and g4i ðt0Þ’s in
Eq. (52) are determined from their low energy values with
the ordinary MSSM RG equations without the messenger
fields.

Both g42ðtMÞ and g41ðtMÞ are quite small for tM ≪ t0.
Since the beta function coefficient of g22ðtÞ is still small
enough (¼ 1), g42ðtMÞ of Eq. (73) is similar to g42ðt0Þ of
Eq. (52): g42ðtMÞ=g42ðt0Þ is about 0.943, 0.848, and
0.767 for tM ≈ 32.2 (QM ¼ 1014 GeV), tM ≈ 23.0
(QM ¼ 1010 GeV), and tM ≈ 13.8 (QM ¼ 106 GeV),
respectively. g41ðtÞ is more suppressed than g42ðtÞ. FðtÞ
and F2ðtÞ cannot make a big difference between Eqs. (52)
and (73): although they contain g43, g63, etc., they are
suppressed with large numbers (like 64π4) and/or effec-
tively cancel each other. As shown before, moreover, the
coefficients of a2Y must be the same.
The numerical results for the semianalytic solutions,

Eqs. (73) and (74) are given by

m2
hu
ðtTÞ ≈m2

0½0.03 − 0.64f2G − 0.07fGaY − 0.11a2Y �;
fm2

q3ðtTÞ þm2
uc
3
ðtTÞg ≈m2

0½1.03þ 2.73f2G − 0.07fGaY − 0.11a2Y � ð78Þ

for tan β ¼ 5 and tM ≈ 23.0 (QM ¼ 1010 GeV). The main difference in m2
hu
ðtTÞ’s of Eqs. (52) and (73) arises from the

difference between g42ðt0Þ and g42ðtMÞ,

Δm2
hu
ðtTÞ ≈ f2Gm

2
0 × 3½g42ðt0Þ − g42ðtMÞ� ≈ f2Gm

2
0 × 0.10; ð79Þ

which is approximately the difference between Eqs. (54)
and (78). Similarly, the main difference in fm2

q3ðtTÞ þ
m2

uc
3
ðtTÞg comes from the f2Gm

2
0 parts in the first and last

lines of Eqs. (53) and (74). Considering the extremely large
energy scale difference between the GUT and 1010 GeV,
the differences in Eqs. (54) and (78) are quite small.
Moreover, such differences become more negligible

for a small enough f2G [∼Oð0.1Þ]. Actually, we need
such a small f2G also to suppress the m2

0 dependence of
m2

hu
ðtTÞ.

Figure 3 exhibits some RG evolutions of m2
hu

under
various trial m2

0 when f2G ¼ 0.13, A0 ¼ −0.2m0, and
tan β ¼ 50 [13]. The solid (dotted) lines correspond to
the case of tM ≈ 37 (or QM ≈ 1.3 × 1016 GeV, “Case A”)

10 15 20 25 30 35 40

0.7

0.8

0.9

1.0

1.1

t

L
R

FIG. 2 (color online). Left-hand side/right-hand side of Eq. (77)
vs t [≡ logðQ=GeVÞ]. The solid (dotted) line corresponds to the
case of tan β ¼ 5 (tan β ¼ 50). In both cases, Eq. (77) becomes
approximately valid for t ≳ 18.4 (or Q ≳ 108 GeV).

10 15 20 25 30 35
0

1 107

2 107

3 107

4 107

5 107

t

m
hu

2

FIG. 3 (color online). RG evolutions of m2
hu

with t
[≡ logðQ=GeVÞ� for m2

0 ¼ ð7 TeVÞ2 (red), ð4.5 TeVÞ2 (green),
and ð2 TeVÞ2 (blue) when f2G ¼ 0.13, A0 ¼ −0.2m0, and tan β ¼
50 [13]. The tilted solid (dotted) lines correspond to the case of
tM ≈ 37 (or QM ≈ 1.3 × 1016 GeV, “Case A”) [tM ≈ 23 (or
QM ¼ 1.0 × 1010 GeV, “Case B”)]. The vertical dotted line at
t ¼ tT ≈ 8.2 (QT ¼ 3.5 TeV) indicates the desired top squark
decoupling scale. The discontinuities of m2

hu
ðtÞ should appear at

the messenger scales.
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[tM ≈ 23 (or QM ¼ 1.0 × 1010 GeV, “Case B”)]. Since the
soft masses induced by the mGgM effect are added at the
messenger scale, the discontinuities of m2

hu
ðtÞ should arise

there. As seen in Fig. 3, in the case of the minimal mixed
mediation, the FP of m2

hu
always appears at the desired top

squark mass scale (t ¼ tT ≈ 8.2) regardless of the mes-
senger scales: the FP scale is not affected by messenger
scales or the size of yS. As defined in Sec. III, in fact, m0 is
originally a parameter associated with the VEV of the
hidden sector superpotential, hWHi, which triggers SUSY
breaking in the observable sector, via both the gravity and
gauge mediations, determining the soft mass spectrum.
Hence, the low energy value of m2

hu
can remain insensitive

to the scale of hWHi and the coupling strength to the hidden
sector: the wide ranges of UV parameters can allow almost
the same m2

hu
’s at low energy. Under this situation, one can

guess that m2
0 ≈ ð4.5 TeVÞ2 happens to be selected by

nature, yielding the 3–4 TeV top squark mass and even-
tually also the 126 GeV Higgs mass. As mentioned above,
the gaugino masses are also not affected by a messenger
scale. In both cases of Fig. 3, thus, the gaugino masses are
given by Eq. (59).

C. Gluino mass bound

Figures 4 and 5 show various scatter plots for given
ranges of ffG; aYg with tan β ¼ 50. m2

0 in Figs. 4 and 5 are

FIG. 4 (color online). Scatter plots for (a) ΔaY , (b) Δm2
0
, and (c) jμj at theMZ scale, and (d) physical gluino mass whenm2

0 ¼ ð4 TeVÞ2
and tan β ¼ 50. The top squark mass scale is about 3.0 TeV.
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taken, respectively, to be ð4 TeVÞ2 and ð5 TeVÞ2. As a
result, the top squark mass scales are about 3.0 and 3.7 TeV,
respectively. Here we set MG as the scale where the EW
gauge couplings, g2 and g1, meet. It is approximately
1.7 × 1016 GeV in these cases. They all are drawn using
SOFTSUSY-3.6.2. As expected from Eqs. (54) and (78), they
have “rainbow” shapes. The two “legs” of the “rainbow” in
those figures, which are located in the left and
right sides of the figures, are relatively narrow. Note that
the origin of disconnected points on the left legs is the
convergence problem of the iterations of the SOFTSUSY

calculation. Their colors are, therefore, supposed to be
interpolated continuously since they are not physically
forbidden.

As aY (or A0=m0) is deviated from zero, m2
hu
is expected

to rapidly change from Eqs. (54) and (78). Accordingly,m2
Z

would also rapidly change. It implies that ΔaY would
rapidly increase as shown in Figs. 4(a) and 5(a), which
was seen also in Eq. (56). For a small enough ΔaY , thus, we
are more interested in the thick central parts around aY ¼ 0
in the figures,

−0.7 ≲ aY ≲ 0.5; ð80Þ

which satisfies ΔaY < 100. As discussed before, in addi-
tion, we confine our discussion to cases of jμj < 600 GeV.
In fact, the constraint associated with μ or heavy gluino
effects could be relaxed by assuming very heavy masses for

FIG. 5 (color online). Scatter plots for (a) ΔaY , (b) Δm2
0
, and (c) jμj at theMZ scale, and (d) physical gluino mass whenm2

0 ¼ ð5 TeVÞ2
and tan β ¼ 50. The top squark mass scale is about 3.7 TeV.
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the superpartners of the first and second generations of the
SM chiral fermions [12]. For simplicity, however, we do
not consider such a possibility in this paper. Below
fG ≈ 0.3, the EW symmetry breaking does not occur.
From Figs. 4(c) and 5(c), thus, fG is constrained to

0.3 ≲ fG ≲ 0.4; ð81Þ

which is consistent with Δm2
0
< 100 as seen in Figs. 4(b)

and 5(b). From Figs. 4(d) and 5(d), we see that the above
ranges confine the physical gluino mass to

1.6 TeV ≲m~g ≲ 2.2 TeV: ð82Þ

Note that this gluino mass bound is a theoretical constraint
obtained by considering the naturalness of the EW scale in
the minimal mixed mediation scenario. It is well inside the
discovery potential range of LHC Run II. Actually the
relevant energy scale for the naturalness of the low energy
SUSY in the minimal mixed mediation scenario was
outside the range of LHC Run I, but it can be covered
by LHC Run II. Accordingly, the future exploration for the
SUSY particle, particularly the gluino at the LHC, would
be more important.

V. CONCLUSION

In this paper, we have studied the SUSY breaking effects
by the mGrM parametrized with m0, combined with the
mGgM parametrized with fG ·m0 for a common SUSY
breaking source at a hidden sector, hWHi (∼m0M2

P) in a
SUGRA framework. When the minimal Kähler potential
and the minimal gauge kinetic function (¼ δab) are
employed at tree level, a FP of m2

hu
appears at a bit higher

energy scale than mZ (shifted FP), depending on fG.
Basically fG is a parameter determined by a model. For
0.3 ≲ fG ≲ 0.4, the FP ofm2

hu
emerges at the 3–4 TeV scale,

which is the top squark mass scale desired for explaining
the 125 GeV Higgs mass, and so m2

hu
becomes quite

insensitive to top squark masses or m2
0. Thus, this range of

fG and −0.7 ≲ aY ≲ 0.3 can admit the fine-tuning measures
and μ to be much smaller than 100 and 600 GeV,
respectively. The range 0.3 ≲ fG ≲ 0.4 is directly translated
into, e.g., the gluino mass bound, 1.6 TeV ≲m~g ≲
2.2 TeV, which could readily be tested at LHC Run II
in the near future.
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APPENDIX: RG EQUATIONS AND SOLUTIONS

We present our semianalytic solutions to the RG equa-
tions. When tan β is small enough and the RH neutrinos are
decoupled, the RG evolutions of the soft mass parameters,
m2

q3 , m
2
uc
3
, m2

hu
, and At are simplified approximately as

16π2
dm2

q3

dt
¼ 2y2t ðXt þ A2

t Þ −
32

3
g23M

2
3 − 6g22M

2
2 −

2

15
g21M

2
1; ðA1Þ

16π2
dm2

uc
3

dt
¼ 4y2t ðXt þ A2

t Þ −
32

3
g23M

2
3 −

32

15
g21M

2
1; ðA2Þ

16π2
dm2

hu

dt
¼ 6y2t ðXt þ A2

t Þ − 6g22M
2
2 −

6

5
g21M

2
1; ðA3Þ

8π2
dAt

dt
¼ 6y2t At −

16

3
g23M3 − 3g22M2 −

13

15
g21M1 ≡ 6y2t At −

�
m1=2

g20

�
GA; ðA4Þ

assuming MaðtÞ
g2aðtÞ ¼

m1=2

g2
0

(a ¼ 3; 2; 1). Summation of Eqs. (A1), (A2), and (A3) yields the RG equation for Xt

(≡m2
q3 þm2

uc
3
þm2

hu
):

dXt

dt
¼ 3y2t

4π2
ðXt þ A2

t Þ −
1

4π2

�
m1=2

g20

�
2

G2
X: ðA5Þ

DOYOUN KIM AND BUMSEOK KYAE PHYSICAL REVIEW D 92, 075025 (2015)

075025-18



In Eqs. (A4) and (A5), GA and G2
X are defined in Eq. (15). The solutions of At and Xt are given by

AtðtÞ ¼ e
3

4π2

R
t

t0
dt0y2t

�
A0 −

1

8π2

�
m1=2

g20

�Z
t

t0

dt0GAe
−3
4π2

R
t0
t0
dt00y2t

�
; ðA6Þ

XtðtÞ ¼ e
3

4π2

R
t

t0
dt0y2t

�
X0 þ

Z
t

t0

dt0
�

3

4π2
y2t A2

t −
1

4π2

�
m1=2

g20

�
2

G2
X

�
e

−3
4π2

R
t0
t0
dt00y2t

�
; ðA7Þ

where A0 and X0 denote the GUT scale values of At and Xt, A0 ≡ Atðt ¼ t0Þ, and X0 ≡ Xtðt ¼ t0Þ ¼ m2
q30

þm2
uc
3
0 þm2

hu0
.

With Eqs. (A5) and (A7), one can solve Eqs. (A1), (A2), and (A3):

m2
q3ðtÞ ¼ m2

q30
þ X0

6

h
e

3

4π2

R
t

t0
dt0y2t − 1

i
þ FðtÞ

6
þ
�
m1=2

g20

�
2
�
8

9
fg43ðtÞ − g40g −

3

2
fg42ðtÞ − g40g −

1

198
fg41ðtÞ − g40g

�
; ðA8Þ

m2
uc
3
ðtÞ ¼ m2

uc
3
0 þ

X0

3

h
e

3

4π2

R
t

t0
dt0y2t − 1

i
þ FðtÞ

3
þ
�
m1=2

g20

�
2
�
8

9
fg43ðtÞ − g40g −

8

99
fg41ðtÞ − g40g

�
; ðA9Þ

m2
hu
ðtÞ ¼ m2

hu0
þ X0

2

h
e

3

4π2

R
t

t0
dt0y2t − 1

i
þ FðtÞ

2
−
�
m1=2

g20

�
2
�
3

2
fg42ðtÞ − g40g þ

1

22
fg41ðtÞ − g40g

�
; ðA10Þ

where FðtÞ is defined as

FðtÞ≡ e
3

4π2

R
t

t0
dt0y2t

Z
t

t0

dt0
3

4π2
y2t A2

t e
−3
4π2

R
t0
t0
dt00y2t −

1

4π2

�
m1=2

g20

�
2
�
e

3

4π2

R
t

t0
dt0y2t

Z
t

t0

dt0G2
Xe

−3
4π2

R
t0
t0
dt00y2t −

Z
t

t0

dt0G2
X

�
: ðA11Þ

Using Eq. (10), one can obtain the following results:

Z
t

t0

dt0g2i M
2
i ¼

4π2

bi

�
m1=2

g20

�
2

fg4i ðtÞ − g40g; ðA12Þ

Z
t

t0

dt0g2i Mi ¼
8π2

bi

�
m1=2

g20

�
fg2i ðtÞ − g20g; ðA13Þ

Z
t

t0

dt0g4i ¼
8π2

bi
fg2i ðtÞ − g20g; ðA14Þ

which are useful to get the solutions, Eqs. (A8), (A9), and (A10).
With Eq. (A6), the first line of Eq. (A11) is recast to

A2
t ðtÞ − e

3

4π2

R
t

t0
dt0y2t

�
A2
0 −

1

4π2

�
m1=2

g20

�Z
t

t0

dt0GAðt0ÞAtðt0Þe
−3
4π2

R
t0
t0
dt00y2t

�

¼ 1

64π4

�
m1=2

g20

�
2
��

e
3

4π2
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t0
dt0y2t

Z
t

t0

dt0GAe
−3
4π2

R
t0
t0
dt00y2t

�
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− 2e
3

4π2
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t0
dt0y2t

Z
t

t0

dt0GA

Z
t0

t0

dt00GAe
−3
4π2

R
t00
t0

dt000y2t
�

þ A0

4π2

�
m1=2

g20

�
e

3

4π2

R
t

t0
dt0y2t

�Z
t

t0

dt0GA − e
3

4π2

R
t

t0
dt0y2t

Z
t

t0

dt0GAe
−3
4π2

R
t0
t0
dt00y2t

�

þ A2
0e

3

4π2

R
t

t0
dt0y2t

h
e

3

4π2

R
t

t0
dt0y2t − 1

i
: ðA15Þ
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When the gaugino masses are generated below tM with MaðtMÞ
g2aðtMÞ ¼ fGm0 (a ¼ 3; 2; 1), the solutions for tf < ti < tM are

m2
q3ðtfÞ ¼ m2

q3ðtiÞ þ
1

6
fXtðtfÞ − XtðtiÞg þ

f2Gm
2
0

24π2

Z
tf

ti

dtG2
X

þ f2Gm
2
0

�
8

9
fg43ðtfÞ − g43ðtiÞg −

3

2
fg42ðtfÞ − g42ðtiÞg −

1

198
fg41ðtfÞ − g41ðtiÞg

�
; ðA16Þ

m2
uc
3
ðtfÞ ¼ m2

uc
3
ðtiÞ þ

1

3
fXtðtfÞ − XtðtiÞg þ

f2Gm
2
0

12π2

Z
tf

ti

dtG2
X þ f2Gm

2
0

�
8

9
fg43ðtfÞ − g43ðtiÞg −

8

99
fg41ðtfÞ − g41ðtiÞg

�
; ðA17Þ

m2
hu
ðtfÞ ¼ m2

hu
ðtiÞ þ

1

2
fXtðtfÞ − XtðtiÞg þ

f2Gm
2
0

8π2

Z
tf

ti

dtG2
X − f2Gm

2
0

�
3

2
fg42ðtfÞ − g42ðtiÞg þ

1

22
fg41ðtfÞ − g41ðtiÞg

�
; ðA18Þ

where

XtðtfÞ − XtðtiÞ ¼ XtðtiÞ
h
e

3

4π2

R
tf
ti

dty2t − 1
i
þ e

3

4π2

R
tf
ti

dty2t
Z

tf

ti

dt0
�

3

4π2
y2t A2

t −
f2Gm

2
0

4π2
G2

X

�
e

−3
4π2

R
t0
ti
dt00y2t ðA19Þ

and

AtðtfÞ ¼ e
3

4π2

R
tf
ti

dty2t
�
AtðtiÞ −

fGm0

8π2

Z
tf

ti

dt0GAe
−3
4π2

R
t0
ti
dt00y2t

�
: ðA20Þ

In the main text, we set ti ¼ tM, tf ¼ t, and define F2ðtÞ as

F2ðtÞ≡ e
3

4π2

R
t

tM
dt0y2t

Z
t

tM

dt0
3

4π2
y2t A2

t e
−3
4π2

R
t0
tM

dt00y2t −
f2Gm

2
0

4π2

�
e

3

4π2

R
t

tM
dt0y2t

Z
t

tM

dt0G2
Xe

−3
4π2

R
t0
tM

dt00y2t −
Z

t

tM

dt0G2
X

�
: ðA21Þ
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